51
|
Youn DH. Differential roles of signal transduction mechanisms in long-term potentiation of excitatory synaptic transmission induced by activation of group I mGluRs in the spinal trigeminal subnucleus oralis. Brain Res Bull 2014; 108:37-43. [PMID: 25149878 DOI: 10.1016/j.brainresbull.2014.08.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/11/2014] [Indexed: 12/13/2022]
Abstract
Group I metabotropic glutamate receptors (mGluR1 and 5) have been implicated in long-term potentiation (LTP), a persistent increase of synaptic efficiency, in the central nervous system including the spinal trigeminal nucleus (Vsp). In the ascending pathway from the caudalis (Vc) to the oralis (Vo) subnuclus in Vsp, it has been shown that the activation of group I mGluRs (mGluR1 and 5) with their agonist (S)-3,5-dihydroxyphenylglycine (DHPG) produces a delayed type of LTP of excitatory synaptic transmission and this LTP was mediated by mGluR1. Further, this study attempts to pharmacologically characterize essential signaling components for the expression of DHPG-induced LTP. As a result, it is found that the group I mGluRs essentially use G protein-mediated activation of the phospholipase C (PLC) pathway to express the LTP. However, recruited signaling molecules following the activation of PLC are differentially involved in the expression of LTP: i.e. IP3 receptor, intracellular Ca(2+) rise, CaMKII and ERK function as positive regulators, whereas PKC as a negative regulator. Furthermore, both L-type voltage-dependent Ca(2+) channel and canonical transient receptor potential channel positively contribute to the expression of LTP. Taken together, these results suggest that signaling molecules recruited by the activation of group I mGluRs collaboratively or oppositely control the optimal expression of synaptic plasticity at excitatory synapses in the Vo.
Collapse
Affiliation(s)
- Dong-ho Youn
- Department of Oral Physiology, School of Dentistry, Kyungpook National University, 2177 Dalgubeol Blvd., Jung-gu, Daegu 700-706, Republic of Korea.
| |
Collapse
|
52
|
Shoenfeld L, Westenbroek RE, Fisher E, Quinlan KA, Tysseling VM, Powers RK, Heckman CJ, Binder MD. Soma size and Cav1.3 channel expression in vulnerable and resistant motoneuron populations of the SOD1G93A mouse model of ALS. Physiol Rep 2014; 2:2/8/e12113. [PMID: 25107988 PMCID: PMC4246589 DOI: 10.14814/phy2.12113] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although the loss of motoneurons is an undisputed feature of amyotrophic lateral sclerosis (ALS) in man and in its animal models (SOD1 mutant mice), how the disease affects the size and excitability of motoneurons prior to their degeneration is not well understood. This study was designed to test the hypothesis that motoneurons in mutant SOD1G93A mice exhibit an enlargement of soma size (i.e., cross‐sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1G93A mutants were larger than those in wild‐type transgenic males. When females were included in the two groups, significance was lost. Expression levels of the Cav1.3 channels were not differentiated by genotype, sex, or any interaction of the two. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS. This study was designed to test the hypothesis that motoneurons in mutant SOD1G93A mice exhibit an enlargement of soma size (i.e., cross‐sectional area) and an increase in Cav1.3 channel expression at postnatal day 30, well before the manifestation of physiological symptoms that typically occur at p90 (Chiu et al. 1995). We made measurements of spinal and hypoglossal motoneurons vulnerable to degeneration, as well as motoneurons in the oculomotor nucleus that are resistant to degeneration. Overall, we found that the somata of motoneurons in male SOD1G93A mutants were larger than those in wild‐type transgenic males. When females were included in the two groups, significance was lost. These results raise the intriguing possibility of an interaction between male sex steroid hormones and the SOD1 mutation in the etiopathogenesis of ALS.
Collapse
Affiliation(s)
- Liza Shoenfeld
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, USA
| | - Ruth E Westenbroek
- Department of Pharmacology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Erika Fisher
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Katharina A Quinlan
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Vicki M Tysseling
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Randall K Powers
- Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| | - Charles J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Marc D Binder
- Graduate Program in Neurobiology & Behavior, University of Washington, Seattle, Washington, USA Department of Physiology & Biophysics, University of Washington School of Medicine, Seattle, Washington, USA
| |
Collapse
|
53
|
Kim H, Jones KE, Heckman CJ. Asymmetry in signal propagation between the soma and dendrites plays a key role in determining dendritic excitability in motoneurons. PLoS One 2014; 9:e95454. [PMID: 25083794 PMCID: PMC4118843 DOI: 10.1371/journal.pone.0095454] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 03/27/2014] [Indexed: 12/31/2022] Open
Abstract
It is widely recognized that propagation of electrophysiological signals between the soma and dendrites of neurons differs depending on direction, i.e. it is asymmetric. How this asymmetry influences the activation of voltage-gated dendritic channels, and consequent neuronal behavior, remains unclear. Based on the analysis of asymmetry in several types of motoneurons, we extended our previous methodology for reducing a fully reconstructed motoneuron model to a two-compartment representation that preserved asymmetric signal propagation. The reduced models accurately replicated the dendritic excitability and the dynamics of the anatomical model involving a persistent inward current (PIC) dispersed over the dendrites. The relationship between asymmetric signal propagation and dendritic excitability was investigated using the reduced models while varying the asymmetry in signal propagation between the soma and the dendrite with PIC density constant. We found that increases in signal attenuation from soma to dendrites increased the activation threshold of a PIC (hypo-excitability), whereas increases in signal attenuation from dendrites to soma decreased the activation threshold of a PIC (hyper-excitability). These effects were so strong that reversing the asymmetry in the soma-to-dendrite vs. dendrite-to-soma attenuation, reversed the correlation between PIC threshold and distance of this current source from the soma. We propose the tight relation of the asymmetric signal propagation to the input resistance in the dendrites as a mechanism underlying the influence of the asymmetric signal propagation on the dendritic excitability. All these results emphasize the importance of maintaining the physiological asymmetry in dendritic signaling not only for normal function of the cells but also for biophysically realistic simulations of dendritic excitability.
Collapse
Affiliation(s)
- Hojeong Kim
- Division of Robotics Research, Daegu Gyeongbuk Institute of Science & Technology, Daegu, Korea
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, United States of America
- * E-mail:
| | - Kelvin E. Jones
- Centre for Neuroscience and Faculty of Physical Education and Recreation, University of Alberta, Edmonton, Canada
| | - C. J. Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, United States of America
- Department of Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, United States of America
- Department of Physical Therapy and Human Movement Science, Northwestern University Feinberg School of Medicine, Chicago, United States of America
| |
Collapse
|
54
|
Johnson MD, Heckman CJ. Gain control mechanisms in spinal motoneurons. Front Neural Circuits 2014; 8:81. [PMID: 25120435 PMCID: PMC4114207 DOI: 10.3389/fncir.2014.00081] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2014] [Accepted: 06/24/2014] [Indexed: 11/13/2022] Open
Abstract
Motoneurons provide the only conduit for motor commands to reach muscles. For many years, motoneurons were in fact considered to be little more than passive "wires". Systematic studies in the past 25 years however have clearly demonstrated that the intrinsic electrical properties of motoneurons are under strong neuromodulatory control via multiple sources. The discovery of potent neuromodulation from the brainstem and its ability to change the gain of motoneurons shows that the "passive" view of the motor output stage is no longer tenable. A mechanism for gain control at the motor output stage makes good functional sense considering our capability of generating an enormous range of forces, from very delicate (e.g., putting in a contact lens) to highly forceful (emergency reactions). Just as sensory systems need gain control to deal with a wide dynamic range of inputs, so to might motor output need gain control to deal with the wide dynamic range of the normal movement repertoire. Two problems emerge from the potential use of the brainstem monoaminergic projection to motoneurons for gain control. First, the projection is highly diffuse anatomically, so that independent control of the gains of different motor pools is not feasible. In fact, the system is so diffuse that gain for all the motor pools in a limb likely increases in concert. Second, if there is a system that increases gain, probably a system to reduce gain is also needed. In this review, we summarize recent studies that show local inhibitory circuits within the spinal cord, especially reciprocal and recurrent inhibition, have the potential to solve both of these problems as well as constitute another source of gain modulation.
Collapse
Affiliation(s)
- Michael D Johnson
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| | - Charles J Heckman
- Department of Physiology, Feinberg School of Medicine, Northwestern University Chicago, IL, USA ; Department of Physical Medicine and Rehabilitation and Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University Chicago, IL, USA
| |
Collapse
|
55
|
Liu Y, Harding M, Pittman A, Dore J, Striessnig J, Rajadhyaksha A, Chen X. Cav1.2 and Cav1.3 L-type calcium channels regulate dopaminergic firing activity in the mouse ventral tegmental area. J Neurophysiol 2014; 112:1119-30. [PMID: 24848473 DOI: 10.1152/jn.00757.2013] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Dopaminergic projections from the ventral tegmental area (VTA) constitute the mesolimbocortical system that underlies addiction and psychosis primarily as a result of increased dopaminergic transmission. Dopamine release is spike dependent. L-type calcium channels (LTCCs) play an important role in regulating firing activities, but the contribution of specific subtypes remains unclear. This article describes different functions of Cav1.2 and Cav1.3 subtypes in regulating firing properties with two transgenic mouse strains. For basal firing, Cav1.3-deficient (Cav1.3(-/-)) mice had a lower basal firing frequency. The dihydropyridine (DHP) channel blocker nifedipine reduced single-spike firing in mice expressing DHP-insensitive Cav1.2 channels (Cav1.2DHP(-/-) mice), confirming the significant contribution from the Cav1.3 subtype in basal firing. Moreover, the DHP channel activator (S)-(-)-Bay K8644 and the non-DHP channel activator FPL 64176 converted firing patterns from single spiking to bursting in Cav1.2DHP(-/-) mice. Nifedipine inhibited burst firing induced by both activators, suggesting that Cav1.3 also serves an essential role in burst firing. However, FPL 64176 also induced bursting in Cav1.3(-/-) mice. These results indicate that the Cav1.3 subtype is crucial to regulation of basal single-spike firing, while activation of both Cav1.2 and Cav1.3 can support burst firing of VTA neurons.
