51
|
Roitbak T, Ward CJ, Harris PC, Bacallao R, Ness SA, Wandinger-Ness A. A polycystin-1 multiprotein complex is disrupted in polycystic kidney disease cells. Mol Biol Cell 2004; 15:1334-46. [PMID: 14718571 PMCID: PMC363138 DOI: 10.1091/mbc.e03-05-0296] [Citation(s) in RCA: 113] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is typified by the accumulation of fluid-filled cysts and abnormalities in renal epithelial cell function. The disease is principally caused by mutations in the gene encoding polycystin-1, a large basolateral plasma membrane protein expressed in kidney epithelial cells. Our studies reveal that, in normal kidney cells, polycystin-1 forms a complex with the adherens junction protein E-cadherin and its associated catenins, suggesting a role in cell adhesion or polarity. In primary cells from ADPKD patients, the polycystin-1/polycystin-2/E-cadherin/beta-catenin complex was disrupted and both polycystin-1 and E-cadherin were depleted from the plasma membrane as a result of the increased phosphorylation of polycystin-1. The loss of E-cadherin was compensated by the transcriptional upregulation of the normally mesenchymal N-cadherin. Increased cell surface N-cadherin in the disease cells in turn stabilized the continued plasma membrane localization of beta-catenin in the absence of E-cadherin. The results suggest that enhanced phosphorylation of polycystin-1 in ADPKD cells precipitates changes in its localization and its ability to form protein complexes that are critical for the stabilization of adherens junctions and the maintenance of a fully differentiated polarized renal epithelium.
Collapse
Affiliation(s)
- Tamara Roitbak
- Department of Pathology, University of New Mexico, Health Science Center, Albuquerque, New Mexico 87131, USA
| | | | | | | | | | | |
Collapse
|
52
|
Affiliation(s)
- Patricia D Wilson
- Department of Medicine, Division of Nephrology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
53
|
Streets AJ, Newby LJ, O'Hare MJ, Bukanov NO, Ibraghimov-Beskrovnaya O, Ong ACM. Functional analysis of PKD1 transgenic lines reveals a direct role for polycystin-1 in mediating cell-cell adhesion. J Am Soc Nephrol 2003; 14:1804-15. [PMID: 12819240 DOI: 10.1097/01.asn.0000076075.49819.9b] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The PKD1 protein, polycystin-1, is a large transmembrane protein of uncertain function and topology. To study the putative functions of polycystin-1, conditionally immortalized kidney cells transgenic for PKD1 were generated and an interaction between transgenic polycystin-1 and endogenous polycystin-2 has been recently demonstrated in these cells. This study provides the first functional evidence that transgenic polycystin-1 directly mediates cell-cell adhesion. In non-permeabilized cells, polycystin-1 localized to the lateral cell borders with N-terminal antibodies but not with a C-terminal antibody; there was a clear difference in surface intensity between transgenic and non-transgenic cells. Compared with non-transgenic cells, transgenic cells showed a dramatic increase in resistance to the disruptive effect of a polycystin-1 antibody raised to the PKD domains of polycystin-1 (IgPKD) in both cell adhesion and cell aggregation assays. The differential effect on cell adhesion between transgenic and non-transgenic cells could be reproduced using recombinant fusion proteins encoding non-overlapping regions of the IgPKD domains. In contrast, antibodies raised to other extracellular domains of polycystin-1 had no effect on cell adhesion. Finally, the specificity of this finding was confirmed by the lack of effect of IgPKD antibody on cell adhesion in a PKD1 cystic cell line deficient in polycystin-1. These results demonstrate that one of the primary functions of polycystin-1 is to mediate cell-cell adhesion in renal epithelial cells, probably via homophilic or heterophilic interactions of the PKD domains. Disruption of cell-cell adhesion during tubular morphogenesis may be an early initiating event for cyst formation in ADPKD.
