51
|
Lopes S, Lopes A, Pinto V, Guimarães MR, Sardinha VM, Duarte‐Silva S, Pinheiro S, Pizarro J, Oliveira JF, Sousa N, Leite‐Almeida H, Sotiropoulos I. Absence of Tau triggers age-dependent sciatic nerve morphofunctional deficits and motor impairment. Aging Cell 2016; 15:208-16. [PMID: 26748966 PMCID: PMC4783352 DOI: 10.1111/acel.12391] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/06/2015] [Indexed: 11/29/2022] Open
Abstract
Dementia is the cardinal feature of Alzheimer's disease (AD), yet the clinical symptoms of this disorder also include a marked loss of motor function. Tau abnormal hyperphosphorylation and malfunction are well‐established key events in AD neuropathology but the impact of the loss of normal Tau function in neuronal degeneration and subsequent behavioral deficits is still debated. While Tau reduction has been increasingly suggested as therapeutic strategy against neurodegeneration, particularly in AD, there is controversial evidence about whether loss of Tau progressively impacts on motor function arguing about damage of CNS motor components. Using a variety of motor‐related tests, we herein provide evidence of an age‐dependent motor impairment in Tau−/− animals that is accompanied by ultrastructural and functional impairments of the efferent fibers that convey motor‐related information. Specifically, we show that the sciatic nerve of old (17–22‐months) Tau−/− mice displays increased degenerating myelinated fibers and diminished conduction properties, as compared to age‐matched wild‐type (Tau+/+) littermates and younger (4–6 months) Tau−/− and Tau+/+ mice. In addition, the sciatic nerves of Tau−/− mice exhibit a progressive hypomyelination (assessed by g‐ratio) specifically affecting large‐diameter, motor‐related axons in old animals. These findings suggest that loss of Tau protein may progressively impact on peripheral motor system.
Collapse
Affiliation(s)
- Sofia Lopes
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - André Lopes
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Vítor Pinto
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Marco R. Guimarães
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Vanessa Morais Sardinha
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Sara Duarte‐Silva
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Sara Pinheiro
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João Pizarro
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - João Filipe Oliveira
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Hugo Leite‐Almeida
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| | - Ioannis Sotiropoulos
- Life and Health Sciences Research Institute (ICVS) School of Health Sciences University of Minho Campus Gualtar 4710‐057 Braga Portugal
- ICVS/3B's – PT Government Associate Laboratory Braga/Guimarães Portugal
| |
Collapse
|
52
|
Pannérec A, Springer M, Migliavacca E, Ireland A, Piasecki M, Karaz S, Jacot G, Métairon S, Danenberg E, Raymond F, Descombes P, McPhee JS, Feige JN. A robust neuromuscular system protects rat and human skeletal muscle from sarcopenia. Aging (Albany NY) 2016; 8:712-29. [PMID: 27019136 PMCID: PMC4925824 DOI: 10.18632/aging.100926] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 03/02/2016] [Indexed: 12/25/2022]
Abstract
Declining muscle mass and function is one of the main drivers of loss of independence in the elderly. Sarcopenia is associated with numerous cellular and endocrine perturbations, and it remains challenging to identify those changes that play a causal role and could serve as targets for therapeutic intervention. In this study, we uncovered a remarkable differential susceptibility of certain muscles to age-related decline. Aging rats specifically lose muscle mass and function in the hindlimbs, but not in the forelimbs. By performing a comprehensive comparative analysis of these muscles, we demonstrate that regional susceptibility to sarcopenia is dependent on neuromuscular junction fragmentation, loss of motoneuron innervation, and reduced excitability. Remarkably, muscle loss in elderly humans also differs in vastus lateralis and tibialis anterior muscles in direct relation to neuromuscular dysfunction. By comparing gene expression in susceptible and non-susceptible muscles, we identified a specific transcriptomic signature of neuromuscular impairment. Importantly, differential molecular profiling of the associated peripheral nerves revealed fundamental changes in cholesterol biosynthetic pathways. Altogether our results provide compelling evidence that susceptibility to sarcopenia is tightly linked to neuromuscular decline in rats and humans, and identify dysregulation of sterol metabolism in the peripheral nervous system as an early event in this process.
Collapse
Affiliation(s)
- Alice Pannérec
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Margherita Springer
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Eugenia Migliavacca
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Alex Ireland
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Mathew Piasecki
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Sonia Karaz
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Guillaume Jacot
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Sylviane Métairon
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Esther Danenberg
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Frédéric Raymond
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Patrick Descombes
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| | - Jamie S. McPhee
- School of Healthcare Science, Manchester Metropolitan University, Manchester, UK
| | - Jerome N. Feige
- Nestlé Institute of Health Sciences, EPFL Innovation Park, 1015 Lausanne, Switzerland
| |
Collapse
|
53
|
Krishnan VS, White Z, McMahon CD, Hodgetts SI, Fitzgerald M, Shavlakadze T, Harvey AR, Grounds MD. A Neurogenic Perspective of Sarcopenia: Time Course Study of Sciatic Nerves From Aging Mice. J Neuropathol Exp Neurol 2016; 75:464-78. [DOI: 10.1093/jnen/nlw019] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
54
|
Takeda R, Imai D, Suzuki A, Ota A, Naghavi N, Yamashina Y, Hirasawa Y, Yokoyama H, Miyagawa T, Okazaki K. Lower thermal sensation in normothermic and mildly hyperthermic older adults. Eur J Appl Physiol 2016; 116:975-84. [PMID: 27015984 DOI: 10.1007/s00421-016-3364-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/15/2016] [Indexed: 11/24/2022]
Abstract
PURPOSE It is important to know how thermal sensation is affected by normal aging under conditions that elevate core body temperature for the prevention of heat-related illness in older people. We assessed whether thermal sensation under conditions of normothermia (NT) and mild hyperthermia (HT) is lowered in older adults. METHODS Seventeen younger (23 ± 3 years) and 12 older (71 ± 3 years) healthy men underwent measurements of the cold and warmth detection thresholds ( ± 0.1 °C/s) of their chest and forearm skin, and whole body warmth perception under NT (esophageal temperature, T es, ~36.5 °C) and HT (T es, ~37.3 °C; lower legs immersed in 42 °C water) conditions. RESULTS Warmth detection threshold at the forearm was increased in older compared with younger participants under both NT (P = 0.006) and HT (P = 0.004) conditions. In contrast, cold detection threshold at the forearm was decreased in older compared with younger participants under NT (P = 0.001) but not HT (P = 0.16). Mild hyperthermia decreased cold detection threshold at forearm in younger participants (P = 0.001) only. There were no effects of age and condition on warmth and cold detection thresholds at chest. Whole body warmth perception increased during HT compared with NT in both groups (both, P < 0.001), and older participants had lower values than the younger group under NT (P = 0.001) and HT (P = 0.051). CONCLUSIONS Skin warmth detection thresholds at forearm and whole body warmth perception under NT and HT and skin cold detection thresholds at forearm under NT deteriorated with aging.
Collapse
Affiliation(s)
- Ryosuke Takeda
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan
| | - Daiki Imai
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - Akina Suzuki
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan
| | - Akemi Ota
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan
| | - Nooshin Naghavi
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan
| | - Yoshihiro Yamashina
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan
| | - Yoshikazu Hirasawa
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan
| | - Hisayo Yokoyama
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - Toshiaki Miyagawa
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan.,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan
| | - Kazunobu Okazaki
- Department of Environmental Physiology for Exercise, Osaka City University Graduate School of Medicine, 3-3-138 Sugimoto Sumiyoshi, Osaka, 558-8585, Japan. .,Research Center for Urban Health and Sports, Osaka City University, Osaka, Japan.
| |
Collapse
|
55
|
Effect of long term-administration of aspartame on the ultrastructure of sciatic nerve. J Microsc Ultrastruct 2016; 4:175-183. [PMID: 30023225 PMCID: PMC6014252 DOI: 10.1016/j.jmau.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 01/13/2016] [Accepted: 02/05/2016] [Indexed: 12/01/2022] Open
Abstract
Aspartame is the most widely used artificial sweetener worldwide. There is much controversy about the effect of aspartame on different cells in the body. The aim of this study was to evaluate the effect of aspartame on the structure of the sciatic nerve. Thirty adult male albino rats were divided into three groups. Group I served as control; Group II received aspartame orally in a dose of 250 mg/kg/d for 3 months; Group III received aspartame at the same dose and for the same period, and was allowed to recover for 1 month. Specimens of sciatic nerve were processed, and semithin and ultrathin sections were examined by light and electron microscopy. A morphometric study was done to evaluate the g-ratio, which is the ratio between the axon diameter and total fiber diameter. Long-term aspartame administration resulted in many degenerative changes affecting mainly the myelin sheath, in the form of focal and extensive demyelination; disruption and splitting of myelin lamellae with loss of compact lamellar structure; and excessive enfolding with irregular thickening of myelin sheaths. Less frequent than those observed in the myelin sheath, some axonal changes were detected, such as compression and distortion. Dilated rough endoplasmic reticulum and vacuolation of the cytoplasm of Schwann cells were also detected. Partial improvement was observed in the recovery group. It was concluded that long-term administration of aspartame had a harmful effect on the structure of sciatic nerve and 1 month stoppage of aspartame was not enough to achieve complete recovery.