Collapse
Affiliation(s)
- Yudan Liu
- Department of Physiology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning, China;
| | - Meghan Harding
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Andrea Pittman
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jules Dore
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Jörg Striessnig
- Department of Pharmacology and Toxicology, Institute of Pharmacy and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria; and
| | - Anjali Rajadhyaksha
- Division of Pediatric Neurology, Department of Pediatrics and Brain and Mind Research Institute, Weill Cornell Medical College of Cornell University, New York
| | - Xihua Chen
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
56
|
D'Amico JM, Condliffe EG, Martins KJB, Bennett DJ, Gorassini MA. Recovery of neuronal and network excitability after spinal cord injury and implications for spasticity. Front Integr Neurosci 2014; 8:36. [PMID: 24860447 PMCID: PMC4026713 DOI: 10.3389/fnint.2014.00036] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2013] [Accepted: 04/17/2014] [Indexed: 01/08/2023] Open
Abstract
The state of areflexia and muscle weakness that immediately follows a spinal cord injury (SCI) is gradually replaced by the recovery of neuronal and network excitability, leading to both improvements in residual motor function and the development of spasticity. In this review we summarize recent animal and human studies that describe how motoneurons and their activation by sensory pathways become hyperexcitable to compensate for the reduction of functional activation of the spinal cord and the eventual impact on the muscle. Specifically, decreases in the inhibitory control of sensory transmission and increases in intrinsic motoneuron excitability are described. We present the idea that replacing lost patterned activation of the spinal cord by activating synaptic inputs via assisted movements, pharmacology or electrical stimulation may help to recover lost spinal inhibition. This may lead to a reduction of uncontrolled activation of the spinal cord and thus, improve its controlled activation by synaptic inputs to ultimately normalize circuit function. Increasing the excitation of the spinal cord with spared descending and/or peripheral inputs by facilitating movement, instead of suppressing it pharmacologically, may provide the best avenue to improve residual motor function and manage spasticity after SCI.
Collapse
Affiliation(s)
- Jessica M D'Amico
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada
| | - Elizabeth G Condliffe
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada ; Division of Physical Medicine and Rehabilitation, University of Alberta Edmonton, AB, Canada
| | - Karen J B Martins
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Physical Education and Recreation, University of Alberta Edmonton, AB, Canada
| | - David J Bennett
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Rehabilitation Medicine, University of Alberta Edmonton, AB, Canada
| | - Monica A Gorassini
- Centre for Neuroscience, University of Alberta Edmonton, AB, Canada ; Faculty of Medicine and Dentistry, University of Alberta Edmonton, AB, Canada ; Department of Biomedical Engineering, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
57
|
Normal distribution of VGLUT1 synapses on spinal motoneuron dendrites and their reorganization after nerve injury. J Neurosci 2014; 34:3475-92. [PMID: 24599449 DOI: 10.1523/jneurosci.4768-13.2014] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Peripheral nerve injury induces permanent alterations in spinal cord circuitries that are not reversed by regeneration. Nerve injury provokes the loss of many proprioceptive IA afferent synapses (VGLUT1-IR boutons) from motoneurons, the reduction of IA EPSPs in motoneurons, and the disappearance of stretch reflexes. After motor and sensory axons successfully reinnervate muscle, lost IA VGLUT1 synapses are not re-established and the stretch reflex does not recover; however, electrically evoked EPSPs do recover. The reasons why remaining IA synapses can evoke EPSPs on motoneurons, but fail to transmit useful stretch signals are unknown. To better understand changes in the organization of VGLUT1 IA synapses that might influence their input strength, we analyzed their distribution over the entire dendritic arbor of motoneurons before and after nerve injury. Adult rats underwent complete tibial nerve transection followed by microsurgical reattachment and 1 year later motoneurons were intracellularly recorded and filled with neurobiotin to map the distribution of VGLUT1 synapses along their dendrites. We found in control motoneurons an average of 911 VGLUT1 synapses; ~62% of them were lost after injury. In controls, VGLUT1 synapses were focused to proximal dendrites where they were grouped in tight clusters. After injury, most synaptic loses occurred in the proximal dendrites and remaining synapses were declustered, smaller, and uniformly distributed throughout the dendritic arbor. We conclude that this loss and reorganization renders IA afferent synapses incompetent for efficient motoneuron synaptic depolarization in response to natural stretch, while still capable of eliciting EPSPs when synchronously fired by electrical volleys.
Collapse
|
58
|
Hasreiter J, Goldnagl L, Böhm S, Kubista H. Cav1.2 and Cav1.3 L-type calcium channels operate in a similar voltage range but show different coupling to Ca(2+)-dependent conductances in hippocampal neurons. Am J Physiol Cell Physiol 2014; 306:C1200-13. [PMID: 24760982 DOI: 10.1152/ajpcell.00329.2013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In the central nervous system, L-type voltage-gated calcium channels (LTCCs) come in two isoforms, namely Cav1.2 and Cav1.3 channels. It has been shown previously that these channels differ in biophysical properties, in subcellular localization, and in the coupling to the gene transcription machinery. In previous work on rat hippocampal neurons we have identified an excitatory cation conductance and an inhibitory potassium conductance as important LTCC coupling partners. Notably, a stimulus-dependent interplay of LTCC-mediated Ca(2+) influx and activation of these Ca(2+)-dependent conductances was found to give rise to characteristic voltage responses. However, the contribution of Cav1.2 and Cav1.3 to these voltage responses remained unknown. Hence, the relative contribution of the LTCC isoforms therein was the focus of the current study on hippocampal neurons derived from genetically modified mice, which either lack a LTCC isoform (Cav1.3 knockout mice) or express a dihydropyridine-insensitive LTCC isoform (Cav1.2DHP(-)-knockin mice). We identified common and alternate ion channel couplings of Cav1.2 and Cav1.3 channels. Whereas hyperpolarizing Ca(2+)-dependent conductances were coupled to both Cav1.2 and Cav1.3 channels, an afterdepolarizing potential was only induced by the activity of Cav1.2 channels. Unexpectedly, the activity of Cav1.2 channels was found at relatively hyperpolarized membrane voltages. Our data add important information about the differences between Cav1.2 and Cav1.3 channels that furthers our understanding of the physiological and pathophysiological neuronal roles of these calcium channels. Moreover, our findings suggest that Cav1.3 knockout mice together with Cav1.2DHP(-)-knockin mice provide valuable models for future investigation of hippocampal LTCC-dependent afterdepolarizations.
Collapse
Affiliation(s)
- Julia Hasreiter
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Lena Goldnagl
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Stefan Böhm
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Helmut Kubista
- Center of Physiology and Pharmacology, Department of Neurophysiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
59
|
Romer SH, Dominguez KM, Gelpi MW, Deardorff AS, Tracy RC, Fyffe REW. Redistribution of Kv2.1 ion channels on spinal motoneurons following peripheral nerve injury. Brain Res 2013; 1547:1-15. [PMID: 24355600 DOI: 10.1016/j.brainres.2013.12.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/09/2013] [Accepted: 12/10/2013] [Indexed: 01/01/2023]
Abstract
Pathophysiological responses to peripheral nerve injury include alterations in the activity, intrinsic membrane properties and excitability of spinal neurons. The intrinsic excitability of α-motoneurons is controlled in part by the expression, regulation, and distribution of membrane-bound ion channels. Ion channels, such as Kv2.1 and SK, which underlie delayed rectifier potassium currents and afterhyperpolarization respectively, are localized in high-density clusters at specific postsynaptic sites (Deardorff et al., 2013; Muennich and Fyffe, 2004). Previous work has indicated that Kv2.1 channel clustering and kinetics are regulated by a variety of stimuli including ischemia, hypoxia, neuromodulator action and increased activity. Regulation occurs via channel dephosphorylation leading to both declustering and alterations in channel kinetics, thus normalizing activity (Misonou et al., 2004; Misonou et al., 2005; Misonou et al., 2008; Mohapatra et al., 2009; Park et al., 2006). Here we demonstrate using immunohistochemistry that peripheral nerve injury is also sufficient to alter the surface distribution of Kv2.1 channels on motoneurons. The dynamic changes in channel localization include a rapid progressive decline in cluster size, beginning immediately after axotomy, and reaching maximum within one week. With reinnervation, the organization and size of Kv2.1 clusters do not fully recover. However, in the absence of reinnervation Kv2.1 cluster sizes fully recover. Moreover, unilateral peripheral nerve injury evokes parallel, but smaller effects bilaterally. These results suggest that homeostatic regulation of motoneuron Kv2.1 membrane distribution after axon injury is largely independent of axon reinnervation.
Collapse
Affiliation(s)
- Shannon H Romer
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Kathleen M Dominguez
- Department of Surgery Boonshoft School of Medicine, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Marc W Gelpi
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Adam S Deardorff
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Robert C Tracy
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Robert E W Fyffe
- Department of Neuroscience, Cell Biology and Physiology, 202 University Hall, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| |
Collapse
|
60
|
Abstract
The development and the ionic nature of bistable behavior in lumbar motoneurons were investigated in rats. One week after birth, almost all (∼80%) ankle extensor motoneurons recorded in whole-cell configuration displayed self-sustained spiking in response to a brief depolarization that emerged when the temperature was raised >30°C. The effect of L-type Ca(2+) channel blockers on self-sustained spiking was variable, whereas blockade of the persistent sodium current (I(NaP)) abolished them. When hyperpolarized, bistable motoneurons displayed a characteristic slow afterdepolarization (sADP). The sADPs generated by repeated depolarizing pulses summed to promote a plateau potential. The sADP was tightly associated with the emergence of Ca(2+) spikes. Substitution of extracellular Na(+) or chelation of intracellular Ca(2+) abolished both sADP and the plateau potential without affecting Ca(2+) spikes. These data suggest a key role of a Ca(2+)-activated nonselective cation conductance ((CaN)) in generating the plateau potential. In line with this, the blockade of (CaN) by flufenamate abolished both sADP and plateau potentials. Furthermore, 2-aminoethoxydiphenyl borate (2-APB), a common activator of thermo-sensitive vanilloid transient receptor potential (TRPV) cation channels, promoted the sADP. Among TRPV channels, only the selective activation of TRPV2 channels by probenecid promoted the sADP to generate a plateau potential. To conclude, bistable behaviors are, to a large extent, determined by the interplay between three currents: L-type I(Ca), I(NaP), and a Na(+)-mediated I(CaN) flowing through putative TRPV2 channels.