Collapse
Affiliation(s)
- Andrew J Streets
- Sheffield Kidney Institute, Division of Clinical Sciences (North), University of Sheffield, Clinical Sciences Centre, Northern General Hospital, Herries Road, Sheffield S5 7AU, UK
| | | | | | | | | | | |
Collapse
|
54
|
Nauli SM, Alenghat FJ, Luo Y, Williams E, Vassilev P, Li X, Elia AEH, Lu W, Brown EM, Quinn SJ, Ingber DE, Zhou J. Polycystins 1 and 2 mediate mechanosensation in the primary cilium of kidney cells. Nat Genet 2003; 33:129-37. [PMID: 12514735 DOI: 10.1038/ng1076] [Citation(s) in RCA: 1515] [Impact Index Per Article: 68.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2002] [Accepted: 12/09/2002] [Indexed: 12/23/2022]
Abstract
Several proteins implicated in the pathogenesis of polycystic kidney disease (PKD) localize to cilia. Furthermore, cilia are malformed in mice with PKD with mutations in TgN737Rpw (encoding polaris). It is not known, however, whether ciliary dysfunction occurs or is relevant to cyst formation in PKD. Here, we show that polycystin-1 (PC1) and polycystin-2 (PC2), proteins respectively encoded by Pkd1 and Pkd2, mouse orthologs of genes mutated in human autosomal dominant PKD, co-distribute in the primary cilia of kidney epithelium. Cells isolated from transgenic mice that lack functional PC1 formed cilia but did not increase Ca(2+) influx in response to physiological fluid flow. Blocking antibodies directed against PC2 similarly abolished the flow response in wild-type cells as did inhibitors of the ryanodine receptor, whereas inhibitors of G-proteins, phospholipase C and InsP(3) receptors had no effect. These data suggest that PC1 and PC2 contribute to fluid-flow sensation by the primary cilium in renal epithelium and that they both function in the same mechanotransduction pathway. Loss or dysfunction of PC1 or PC2 may therefore lead to PKD owing to the inability of cells to sense mechanical cues that normally regulate tissue morphogenesis.
Collapse
Affiliation(s)
- Surya M Nauli
- Renal Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, 4 Blackfan Circle, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Smyth BJ, Snyder RW, Balkovetz DF, Lipschutz JH. Recent advances in the cell biology of polycystic kidney disease. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 231:51-89. [PMID: 14713003 DOI: 10.1016/s0074-7696(03)31002-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a significant familial disorder, crossing multiple ethnicities as well as organ systems. The goal of understanding and, ultimately, curing ADPKD has fostered collaborative efforts among many laboratories, mustered on by the opportunity to probe fundamental cellular biology. Here we review what is known about ADPKD including well-accepted data such as the identification of the causative genes and the fact that PKD1 and PKD2 act in the same pathway, fairly well-accepted concepts such as the "two-hit hypothesis," and somewhat confusing information regarding polycystin-1 and -2 localization and protein interactions. Special attention is paid to the recently discovered role of the cilium in polycystic kidney disease and the model it suggests. Studying ADPKD is important, not only as an evaluation of a multisystem disorder that spans a lifetime, but as a testament to the achievements of modern biology and medicine.
Collapse
Affiliation(s)
- Brendan J Smyth
- Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
56
|
Rodova M, Islam MR, Maser RL, Calvet JP. The polycystic kidney disease-1 promoter is a target of the beta-catenin/T-cell factor pathway. J Biol Chem 2002; 277:29577-83. [PMID: 12048202 DOI: 10.1074/jbc.m203570200] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Polycystic kidney disease (PKD) results from loss-of-function mutations in the PKD1 gene. There are also reports showing abnormally high levels of PKD1 expression in cystic epithelial cells. At present, nothing is known about the molecular mechanisms regulating the normal expression of the PKD1 gene or whether transcriptional disregulation of the PKD1 gene has a role in cyst formation. We have analyzed a 3.3-kb 5'-proximal portion of the human PKD1 gene. Sequence analysis revealed the presence of consensus sequences for numerous transactivating factors, including four T-cell factor (TCF) binding elements (TBEs). Transcriptional activity of the 3.3-kb fragment and a series of deletion constructs was assayed in HEK293T cells. A 2.0-kb proximal promoter region containing one of the four TBEs (TBE1) was inducible up to 6-fold by cotransfection with beta-catenin. beta-catenin-mediated induction was inhibited by dominant-negative TCF and by deletion of the TBE1 sequence. 15- or 109-bp sequences containing the TBE1 site, when cloned upstream of a minimal promoter, were shown to respond to beta-catenin induction. Gel shift assays confirmed that the TBE1 site is capable of forming complexes with TCF and beta-catenin. To determine whether expression of the endogenous PKD1 gene responds to beta-catenin, HT1080 cells were treated with LiCl, and HeLa cells were stably transfected with beta-catenin. In both cases, endogenous PKD1 mRNA levels were elevated in response to these treatments. Taken together, these studies define an active PKD1 promoter region and suggest that the PKD1 gene is a target of the beta-catenin/TCF pathway.