Collapse
|
56
|
Adalbert R, Coleman MP. Review: Axon pathology in age-related neurodegenerative disorders. Neuropathol Appl Neurobiol 2015; 39:90-108. [PMID: 23046254 DOI: 10.1111/j.1365-2990.2012.01308.x] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2012] [Accepted: 09/24/2012] [Indexed: 12/12/2022]
Abstract
'Dying back' axon degeneration is a prominent feature of many age-related neurodegenerative disorders and is widespread in normal ageing. Although the mechanisms of disease- and age-related losses may differ, both contribute to symptoms. Here, we review recent advances in understanding axon pathology in age-related neurodegenerative disorders such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and glaucoma. In particular, we highlight the importance of axonal transport, autophagy, traumatic brain injury and mitochondrial quality control. We then place these disease mechanisms in the context of changes to axons and dendrites that occur during normal ageing. We discuss what makes ageing such an important risk factor for many neurodegenerative disorders and conclude that the processes of normal ageing and disease combine at the molecular, cellular or systems levels in a range of disorders to produce symptoms. Pathology identical to disease also occurs at the cellular level in most elderly individuals. Thus, normal ageing and age-related disease are inextricably linked and the term 'healthy ageing' downplays the important contributions of cellular pathology. For a full understanding of normal ageing or age-related disease we must study both processes.
Collapse
Affiliation(s)
- R Adalbert
- Signalling Programme, The Babraham Institute, Babraham, Cambridge, UK
| | - M P Coleman
- Signalling Programme, The Babraham Institute, Babraham, Cambridge, UK
| |
Collapse
|
57
|
da Silva GAR, de Aguiar Mendes VA, Genari AB, Castania JA, Salgado HC, Fazan VPS. Recurrent laryngeal nerve alterations in developing spontaneously hypertensive rats. Laryngoscope 2015; 126:E40-7. [DOI: 10.1002/lary.25426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 03/16/2015] [Accepted: 05/18/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Greice Anne Rodrigues da Silva
- Department of Neuroscience and Behavioral Sciences; School of Medicine of Ribeirão Preto, University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Vania Alice de Aguiar Mendes
- Department of Neuroscience and Behavioral Sciences; School of Medicine of Ribeirão Preto, University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Adriana Borges Genari
- Department of Neuroscience and Behavioral Sciences; School of Medicine of Ribeirão Preto, University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Jaci Ayrton Castania
- Department of Physiology; School of Medicine of Ribeirão Preto, University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Hélio Cesar Salgado
- Department of Physiology; School of Medicine of Ribeirão Preto, University of São Paulo; Ribeirão Preto São Paulo Brazil
| | - Valéria Paula Sassoli Fazan
- Department of Neuroscience and Behavioral Sciences; School of Medicine of Ribeirão Preto, University of São Paulo; Ribeirão Preto São Paulo Brazil
- Department of Surgery and Anatomy; School of Medicine of Ribeirão Preto, University of São Paulo; Ribeirão Preto São Paulo Brazil
| |
Collapse
|
58
|
Ogbonna AC, Clark AK, Malcangio M. Development of monosodium acetate-induced osteoarthritis and inflammatory pain in ageing mice. AGE (DORDRECHT, NETHERLANDS) 2015; 37:9792. [PMID: 25971876 PMCID: PMC4430498 DOI: 10.1007/s11357-015-9792-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 05/04/2015] [Indexed: 05/05/2023]
Abstract
Most conditions associated with ageing result from an age-related loss in the function of cells and tissues that maintain body homeostasis. In osteoarthritis (OA) patients, an inadequate response to stress or joint injury can lead to tissue destruction which can result in chronic pain. Here, we evaluated the development of monoiodoacetate (MIA)-induced OA in 3-, 15- and 22-month-old mice and assessed the pain-like behaviours and the spinal microglial changes associated with MIA administration. We observed that in aged mice, nocifensive behaviour was significantly attenuated in comparison to young adults despite similar knee joint pathology. Specifically referred mechanical allodynia associated with the MIA initial inflammatory phase (0-10 days) was significantly attenuated in 22-month-old mice. In contrast, the late phase of MIA-induced mechanical allodynia was comparable between age groups. Significant increase of microglia cell numbers was detected in 3, but not 15- and 22-month-old spinal cords. Furthermore, in the zymosan model of acute inflammation, mechanical allodynia was attenuated, and microglial response was less robust in 22 compared to 3-month-old mice. This study suggests that nocifensive responses to damaging stimuli are altered with advancing age and microglial response to peripheral damage is less robust.
Collapse
Affiliation(s)
- Andrea C. Ogbonna
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London Bridge, London, SE1 1UL UK
| | - Anna K. Clark
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London Bridge, London, SE1 1UL UK
| | - Marzia Malcangio
- Wolfson Centre for Age-Related Diseases, King’s College London, Guy’s Campus, London Bridge, London, SE1 1UL UK
| |
Collapse
|
59
|
Morphometric analysis of the diameter and g-ratio of the myelinated nerve fibers of the human sciatic nerve during the aging process. Anat Sci Int 2015; 91:238-45. [DOI: 10.1007/s12565-015-0287-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 05/05/2015] [Indexed: 11/25/2022]
|
60
|
Biasibetti E, Bisanzio D, Mioletti S, Amedeo S, Iuliano A, Bianco P, Capucchio MT. Spontaneous Age-related Changes of Peripheral Nerves in Cattle: Morphological and Biochemical Studies. Anat Histol Embryol 2015; 45:100-8. [PMID: 25823666 DOI: 10.1111/ahe.12177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 02/16/2015] [Indexed: 11/29/2022]
Abstract
Peripheral nerve function is significantly affected by ageing. During ageing process, multiple changes occur on tissue cells and extracellular matrix. The aim of this work was to study the ageing-associated changes of peripheral nerves in adult and old regularly slaughtered cattle compared with young calves, and correlate them to the features reported in humans and laboratory animals. Samples of axial dorsal metacarpal nerves from 44 cows were collected immediately after slaughtering. Each nerve was dissected and divided into two fragments: one used for morphological evaluation (n = 43) and the other one for biochemical analysis (n = 31). Axonal degeneration, demyelination, thickness of perineurium and endoneurium and increase of mast cells were the most important features detected. The mean amount of glycosaminoglycan quantitative content recorded in the samples increased with the age. Axonal degeneration, demyelination and thickness of endoneurium were positively and significantly correlated with biochemistry. The presence of changes affecting the different elements of the peripheral nerves, similar to that reported in humans and in laboratory species, the easy availability of the nerve tissue in this species, the considerable size of the samples and the life conditions more similar to humans than to laboratory animals, allows the authors to consider cattle as a potential good model for the comparative study of spontaneous ageing nerve lesions.
Collapse
Affiliation(s)
- E Biasibetti
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - D Bisanzio
- Department of Environmental Sciences, Emory University, 400 Dowman Drive, Atlanta, GA, 30322, USA
| | - S Mioletti
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - S Amedeo
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - A Iuliano
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - P Bianco
- ASLTo4, via Po 11, 10034, Chivasso, Torino, Italy
| | - M T Capucchio
- Department of Veterinary Sciences, University of Torino, Largo Braccini 2, 10095, Grugliasco, Torino, Italy
| |
Collapse
|
61
|
Walsh ME, Sloane LB, Fischer KE, Austad SN, Richardson A, Van Remmen H. Use of Nerve Conduction Velocity to Assess Peripheral Nerve Health in Aging Mice. J Gerontol A Biol Sci Med Sci 2014; 70:1312-9. [PMID: 25477428 DOI: 10.1093/gerona/glu208] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/01/2014] [Indexed: 12/13/2022] Open
Abstract
Nerve conduction velocity (NCV), the speed at which electrical signals propagate along peripheral nerves, is used in the clinic to evaluate nerve function in humans. A decline in peripheral nerve function is associated with a number of age-related pathologies. While several studies have shown that NCV declines with age in humans, there is little information on the effect of age on NCV in peripheral nerves in mice. In this study, we evaluated NCV in male and female C57Bl/6 mice ranging from 4 to 32 months of age. We observed a decline in NCV in both male and female mice after 20 months of age. Sex differences were detected in sensory NCV as well as the rate of decline during aging in motor nerves; female mice had slower sensory NCV and a slower age-related decline in motor nerves compared with male mice. We also tested the effect of dietary restriction on NCV in 30-month-old female mice. Dietary restriction prevented the age-related decline in sciatic NCV but not other nerves. Because NCV is clinically relevant to the assessment of nerve function, we recommend that NCV be used to evaluate healthspan in assessing genetic and pharmacological interventions that increase the life span of mice.