Collapse
|
61
|
Abstract
Movement is accomplished by the controlled activation of motor unit populations. Our understanding of motor unit physiology has been derived from experimental work on the properties of single motor units and from computational studies that have integrated the experimental observations into the function of motor unit populations. The article provides brief descriptions of motor unit anatomy and muscle unit properties, with more substantial reviews of motoneuron properties, motor unit recruitment and rate modulation when humans perform voluntary contractions, and the function of an entire motor unit pool. The article emphasizes the advances in knowledge on the cellular and molecular mechanisms underlying the neuromodulation of motoneuron activity and attempts to explain the discharge characteristics of human motor units in terms of these principles. A major finding from this work has been the critical role of descending pathways from the brainstem in modulating the properties and activity of spinal motoneurons. Progress has been substantial, but significant gaps in knowledge remain.
Collapse
Affiliation(s)
- C J Heckman
- Northwestern University, Evanston, Illinois, USA.
| | | |
Collapse
|
62
|
Ionotropic glutamate receptors and voltage-gated Ca²⁺ channels in long-term potentiation of spinal dorsal horn synapses and pain hypersensitivity. Neural Plast 2013; 2013:654257. [PMID: 24224102 PMCID: PMC3808892 DOI: 10.1155/2013/654257] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/27/2013] [Accepted: 08/27/2013] [Indexed: 12/18/2022] Open
Abstract
Over the last twenty years of research on cellular mechanisms of pain hypersensitivity, long-term potentiation (LTP) of synaptic transmission in the spinal cord dorsal horn (DH) has emerged as an important contributor to pain pathology. Mechanisms that underlie LTP of spinal DH neurons include changes in the numbers, activity, and properties of ionotropic glutamate receptors (AMPA and NMDA receptors) and of voltage-gated Ca2+ channels. Here, we review the roles and mechanisms of these channels in the induction and expression of spinal DH LTP, and we present this within the framework of the anatomical organization and synaptic circuitry of the spinal DH. Moreover, we compare synaptic plasticity in the spinal DH with classical LTP described for hippocampal synapses.
Collapse
|
63
|
Wang D, Grillner S, Wallén P. Calcium dynamics during NMDA-induced membrane potential oscillations in lamprey spinal neurons--contribution of L-type calcium channels (CaV1.3). J Physiol 2013; 591:2509-21. [PMID: 23440960 DOI: 10.1113/jphysiol.2012.248526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
NMDA receptor-dependent, intrinsic membrane potential oscillations are an important element in the operation of the lamprey locomotor network. They involve a cyclic influx of calcium, leading to an activation of calcium-activated potassium (KCa) channels that in turn contributes to the termination of the depolarized plateau and membrane repolarization. In this study, we have investigated the calcium dynamics in different regions of lamprey spinal neurons during membrane potential oscillations, using confocal calcium imaging in combination with intracellular recordings. Calcium fluctuations were observed in both soma and dendrites, timed to the oscillations. The calcium level increased sharply at the onset of membrane depolarization, to reach its maximum by the end of the plateau. The calcium peak in distal dendrites typically occurred earlier than in the soma during the oscillatory cycle. The L-type calcium channel blocker nimodipine increased the duration of the depolarized plateau phase in most cells tested, whereas the agonist Bay K 8644 decreased plateau duration. Bay K 8644 increased the amplitude of calcium fluctuations, particularly in distal dendrites, whereas nimodipine caused a decrease, suggesting that L-type low-voltage-activated calcium channels are mainly localized in these regions. Our results thus indicate that dendritic CaV1.3-like calcium channels are activated during NMDA-mediated membrane potential oscillations. This calcium influx activates KCa channels involved in plateau termination.
Collapse
Affiliation(s)
- Di Wang
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | | | | |
Collapse
|
64
|
Deardorff AS, Romer SH, Deng Z, Bullinger KL, Nardelli P, Cope TC, Fyffe REW. Expression of postsynaptic Ca2+-activated K+ (SK) channels at C-bouton synapses in mammalian lumbar -motoneurons. J Physiol 2013; 591:875-97. [PMID: 23129791 PMCID: PMC3591704 DOI: 10.1113/jphysiol.2012.240879] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/31/2012] [Indexed: 01/27/2023] Open
Abstract
Small-conductance calcium-activated potassium (SK) channels mediate medium after-hyperpolarization (AHP) conductances in neurons throughout the central nervous system. However, the expression profile and subcellular localization of different SK channel isoforms in lumbar spinal α-motoneurons (α-MNs) is unknown. Using immunohistochemical labelling of rat, mouse and cat spinal cord, we reveal a differential and overlapping expression of SK2 and SK3 isoforms across specific types of α-MNs. In rodents, SK2 is expressed in all α-MNs, whereas SK3 is expressed preferentially in small-diameter α-MNs; in cats, SK3 is expressed in all α-MNs. Function-specific expression of SK3 was explored using post hoc immunostaining of electrophysiologically characterized rat α-MNs in vivo. These studies revealed strong relationships between SK3 expression and medium AHP properties. Motoneurons with SK3-immunoreactivity exhibit significantly longer AHP half-decay times (24.67 vs. 11.02 ms) and greater AHP amplitudes (3.27 vs. 1.56 mV) than MNs lacking SK3-immunoreactivity. We conclude that the differential expression of SK isoforms in rat and mouse spinal cord may contribute to the range of medium AHP durations across specific MN functional types and may be a molecular factor distinguishing between slow- and fast-type α-MNs in rodents. Furthermore, our results show that SK2- and SK3-immunoreactivity is enriched in distinct postsynaptic domains that contain Kv2.1 channel clusters associated with cholinergic C-boutons on the soma and proximal dendrites of α-MNs. We suggest that this remarkably specific subcellular membrane localization of SK channels is likely to represent the basis for a cholinergic mechanism for effective regulation of channel function and cell excitability.
Collapse
Affiliation(s)
- Adam S Deardorff
- Department of Neuroscience, Cell Biology & Physiology, Wright State University, Boonshoft School of Medicine, Dayton, OH 45435, USA
| | | | | | | | | | | | | |
Collapse
|
65
|
Pacemaker and plateau potentials shape output of a developing locomotor network. Curr Biol 2012; 22:2285-93. [PMID: 23142042 PMCID: PMC3525839 DOI: 10.1016/j.cub.2012.10.025] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 09/20/2012] [Accepted: 10/16/2012] [Indexed: 12/03/2022]
Abstract
Background During development, spinal networks undergo an intense period of maturation in which immature forms of motor behavior are observed. Such behaviors are transient, giving way to more mature activity as development proceeds. The processes governing age-specific transitions in motor behavior are not fully understood. Results Using in vivo patch clamp electrophysiology, we have characterized ionic conductances and firing patterns of developing zebrafish spinal neurons. We find that a kernel of spinal interneurons, the ipsilateral caudal (IC) cells, generate inherent bursting activity that depends upon a persistent sodium current (INaP). We further show that developmental transitions in motor behavior are accompanied by changes in IC cell bursting: during early life, these cells generate low frequency membrane oscillations that likely drive “coiling,” an immature form of motor output. As fish mature to swimming stages, IC cells switch to a sustained mode of bursting that permits generation of high-frequency oscillations during locomotion. Finally, we find that perturbation of IC cell bursting disrupts motor output at both coiling and swimming stages. Conclusions Our results suggest that neurons with unique bursting characteristics are a fundamental component of developing motor networks. During development, these may shape network output and promote stage-specific reconfigurations in motor behavior.
Collapse
|
66
|
Abbinanti MD, Zhong G, Harris-Warrick RM. Postnatal emergence of serotonin-induced plateau potentials in commissural interneurons of the mouse spinal cord. J Neurophysiol 2012; 108:2191-202. [PMID: 22832564 PMCID: PMC3545016 DOI: 10.1152/jn.00336.2012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 07/18/2012] [Indexed: 02/07/2023] Open
Abstract
Most studies of the mouse hindlimb locomotor network have used neonatal (P0-5) mice. In this study, we examine the postnatal development of intrinsic properties and serotonergic modulation of intersegmental commissural interneurons (CINs) from the neonatal period (P0-3) to the time the animals bear weight (P8-10) and begin to show adult walking (P14-16). CINs show an increase in excitability with age, associated with a decrease in action potential halfwidth and appearance of a fast component to the afterhyperpolarization at P14-16. Serotonin (5-HT) depolarizes and increases the excitability of most CINs at all ages. The major developmental difference is that serotonin can induce plateau potential capability in P14-16 CINs, but not at younger ages. These plateau potentials are abolished by nifedipine, suggesting that they are mediated by an L-type calcium current, I(Ca(L)). Voltage-clamp analysis demonstrates that 5-HT increases a nifedipine-sensitive voltage-activated calcium current, I(Ca(V)), in P14-16 CINs but does not increase I(Ca(V)) in P8-10 CINs. These results, together with earlier work on 5-HT effects on neonatal CINs, suggest that 5-HT increases the excitability of CINs at all ages studied, but by opposite effects on calcium currents, decreasing N- and P/Q-type calcium currents and, indirectly, calcium-activated potassium current, at P0-3 but increasing I(Ca(L)) at P14-16.
Collapse
|
67
|
Powers RK, Nardelli P, Cope TC. Frequency-dependent amplification of stretch-evoked excitatory input in spinal motoneurons. J Neurophysiol 2012; 108:753-9. [PMID: 22592308 PMCID: PMC3424093 DOI: 10.1152/jn.00313.2012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/12/2012] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent calcium and sodium channels mediating persistent inward currents (PICs) amplify the effects of synaptic inputs on the membrane potential and firing rate of motoneurons. CaPIC channels are thought to be relatively slow, whereas the NaPIC channels have fast kinetics. These different characteristics influence how synaptic inputs with different frequency content are amplified; the slow kinetics of Ca channels suggest that they can only contribute to amplification of low frequency inputs (<5 Hz). To characterize frequency-dependent amplification of excitatory postsynaptic potentials (EPSPs), we measured the averaged stretch-evoked EPSPs in cat medial gastrocnemius motoneurons in decerebrate cats at different subthreshold levels of membrane potential. EPSPs were produced by muscle spindle afferents activated by stretching the homonymous and synergist muscles at frequencies of 5-50 Hz. We adjusted the stretch amplitudes at different frequencies to produce approximately the same peak-to-peak EPSP amplitude and quantified the amount of amplification by expressing the EPSP integral at different levels of depolarization as a percentage of that measured with the membrane hyperpolarized. Amplification was observed at all stretch frequencies but generally decreased with increasing stretch frequency. However, in many cells the amount of amplification was greater at 10 Hz than at 5 Hz. Fast amplification was generally reduced or absent when the lidocaine derivative QX-314 was included in the electrode solution, supporting a strong contribution from Na channels. These results suggest that NaPICs can combine with CaPICs to enhance motoneuron responses to modulations of synaptic drive over a physiologically significant range of frequencies.