Collapse
Affiliation(s)
- Marianna Rodova
- Department of Biochemistry and Molecular Biology and the Kidney Institute, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | | | | | | |
Collapse
|
57
|
Newby LJ, Streets AJ, Zhao Y, Harris PC, Ward CJ, Ong ACM. Identification, characterization, and localization of a novel kidney polycystin-1-polycystin-2 complex. J Biol Chem 2002; 277:20763-73. [PMID: 11901144 DOI: 10.1074/jbc.m107788200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The functions of the two proteins defective in autosomal dominant polycystic kidney disease, polycystin-1 and polycystin-2, have not been fully clarified, but it has been hypothesized that they may heterodimerize to form a "polycystin complex" involved in cell adhesion. In this paper, we demonstrate for the first time the existence of a native polycystin complex in mouse kidney tubular cells transgenic for PKD1, non-transgenic kidney cells, and normal adult human kidney. Polycystin-1 is heavily N-glycosylated, and several glycosylated forms of polycystin-1 differing in their sensitivity to endoglycosidase H (Endo H) were found; in contrast, native polycystin-2 was fully Endo H-sensitive. Using highly specific antibodies to both proteins, we show that polycystin-2 associates selectively with two species of full-length polycystin-1, one Endo H-sensitive and the other Endo H-resistant; importantly, the latter could be further enriched in plasma membrane fractions and co-immunoprecipitated with polycystin-2. Finally, a subpopulation of this complex co-localized to the lateral cell borders of PKD1 transgenic kidney cells. These results demonstrate that polycystin-1 and polycystin-2 interact in vivo to form a stable heterodimeric complex and suggest that disruption of this complex is likely to be of primary relevance to the pathogenesis of cyst formation in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Linda J Newby
- Sheffield Kidney Institute, University Section of Medicine, Division of Clinical Sciences, University of Sheffield, Sheffield S5 7AU, United Kingdom
| | | | | | | | | | | |
Collapse
|
58
|
Abstract
Recent developments have helped elucidate the function of the autosomal dominant polycystic kidney disease proteins, polycystin-1 and polycystin-2, and have revealed the primary defect in autosomal recessive polycystic kidney disease, by positional cloning of the gene, PKHD1. Several studies demonstrating that polycystin-2 can act as a calcium-ion-permeable cation channel, and that polycystin-1 may be involved in regulating/localizing this channel, have provided compelling evidence of the function of these proteins. A role in regulating intracellular calcium levels seems likely, with the many cellular abnormalities associated with cystogenesis due to a disruption of calcium homeostasis. Improved mutation analysis in autosomal dominant polycystic kidney disease has led to the finding of genotype/phenotype correlations which could be related to possible cleavage of polycystin-1. A major recent breakthrough has revealed the primary defect in autosomal recessive polycystic kidney disease. Genetic analysis showed that the PCK rat model is orthologous to autosomal recessive polycystic kidney disease, and allowed the human gene, PKHD1, to be precisely localized and identified. PKHD1 is a large gene, encoding a protein, fibrocystin, of 4074 amino acids, which is predicted to have a large extracellular region, a single transmembrane domain and a short cytoplasmic tail. Fibrocystin may act as a receptor with critical roles in collecting-duct and biliary development.
Collapse
Affiliation(s)
- Peter C Harris
- Division of Nephrology, Mayo Clinic, 200 First Street SW, Rochester, Minnesota 55905, USA.
| |
Collapse
|
59
|
Delmas P, Nomura H, Li X, Lakkis M, Luo Y, Segal Y, Fernández-Fernández JM, Harris P, Frischauf AM, Brown DA, Zhou J. Constitutive activation of G-proteins by polycystin-1 is antagonized by polycystin-2. J Biol Chem 2002; 277:11276-83. [PMID: 11786542 DOI: 10.1074/jbc.m110483200] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycystin-1 (PC1), a 4,303-amino acid integral membrane protein of unknown function, interacts with polycystin-2 (PC2), a 968-amino acid alpha-type channel subunit. Mutations in their respective genes cause autosomal dominant polycystic kidney disease. Using a novel heterologous expression system and Ca(2+) and K(+) channels as functional biosensors, we found that full-length PC1 functioned as a constitutive activator of G(i/o)-type but not G(q)-type G-proteins and modulated the activity of Ca(2+) and K(+) channels via the release of Gbetagamma subunits. PC1 lacking the N-terminal 1811 residues replicated the effects of full-length PC1. These effects were independent of regulators of G-protein signaling proteins and were lost in PC1 mutants lacking a putative G-protein binding site. Co-expression with full-length PC2, but not a C-terminal truncation mutant, abrogated the effects of PC1. Our data provide the first experimental evidence that full-length PC1 acts as an untraditional G-protein-coupled receptor, activity of which is physically regulated by PC2. Thus, our study strongly suggests that mutations in PC1 or PC2 that distort the polycystin complex would initiate abnormal G-protein signaling in autosomal dominant polycystic kidney disease.