Collapse
Affiliation(s)
- Michael E Walsh
- Department of Cellular and Structural Biology, The University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Lauren B Sloane
- Department of Biology, State University of New York at Delhi, Delhi, New York
| | - Kathleen E Fischer
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Steven N Austad
- Department of Biology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arlan Richardson
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma. University of Oklahoma Health Science Center, Oklahoma City, Oklahoma
| | - Holly Van Remmen
- Oklahoma City VA Medical Center, Oklahoma City, Oklahoma. Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma.
| |
Collapse
|
62
|
Davis J, Wang Z, Zhang LL, Agresti M, Matloub HS, Yan JG. A quantitative study of vibration injury to peripheral nerves-introducing a new longitudinal section analysis. Hand (N Y) 2014; 9:413-8. [PMID: 25414602 PMCID: PMC4235911 DOI: 10.1007/s11552-014-9668-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE Long-term vibrations are known to cause neurovascular diseases, which are common in workers who operate handheld power tools or motor vehicles. Understanding the neuropathology of vibration-induced nerve injury is critical to its prevention and treatment. This study aims to evaluate whether light microscopy of longitudinal nerve sections can be used as a simple yet effective method for quantifying nerve injury. METHODS The rats were split into two groups that were subjected to vibration (4 h/day) for 7 or 14 days. They were then allowed to rest for varying periods of time. Longitudinal sections of the tail nerves were examined under light microscopy. Injuries to the nerves were classified into three types, counted, tallied, and then divided by the length of the nerve being studied. RESULTS Both 7 and 14 days of vibration showed significant damage when no recovery time was given. After 1 month of rest, the 7-day group began to show signs of recovery, but the 14-day group did not. After 2 months of rest, the 7-day vibration group showed almost complete recovery, while the 14-day vibration group still showed significant damage when compared to the sham control groups. CONCLUSION The amount of damage to the myelin sheath directly correlated with vibration duration. When vibrated for longer than 7 days, nerve recovery was limited. This study also demonstrated that light microscopy of longitudinal slices is a simple yet effective method of quantifying the nerve damage.
Collapse
Affiliation(s)
- John Davis
- Department of Plastic Surgery, Medical College of Wisconsin, 8700 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Ziyi Wang
- Department of Plastic Surgery, Medical College of Wisconsin, 8700 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Lin Ling Zhang
- Department of Plastic Surgery, Medical College of Wisconsin, 8700 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Michael Agresti
- Department of Plastic Surgery, Medical College of Wisconsin, 8700 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Hani S. Matloub
- Department of Plastic Surgery, Medical College of Wisconsin, 8700 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| | - Ji-Geng Yan
- Department of Plastic Surgery, Medical College of Wisconsin, 8700 W Watertown Plank Rd, Milwaukee, WI 53226 USA
| |
Collapse
|
63
|
Esquisatto MAM, de Aro AA, Fêo HB, Gomes L. Changes in the connective tissue sheath of Wistar rat nerve with aging. Ann Anat 2014; 196:441-8. [DOI: 10.1016/j.aanat.2014.08.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2014] [Revised: 08/02/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
|
64
|
Amer MG, Mazen NF, Mohamed NM. Role of calorie restriction in alleviation of age-related morphological and biochemical changes in sciatic nerve. Tissue Cell 2014; 46:497-504. [DOI: 10.1016/j.tice.2014.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/20/2014] [Accepted: 09/08/2014] [Indexed: 10/24/2022]
|
65
|
Garrison SR, Stucky CL. Contribution of transient receptor potential ankyrin 1 to chronic pain in aged mice with complete Freund's adjuvant-induced arthritis. Arthritis Rheumatol 2014; 66:2380-90. [PMID: 24891324 DOI: 10.1002/art.38724] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Accepted: 05/22/2014] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate age-related differences in mechanical sensitivity to inflammatory pain and determine the contribution of transient receptor potential ankyrin 1 (TRPA1) to mechanical hypersensitivity during chronic inflammation in young and aged mice with complete Freund's adjuvant (CFA)-induced arthritis. METHODS Mechanical sensitivity in young (3-month-old) and aged (24-month-old) wild-type (TRPA1(+/+) ) mice and TRPA1-deficient (TRPA1(-/-) ) mice was measured behaviorally for 8 weeks following injection of CFA into the plantar hind paw. The severity of inflammation was evaluated by histologic analyses and hind-paw measurements. Ex vivo preparations of the skin saphenous nerve from mice were assessed for C-fiber sensitivity. RESULTS Among naive (uninjured) wild-type mice, aged animals were less sensitive than young animals to mechanical stimuli. Afferent recordings of C-fibers from TRPA1(-/-) mice indicated that TRPA1 contributes to the normal mechanical sensitivity in both age groups. Following injection of CFA, both young and aged TRPA1(+/+) mice exhibited mechanical hypersensitivity. In young TRPA1(-/-) mice injected with CFA, peak development of mechanical hypersensitivity was delayed until week 4, when they exhibited a sharp decrease (9-fold) in the mechanical paw withdrawal threshold, whereas aged TRPA1(-/-) mice did not exhibit mechanical hypersensitivity at any time during the 8 weeks after CFA injection. Recordings of C-fibers from the saphenous nerve supported these findings, with results indicating that both young and aged TRPA1(+/+) mice exhibited increased action potential firing at 8 weeks after CFA injection (increases of 25% and 60%, respectively). Interestingly, among TRPA1(-/-) mice injected with CFA, mechanical firing was increased markedly in the C-fibers of young mice (increase of 80%) but not in the C-fibers of aged mice. CONCLUSION These findings reveal marked differences in the long-term mechanical behavioral sensitivity of aged and young mice, and suggest that TRPA1 may be a key contributor to the transition from acute to chronic inflammatory pain in response to mechanical stimuli as well as to the development of nociceptor sensitization selectively in aged mice.
Collapse
|
66
|
Krinke GJ, Herrmann A, Körner A, Landes C, Sauner F. Experience with examination of the spinal cord and peripheral nervous system (PNS) in mice: A brief overview. ACTA ACUST UNITED AC 2014; 66:277-80. [DOI: 10.1016/j.etp.2014.04.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 04/14/2014] [Accepted: 04/23/2014] [Indexed: 10/25/2022]
|
67
|
The effect of patient age on the success of laryngeal reinnervation. Eur Arch Otorhinolaryngol 2014; 271:3241-7. [DOI: 10.1007/s00405-014-3091-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 05/06/2014] [Indexed: 10/25/2022]
|
68
|
Xie F, Liang P, Fu H, Zhang JC, Chen J. Effects of normal aging on myelin sheath ultrastructures in the somatic sensorimotor system of rats. Mol Med Rep 2014; 10:459-66. [PMID: 24818843 DOI: 10.3892/mmr.2014.2228] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Previous studies have presented qualitative and quantitative data regarding the morphological changes that occur peripherally in myelin sheaths and nerve fibers of rats during their lifespan. However, studies on ultrastructural features of myelinated fibers (MFs) in the central nervous system (CNS) remain limited. In the present study, morphological analyses of the somatic sensorimotor MFs in rats at time‑points between postnatal day 14 and postnatal month (PNM) 26 were conducted using electron microscopy. Significant alterations in the myelin sheath were observed in the sensorimotor system of aging and aged rats, which became aggravated with age. The ultrastructural pattern of myelin lamellae also exhibited age dependence. The transformation of the myelin intraperiod line from complete to incomplete fusion occurred after PNM 5, leading to an expansion of periodicity in myelin lamellae. These pathological changes in the myelin structure occurred very early and showed a significant correlation with age, indicating that myelin was the part of the CNS with the highest susceptibility to the influence of aging, and may be the main target of aging effects. In addition to the myelin breakdown, continued myelin production and remyelination were observed in the aging sensorimotor system, suggesting the presence of endogenous mechanisms of myelin repair.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Ping Liang
- School of Pharmacy, The Fourth Military Medical University, Xi'an, Shaanxi 710032, P.R. China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiu-Cong Zhang
- Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
69
|
Xie F, Fu H, Zhang JC, Chen XF, Wang XL, Chen J. Gene profiling in the dynamic regulation of the lifespan of the myelin sheath structure in the optic nerve of rats. Mol Med Rep 2014; 10:217-22. [PMID: 24818667 DOI: 10.3892/mmr.2014.2227] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 04/01/2014] [Indexed: 11/06/2022] Open
Abstract
Aging of the nervous system leads to impairments in cognition and motor skills, and is a major risk factor for several neurological disorders. Recently, numerous nerve function deficits that appear with aging have been found to be a consequence of myelin abnormalities; however, the genetic mechanism of the age‑related alterations in the myelin sheath has not yet been fully elucidated. In the present study, the morphology of the myelin sheath in the optic nerve of rats was analyzed at 10 time‑points throughout life. Marked alterations in the myelin sheath were observed in aging and aged optic nerves, and these became progressively more severe with time. To determine the biological processes affected by aging in the myelin sheath, the age‑related profiling of the myelin sheath in rat optic nerves was established using microarray hybridization at 10 time‑points throughout life, between birth and senescence. From the results, 3,826 transcripts associated with the age‑related alterations in the myelin sheath of the optic nerve were identified. It was found that the biological processes most significantly altered by aging were lipid metabolism, the immune response and transmitter transport. This suggests that the downregulation of lipid synthesis genes and the upregulation of immune and neurotransmitter transport genes in aging may be the genetic basis for the age‑related alterations observed in the myelin sheath.