Collapse
Affiliation(s)
- Randall K Powers
- Department of Physiology & Biophysics, School of Medicine, University of Washington, Seattle, Washington 98195, USA.
| | | | | |
Collapse
|
68
|
Stelescu A, Sümegi J, Wéber I, Birinyi A, Wolf E. Somato-dendritic morphology and dendritic signal transfer properties differentiate between fore- and hindlimb innervating motoneurons in the frog Rana esculenta. BMC Neurosci 2012; 13:68. [PMID: 22708833 PMCID: PMC3472316 DOI: 10.1186/1471-2202-13-68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Accepted: 05/14/2012] [Indexed: 11/22/2022] Open
Abstract
Background The location specific motor pattern generation properties of the spinal cord along its rostro-caudal axis have been demonstrated. However, it is still unclear that these differences are due to the different spinal interneuronal networks underlying locomotions or there are also segmental differences in motoneurons innervating different limbs. Frogs use their fore- and hindlimbs differently during jumping and swimming. Therefore we hypothesized that limb innervating motoneurons, located in the cervical and lumbar spinal cord, are different in their morphology and dendritic signal transfer properties. The test of this hypothesis what we report here. Results Discriminant analysis classified segmental origin of the intracellularly labeled and three-dimensionally reconstructed motoneurons 100% correctly based on twelve morphological variables. Somata of lumbar motoneurons were rounder; the dendrites had bigger total length, more branches with higher branching orders and different spatial distributions of branch points. The ventro-medial extent of cervical dendrites was bigger than in lumbar motoneurons. Computational models of the motoneurons showed that dendritic signal transfer properties were also different in the two groups of motoneurons. Whether log attenuations were higher or lower in cervical than in lumbar motoneurons depended on the proximity of dendritic input to the soma. To investigate dendritic voltage and current transfer properties imposed by dendritic architecture rather than by neuronal size we used standardized distributions of transfer variables. We introduced a novel combination of cluster analysis and homogeneity indexes to quantify segmental segregation tendencies of motoneurons based on their dendritic transfer properties. A segregation tendency of cervical and lumbar motoneurons was detected by the rates of steady-state and transient voltage-amplitude transfers from dendrites to soma at all levels of synaptic background activities, modeled by varying the specific dendritic membrane resistance. On the other hand no segregation was observed by the steady-state current transfer except under high background activity. Conclusions We found size-dependent and size-independent differences in morphology and electrical structure of the limb moving motoneurons based on their spinal segmental location in frogs. Location specificity of locomotor networks is therefore partly due to segmental differences in motoneurons driving fore-, and hindlimbs.
Collapse
Affiliation(s)
- András Stelescu
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Medical and Health Science Center, University of Debrecen, Nagyerdei krt 98, Debrecen, H-4032, Hungary
| | | | | | | | | |
Collapse
|
69
|
Venugopal S, Hamm TM, Jung R. Differential contributions of somatic and dendritic calcium-dependent potassium currents to the control of motoneuron excitability following spinal cord injury. Cogn Neurodyn 2012; 6:283-93. [PMID: 23730358 DOI: 10.1007/s11571-012-9191-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 12/04/2011] [Accepted: 01/23/2012] [Indexed: 12/12/2022] Open
Abstract
The hyperexcitability of alpha-motoneurons and accompanying spasticity following spinal cord injury (SCI) have been attributed to enhanced persistent inward currents (PICs), including L-type calcium and persistent sodium currents. Factors controlling PICs may offer new therapies for managing spasticity. Such factors include calcium-activated potassium (KCa) currents, comprising in motoneurons an after-hyperpolarization-producing current (I KCaN) activated by N/P-type calcium currents, and a second current (I KCaL) activated by L-type calcium currents (Li and Bennett in J neurophysiol 97:767-783, 2007). We hypothesize that these two currents offer differential control of PICs and motoneuron excitability based on their probable somatic and dendritic locations, respectively. We reproduced SCI-induced PIC enhancement in a two-compartment motoneuron model that resulted in persistent dendritic plateau potentials. Removing dendritic I KCaL eliminated primary frequency range discharge and produced an abrupt transition into tertiary range firing without significant changes in the overall frequency gain. However, I KCaN removal mainly increased the gain. Steady-state analyses of dendritic membrane potential showed that I KCaL limits plateau potential magnitude and strongly modulates the somatic injected current thresholds for plateau onset and offset. In contrast, I KCaN had no effect on the plateau magnitude and thresholds. These results suggest that impaired function of I KCaL may be an important intrinsic mechanism underlying PIC-induced motoneuron hyperexcitability following SCI.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Department of Integrative Biology & Physiology, University of California Los Angeles, Los Angeles, CA 90095 USA
| | | | | |
Collapse
|
70
|
Manuel M, Zytnicki D. Alpha, beta and gamma motoneurons: functional diversity in the motor system's final pathway. J Integr Neurosci 2012; 10:243-76. [PMID: 21960303 DOI: 10.1142/s0219635211002786] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Accepted: 04/07/2011] [Indexed: 12/12/2022] Open
Abstract
Since their discovery in the late 19th century our conception of motoneurons has steadily evolved. Motoneurons share the same general function: they drive the contraction of muscle fibers and are the final common pathway, i.e., the seat of convergence of all the central and peripheral pathways involved in motricity. However, motoneurons innervate different types of muscular targets. Ordinary muscle fibers are subdivided into three main subtypes according to their structural and mechanical properties. Intrafusal muscle fibers located within spindles can elicit either a dynamic, or a static, action on the spindle sensory endings. No less than seven categories of motoneurons have thereby been identified on the basis of their innervation pattern. This functional diversity has hinted at a similar diversity in the inputs each motoneuron receives, as well as in the electrical, or cellular, properties of the motoneurons that match the properties of their muscle targets. The notion of the diverse properties of motoneurons has been well established by the work of many prominent neuroscientists. But in today's scientific literature, it tends to fade and motoneurons are often thought of as a homogenous group, which develop from a given population of precursor cells, and which express a common set of molecules. We first present here the historical milestones that led to the recognition of the functional diversity of motoneurons. We then review how the intrinsic electrical properties of motoneurons are precisely tuned in each category of motoneurons in order to produce an output that is adapted to the contractile properties of their specific targets.
Collapse
Affiliation(s)
- Marin Manuel
- Department of Physiology, Northwestern University, Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | |
Collapse
|
71
|
Tuckwell HC. Quantitative aspects of L-type Ca2+ currents. Prog Neurobiol 2012; 96:1-31. [DOI: 10.1016/j.pneurobio.2011.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Revised: 09/16/2011] [Accepted: 09/23/2011] [Indexed: 12/24/2022]
|
72
|
Adult mouse motor units develop almost all of their force in the subprimary range: a new all-or-none strategy for force recruitment? J Neurosci 2011; 31:15188-94. [PMID: 22016552 DOI: 10.1523/jneurosci.2893-11.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Classical studies of the mammalian neuromuscular system have shown an impressive adaptation match between the intrinsic properties of motoneurons and the contractile properties of their motor units. In these studies, the rate at which motoneurons start to fire repetitively corresponds to the rate at which individual twitches start to sum, and the firing rate increases linearly with the amount of excitation ("primary range") up to the point where the motor unit develops its maximal force. This allows for the gradation of the force produced by a motor unit by rate modulation. In adult mouse motoneurons, however, we recently described a regime of firing ("subprimary range") that appears at lower excitation than what is required for the primary range, a finding that might challenge the classical conception. To investigate the force production of mouse motor units, we simultaneously recorded, for the first time, the motoneuron discharge elicited by intracellular ramps of current and the force developed by its motor unit. We showed that the motor unit developed nearly its maximal force during the subprimary range. This was found to be the case regardless of the input resistance of the motoneuron, the contraction speed, or the tetanic force of the motor unit. Our work suggests that force modulation in small mammals mainly relies on the number of motor units that are recruited rather than on rate modulation of individual motor units.
Collapse
|
73
|
Stuart DG, Brownstone RM. The beginning of intracellular recording in spinal neurons: facts, reflections, and speculations. Brain Res 2011; 1409:62-92. [PMID: 21782158 PMCID: PMC5061568 DOI: 10.1016/j.brainres.2011.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 06/02/2011] [Indexed: 02/02/2023]
Abstract
Intracellular (IC) recording of action potentials in neurons of the vertebrate central nervous system (CNS) was first reported by John Eccles and two colleagues, Walter Brock and John Coombs, in Dunedin, NZL in 1951/1952 and by Walter Woodbury and Harry Patton in Seattle, WA, USA in 1952. Both groups studied spinal cord neurons of the adult cat. In this review, we discuss the precedents to their notable achievement and reflect and speculate on some of the scientific and personal nuances of their work and its immediate and later impact. We then briefly discuss early achievements in IC recording in the study of CNS neurobiology in other laboratories around the world, and some of the methods that led to enhancement of CNS IC-recording techniques. Our modern understanding of CNS neurophysiology directly emanates from the pioneering endeavors of the five who wrote the seminal 1951/1952 articles.