Collapse
Affiliation(s)
- Patrick Delmas
- Wellcome Laboratory for Molecular Pharmacology, Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Boletta A, Qian F, Onuchic LF, Bragonzi A, Cortese M, Deen PM, Courtoy PJ, Soria MR, Devuyst O, Monaco L, Germino GG. Biochemical characterization of bona fide polycystin-1 in vitro and in vivo. Am J Kidney Dis 2001; 38:1421-9. [PMID: 11728985 DOI: 10.1053/ajkd.2001.29282] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The most common form of autosomal dominant polycystic kidney disease (PKD) results from mutation of the PKD1 gene on chromosome 16p13.3. The gene encodes a 14-kb messenger RNA that is predicted to express a 462-kd membrane protein. The gene product, polycystin-1, has a large extracellular portion composed of a novel combination of protein-protein interacting domains and is postulated to be a plasma membrane receptor involved in cell-cell/matrix interactions. However, slow progress has been made in the characterization of polycystin-1 or the determination of its function. In fact, the protein is expressed at very low levels in tissues and cell lines and previous efforts directed at expression of recombinant protein had been largely unsuccessful. We have recently developed constructs of full-length human PKD1 complementary (cDNA) that can be expressed in both a stable and transient fashion in mammalian cells. We used these systems to characterize our antibodies and to track the protein in vivo. We report here the first biochemical characterization of recombinant polycystin-1 and show that the protein is a 520-kd glycosylated polypeptide with an unglycosylated core of 460 kd. Subcellular fractionation as well as biotinylation studies confirmed that the protein is plasma-membrane associated. Furthermore, we show that the recombinant protein localizes to cell-cell junctions in polarized madin darby canine kidney cells as revealed by indirect immunofluorescence. Our data represent the first characterization of polycystin-1 performed under highly controlled conditions.
Collapse
Affiliation(s)
- A Boletta
- Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Boulter C, Mulroy S, Webb S, Fleming S, Brindle K, Sandford R. Cardiovascular, skeletal, and renal defects in mice with a targeted disruption of the Pkd1 gene. Proc Natl Acad Sci U S A 2001; 98:12174-9. [PMID: 11593033 PMCID: PMC59787 DOI: 10.1073/pnas.211191098] [Citation(s) in RCA: 238] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is characterized by cyst formation in the kidney, liver, and pancreas and is associated often with cardiovascular abnormalities such as hypertension, mitral valve prolapse, and intracranial aneurysms. It is caused by mutations in PKD1 or PKD2, encoding polycystin-1 and -2, which together form a cell surface nonselective cation ion channel. Pkd2-/- mice have cysts in the kidney and pancreas and defects in cardiac septation, whereas Pkd1(del34) -/- and Pkd1(L) -/- mice have cysts but no cardiac abnormalities, although vascular fragility was reported in the latter. Here we describe mice carrying a targeted mutation in Pkd1 (Pkd1(del17-21betageo)), which defines its expression pattern by using a lacZ reporter gene and may identify novel functions for polycystin-1. Although Pkd1(del17-21betageo) +/- adult mice develop renal and hepatic cysts, Pkd1(del17-21betageo) -/- embryos die at embryonic days 13.5-14.5 from a primary cardiovascular defect that includes double outflow right ventricle, disorganized myocardium, and abnormal atrio-ventricular septation. Skeletal development is also severely compromised. These abnormalities correlate with the major sites of Pkd1 expression. During nephrogenesis, Pkd1 is expressed in maturing tubular epithelial cells from embryonic day 15.5. This expression coincides with the onset of cyst formation in Pkd1(del34) -/-, Pkd1(L) -/-, and Pkd2-/- mice, supporting the hypothesis that polycystin-1 and polycystin-2 interact in vivo and that their failure to do so leads to abnormalities in tubule morphology and function.