Collapse
Affiliation(s)
- Fang Xie
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Han Fu
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jiu-Cong Zhang
- Department of Gastroenterology, Lanzhou General Hospital of Lanzhou Military Command, Lanzhou, Gansu 730050, P.R. China
| | - Xue-Feng Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Liang Wang
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jun Chen
- Institute for Biomedical Sciences of Pain, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
70
|
Statistical physics approach to quantifying differences in myelinated nerve fibers. Sci Rep 2014; 4:4511. [PMID: 24676146 PMCID: PMC3968487 DOI: 10.1038/srep04511] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/12/2014] [Indexed: 11/08/2022] Open
Abstract
We present a new method to quantify differences in myelinated nerve fibers. These differences range from morphologic characteristics of individual fibers to differences in macroscopic properties of collections of fibers. Our method uses statistical physics tools to improve on traditional measures, such as fiber size and packing density. As a case study, we analyze cross–sectional electron micrographs from the fornix of young and old rhesus monkeys using a semi-automatic detection algorithm to identify and characterize myelinated axons. We then apply a feature selection approach to identify the features that best distinguish between the young and old age groups, achieving a maximum accuracy of 94% when assigning samples to their age groups. This analysis shows that the best discrimination is obtained using the combination of two features: the fraction of occupied axon area and the effective local density. The latter is a modified calculation of axon density, which reflects how closely axons are packed. Our feature analysis approach can be applied to characterize differences that result from biological processes such as aging, damage from trauma or disease or developmental differences, as well as differences between anatomical regions such as the fornix and the cingulum bundle or corpus callosum.
Collapse
|
71
|
Sakita M, Murakami S, Fujino H. The Morphological Changes in the Capillary Architecture of the Tibial Nerve Associated with Spontaneous Aging and Aerobic Exercise Intervention during Aging in Rats. J Phys Ther Sci 2014; 26:263-7. [PMID: 24648645 PMCID: PMC3944302 DOI: 10.1589/jpts.26.263] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/05/2013] [Indexed: 01/26/2023] Open
Abstract
[Purpose] Peripheral nerve degradation associated with aging is linked to failure of
interactions in capillary metabolism. The aim of this study was to morphologically
investigate the age-related changes in the capillary architecture of the tibial nerve in
spontaneous aging and with aerobic exercise intervention in rats. [Subjects] Male
Sprague-Dawley rats (n=15) were used in the present study. [Methods] The rats were divided
into control (Cont, n=5), elderly (Elder, n=5), and elderly with aerobic exercise
(Elder+Ex, n=5) groups. Aerobic training of low intensity was performed for 10 weeks using
a treadmill starting at 96 weeks of age by the Elder+Ex group. The capillary diameter,
cross-sectional area and number of microvascular ramifications in the tibial nerve were
compared among the Cont (20-week-old), Elder (106-week-old) and Elder+Ex groups using
three-dimensional images gained from confocal laser scanning microscopy. [Results] The
capillary diameter, cross-sectional area and number of microvascular ramifications in the
Elder group were significantly smaller than those observed in the Cont and Elder+Ex
groups. [Conclusion] These findings suggest that the capillaries in the peripheral nerve
degrade with spontaneous aging and that aerobic exercise of low intensity promotes
angiogenesis, and protects the capillary from oxidative stress.
Collapse
Affiliation(s)
- Masahiro Sakita
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Japan
| | - Shinichiro Murakami
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Japan
| | - Hidemi Fujino
- Department of Physical Therapy, Faculty of Health Sciences, Kyoto Tachibana University, Japan
| |
Collapse
|
72
|
Papegaaij S, Taube W, Baudry S, Otten E, Hortobágyi T. Aging causes a reorganization of cortical and spinal control of posture. Front Aging Neurosci 2014; 6:28. [PMID: 24624082 PMCID: PMC3939445 DOI: 10.3389/fnagi.2014.00028] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 02/13/2014] [Indexed: 11/13/2022] Open
Abstract
Classical studies in animal preparations suggest a strong role for spinal control of posture. In humans it is now established that the cerebral cortex contributes to postural control of unperturbed and perturbed standing. The age-related degeneration and accompanying functional changes in the brain, reported so far mainly in conjunction with simple manual motor tasks, may also affect the mechanisms that control complex motor tasks involving posture. This review outlines the age-related structural and functional changes at spinal and cortical levels and provides a mechanistic analysis of how such changes may be linked to the behaviorally manifest postural deficits in old adults. The emerging picture is that the age-related reorganization in motor control during voluntary tasks, characterized by differential modulation of spinal reflexes, greater cortical activation and cortical disinhibition, is also present during postural tasks. We discuss the possibility that this reorganization underlies the increased coactivation and dual task interference reported in elderly. Finally, we propose a model for future studies to unravel the structure-function-behavior relations in postural control and aging.
Collapse
Affiliation(s)
- Selma Papegaaij
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Wolfgang Taube
- Movement and Sports Science, Department of Medicine, University of Fribourg Fribourg, Switzerland
| | - Stéphane Baudry
- Laboratory of Applied Biology, Faculty for Motor Sciences, Université Libre de Bruxelles Brussels, Belgium
| | - Egbert Otten
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands
| | - Tibor Hortobágyi
- Center for Human Movement Sciences, University of Groningen, University Medical Center Groningen Groningen, Netherlands ; Faculty of Health and Life Sciences, Northumbria University Newcastle Upon Tyne, UK
| |
Collapse
|
73
|
Heffner MA, Anderson MJ, Yeh GC, Genetos DC, Christiansen BA. Altered bone development in a mouse model of peripheral sensory nerve inactivation. JOURNAL OF MUSCULOSKELETAL & NEURONAL INTERACTIONS 2014; 14:1-9. [PMID: 24583535 PMCID: PMC4123540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
OBJECTIVES The present study sought to determine the effects of decreased peripheral sensory nerve function on skeletal development and bone metabolism in mice. METHODS C57BL/6 neonatal mice were treated with capsaicin to induce peripheral sensory nerve degeneration, and compared to vehicle-treated controls at 4, 8 and 12 weeks of age. Changes in bone structure were assessed using micro-computed tomography, mechanical properties and fracture resistance were assessed using three-point bending of radii, and bone turnover was assessed using dynamic histomorphometry and serum biomarkers. RESULTS Capsaicin treatment resulted in small but significant decreases in bone structure, particularly affecting trabecular bone. Capsaicin-treated mice exhibited lower trabecular thickness at the femoral metaphysis and L5 vertebral body compared with vehicle-treated mice. However, capsaicin- and vehicle-treated mice had similar mechanical properties and bone turnover rates. CONCLUSION Neonatal capsaicin treatment affected trabecular bone during development; however these small changes may not be meaningful with respect to bone strength under normal loading conditions. It is possible that capsaicin-sensitive neurons may be more important for bone under stress conditions such as increased mechanical loading or injury. Future studies will investigate this potential role of peripheral sensory nerves in bone adaptation.
Collapse
Affiliation(s)
- Mollie A. Heffner
- University of California-Davis Medical Center, Department of Orthopaedic Surgery
- University of California-Davis, Biomedical Engineering Graduate Group
| | - Matthew J. Anderson
- University of California-Davis Medical Center, Department of Orthopaedic Surgery
| | - Gregory C. Yeh
- University of California-Davis Medical Center, Department of Orthopaedic Surgery
| | - Damian C. Genetos
- University of California-Davis Veterinary School, Department of Anatomy, Physiology, & Cell Biology
| | - Blaine A. Christiansen
- University of California-Davis Medical Center, Department of Orthopaedic Surgery
- University of California-Davis, Biomedical Engineering Graduate Group
| |
Collapse
|
74
|
Decorps J, Saumet JL, Sommer P, Sigaudo-Roussel D, Fromy B. Effect of ageing on tactile transduction processes. Ageing Res Rev 2014; 13:90-9. [PMID: 24373814 DOI: 10.1016/j.arr.2013.12.003] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 12/02/2013] [Accepted: 12/16/2013] [Indexed: 01/09/2023]
Abstract
With advancing age, a decline in the main sensory modalities including touch sensation and perception is well reported to occur. This review mainly outlines the peripheral components of touch perception highlighting ageing influences on morphological and functional features of cutaneous mechanical transducers and mechanosensitive ion channels, sensory innervation, neurotransmitters and even vascular system required to ensure efferent function of the afferent nerve fibres in the skin. This, in conjunction with effect of ageing on the skin per se and central nervous system, could explain the tactile deficit seen among the ageing population. We also discuss appropriate tools and experimental models available to study the age-related tactile decline.