Collapse
Affiliation(s)
- Douglas G Stuart
- Department of Physiology, University of Arizona, Tucson, AZ 85721-0093, USA.
| | | |
Collapse
|
74
|
Abstract
BACKGROUND The authors investigated the role of different voltage-sensitive calcium channels expressed at presynaptic afferent terminals in substance P release and on nociceptive behavior evoked by intraplantar formalin by examining the effects of intrathecally delivered N- (ziconotide), T- (mibefradil), and L-type voltage-sensitive calcium channel blockers (diltiazem and verapamil). METHODS Rats received intrathecal pretreatment with saline or doses of morphine, ziconotide, mibefradil, diltiazem, or verapamil. The effect of these injections upon flinching evoked by intraplantar formalin (5%, 50 μl) was quantified. To assess substance P release, the incidence of neurokinin-1 receptor internalization in the ipsilateral and contralateral lamina I was determined in immunofluorescent-stained tissues. RESULTS Intrathecal morphine (20 μg), ziconotide (0.3, 0.6, and 1 μg), mibefradil (100 μg, but not 50 μg), diltiazem (500 μg, but not 300 μg), and verapamil (200 μg, but not 50 and 100 μg) reduced paw flinching in phase 2 compared with vehicle control (P < 0.05), with no effect on phase 1. Ziconotide (0.3, 0.6, and 1 μg) and morphine (20 μg) significantly inhibited neurokinin-1 receptor internalization (P < 0.05), but mibefradil, diltiazem, and verapamil at the highest doses had no effect. CONCLUSION These results emphasize the role in vivo of N-type but not T- and L-type voltage-sensitive calcium channel blockers in mediating the stimulus-evoked substance P release from small primary afferents and suggest that T- and L-type voltage-sensitive calcium channel blockers exert antihyperalgesic effects by an action on other populations of afferents or mechanisms involving postsynaptic excitability.
Collapse
|
75
|
Venugopal S, Hamm TM, Crook SM, Jung R. Modulation of inhibitory strength and kinetics facilitates regulation of persistent inward currents and motoneuron excitability following spinal cord injury. J Neurophysiol 2011; 106:2167-79. [PMID: 21775715 DOI: 10.1152/jn.00359.2011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Spasticity is commonly observed after chronic spinal cord injury (SCI) and many other central nervous system disorders (e.g., multiple sclerosis, stroke). SCI-induced spasticity has been associated with motoneuron hyperexcitability partly due to enhanced activation of intrinsic persistent inward currents (PICs). Disrupted spinal inhibitory mechanisms also have been implicated. Altered inhibition can result from complex changes in the strength, kinetics, and reversal potential (E(Cl(-))) of γ-aminobutyric acid A (GABA(A)) and glycine receptor currents. Development of optimal therapeutic strategies requires an understanding of the impact of these interacting factors on motoneuron excitability. We employed computational methods to study the effects of conductance, kinetics, and E(Cl(-)) of a dendritic inhibition on PIC activation and motoneuron discharge. A two-compartment motoneuron with enhanced PICs characteristic of SCI and receiving recurrent inhibition from Renshaw cells was utilized in these simulations. This dendritic inhibition regulated PIC onset and offset and exerted its strongest effects at motoneuron recruitment and in the secondary range of the current-frequency relationship during PIC activation. Increasing inhibitory conductance compensated for moderate depolarizing shifts in E(Cl(-)) by limiting PIC activation and self-sustained firing. Furthermore, GABA(A) currents exerted greater control on PIC activation than glycinergic currents, an effect attributable to their slower kinetics. These results suggest that modulation of the strength and kinetics of GABA(A) currents could provide treatment strategies for uncontrollable spasms.
Collapse
Affiliation(s)
- Sharmila Venugopal
- Center for Adaptive Neural Systems, Ira A. Fulton Schools of Engineering, Arizona State University, Tempe, Arizona, USA
| | | | | | | |
Collapse
|
76
|
Revill AL, Fuglevand AJ. Effects of persistent inward currents, accommodation, and adaptation on motor unit behavior: a simulation study. J Neurophysiol 2011; 106:1467-79. [PMID: 21697447 DOI: 10.1152/jn.00419.2011] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Motor neurons are often assumed to generate spikes in proportion to the excitatory synaptic input received. There are, however, many intrinsic properties of motor neurons that might affect this relationship, such as persistent inward currents (PICs), spike-threshold accommodation, or spike-frequency adaptation. These nonlinear properties have been investigated in reduced animal preparation but have not been well studied during natural motor behaviors because of the difficulty in characterizing synaptic input in intact animals. Therefore, we studied the influence of each of these intrinsic properties on spiking responses and muscle force using a population model of motor units that simulates voluntary contractions in human subjects. In particular, we focused on the difference in firing rate of low-threshold motor units when higher threshold motor units were recruited and subsequently derecruited, referred to as ΔF. Others have used ΔF to evaluate the extent of PIC activation during voluntary behavior. Our results showed that positive ΔF values could arise when any one of these nonlinear properties was included in the simulations. Therefore, a positive ΔF should not be considered as exclusive evidence for PIC activation. Furthermore, by systematically varying contraction duration and speed in our simulations, we identified a means that might be used experimentally to distinguish among PICs, accommodation, and adaptation as contributors to ΔF.
Collapse
Affiliation(s)
- Ann L Revill
- Department of Physiology, College of Medicine, PO Box 210093, University of Arizona, Tucson, AZ 85721-0093, USA
| | | |
Collapse
|
77
|
Abstract
We explain the mechanism that elicits the mixed mode oscillations (MMOs) and the subprimary firing range that we recently discovered in mouse spinal motoneurons. In this firing regime, high-frequency subthreshold oscillations appear a few millivolts below the spike voltage threshold and precede the firing of a full blown spike. By combining intracellular recordings in vivo (including dynamic clamp experiments) in mouse spinal motoneurons and modeling, we show that the subthreshold oscillations are due to the spike currents and that MMOs appear each time the membrane is in a low excitability state. Slow kinetic processes largely contribute to this low excitability. The clockwise hysteresis in the I-F relationship, frequently observed in mouse motoneurons, is mainly due to a substantial slow inactivation of the sodium current. As a consequence, less sodium current is available for spiking. This explains why a large subprimary range with numerous oscillations is present in motoneurons displaying a clockwise hysteresis. In motoneurons whose I-F curve exhibits a counterclockwise hysteresis, it is likely that the slow inactivation operates on a shorter time scale and is substantially reduced by the de-inactivating effect of the afterhyperpolarization (AHP) current, thus resulting in a more excitable state. This accounts for the short subprimary firing range with only a few MMOs seen in these motoneurons. Our study reveals a new role for the AHP current that sets the membrane excitability level by counteracting the slow inactivation of the sodium current and allows or precludes the appearance of MMOs.
Collapse
|
78
|
Abstract
In the preceding series of articles, the history of vertebrate motoneuron and motor unit neurobiological studies has been discussed. In this article, we select a few examples of recent advances in neuroscience and discuss their application or potential application to the study of motoneurons and the control of movement. We conclude, like Sherrington, that in order to understand normal, traumatized, and diseased human behavior, it is critical to continue to study motoneuron biology using all available and emerging tools. This article is part of a Special Issue entitled Historical Review.
Collapse
Affiliation(s)
- Robert M Brownstone
- Departments of Surgery (Neurosurgery) and Anatomy & Neurobiology, Dalhousie University, Halifax, NS, Canada B3H 1X5.
| | | |
Collapse
|
79
|
Dai Y, Jordan LM. Tetrodotoxin-, dihydropyridine-, and riluzole-resistant persistent inward current: novel sodium channels in rodent spinal neurons. J Neurophysiol 2011; 106:1322-40. [PMID: 21653721 DOI: 10.1152/jn.00918.2010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recently, we reported the tetrodotoxin (TTX)- and dihydropyridine (DHP)-resistant (TDR) inward currents in neonatal mouse spinal neurons. In this study, we further characterized these currents in the presence of 1-5 μM TTX and 20-30 μM DHP (nifedipine, nimodipine, or isradipine). TDR inward currents were recorded by voltage ramp (persistent inward current, TDR-PIC) and step (TDR-I(p)) protocols. TDR-PIC and TDR-I(p) were found in 80.2% of recorded neurons (101/126) crossing laminae I to X from T12 to L6. TDR-PIC activated at -28.6 ± 13 mV with an amplitude of 80.6 ± 75 pA and time constant of 470.6 ± 240 ms (n = 75). TDR-I(p) had an amplitude of 151.2 ± 151 pA and a voltage threshold of -17.0 ± 9 mV (n = 54) with a wide range of kinetics parameters. The half-maximal activation was -21.5 ± 8 mV (-37 to -12 mV, n = 29) with a time constant of 5.2 ± 2 ms (1.2-11.2 ms, n = 19), whereas the half-maximal inactivation was -26.9 ± 9 mV (-39 to -18 mV, n = 14) with a time constant of 1.4 ± 0.4 s (0.5-2.2 s, n = 19). TDR-PIC and TDR-I(p) could be reduced by 60% in zero calcium and completely removed in zero sodium solutions, suggesting that they were mediated by sodium ions. Furthermore, the reversal potential of TDR-I(p) was estimated as 56.6 ± 3 mV (n = 10). TDR-PIC and TDR-I(p) persisted in 1-205 μM TTX, 20-100 μM DHP, 3-30 μM riluzole, 50-300 μM flufenamic acid, and 2-30 mM intracellular BAPTA. They also persisted with T-, N-, P/Q-, and R-type calcium channel blockers. In conclusion, we demonstrated novel TTX-, DHP-, and riluzole-resistant sodium channels in neonatal rodent spinal neurons. The unique pharmacological and electrophysiological properties would allow these channels to play a functional role in spinal motor system.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | |
Collapse
|
80
|
Manuel M, Heckman CJ. Stronger is not always better: could a bodybuilding dietary supplement lead to ALS? Exp Neurol 2010; 228:5-8. [PMID: 21167830 DOI: 10.1016/j.expneurol.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 12/07/2010] [Accepted: 12/08/2010] [Indexed: 12/11/2022]
Affiliation(s)
- Marin Manuel
- Northwestern University, Department of Physiology, 303 E Chicago Ave, Chicago, IL 60611, USA.
| | | |
Collapse
|
81
|
Asymmetric electrotonic coupling between the soma and dendrites alters the bistable firing behaviour of reduced models. J Comput Neurosci 2010; 30:659-74. [PMID: 20941536 DOI: 10.1007/s10827-010-0284-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Revised: 09/20/2010] [Accepted: 09/30/2010] [Indexed: 10/19/2022]
Abstract
The goal of the study was to investigate the influence of asymmetric coupling, between the soma and dendrites, on the nonlinear dynamic behaviour of a two-compartment model. We used a recently published method for generating reduced two-compartment models that retain the asymmetric coupling of anatomically reconstructed motor neurons. The passive input-output relationship of the asymmetrically coupled model was analytically compared to the symmetrically coupled case. Predictions based on the analytic comparison were tested using numerical simulations. The simulations evaluated the nonlinear dynamics of the models as a function of coupling parameters. Analytical results showed that the input resistance at the dendrite of the asymmetric model was directly related to the degree of coupling asymmetry. In contrast, a comparable symmetric model had identical input resistances at both the soma and dendrite regardless of coupling strength. These findings lead to predictions that variations in dendritic excitability, subsequent to changes in input resistance, might change the current threshold and onset timing of the plateau potential generated in the dendrite. Since the plateau potential underlies bistable firing, these results further predicted that asymmetric coupling might alter nonlinear (i.e. bistable) firing patterns. The numerical simulations supported analytical predictions, showing that the fully bistable firing pattern of the asymmetric model depended on the degree of coupling asymmetry and its correlated dendritic excitability. The physiological property of asymmetric coupling plays an important role in generating and stabilizing the bistability of motor neurons by interacting with the excitability of dendritic branches.