Collapse
Affiliation(s)
- C Boulter
- Department of Genetics, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | | | | | | | | | | |
Collapse
|
62
|
Abstract
An increased understanding of the molecular genetic and cellular pathophysiologic mechanisms responsible for the development of autosomal-dominant polycystic kidney disease (ADPKD), made possible by the advances in molecular biology and genetics of the last three decades, has laid the foundation for the development of effective therapies. As the concept that a polycystic kidney is a neoplasm in disguise is becoming increasingly accepted, the development of therapies for ADPKD may benefit greatly from the expanding body of information on cancer chemoprevention and chemosuppression. This review summarizes the observations that already have been made and discusses therapies for PKD that deserve investigation.
Collapse
Affiliation(s)
- Q Qian
- Mayo Clinic/Mayo Foundation, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
63
|
Abstract
Autosomal dominant polycystic kidney disease (ADPKD) is a common and systemic disease characterized by formation of focal cysts. Of the three potential causes of cysts, downstream obstruction, compositional changes in extracellular matrix, and proliferation of partially dedifferentiated cells, evidence strongly supports the latter as the primary abnormality. In the vast majority of cases, the disease is caused by mutations in PKD1 or PKD2, and appears to be recessive at the cellular level. Somatic second hits in the normal allele of cells containing the germ line mutation initiate or accelerate formation of cysts. The intrinsically high frequency of somatic second hits in epithelia appears to be sufficient to explain the frequent occurrence of somatic second hits in the disease-causing genes. PKD1 and PKD2 encode a putative adhesive/ion channel regulatory protein and an ion channel, respectively. The two proteins interact directly in vitro. Their cellular and subcellular localization suggest that they may also function independently in a common signaling pathway that may involve the membrane skeleton and that links cell-cell and cell-matrix adhesion to the development of cell polarity.
Collapse
Affiliation(s)
- M A Arnaout
- Renal Unit, Massachusetts General Hospital and Department of Medicine, Harvard Medical School, 149 13th Street, Charlestown, Massachusetts 02129, USA.
| |
Collapse
|
64
|
Abstract
An intriguing feature of autosomal dominant polycystic kidney disease (ADPKD) is the focal and sporadic nature of individual cyst formation. Typically, only a few renal cysts are detectable in an affected individual during the first two decades of life. By the fifth decade, however, hundreds to thousands of renal cysts can be found in most patients. Additionally, significant intra-familial variability of ADPKD has been well documented. Taken together, these findings suggest that factor(s) in addition to the germline mutation of a polycystic kidney disease gene might be required for individual cyst formation. Indeed, recent studies have provided compelling evidence in support of a "two-hit" model of cystogenesis in ADPKD. In this model, inactivation of both copies of a polycystic kidney disease gene by germline and somatic mutations within an epithelial cell provides growth advantages for it to proliferate clonally into a cyst. This article highlights key findings of these recent studies and discusses the controversies and implications of the "two-hit" model in ADPKD.
Collapse
Affiliation(s)
- Y Pei
- Divisions of Nephrology and Genomic Medicine Dept of Medicine, University Health Network, Toronto, Ontario, Canada M5G 2C4.
| |
Collapse
|
65
|
Rossetti S, Strmecki L, Gamble V, Burton S, Sneddon V, Peral B, Roy S, Bakkaloglu A, Komel R, Winearls CG, Harris PC. Mutation analysis of the entire PKD1 gene: genetic and diagnostic implications. Am J Hum Genet 2001; 68:46-63. [PMID: 11115377 PMCID: PMC1234934 DOI: 10.1086/316939] [Citation(s) in RCA: 153] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2000] [Accepted: 11/09/2000] [Indexed: 01/16/2023] Open
Abstract
Mutation screening of the major autosomal dominant polycystic kidney disease (ADPKD) locus, PKD1, has proved difficult because of the large transcript and complex reiterated gene region. We have developed methods, employing long polymerase chain reaction (PCR) and specific reverse transcription-PCR, to amplify all of the PKD1 coding area. The gene was screened for mutations in 131 unrelated patients with ADPKD, using the protein-truncation test and direct sequencing. Mutations were identified in 57 families, and, including 24 previously characterized changes from this cohort, a detection rate of 52.3% was achieved in 155 families. Mutations were found in all areas of the gene, from exons 1 to 46, with no clear hotspot identified. There was no significant difference in mutation frequency between the single-copy and duplicated areas, but mutations were more than twice as frequent in the 3' half of the gene, compared with the 5' half. The majority of changes were predicted to truncate the protein through nonsense mutations (32%), insertions or deletions (29.6%), or splicing changes (6.2%), although the figures were biased by the methods employed, and, in sequenced areas, approximately 50% of all mutations were missense or in-frame. Studies elsewhere have suggested that gene conversion may be a significant cause of mutation at PKD1, but only 3 of 69 different mutations matched PKD1-like HG sequence. A relatively high rate of new PKD1 mutation was calculated, 1.8x10-5 mutations per generation, consistent with the many different mutations identified (69 in 81 pedigrees) and suggesting significant selection against mutant alleles. The mutation detection rate, in this study, of >50% is comparable to that achieved for other large multiexon genes and shows the feasibility of genetic diagnosis in this disorder.