Collapse
Affiliation(s)
- Johanna Decorps
- Laboratory of Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique (CNRS) UMR 5305, Lyon, France; University of Lyon 1, UMR 5305, Lyon, France.
| | - Jean Louis Saumet
- Laboratory of Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique (CNRS) UMR 5305, Lyon, France; University of Lyon 1, UMR 5305, Lyon, France.
| | - Pascal Sommer
- Laboratory of Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique (CNRS) UMR 5305, Lyon, France; University of Lyon 1, UMR 5305, Lyon, France.
| | - Dominique Sigaudo-Roussel
- Laboratory of Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique (CNRS) UMR 5305, Lyon, France; University of Lyon 1, UMR 5305, Lyon, France.
| | - Berengere Fromy
- Laboratory of Tissue Biology and Therapeutic Engineering, Centre National de la Recherche Scientifique (CNRS) UMR 5305, Lyon, France; University of Lyon 1, UMR 5305, Lyon, France.
| |
Collapse
|
75
|
Biochemical characterization of protein quality control mechanisms during disease progression in the C22 mouse model of CMT1A. ASN Neuro 2013; 5:e00128. [PMID: 24175617 PMCID: PMC3848555 DOI: 10.1042/an20130024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Charcot–Marie–Tooth disease type 1A (CMT1A) is a hereditary demyelinating neuropathy linked with duplication of the peripheral myelin protein 22 (PMP22) gene. Transgenic C22 mice, a model of CMT1A, display many features of the human disease, including slowed nerve conduction velocity and demyelination of peripheral nerves. How overproduction of PMP22 leads to compromised myelin and axonal pathology is not fully understood, but likely involves subcellular alterations in protein homoeostatic mechanisms within affected Schwann cells. The subcellular response to abnormally localized PMP22 includes the recruitment of the ubiquitin–proteasome system (UPS), autophagosomes and heat-shock proteins (HSPs). Here we assessed biochemical markers of these protein homoeostatic pathways in nerves from PMP22-overexpressing neuropathic mice between the ages of 2 and 12 months to ascertain their potential contribution to disease progression. In nerves of 3-week-old mice, using endoglycosidases and Western blotting, we found altered processing of the exogenous human PMP22, an abnormality that becomes more prevalent with age. Along with the ongoing accrual of misfolded PMP22, the activity of the proteasome becomes compromised and proteins required for autophagy induction and lysosome biogenesis are up-regulated. Moreover, cytosolic chaperones are consistently elevated in nerves from neuropathic mice, with the most prominent change in HSP70. The gradual alterations in protein homoeostatic response are accompanied by Schwann cell de-differentiation and macrophage infiltration. Together, these results show that while subcellular protein quality control mechanisms respond appropriately to the presence of the overproduced PMP22, with aging they are unable to prevent the accrual of misfolded proteins. In peripheral nerves of neuropathic C22 mice the frequency of cytosolic PMP22 aggregates increases with age, which elicits a response from protein quality control mechanisms. The combined effects of aging and neuropathic genotype exacerbate disease progression leading to nerve defects.
Collapse
|
76
|
Kerasnoudis A, Pitarokoili K, Behrendt V, Gold R, Yoon MS. Cross sectional area reference values for sonography of peripheral nerves and brachial plexus. Clin Neurophysiol 2013; 124:1881-8. [DOI: 10.1016/j.clinph.2013.03.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Revised: 01/30/2013] [Accepted: 03/10/2013] [Indexed: 01/25/2023]
|
77
|
Reproducibility in nerve morphometry: comparison between methods and among observers. BIOMED RESEARCH INTERNATIONAL 2013; 2013:682849. [PMID: 23841086 PMCID: PMC3697141 DOI: 10.1155/2013/682849] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/23/2013] [Accepted: 05/24/2013] [Indexed: 11/23/2022]
Abstract
We investigated the reproducibility of a semiautomated method (computerized with manual intervention) for nerve morphometry (counting and measuring myelinated fibers) between three observers with different levels of expertise and experience with the method. Comparisons between automatic (fully computerized) and semiautomated morphometric methods performed by the same computer software using the same nerve images were also performed. Sural nerves of normal adult rats were used. Automatic and semiautomated morphometry of the myelinated fibers were made through the computer software KS-400. Semiautomated morphometry was conducted by three independent observers on the same images, using the semiautomated method. Automatic morphometry overestimated the myelin sheath area, thus overestimating the myelinated fiber size and underestimating the axon size. Fiber distributions overestimation was of 0.5 μm. For the semiautomated morphometry, no differences were found between observers for myelinated fiber and axon size distributions. Overestimation of the myelin sheath size of normal fibers by the fully automatic method might have an impact when morphometry is used for diagnostic purposes. We suggest that not only semiautomated morphometry results can be compared between different centers in clinical trials but it can also be performed by more than one investigator in one single experiment, being a reliable and reproducible method.
Collapse
|
78
|
Campbell EO, Samlan RA, McMullen NT, Cook S, Smiley-Jewell S, Barkmeier-Kraemer J. Developmental changes in the connective tissues of the porcine recurrent laryngeal nerve. J Anat 2013; 222:625-33. [PMID: 23590663 DOI: 10.1111/joa.12046] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2013] [Indexed: 11/26/2022] Open
Abstract
The recurrent laryngeal nerve (RLN) branches from the vagus cranial nerve to innervate structures important for voicing and swallowing. Damage to this nerve, commonly associated with surgery or idiopathic etiologies that largely occur with aging, results in impaired voicing and swallowing (Myssiorek, 2004). Sunderland proposed a model of peripheral nerve damage whereby a nerve's ability to resist damage from stretch and compression is determined by the quantity and composition of its epineurial connective tissues (Sunderland, 1951). Thus, it would be expected that epineurium differs depending upon the forces imposed on a nerve within its anatomical setting. The purpose of this study was to investigate RLN epineurium quantity and composition with development. A porcine model (piglet vs. juvenile) was used because of the similarity between porcine and human laryngeal innervation, anatomy and function. The entire RLN was excised bilaterally, and stereological methods were used to quantify the composition of epineurial connective tissues. Compared with the piglet, the juvenile pig RLN was double the diameter. While the piglet had no differences in the percentage of epineurial collagen and adipose between proximal and distal segments of both sides of the RLN, the juvenile pig had a greater percentage of collagen in the proximal segment of both sides of the RLN and a greater percentage of adipose in the distal segment of the left RLN compared with the proximal segment. In addition, unlike the piglet, the juvenile pig had a greater number of fascicles in the proximal than distal segment of the RLN, regardless of nerve side. These findings are consistent with predicted patterns associated with the different anatomical settings of the left and right RLN, show that the RLN changes with age, and support Sunderland's model.
Collapse
Affiliation(s)
- Ellen O Campbell
- Department of Speech, Language, Hearing, University of Arizona, Tucson, AZ, USA
| | | | | | | | | | | |
Collapse
|
79
|
Grizzi F, Di Caro G, Laghi L, Hermonat P, Mazzola P, Nguyen DD, Radhi S, Figueroa JA, Cobos E, Annoni G, Chiriva-Internati M. Mast cells and the liver aging process. IMMUNITY & AGEING 2013; 10:9. [PMID: 23496863 PMCID: PMC3599827 DOI: 10.1186/1742-4933-10-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 03/04/2013] [Indexed: 12/15/2022]
Abstract
It has now ascertained that the clinical manifestations of liver disease in the elderly population reflect both the cumulative effects of longevity on the liver and the generalized senescence of the organism ability to adjust to metabolic, infectious, and immunologic insults. Although liver tests are not significantly affected by age, the presentation of liver diseases such as viral hepatitis may be subtler in the elderly population than that of younger patients. Human immunosenescence is a situation in which the immune system, particularly T lymphocyte function, deteriorates with age, while innate immunity is negligibly affected and in some cases almost up-regulated. We here briefly review the relationships between the liver aging process and mast cells, the key effectors in a more complex range of innate immune responses than originally though.
Collapse
Affiliation(s)
- Fabio Grizzi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Giuseppe Di Caro
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Luigi Laghi
- Laboratory of Molecular Gastroenterology, Humanitas Clinical and Research Center, Rozzano, Milan, Italy
| | - Paul Hermonat
- Department of Internal medicine and Gene Therapy Program, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Paolo Mazzola
- Department of Health Sciences, University of Milano-Bicocca, Milan, and Geriatric Clinic, San Gerardo Hospital, Monza, Italy
| | - Diane D Nguyen
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Saba Radhi
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jose A Figueroa
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Everardo Cobos
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Giorgio Annoni
- Department of Health Sciences, University of Milano-Bicocca, Milan, and Geriatric Clinic, San Gerardo Hospital, Monza, Italy
| | - Maurizio Chiriva-Internati
- Department of Internal Medicine, Division of Hematology/Oncology, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,The Laura W. Bush Institute for Women's Health and Center for Women's Health and Gender-Based Medicine, Texas Tech University Health Sciences Center, Amarillo, TX, USA.,Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
80
|
Yezierski RP. The effects of age on pain sensitivity: preclinical studies. PAIN MEDICINE 2013; 13 Suppl 2:S27-36. [PMID: 22497745 DOI: 10.1111/j.1526-4637.2011.01311.x] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Preclinical studies of pain and aging represent an area of research where considerations of age, strain, gender, and method of behavioral assessment are but some of the challenges that must be addressed. The results of studies related to the impact of age on pain sensitivity have ranged from increased to decreased sensitivity to no change. Examining the design of these studies one discovers that cross-sectional designs using animals of different ages have been used to evaluate age-related effects in normal animals as well as animals with inflammatory and neuropathic pain conditions. In the present review a summary of these studies is presented along with a discussion of potential mechanisms responsible for changes that have been described. OUTCOME MEASURES The dominant method of behavioral assessment in the majority of studies involving rodents has been reflex-based strategies that unfortunately do not reveal the same effects of experimental manipulations known to affect pain sensitivity in humans. A comparison of results obtained with reflex-based methods versus those obtained with cortically dependent operant methods reveals significant differences. CONCLUSIONS Increases in pain sensitivity under different experimental conditions have been suggested to result from age-related anatomical, physiological, and biochemical changes as well as compensatory changes in homeostatic mechanisms and intrinsic plasticity of somatosensory pathways involved in the processing and perception of pain. Other factors that may contribute to the impact of age on pain sensitivity include dysregulation of the hypothalamic-pituitary-adrenal axis and changes in autonomic function that occur with advancing age. In the future translational research in the field of pain and aging will need to focus on establishing clinically relevant animal models and assessment strategies to evaluate the causal relationships between the biological changes associated with advancing age and the varied behavioral changes in pain sensitivity.