Collapse
|
82
|
Le Franc Y, Le Masson G. Multiple firing patterns in deep dorsal horn neurons of the spinal cord: computational analysis of mechanisms and functional implications. J Neurophysiol 2010; 104:1978-96. [PMID: 20668279 DOI: 10.1152/jn.00919.2009] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Deep dorsal horn relay neurons (dDHNs) of the spinal cord are known to exhibit multiple firing patterns under the control of local metabotropic neuromodulation: tonic firing, plateau potential, and spontaneous oscillations. This work investigates the role of interactions between voltage-gated channels and the occurrence of different firing patterns and then correlates these two phenomena with their functional role in sensory information processing. We designed a conductance-based model using the NEURON software package, which successfully reproduced the classical features of plateau in dDHNs, including a wind-up of the neuronal response after repetitive stimulation. This modeling approach allowed us to systematically test the impact of conductance interactions on the firing patterns. We found that the expression of multiple firing patterns can be reproduced by changes in the balance between two currents (L-type calcium and potassium inward rectifier conductances). By investigating a possible generalization of the firing state switch, we found that the switch can also occur by varying the balance of any hyperpolarizing and depolarizing conductances. This result extends the control of the firing switch to neuromodulators or to network effects such as synaptic inhibition. We observed that the switch between the different firing patterns occurs as a continuous function in the model, revealing a particular intermediate state called the accelerating mode. To characterize the functional effect of a firing switch on information transfer, we used correlation analysis between a model of peripheral nociceptive afference and the dDHN model. The simulation results indicate that the accelerating mode was the optimal firing state for information transfer.
Collapse
Affiliation(s)
- Yann Le Franc
- Institut National de la Santé et de la Recherche Médicale Unité 862, Physiopathologie des réseaux neuronaux médullaires, Neurocentre Magendie, and University Victor Segalen-Bordeaux 2, Bordeaux, France.
| | | |
Collapse
|
83
|
Johnson MD, Heckman CJ. Interactions between focused synaptic inputs and diffuse neuromodulation in the spinal cord. Ann N Y Acad Sci 2010; 1198:35-41. [PMID: 20536918 DOI: 10.1111/j.1749-6632.2010.05430.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Spinal motoneurons (MNs) amplify synaptic inputs by producing strong dendritic persistent inward currents (PICs), which allow the MN to generate the firing rates and forces necessary for normal behaviors. However, PICs prolong MN depolarization after the initial excitation is removed, tend to "wind-up" with repeated activation and are regulated by a diffuse neuromodulatory system that affects all motor pools. We have shown that PICs are very sensitive to reciprocal inhibition from Ia afferents of antagonist muscles and as a result PIC amplification is related to limb configuration. Because reciprocal inhibition is tightly focused, shared only between strict anatomical antagonists, this system opposes the diffuse effects of the descending neuromodulation that facilitates PICs. Because inhibition appears necessary for PIC control, we hypothesize that Ia inhibition interacts with Ia excitation in a "push-pull" fashion, in which a baseline of simultaneous excitation and inhibition allows depolarization to occur via both excitation and disinhibition (and vice versa for hyperpolarization). Push-pull control appears to mitigate the undesirable affects associated with the PIC while still taking full advantage of PIC amplification.
Collapse
Affiliation(s)
- M D Johnson
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois, USA.
| | | |
Collapse
|
84
|
Recovery of human motoneurons during rotation. Exp Brain Res 2010; 204:139-44. [DOI: 10.1007/s00221-010-2295-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2010] [Accepted: 05/04/2010] [Indexed: 10/19/2022]
|
85
|
Evidence from computer simulations for alterations in the membrane biophysical properties and dendritic processing of synaptic inputs in mutant superoxide dismutase-1 motoneurons. J Neurosci 2010; 30:5544-58. [PMID: 20410108 DOI: 10.1523/jneurosci.0434-10.2010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A critical step in improving our understanding of the development of amyotrophic lateral sclerosis (ALS) is to identify the factors contributing to the alterations in the excitability of motoneurons and assess their individual contributions. Here we investigated the early alterations in the passive electrical and morphological properties of neonatal spinal motoneurons that occur by 10 d after birth, long before disease onset. We identified some of the factors contributing to these alterations, and estimated their individual contributions. To achieve this goal, we undertook a computer simulation analysis using realistic morphologies of reconstructed wild-type (WT) and mutant superoxide dismutase-1 (mSOD1) motoneurons. Ion channel parameters of these models were then tuned to match the experimental data on electrical properties obtained from these same motoneurons. We found that the reduced excitability of mSOD1 models was accompanied with decreased specific membrane resistance by approximately 25% and efficacy of synaptic inputs (slow and fast) by 12-22%. Linearity of summation of synaptic currents was similar to WT. We also assessed the contribution of the alteration in dendritic morphology alone to this decreased excitability and found that it reduced the input resistance by 10% and the efficacy of synaptic inputs by 7-15%. Our results were also confirmed in models with dendritic active conductances. Our simulations indicated that the alteration in passive electrical properties of mSOD1 models resulted from concurrent alterations in their morphology and membrane biophysical properties, and consequently altered the motoneuronal dendritic processing of synaptic inputs. These results clarify new aspects of spinal motoneurons malfunction in ALS.
Collapse
|
86
|
Dai Y, Jordan LM. Multiple Patterns and Components of Persistent Inward Current With Serotonergic Modulation in Locomotor Activity–Related Neurons in Cfos-EGFP Mice. J Neurophysiol 2010; 103:1712-27. [DOI: 10.1152/jn.01111.2009] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Using CFos-EGFP transgenic mice (P6–P12), we targeted persistent inward current (PIC) in the spinal interneurons activated by locomotion. Following a locomotor task, whole cell patch-clamp recordings were obtained from ventral EGFP+ neurons in spinal cord slices (200–250 μm from T13–L4). PIC was recorded by a family of 10 s voltage bi-ramps starting from −70 mV with 30 mV steps. PIC could be classified as ascending and descending forms based on the rising and falling phases of the bi-ramps. Multiple patterns of PIC with various hystereses were found in EGFP+ neurons. A novel form of PIC, single PIC crossing both phases of the bi-ramps, was described in this study. PIC was found in 82% of EGFP+ neurons ( n = 129) with no significant difference in laminar distribution. PIC activated at −56.7 ± 8 mV with an amplitude of 85.3 ± 59 pA and time constant of 657.0 ± 272 ms ( n = 63). PIC in lamina VIII neurons activated significantly lower (−60.2 ± 7 mV) than in lamina VII (−54.8 ± 6 mV) and lamina X (−55.8 ± 9 mV) neurons. PIC could be differentiated as calcium dependent (Ca-PIC) by bath application of 1–5 μM TTX or sodium dependent (Na-PIC) by administration of 20–30 μM dihydropyridine. Ca-PIC activated at −40.2 ± 19 mV ( n = 49), whereas Na-PIC activated at −46.8 ± 16 mV ( n = 17). Composite-, Ca-, and Na-PICs were significantly different in activation but not amplitude and time constant. Bath application of 5-HT (10–30 μM) enhanced PIC ( n = 32) by hyperpolarizing onset (4.2 ± 6 mV) and increasing amplitude (16%). 5-HT–increased amplitude seemed to be significantly larger in lamina VII neurons (32%) than VIII (6%) and X (14%) neurons. 5-HT enhancement of Ca-PIC ( n = 6) and Na-PICs ( n = 4) was also observed in EGFP+ neurons. This study unveiled unique properties of PICs in EGFP+ neurons. The lamina-related PIC activation and variable effects of 5-HT on PIC amplitude provides insight into the ionic basis on which locomotion could be generated.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Larry M. Jordan
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
87
|
Grande G, Bui TV, Rose PK. Distribution of vestibulospinal contacts on the dendrites of ipsilateral splenius motoneurons: an anatomical substrate for push-pull interactions during vestibulocollic reflexes. Brain Res 2010; 1333:9-27. [PMID: 20346350 DOI: 10.1016/j.brainres.2010.03.065] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 03/15/2010] [Accepted: 03/16/2010] [Indexed: 11/15/2022]
Abstract
Excitatory and inhibitory synapses may control neuronal output through a push-pull mechanism--that is, increases in excitation are coupled to simultaneous decreases in inhibition or vice versa. This pattern of activity is characteristic of excitatory and inhibitory vestibulospinal axons that mediate vestibulocollic reflexes. Previously, we showed that medial vestibulospinal tract (MVST) neurons in the rostral descending vestibular nucleus (DVN), an excitatory pathway, primarily innervate the medial dendrites of contralateral splenius motoneurons. In the present study, we tested the hypothesis that the counterparts of the push-pull mechanism, the ipsilateral inhibitory MVST synapses, are distributed on the dendritic tree such that the interactions with excitatory MVST synapses are enhanced. We combined anterograde tracing and intracellular staining in adult felines and show that most contacts (approximately 70%) between inhibitory MVST neurons in the rostral DVN and ipsilateral splenius motoneurons are also located on medial dendrites. There was a weak bias towards proximal dendrites. Using computational methods, we further show that the organization of excitatory and inhibitory MVST synapses on splenius motoneurons increases their likelihood for interaction. We found that if either excitatory or inhibitory MVST synapses were uniformly distributed throughout the dendritic tree, the proportion of inhibitory contacts in close proximity to excitatory contacts decreased. Thus, the compartmentalized distribution of excitatory and inhibitory MVST synapses on splenius motoneurons may be specifically designed to enhance their interactions during vestibulocollic reflexes. This suggests that the push-pull modulation of motoneuron output is based, in part, on the spatial arrangement of synapses on the dendritic tree.