Collapse
Affiliation(s)
- Sandro Rossetti
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Lana Strmecki
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Vicki Gamble
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Sarah Burton
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Vicky Sneddon
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Belén Peral
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Sushmita Roy
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Aysin Bakkaloglu
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Radovan Komel
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Christopher G. Winearls
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| | - Peter C. Harris
- Division of Nephrology, Mayo Clinic, Rochester, MN; Institute of Molecular Medicine, John Radcliffe Hospital, and Oxford Renal Unit, The Oxford Radcliffe Hospital, Oxford, United Kingdom; Instituto de Investigaciones Biomedicas Alberto Sols, CSIC-UAM, Madrid; Institute of Child Health, London; Department of Pediatric Nephrology, Hacettepe University, Ankara, Turkey; and Medical Centre for Molecular Biology, Institute of Biochemistry, Ljubljana, Slovenia
| |
Collapse
|
66
|
Arnaout MA. The vasculopathy of autosomal dominant polycystic kidney disease: insights from animal models. Kidney Int 2000; 58:2599-610. [PMID: 11115102 DOI: 10.1046/j.1523-1755.2000.00446.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- M A Arnaout
- Renal Unit, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA.
| |
Collapse
|
67
|
Charron AJ, Bacallao RL, Wandinger-Ness A. ADPKD: a human disease altering Golgi function and basolateral exocytosis in renal epithelia. Traffic 2000; 1:675-86. [PMID: 11208155 DOI: 10.1034/j.1600-0854.2000.010811.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Epithelial cells explanted from autosomal dominant polycystic kidney disease (ADPKD) tissue exhibit impaired exocytosis, specifically between the Golgi and basolateral membrane (Charron A, Nakamura B, Bacallo R, Wandinger-Ness A. Compromised cytoarchitecture and polarized trafficking in autosomal dominant polycystic kidney disease cells. J Cell Biol 2000; 148: 111-124.). Here the defect is shown to result in the accumulation of the basolateral transport marker vesicular stomatitis virus (VSV) G protein in the Golgi complex. Golgi complex morphology is consequently altered in the disease cells, evident in the noticeable fenestration and dilation of the cisternae. Further detailed microscopic evaluation of normal kidney and ADPKD cells revealed that ineffective basolateral exocytosis correlated with modulations in the localization of select post-Golgi transport effectors. The cytosolic coat proteins p200/myosin II and caveolin exhibited enhanced association with the cytoskeleton or the Golgi of the disease cells, respectively. Most cytoskeletal components with known roles in vesicle translocation or formation were normally arrayed with the exception of Golgi beta-spectrin, which was less prevalent on vesicles. The rab8 GTPase, important for basolateral vesicle targeting, was redistributed from the perinuclear Golgi region to disperse vesicles in ADPKD cells. At the basolateral membrane of ADPKD cells, there was a notable loss of the exocyst components sec6/sec8 and an unidentified syntaxin. It is postulated that dysregulated basolateral transport effector function precipitates the disruption of basolateral exocytosis and dilation of the ADPKD cell Golgi as basolateral cargo accumulates within the cisternae.