Collapse
Affiliation(s)
- Robert P Yezierski
- Department of Orthodontics, Comprehensive Center for Pain Research, University of Florida, Gainesville, Florida 32610, USA.
| |
Collapse
|
81
|
Dietary restriction supports peripheral nerve health by enhancing endogenous protein quality control mechanisms. Exp Gerontol 2012; 48:1085-90. [PMID: 23267845 DOI: 10.1016/j.exger.2012.12.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 12/07/2012] [Accepted: 12/17/2012] [Indexed: 01/07/2023]
Abstract
The peripheral nervous system (PNS) comprises of an extensive network of connections that convey information between the central nervous system (CNS) and peripheral organs. Long myelinated nerve fibers are particularly susceptible to age-related changes, as maintenance of the insulating glial membrane requires extensive synthesis and processing of many proteins. In rodent models, peripheral demyelination caused by genetic risk factors or by normal aging are attenuated by intermittent fasting (IF) or calorie restriction (CR) supporting a role for dietary intervention in preserving neural function. This review will summarize recent studies examining mechanisms by which life-long CR or extended IF supports peripheral nerve health.
Collapse
|
82
|
Homs J, Ariza L, Pagès G, Verdú E, Casals L, Udina E, Chillón M, Bosch A, Navarro X. Comparative study of peripheral neuropathy and nerve regeneration in NOD and ICR diabetic mice. J Peripher Nerv Syst 2012; 16:213-27. [PMID: 22003936 DOI: 10.1111/j.1529-8027.2011.00345.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The non-obese diabetic (NOD) mouse was suggested as an adequate model for diabetic autonomic neuropathy. We evaluated sensory-motor neuropathy and nerve regeneration following sciatic nerve crush in NOD males rendered diabetic by multiple low doses of streptozotocin, in comparison with similarly treated Institute for Cancer Research (ICR) mice, a widely used model for type I diabetes. Neurophysiological values for both strains showed a decline in motor and sensory nerve conduction velocity at 7 and 8 weeks after induction of diabetes in the intact hindlimb. However, amplitudes of compound muscle and sensory action potentials (CMAPs and CNAPs) were significantly reduced in NOD but not in ICR diabetic mice. Morphometrical analysis showed myelinated fiber loss in highly hyperglycemic NOD mice, but no significant changes in fiber size. There was a reduction of intraepidermal nerve fibers, more pronounced in NOD than in ICR diabetic mice. Interestingly, aldose reductase and poly(ADP-ribose) polymerase (PARP) activities were increased already at 1 week of hyperglycemia, persisting until the end of the experiment in both strains. Muscle and nerve reinnervation was delayed in diabetic mice following sciatic nerve crush, being more marked in NOD mice. Thus, diabetes of mid-duration induces more severe peripheral neuropathy and slower nerve regeneration in NOD than in ICR mice.
Collapse
Affiliation(s)
- Judit Homs
- Department of Biochemistry and Molecular Biology and Centre de Biotecnologia i Teràpia Gènica, Universitat Autònoma de Barcelona, Bellaterra, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Sanada LS, da Rocha Kalil AL, Tavares MR, Neubern MCM, Salgado HC, Fazan VPS. Sural nerve involvement in experimental hypertension: morphology and morphometry in male and female normotensive Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). BMC Neurosci 2012; 13:24. [PMID: 22380617 PMCID: PMC3350456 DOI: 10.1186/1471-2202-13-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 03/02/2012] [Indexed: 01/20/2023] Open
Abstract
Background The sural nerve has been widely investigated in experimental models of neuropathies but information about its involvement in hypertension was not yet explored. The aim of the present study was to compare the morphological and morphometric aspects of different segments of the sural nerve in male and female spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats. Rats aged 20 weeks (N = 6 in each group) were investigated. After arterial pressure and heart rate recordings in anesthetized animals, right and left sural nerves were removed and prepared for epoxy resin embedding and light microscopy. Morphometric analysis was performed with the aid of computer software, and took into consideration the fascicle area and diameter, as well as myelinated fiber number, density, area and diameter. Results Significant differences were observed for the myelinated fiber number and density, comparing different genders of WKY and SHR. Also, significant differences for the morphological (thickening of the endoneural blood vessel walls and lumen reduction) and morphometric (myelinated fibers diameter and G ratio) parameters of myelinated fibers were identified. Morphological exam of the myelinated fibers suggested the presence of a neuropathy due to hypertension in both SHR genders. Conclusions These results indicate that hypertension altered important morphometric parameters related to nerve conduction of sural nerve in hypertensive animals. Moreover the comparison between males and females of WKY and SHR allows the conclusion that the morphological and morphometric parameters of sural nerve are not gender related. The morphometric approach confirmed the presence of neuropathy, mainly associated to the small myelinated fibers. In conclusion, the present study collected evidences that the high blood pressure in SHR is affecting the sural nerve myelinated fibers.
Collapse
Affiliation(s)
- Luciana Sayuri Sanada
- Department of Neuroscience and Behavioral Neurosciences, University of São Paulo, Monte Alegre, Ribeirão Preto, Brazil
| | | | | | | | | | | |
Collapse
|
84
|
Abstract
Skeletal muscle innervation is a multi-step process leading to the neuromuscular junction (NMJ) apparatus formation. The transmission of the signal from nerve to muscle occurs at the NMJ level. The molecular mechanism that orchestrates the organization and functioning of synapses is highly complex, and it has not been completely elucidated so far. Neuromuscular junctions are assembled on the muscle fibers at very precise locations called end plates (EP). Acetylcholine receptor (AChR) clusterization at the end plates is required for an accurate synaptic transmission. This review will focus on some mechanisms responsible for accomplishing the correct distribution of AChRs at the synapses. Recent evidences support the concept that a dual transcriptional control of AChR genes in subsynaptic and extrasynaptic nuclei is crucial for AChR clusterization. Moreover, new players have been discovered in the agrin-MuSK pathway, the master organizer of postsynaptical differentiation. Mutations in this pathway cause neuromuscular congenital disorders. Alterations of the postynaptic apparatus are also present in physiological conditions characterized by skeletal muscle wasting. Indeed, recent evidences demonstrate how NMJ misfunctioning has a crucial role at the onset of age-associated sarcopenia.
Collapse
|
85
|
Verdier V, Csárdi G, de Preux-Charles AS, Médard JJ, Smit AB, Verheijen MHG, Bergmann S, Chrast R. Aging of myelinating glial cells predominantly affects lipid metabolism and immune response pathways. Glia 2012; 60:751-60. [PMID: 22337502 DOI: 10.1002/glia.22305] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2011] [Accepted: 01/19/2012] [Indexed: 01/17/2023]
Abstract
Both the central and the peripheral nervous systems are prone to multiple age-dependent neurological deficits, often attributed to still unknown alterations in the function of myelinating glia. To uncover the biological processes affected in glial cells by aging, we analyzed gene expression of the Schwann cell-rich mouse sciatic nerve at 17 time points throughout life, from day of birth until senescence. By combining these data with the gene expression data of myelin mouse mutants carrying deletions of either Pmp22, SCAP, or Lpin1, we found that the majority of age-related transcripts were also affected in myelin mutants (54.4%) and were regulated during PNS development (59.5%), indicating a high level of overlap in implicated molecular pathways. The expression profiles in aging copied the direction of transcriptional changes observed in neuropathy models; however, they had the opposite direction when compared with PNS development. The most significantly altered biological processes in aging involved the inflammatory/immune response and lipid metabolism. Interestingly, both these pathways were comparably changed in the aging optic nerve, suggesting that similar biological processes are affected in aging of glia-rich parts of the central and peripheral nervous systems. Our comprehensive comparison of gene expression in three distinct biological conditions including development, aging, and myelin disease thus revealed a previously unanticipated relationship among themselves and identified lipid metabolism and inflammatory/immune response pathways as potential therapeutical targets to prevent or delay so far incurable age-related and inherited forms of neuropathies.