Collapse
Affiliation(s)
- Giovanbattista Grande
- Canadian Institutes of Health Research Group in Sensory-Motor Integration, Department of Physiology, Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada K7L3N6
| | | | | |
Collapse
|
88
|
Meehan CF, Sukiasyan N, Zhang M, Nielsen JB, Hultborn H. Intrinsic properties of mouse lumbar motoneurons revealed by intracellular recording in vivo. J Neurophysiol 2010; 103:2599-610. [PMID: 20164401 DOI: 10.1152/jn.00668.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have developed an in vivo model for intracellular recording in the adult anesthetized mouse using sharp microelectrode electrodes as a basis for investigations of motoneuron properties in transgenic mouse strains. We demonstrate that it is possible to record postsynaptic potentials underlying identified circuits in the spinal cord. Forty-one motoneurons with antidromic spike potentials (>50 mV) from the sciatic nerve were investigated. We recorded the intrinsic properties of the neurons, including input resistance (mean: 2.4 +/- 1.2 MOmega), rheobase (mean: 7.1 +/- 5.9 nA), and the duration of the afterhyperpolarization (AHP; mean: 55.3 +/- 14 ms). We also measured the minimum firing frequencies (F(min), mean 23.5 +/- 5.7 SD Hz), the maximum firing frequencies (F(max); >300 Hz) and the slope of the current-frequency relationship (f-I slope) with increasing amounts of current injected (mean: 13 +/- 5.7 Hz/nA). Signs of activation of persistent inward currents (PICs) were seen, such as accelerations of firing frequency or jumps in the membrane potential with increasing amounts of injected current. It is likely that the particular anesthetic regime with a mixture of Hypnorm and midazolam is essential for the possibility to evoke PICs. The data demonstrate that mouse spinal motoneurons share many of the same properties that have been demonstrated previously for cat, rat, and human motoneurons. The shorter AHP duration, steeper f-I slopes, and higher F(min) and F(max) than those in rats, cats, and humans are likely to be tailored to the characteristics of the mouse muscle contraction properties.
Collapse
Affiliation(s)
- C F Meehan
- University of Copenhagen, Department of Neuroscience and Pharmacology, Panum Institute, Copenhagen, Denmark.
| | | | | | | | | |
Collapse
|
89
|
Oprisan SA. Existence and stability criteria for phase-locked modes in ring neural networks based on the spike time resetting curve method. J Theor Biol 2010; 262:232-44. [DOI: 10.1016/j.jtbi.2009.09.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 09/20/2009] [Accepted: 09/29/2009] [Indexed: 10/20/2022]
|
90
|
Heckman C, Lee R. Advances in Measuring Active Dendritic Currents in Spinal Motoneurons in Vivo. ACTA ACUST UNITED AC 2009. [DOI: 10.1201/9781420042641.ch4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
91
|
Dai Y, Carlin KP, Li Z, McMahon DG, Brownstone RM, Jordan LM. Electrophysiological and pharmacological properties of locomotor activity-related neurons in cfos-EGFP mice. J Neurophysiol 2009; 102:3365-83. [PMID: 19793882 PMCID: PMC2804412 DOI: 10.1152/jn.00265.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2009] [Accepted: 09/25/2009] [Indexed: 02/05/2023] Open
Abstract
Although locomotion is known to be generated by networks of spinal neurons, knowledge of the properties of these neurons is limited. Using neonatal transgenic mice that express enhanced green fluorescent protein (EGFP) driven by the c-fos promoter, we visualized EGFP-positive neurons in spinal cord slices from animals that were subjected to a locomotor task or drug cocktail [N-methyl-D-aspartate, serotonin (5-HT), dopamine, and acetylcholine (ACh)]. The activity-dependent expression of EGFP was also induced in dorsal root ganglion neurons with electrical stimulation of the neurons. Following 60-90 min of swimming, whole cell patch-clamp recordings were made from EGFP+ neurons in laminae VII, VIII, and X from slices of segments T(12) to L(4). The EGFP+ neurons (n = 55) could be classified into three types based on their responses to depolarizing step currents: single spike, phasic firing, and tonic firing. Membrane properties observed in these neurons include hyperpolarization-activated inward currents (29/55), postinhibitory rebound (11/55), and persistent-inward currents (31/55). Bath application of 10-40 microM 5-HT and/or ACh increased neuronal excitability or output with hyperpolarization of voltage threshold and changes in membrane potential. 5-HT also increased input resistance, reduced the afterhyperpolarization (AHP), and induced membrane oscillations, whereas ACh reduced the input resistance and increased the AHP. In this study, we demonstrate a new way of identifying neurons active in locomotion. Our results suggest that the EGFP+ neurons are a heterogeneous population of interneurons. The actions of 5-HT and ACh on these neurons provide insights into the neuronal properties modulated by these transmitters for generation of locomotion.
Collapse
Affiliation(s)
- Yue Dai
- Department of Physiology, University of Manitoba, Winnipeg, Manitoba, Canada
| | | | | | | | | | | |
Collapse
|
92
|
Tam AKH, Geiger JE, Hung AY, Groten CJ, Magoski NS. Persistent Ca2+ Current Contributes to a Prolonged Depolarization in Aplysia Bag Cell Neurons. J Neurophysiol 2009; 102:3753-65. [DOI: 10.1152/jn.00669.2009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Neurons may initiate behavior or store information by translating prior activity into a lengthy change in excitability. For example, brief input to the bag cell neurons of Aplysia results in an approximate 30-min afterdischarge that induces reproduction. Similarly, momentary stimulation of cultured bag cells neurons evokes a prolonged depolarization lasting many minutes. Contributing to this is a voltage-independent cation current activated by Ca2+ entering during the stimulus. However, the cation current is relatively short-lived, and we hypothesized that a second, voltage-dependent persistent current sustains the prolonged depolarization. In bag cell neurons, the inward voltage-dependent current is carried by Ca2+; thus we tested for persistent Ca2+ current in primary culture under voltage clamp. The observed current activated between −40 and −50 mV exhibited a very slow decay, presented a similar magnitude regardless of stimulus duration (10–60 s), and, like the rapid Ca2+ current, was enhanced when Ba2+ was the permeant ion. The rapid and persistent Ca2+ current, but not the cation current, were Ni2+ sensitive. Consistent with the persistent current contributing to the response, Ni2+ reduced the amplitude of a prolonged depolarization evoked under current clamp. Finally, protein kinase C activation enhanced the rapid and persistent Ca2+ current as well as increased the prolonged depolarization when elicited by an action potential-independent stimulus. Thus the prolonged depolarization arises from Ca2+ influx triggering a cation current, followed by voltage-dependent activation of a persistent Ca2+ current and is subject to modulation. Such synergy between currents may represent a common means of achieving activity-dependent changes to excitability.
Collapse
Affiliation(s)
- Alan K. H. Tam
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Julia E. Geiger
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Anne Y. Hung
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Chris J. Groten
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| | - Neil S. Magoski
- Department of Physiology, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
93
|
Wienecke J, Westerdahl AC, Hultborn H, Kiehn O, Ryge J. Global gene expression analysis of rodent motor neurons following spinal cord injury associates molecular mechanisms with development of postinjury spasticity. J Neurophysiol 2009; 103:761-78. [PMID: 19939961 DOI: 10.1152/jn.00609.2009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Spinal cord injury leads to severe problems involving impaired motor, sensory, and autonomic functions. After spinal injury there is an initial phase of hyporeflexia followed by hyperreflexia, often referred to as spasticity. Previous studies have suggested a relationship between the reappearance of endogenous plateau potentials in motor neurons and the development of spasticity after spinalization. To unravel the molecular mechanisms underlying the increased excitability of motor neurons and the return of plateau potentials below a spinal cord injury we investigated changes in gene expression in this cell population. We adopted a rat tail-spasticity model with a caudal spinal transection that causes a progressive development of spasticity from its onset after 2 to 3 wk until 2 mo postinjury. Gene expression changes of fluorescently identified tail motor neurons were studied 21 and 60 days postinjury. The motor neurons undergo substantial transcriptional regulation in response to injury. The patterns of differential expression show similarities at both time points, although there are 20% more differentially expressed genes 60 days compared with 21 days postinjury. The study identifies targets of regulation relating to both ion channels and receptors implicated in the endogenous expression of plateaux. The regulation of excitatory and inhibitory signal transduction indicates a shift in the balance toward increased excitability, where the glutamatergic N-methyl-d-aspartate receptor complex together with cholinergic system is up-regulated and the gamma-aminobutyric acid type A receptor system is down-regulated. The genes of the pore-forming proteins Cav1.3 and Nav1.6 were not up-regulated, whereas genes of proteins such as nonpore-forming subunits and intracellular pathways known to modulate receptor and channel trafficking, kinetics, and conductivity showed marked regulation. On the basis of the identified changes in global gene expression in motor neurons, the present investigation opens up for new potential targets for treatment of motor dysfunction following spinal cord injury.
Collapse
Affiliation(s)
- J Wienecke
- Mammalian Locomotor Laboratory, Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
94
|
Pambo-Pambo A, Durand J, Gueritaud JP. Early excitability changes in lumbar motoneurons of transgenic SOD1G85R and SOD1G(93A-Low) mice. J Neurophysiol 2009; 102:3627-42. [PMID: 19828728 DOI: 10.1152/jn.00482.2009] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This work characterizes the properties of wild-type (WT) mouse motoneurons in the second postnatal week and compares these at the same age and in the same conditions to those of two different SOD1 mutant lines used as models of human amyotrophic lateral sclerosis (ALS), the SOD1(G93A) low expressor line and SOD1(G85R) line, to describe any changes in the functional properties of mutant motoneurons (Mns) that may be related to the pathogenesis of human ALS. We show that very early changes in excitability occur in SOD1 mutant Mns that have different properties from those of WT animals. The SOD1(G93A-Low) low expressor line displays specific differences that are not found in other mutant lines including a more depolarized membrane potential, larger spike width, and slower spike rise slope. With current pulses SOD1(G93A-Low) were hyperexcitable, but both mutants had a lower gain with current ramps stimulation. Changes in the threshold and intensities of Na(+) and Ca(2+) persistent inward currents were also observed. Low expressor mutants show reduced total persistant inward currents compared with WT motoneurons in the same recording conditions and give arguments toward modifications of the balance between Na(+) and Ca(2+) persistent inward currents. During the second week postnatal, SOD1(G93A-Low) lumbar motoneurons appear more immature than those of SOD1(G85R) compared with WT and we propose that different time course of the disease, possibly linked with different toxic properties of the mutated protein in each model, may explain the discrepancies between excitability changes described in the different models.