Collapse
Affiliation(s)
- A J Charron
- Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM
| | | | | |
Collapse
|
68
|
Somlo S, Markowitz GS. The pathogenesis of autosomal dominant polycystic kidney disease: an update. Curr Opin Nephrol Hypertens 2000; 9:385-94. [PMID: 10926175 DOI: 10.1097/00041552-200007000-00010] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The identification of PKD1 and PKD2, the two major genes responsible for autosomal dominant polycystic kidney disease, are the seminal discoveries upon which much of the current investigation into the pathogenesis of this common heritable disease is based. A major mechanistic insight was achieved with the discovery that autosomal dominant polycystic kidney disease occurs by a two-hit mechanism requiring somatic inactivation of the normal allele in individual polarized epithelial cells. Most recent advances are focused on the function of the respective protein products, polycystin-1 and polycystin-2. Indirect evidence supports an interaction between polycystin-1 and -2, albeit it is unlikely that they work in concert in all tissues and at all times. They associate in yeast two hybrid and cotransfection assays and there is a striking similarity in the renal and pancreatic cystic phenotypes of Pkd2-/- and Pkd1del34/del34 mice. Also, the respective homologues of both proteins are expressed in the same sensory neuronal cells in the nematode and the human disease phenotypes remain completely overlapping with the major difference being in relative severity. Mounting evidence supports the hypothesis that polycystin-1 is a cell surface receptor. A close homologue in the sea urchin sperm mediates the acrosome reaction in response to contact with egg-jelly, the nematode homologue functions in mechano- or chemosensation, and the solution structure of the repeated extracellular polycystic kidney disease domains reveals a beta-sandwich fold commonly found in surface receptor molecules. Indirect evidence also supports the initial hypothesis that polycystin-2 is a calcium channel subunit. Several closely related homologues retain the calcium channel signature motif but differ in their predicted interaction domains, and one of these homologues has been shown to be a calcium regulated cation channel. Several important distinctions in polcystin-1 and -2 function have also been discovered. Polycystin-2 has a role in cardiac development that polcystin-1 does not. High level polycystin-2 expression in renal epithelial cells coincides with maturation and elongation of tubules and, unlike polycystin-1, persists into adulthood. In cells in tissue culture, polycystin-2 is expressed exclusively in the endoplasmic reticulum whilst the cellular expression of polycystin-1 remains unknown. Overall, the difficult task of understanding the autosomal dominant polycystic disease process is proceeding apace.
Collapse
Affiliation(s)
- S Somlo
- Department of Internal Medicine (Nephrology), Yale University School of Medicine, USA
| | | |
Collapse
|
69
|
Ong AC, Ward CJ, Butler RJ, Biddolph S, Bowker C, Torra R, Pei Y, Harris PC. Coordinate expression of the autosomal dominant polycystic kidney disease proteins, polycystin-2 and polycystin-1, in normal and cystic tissue. THE AMERICAN JOURNAL OF PATHOLOGY 1999; 154:1721-9. [PMID: 10362797 PMCID: PMC1866619 DOI: 10.1016/s0002-9440(10)65428-4] [Citation(s) in RCA: 141] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/02/1999] [Indexed: 11/21/2022]
Abstract
A second gene for autosomal dominant polycystic kidney disease (ADPKD), PKD2, has been recently identified. Using antisera raised to the human PKD2 protein, polycystin-2, we describe for the first time its distribution in human fetal tissues, as well as its expression in adult kidney and polycystic PKD2 tissues. Its expression pattern is correlated with that of the PKD1 protein, polycystin-1. In normal kidney, expression of polycystin-2 strikingly parallels that of polycystin-1, with prominent expression by maturing proximal and distal tubules during development, but with a more pronounced distal pattern in adult life. In nonrenal tissues expression of both polycystin molecules is identical and especially notable in the developing epithelial structures of the pancreas, liver, lung, bowel, brain, reproductive organs, placenta, and thymus. Of interest, nonepithelial cell types such as vascular smooth muscle, skeletal muscle, myocardial cells, and neurons also express both proteins. In PKD2 cystic kidney and liver, we find polycystin-2 expression in the majority of cysts, although a significant minority are negative, a pattern mirrored by the PKD1 protein. The continued expression of polycystin-2 in PKD2 cysts is similar to that seen by polycystin-1 in PKD1 cysts, but contrasts with the reported absence of polycystin-2 expression in the renal cysts of Pkd2+/- mice. These results suggest that if a two-hit mechanism is required for cyst formation in PKD2 there is a high rate of somatic missense mutation. The coordinate presence or loss of both polycystin molecules in the same cysts supports previous experimental evidence that heterotypic interactions may stabilize these proteins.
Collapse
Affiliation(s)
- A C Ong
- MRC Molecular Haematology Unit,* Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|