Collapse
Affiliation(s)
- Valérie Verdier
- Department of Medical Genetics, University of Lausanne, Lausanne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Franchi S, Valsecchi AE, Borsani E, Procacci P, Ferrari D, Zaffa C, Sartori P, Rodella LF, Vescovi A, Maione S, Rossi F, Sacerdote P, Colleoni M, Panerai AE. Intravenous neural stem cells abolish nociceptive hypersensitivity and trigger nerve regeneration in experimental neuropathy. Pain 2012; 153:850-861. [PMID: 22321918 DOI: 10.1016/j.pain.2012.01.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 12/20/2011] [Accepted: 01/11/2012] [Indexed: 01/24/2023]
Abstract
A nonphysiological repair of the lesioned nerve leading to the formation of neurinomas, altered nerve conduction, and spontaneous firing is considered the main cause of the events underlying neuropathic pain. It was investigated whether neural stem cell (NSCs) administration could lead to a physiological nerve repair, thus to a reduction of neuropathic pain symptoms such as hyperalgesia and allodynia in a well-established model of this pain (sciatic nerve chronic constriction injury [CCI]). Moreover, since we and others showed that the peripheral nerve lesion starts a cascade of neuroinflammation-related events that may maintain and worsen the original lesion, the effect of NSCs on sciatic nerve pro- and antiinflammatory cytokines in CCI mice was investigated. NSCs injected intravenously, when the pathology was already established, induced a significant reduction in allodynia and hyperalgesia already 3 days after administration, demonstrating a therapeutic effect that lasted for at least 28 days. Responses changed with the number of administered NSCs, and the effect on hyperalgesia could be boosted by a new NSC administration. Treatment significantly decreased proinflammatory, activated antiinflammatory cytokines in the sciatic nerve, and reduced spinal cord Fos expression in laminae I-VI. Moreover, in NSC-treated animals, a reparative process and an improvement of nerve morphology is present at a later time. Since NSC effect on pain symptoms preceded nerve repair and was maintained after cells had disappeared from the lesion site, we suggest that regenerative, behavioral, and immune NSC effects are largely due to microenvironmental changes they might induce at the lesion site.
Collapse
Affiliation(s)
- Silvia Franchi
- Dipartimento di Farmacologia Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milano, Italy Divisione di Anatomia Umana, Dipartimento di Scienze Biomediche e Biotecnologie, Università di Brescia, Brescia, Italy Dipartimento di Morfologia Umana e Scienze Biomediche, Università degli Studi di Milano, Milano, Italy Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Milano, IRCCS Casa Sollievo della Sofferenza, San Giovanni Rotondo, Foggia, Italy Dipartimento di Medicina Sperimentale - Sezione di Farmacologia "L. Donatelli", Seconda Università di Napoli, Napoli, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Soltanpour N, Asghari Vostacolaee Y, Pourghasem M. Comparison of Morphometric Aspects of Light and Electron Microscopy of the Hypoglossal Nerve between Young and Aged Male Wistar Rats. CELL JOURNAL 2012; 13:229-36. [PMID: 23508137 PMCID: PMC3584479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2011] [Accepted: 09/05/2011] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Age-related changes occur in many different systems of the body. Many elderly people show dysphagia and dysphonia. This research was conducted to evaluate quantitatively the morphometrical changes of the hypoglossal nerve resulting from the aging process in young and aged rats. MATERIALS AND METHODS Through an experimental study ten male wistar rats (4 months: 5 rats, 24 months: 5 rats) were selected randomly from a colony of wistars in the UWC. After a fixation process and preparation of samples of the cervical portion of the hypoglossal nerve of these rats, light and electron microscopic imaging were performed. These images were evaluated according to the numbers and size of myelinated nerve fibers, nucleoli of Schwann cells, myelin sheath thickness, axon diameter, and g ratio. All data were analyzed by Mann-Whitney, a non-parametric statistical test. RESULTS In light microscope, numbers of myelinated nerve fibers, the mean entire nerve perimeters, the mean entire nerve areas and the mean entire nerve diameters in young and aged rats' were not significantly different between the two groups. In electron microscope, numbers of myelinated axons, numbers of Schwann cell nucleoli and the mean g ratios of myelinated axon to Schwann cell in young and aged rats were not significantly different. The myelinated fiber diameters, the myelin sheath thicknesses, myelinated axon diameters and the mean g ratio of axon diameter to myelinated fiber diameter in young and aged fibers were significantly different. CONCLUSION The mean g ratio of myelinated nerve fibers of peripheral nerves stabilizes at the level of 0.6 after maturation and persists without major change during adulthood. This ratio of axon diameter to fiber diameter (0.6) is optimum for normal conduction velocity of neural impulses. Our study indicated that the g ratio of myelinated nerve fiber of the hypoglossal nerve decreased prominently in aged rats and can be a cause of impairment in nerve function in old age. Thus, prospective studies concerning electrophysiological and conductive properties of the peripheral nerve could be useful to clarify further the effects of aging on peripheral nerves.
Collapse
Affiliation(s)
- Nabiollah Soltanpour
- * Corresponding Address:
P.O.Box: 47176 47745Department of AnatomyBiology and Molecular Research CenterBabol University of Medical SciencesBabolIran
| | | | | |
Collapse
|
88
|
Delbono O. Expression and regulation of excitation-contraction coupling proteins in aging skeletal muscle. Curr Aging Sci 2011; 4:248-59. [PMID: 21529320 PMCID: PMC9634721 DOI: 10.2174/1874609811104030248] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/10/2010] [Accepted: 05/10/2010] [Indexed: 11/22/2022]
Abstract
Functional and structural decline of the neuromuscular system is a recognized cause of decreased strength, impaired performance of daily living activities, and loss of independence in the elderly. However, in mammals, including humans, age-related loss of strength is greater than loss of muscle mass, so the underlying mechanisms remain only partially understood. This review focuses on the mechanisms underlying impaired skeletal muscle function with aging, including external calcium-dependent skeletal muscle contraction; increased voltage-sensitive calcium channel Cav1.1 β1asubunit and junctional face protein JP-45 and decreased Cav1.1 (α1) expression, and the potential role of these and other recently discovered molecules of the muscle T-tubule/sarcoplasmic reticulum junction in excitation-contraction uncoupling. We also examined neural influences and trophic factors, particularly insulin-like growth factor-I (IGF-1). Better insight into the triad proteins' involvement in muscle ECC and nerve/muscle interactions and regulation will lead to more rational interventions to delay or prevent muscle weakness with aging. The focus of this review is on the proteins mediating excitation-contraction coupling (ECC) and their expression and regulation in humans and rodent models of skeletal muscle functional decline with aging. Age-dependent changes in proteins other than those related to ECC, muscle composition, clinical assessment and interventions, have been extensively reviewed recently [1-3].
Collapse
Affiliation(s)
- Osvaldo Delbono
- Department of Internal Medicine, Section on Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| |
Collapse
|
89
|
Shen D, Zhang Q, Gao X, Gu X, Ding F. Age-related changes in myelin morphology, electrophysiological property and myelin-associated protein expression of mouse sciatic nerves. Neurosci Lett 2011; 502:162-7. [DOI: 10.1016/j.neulet.2011.07.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 07/14/2011] [Accepted: 07/22/2011] [Indexed: 10/17/2022]
|
90
|
Koppes AN, Seggio AM, Thompson DM. Neurite outgrowth is significantly increased by the simultaneous presentation of Schwann cells and moderate exogenous electric fields. J Neural Eng 2011; 8:046023. [DOI: 10.1088/1741-2560/8/4/046023] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
91
|
Rodrigues A, Ferreira R, Salgado H, Fazan V. Morphometric analysis of the phrenic nerve in male and female Wistar-Kyoto (WKY) and spontaneously hypertensive rats (SHR). Braz J Med Biol Res 2011; 44:583-91. [DOI: 10.1590/s0100-879x2011007500053] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 04/15/2011] [Indexed: 11/22/2022] Open
|
92
|
Goss JR, Stolz DB, Robinson AR, Zhang M, Arbujas N, Robbins PD, Glorioso JC, Niedernhofer LJ. Premature aging-related peripheral neuropathy in a mouse model of progeria. Mech Ageing Dev 2011; 132:437-42. [PMID: 21596054 DOI: 10.1016/j.mad.2011.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Revised: 02/16/2011] [Accepted: 04/29/2011] [Indexed: 10/18/2022]
Abstract
Peripheral neuropathy is a common aging-related degenerative disorder that interferes with daily activities and leads to increased risk of falls and injury in the elderly. The etiology of most aging-related peripheral neuropathy is unknown. Inherited defects in several genome maintenance mechanisms cause tissue-specific accelerated aging, including neurodegeneration. We tested the hypothesis that a murine model of XFE progeroid syndrome, caused by reduced expression of ERCC1-XPF DNA repair endonuclease, develops peripheral neuropathy. Nerve conduction studies revealed normal nerve function in young adult (8 week) Ercc1(-/Δ) mice, but significant abnormalities in 20 week-old animals. Morphologic and ultrastructural analysis of the sciatic nerve from mutant mice revealed significant alterations at 20 but not 8 weeks of age. We conclude that Ercc1(-/Δ) mice have accelerated spontaneous peripheral neurodegeneration that mimics aging-related disease. This provides strong evidence that DNA damage can drive peripheral neuropathy and offers a rapid and novel model to test therapies.