Collapse
Affiliation(s)
- Arnaud Pambo-Pambo
- Laboratoire de Plasticité et Physio-Pathologie de la Motricité, Unité Mixte de Recherche 6196 Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | | | | |
Collapse
|
95
|
Heckman CJ, Mottram C, Quinlan K, Theiss R, Schuster J. Motoneuron excitability: the importance of neuromodulatory inputs. Clin Neurophysiol 2009; 120:2040-2054. [PMID: 19783207 DOI: 10.1016/j.clinph.2009.08.009] [Citation(s) in RCA: 181] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2008] [Revised: 08/06/2009] [Accepted: 08/07/2009] [Indexed: 11/28/2022]
Abstract
The excitability of spinal motoneurons is both fundamental for motor behavior and essential in diagnosis of neural disorders. There are two mechanisms for altering this excitability. The classic mechanism is mediated by synaptic inputs that depolarize or hyperpolarize motoneurons by generating postsynaptic potentials. This "ionotropic" mechanism works via neurotransmitters that open ion channels in the cell membrane. In the second mechanism, neurotransmitters bind to receptors that activate intracellular signaling pathways. These pathways modulate the properties of the voltage-sensitive channels that determine the intrinsic input-output properties of motoneurons. This "neuromodulatory" mechanism usually does not directly activate motoneurons but instead dramatically alters the neuron's response to ionotropic inputs. We present extensive evidence that neuromodulatory inputs exert a much more powerful effect on motoneuron excitability than ionotropic inputs. The most potent neuromodulators are probably serotonin and norepinephrine, which are released by axons originating in the brainstem and can increase motoneuron excitability fivefold or more. Thus, the standard tests of motoneuron excitability (H-reflexes, tendon taps, tendon vibration and stretch reflexes) are strongly influenced by the level of neuromodulatory input to motoneurons. This insight is likely to be profoundly important for clinical diagnosis and treatment.
Collapse
Affiliation(s)
- C J Heckman
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA.
| | - Carol Mottram
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Kathy Quinlan
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Renee Theiss
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| | - Jenna Schuster
- Physiology, Physical Medicine and Rehabilitation, Northwestern University Feinberg School of Medicine, Chicago, IL 60126, USA
| |
Collapse
|
96
|
Guthrie M, Myers CE, Gluck MA. A neurocomputational model of tonic and phasic dopamine in action selection: a comparison with cognitive deficits in Parkinson's disease. Behav Brain Res 2009; 200:48-59. [PMID: 19162084 PMCID: PMC4334387 DOI: 10.1016/j.bbr.2008.12.036] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 12/22/2008] [Accepted: 12/23/2008] [Indexed: 11/25/2022]
Abstract
The striatal dopamine signal has multiple facets; tonic level, phasic rise and fall, and variation of the phasic rise/fall depending on the expectation of reward/punishment. We have developed a network model of the striatal direct pathway using an ionic current level model of the medium spiny neuron that incorporates currents sensitive to changes in the tonic level of dopamine. The model neurons in the network learn action selection based on a novel set of mathematical rules that incorporate the phasic change in the dopamine signal. This network model is capable of learning to perform a sequence learning task that in humans is thought to be dependent on the basal ganglia. When both tonic and phasic levels of dopamine are decreased, as would be expected in unmedicated Parkinson's disease (PD), the model reproduces the deficits seen in a human PD group off medication. When the tonic level is increased to normal, but with reduced phasic increases and decreases in response to reward and punishment, respectively, as would be expected in PD medicated with L-Dopa, the model again reproduces the human data. These findings support the view that the cognitive dysfunctions seen in Parkinson's disease are not solely either due to the decreased tonic level of dopamine or to the decreased responsiveness of the phasic dopamine signal to reward and punishment, but to a combination of the two factors that varies dependent on disease stage and medication status.
Collapse
Affiliation(s)
- M Guthrie
- Center for Neuroscience, Rutgers University, 197 University Avenue, Suite 209, Newark, NJ 07102, USA.
| | | | | |
Collapse
|
97
|
Staircase currents in motoneurons: insight into the spatial arrangement of calcium channels in the dendritic tree. J Neurosci 2009; 29:5343-53. [PMID: 19386931 DOI: 10.1523/jneurosci.5458-08.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In spinal motoneurons, activation of dendritically located depolarizing conductances can lead to amplification of synaptic inputs and the production of plateau potentials. Immunohistochemical and computational studies have implicated dendritic CaV1.3 channels in this amplification and suggest that CaV1.3 channels in spinal motoneurons may be organized in clusters in the dendritic tree. Our goal was to provide physiological evidence for the presence of multiple discrete clusters of voltage-gated calcium channels in spinal motoneurons and to explore the spatial arrangement of these clusters in the dendritic tree. We recorded voltage-gated calcium currents from spinal motoneurons in slices of mature mouse spinal cords. We demonstrate that single somatic voltage-clamp steps can elicit multiple inward currents with varying delays to onset, resulting in a current with a "staircase"-like appearance. Recordings from cultured dorsal root ganglion cells at different stages of neurite development provide evidence that these currents arise from the unclamped portions of the dendritic tree. Finally, both voltage- and current-clamp data were used to constrain computer models of a motoneuron. The resultant simulations impose two conditions on the spatial distribution of CaV channels in motoneuron dendrites: one of asymmetry relative to the soma and another of spatial separation between clusters of CaV channels. We propose that this compartmentalization would provide motoneurons with the ability to process multiple sources of input in parallel and integrate this processed information to produce appropriate trains of action potentials for the intended motor behavior.
Collapse
|
98
|
Kim H, Major LA, Jones KE. Derivation of cable parameters for a reduced model that retains asymmetric voltage attenuation of reconstructed spinal motor neuron dendrites. J Comput Neurosci 2009; 27:321-36. [PMID: 19387812 DOI: 10.1007/s10827-009-0145-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2008] [Revised: 02/18/2009] [Accepted: 02/25/2009] [Indexed: 02/04/2023]
Abstract
Spinal motor neurons have voltage gated ion channels localized in their dendrites that generate plateau potentials. The physical separation of ion channels for spiking from plateau generating channels can result in nonlinear bistable firing patterns. The physical separation and geometry of the dendrites results in asymmetric coupling between dendrites and soma that has not been addressed in reduced models of nonlinear phenomena in motor neurons. We measured voltage attenuation properties of six anatomically reconstructed and type-identified cat spinal motor neurons to characterize asymmetric coupling between the dendrites and soma. We showed that the voltage attenuation at any distance from the soma was direction-dependent and could be described as a function of the input resistance at the soma. An analytical solution for the lumped cable parameters in a two-compartment model was derived based on this finding. This is the first two-compartment modeling approach that directly derived lumped cable parameters from the geometrical and passive electrical properties of anatomically reconstructed neurons.
Collapse
Affiliation(s)
- Hojeong Kim
- Department of Biomedical Engineering, University of Alberta, Edmonton, AB T6G 2V2, Canada
| | | | | |
Collapse
|
99
|
Heckman CJ, Johnson M, Mottram C, Schuster J. Persistent inward currents in spinal motoneurons and their influence on human motoneuron firing patterns. Neuroscientist 2008; 14:264-75. [PMID: 18381974 PMCID: PMC3326417 DOI: 10.1177/1073858408314986] [Citation(s) in RCA: 206] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Persistent inward currents (PICs) are present in many types of neurons and likely have diverse functions. In spinal motoneurons, PICs are especially strong, primarily located in dendritic regions, and subject to particularly strong neuromodulation by the monoamines serotonin and norepinephrine. Because motoneurons drive muscle fibers, it has been possible to study the functional role of their PICs in motor output and to identify PIC-mediated effects on motoneuron firing patterns in human subjects. The PIC markedly amplifies synaptic input, up to fivefold or more, depending on the level of monoaminergic input. PICs also tend to greatly prolong input time course, allowing brief inputs to initiate long-lasting self-sustained firing (i.e., bistable behavior). PIC deactivation usually requires inhibitory input and PIC amplitude can increase to repeated activation. All of these behaviors markedly increase motoneuron excitability. Thus, in the absence of monoaminergic input, motoneuron excitability is very low. Yet PICs have another effect: once active, they tend to sharply limit efficacy of additional synaptic input. All of these PIC effects have been detected in motoneuron firing patterns in human subjects and, hence, PICs are likely a fundamental component of normal motor output.
Collapse
Affiliation(s)
- C J Heckman
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA.
| | | | | | | |
Collapse
|
100
|
Carlin KP, Liu J, Jordan LM. Postnatal Changes in the Inactivation Properties of Voltage-Gated Sodium Channels Contribute to the Mature Firing Pattern of Spinal Motoneurons. J Neurophysiol 2008; 99:2864-76. [DOI: 10.1152/jn.00059.2008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Most mammals are born with the necessary spinal circuitry to produce a locomotor-like pattern of neural activity. However, rodents seldom demonstrate weight-supported locomotor behavior until the second or third postnatal week, possibly due to the inability of the neuromuscular system to produce sufficient force during this early postnatal period. As spinal motoneurons mature they are seen to fire an increasing number of action potentials at an increasing rate, which is a necessary component of greater force production. The mechanisms responsible for this enhanced ability of motoneurons are not completely defined. In the present study we assessed the biophysical properties of the developing voltage-gated sodium current to determine their role in the maturing firing pattern. Using dissociated postnatal lumbar motoneurons in short-term culture (18–24 h) we demonstrate that currents recorded from the most mature postnatal age group (P10–P12) were significantly better able to maintain channels in an available state during repetitive stimulation than were the younger age groups (P1–P3, P4–P6, P7–P9). This ability correlated with the ability of channels to recover more quickly and more completely from an inactivated state. These age-related differences were seen in the absence of changes in the voltage dependence of channel gating. Differences in both closed-state inactivation and slow inactivation were also noted between the age groups. The results indicate that changes in the inactivation properties of voltage-gated sodium channels are important for the development of a mature firing pattern in spinal motoneurons.
Collapse
|