Collapse
Affiliation(s)
- James R Goss
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, PA 15213-1863, USA.
| | | | | | | | | | | | | | | |
Collapse
|
93
|
Morphological changes in nerve cells during normal aging. Brain Struct Funct 2011; 216:85-9. [PMID: 21431333 DOI: 10.1007/s00429-011-0308-y] [Citation(s) in RCA: 134] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2010] [Accepted: 03/04/2011] [Indexed: 10/18/2022]
|
94
|
Guergova S, Dufour A. Thermal sensitivity in the elderly: a review. Ageing Res Rev 2011; 10:80-92. [PMID: 20685262 DOI: 10.1016/j.arr.2010.04.009] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Revised: 04/19/2010] [Accepted: 04/19/2010] [Indexed: 10/19/2022]
Abstract
Aging is associated with a progressive decrease in thermal perception, as revealed by increased thermal detection thresholds in the elderly. This reduction in thermosensitivity follows a distal-proximal pattern, with more pronounced decrements observed in the limbs and in the perception of warmth vs. cold. The main underlying causes of this seem to be aging of the skin and subsequent reductions in thermoreceptor density and superficial skin blood flow. However, the results from some animal studies also suggest that changes in the peripheral nerve system, particularly fiber loss and decreased conduction velocity, may also be involved. In this paper, we review age-related changes in the thermal sensitivity of humans, their underlying mechanisms, and the strengths and limitations of some of the methodologies used to assess these changes.
Collapse
|
95
|
Marx Chakravarthy S, Kumar P, Dhalapathy S, Marx A. A comparative microanatomical study on cross-sections of superficial branch of radial nerve in proximal and distal parts of the forearm: a cadaveric study. Morphologie 2010; 94:98-106. [PMID: 20951622 DOI: 10.1016/j.morpho.2010.03.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
PURPOSE OF STUDY Changes in peripheral nerve anatomy with age may be the cause for poor prognosis after nerve repair in elderly cases. The aim of the present study is to find out and compare the cross-sectional microanatomy as well as age-related changes in the non-fascicular components of superficial branch of radial nerve at cubital fossa (SBRN-1) and above wrist (SBRN-2). METHODS Thirty-eight fresh human (14 male and five female) cadaveric SBRN-1 and SBRN-2 were collected from both sides of 19 cadavers and study has been performed at different magnifications after routine histological (Masson's trichrome stain) processing was done for morphometric analysis (total cross-sectional area [Asc], fascicular area [Af], non-Af [Anonf], adipose [FAT] area and non-adipose area [nFAT]). RESULTS SBRN-1 and SBRN-2 belonged to polyfascicular type and showed difference in amount of connective and adipose tissues in Anonf. The number of fascicles in SBRN-1 ranged from 2 to 6 (3.66±0.21, mean±SEM) and in SBRN-2 ranged from 7.5 to 11.5 (9.24±0.26). On comparing the percentage level of adipose tissue (FAT) in total cross-section area (Asc) and in Anonf of SBRN-1 and SBRN-2, the level of adipose tissue was increased with age. CONCLUSIONS The amount of adipose tissue in SBRN-1 and SBRN-2 Anonf was found to be high in most of the elderly cases. On comparison, there was not much difference between SBRN-1 and SBRN-2, but, the fascicle count was found to be increasing gradually from proximal to distal part of the SBRN.
Collapse
Affiliation(s)
- S Marx Chakravarthy
- Department of Anatomy, Kasturba Medical College, 576104 Manipal, Karnataka, India.
| | | | | | | |
Collapse
|
96
|
Age-associated alterations of the neuromuscular junction. Exp Gerontol 2010; 46:193-8. [PMID: 20854887 DOI: 10.1016/j.exger.2010.08.029] [Citation(s) in RCA: 182] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 08/19/2010] [Accepted: 08/27/2010] [Indexed: 01/09/2023]
Abstract
Age-related loss of muscle mass and function greatly affects quality of life in the elderly population. Several hypotheses have been proposed but accumulating evidence point to alterations in neuromuscular system during aging as a key event that leads to functional denervation, muscle wasting, and weakness. Over the past few decades, age-associated degeneration of the neuromuscular junction (NMJ) and its components have been well documented. With advancing age, pre-terminal portions of motor axons exhibit regions of abnormal thinning, distension, and sprouting whereas postsynaptic endplates decrease in size and reduce in number, length, and density of postsynaptic folds. Although the exact underlying mechanisms are still lacking, recent studies provided direct evidence that age-associated increase in oxidative stress plays a crucial role in NMJ degeneration and progression of sarcopenia. Homozygous deletion of an important antioxidant enzyme, Cu,Zn superoxide dismutase (CuZnSOD, SOD1) leads to acceleration of age-dependent muscle atrophy, with a significant NMJ degeneration similar to that seen in old wild-type sarcopenic animals. In this short review, we briefly summarize the current understanding of some of the cellular and molecular changes in the NMJ during aging and suggest a role for oxidative stress and mitochondrial dysfunction in age-related changes in the maintenance of neuromuscular innervation.
Collapse
|
97
|
Ray B, D'Souza A, Kumar B, Marx C, Ghosh B, Gupta NK, Marx A. Variations in the course and microanatomical study of the lateral femoral cutaneous nerve and its clinical importance. Clin Anat 2010; 23:978-84. [DOI: 10.1002/ca.21043] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
98
|
Marx SC, Kumar P, Dhalapathy S, Prasad K, Marx CA. Microanatomical and immunohistochemical study of the human lateral antebrachial cutaneous nerve of forearm at the antecubital fossa and its clinical implications. Clin Anat 2010; 23:693-701. [DOI: 10.1002/ca.20985] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
99
|
Yekta SS, Smeets R, Stein JM, Ellrich J. Assessment of trigeminal nerve functions by quantitative sensory testing in patients and healthy volunteers. J Oral Maxillofac Surg 2010; 68:2437-51. [PMID: 20598414 DOI: 10.1016/j.joms.2009.12.013] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 12/21/2009] [Accepted: 12/21/2009] [Indexed: 10/19/2022]
Abstract
PURPOSE Orofacial sensory dysfunction plays an important role in oral and maxillofacial surgery. Quantitative sensory testing (QST) is a psychophysical approach to evaluate thermal and mechanical somatosensation. PATIENTS AND METHODS The present human study 1) collected normative QST data in extraoral and intraoral regions, 2) analyzed effects of age, gender, and anatomical sites on QST, and 3) applied QST in 11 patients with iatrogenic inferior alveolar nerve lesions. Sixty (30 male and 30 female) healthy volunteers were tested bilaterally in the innervation areas of infraorbital, mental, and lingual nerves. Ten patients with sensory disturbances in innervation areas of the mental nerve were investigated at 1, 4, and 8 weeks after surgery. Another patient with a complete sensory loss after surgery was repetitively tested within 453 days after primary surgery (dental implant) and subsequent surgical reconstruction of the inferior alveolar nerve by autologous graft. RESULTS Older subjects were significantly less sensitive than younger subjects for thermal parameters. Thermal detection thresholds in infraorbital and mental regions showed higher sensitivity in women. Sensitivity to thermal stimulation was higher in the infraorbital region than in the mental and lingual regions. QST monitored somatosensory deficits and recovery of inferior alveolar nerve functions in all patients. CONCLUSIONS Age, gender, and anatomic region affect various QST parameters. QST might be useful in the diagnosis of inferior alveolar nerve disorders in patients. In dentistry, the monitoring of afferent nerve fiber functions by QST might support decisions on further interventions.
Collapse
Affiliation(s)
- Sareh Said Yekta
- Department of Conservative Dentistry, Periodontology and Preventive Dentistry, Aachen University, Aachen, Germany
| | | | | | | |
Collapse
|
100
|
Opalach K, Rangaraju S, Madorsky I, Leeuwenburgh C, Notterpek L. Lifelong calorie restriction alleviates age-related oxidative damage in peripheral nerves. Rejuvenation Res 2010; 13:65-74. [PMID: 20230280 DOI: 10.1089/rej.2009.0892] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Aging is associated with protein damage and imbalance in redox status in a variety of cells and tissues, yet little is known about the extent of age-related oxidative stress in the peripheral nervous system. Previously, we showed a drastic decline in the expression of glial and neuronal proteins in myelinated peripheral nerves with age, which is significantly ameliorated by lifelong calorie restriction. The age-related decline in functional molecules is associated with alterations in cellular protein homeostatic mechanisms, which could lead to a buildup of damaged, aggregated proteins. To determine the extent of oxidative damage within myelinated peripheral nerves, we studied sciatic nerves from rats of four different ages (8, 18, 29, and 38 months) maintained on an ad libitum or a 40% calorie-restricted diet. We found a prominent accumulation of polyubiquitinated substrates with age, which are associated with the conglomeration of distended lysosomes and lipofuscin adducts. The occurrence of these structures is notably less frequent within nerves of age-matched rodents kept on a lifelong reduced calorie diet. Markers for lipid peroxidation, inflammation, and immune cell infiltration are all elevated in nerves of ad libitum-fed rats, whereas food restriction is able to attenuate such deleterious processes with age. Together these results show that dietary restriction is an efficient means of defying age-related oxidative damage and maintaining a younger state in peripheral nerves.
Collapse
Affiliation(s)
- Katherine Opalach
- Department of Neuroscience, McKnight Brain Institute, and The Institute on Aging, University of Florida, Gainesville, Florida 2610-0244, USA
| | | | | | | | | |
Collapse
|