51
|
Gárate I, Garcia-Bueno B, Madrigal JLM, Caso JR, Alou L, Gomez-Lus ML, Micó JA, Leza JC. Stress-induced neuroinflammation: role of the Toll-like receptor-4 pathway. Biol Psychiatry 2013; 73:32-43. [PMID: 22906518 DOI: 10.1016/j.biopsych.2012.07.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Revised: 06/21/2012] [Accepted: 07/06/2012] [Indexed: 01/13/2023]
Abstract
BACKGROUND Stressful challenges are associated with variations in immune parameters, including increased innate immunity/inflammation. Among possible mechanisms through which brain monitors peripheral immune responses, toll-like receptors (TLRs) recently emerged as the first line of defense against invading microorganisms. Their expression is modulated in response to pathogens and other environmental stresses. METHODS Taking into account this background, the present study aimed to elucidate whether the toll-like receptor-4 (TLR-4) signaling pathway is activated after repeated restraint/acoustic stress exposure in mice prefrontal cortex (PFC), the potential regulatory mechanism implicated (i.e., bacterial translocation), and its role in conditions of stress-induced neuroinflammation, using a genetic strategy: C3H/HeJ mice with a defective response to lipopolysaccharide stimulation of TLR-4. RESULTS Stress exposure upregulates TLR-4 pathway in mice PFC. Stress-induced inflammatory nuclear factor κB activation, upregulation of the proinflammatory enzymes nitric oxide synthase and cyclooxygenase type 2, and cellular oxidative/nitrosative damage are reduced when the TLR-4 pathway is defective. Conversely, TLR-4 deficient mice presented higher levels of the anti-inflammatory nuclear factor peroxisome proliferator activated receptor-gamma after stress exposure than control mice. The series of experiments using antibiotic intestinal decontamination also suggest a role for bacterial translocation on TLR-4 activation in PFC after stress exposure. CONCLUSIONS Taken together, all the data presented here suggest a bifunctional role of TLR-4 signaling pathway after stress exposure by triggering neuroinflammation at PFC level and regulating gut barrier function/permeability. Furthermore, our data suggest a possible protective role of antibiotic decontamination in stress-related pathologies presenting increased intestinal permeability (leaky gut) such as depression, showing a potential therapeutic target that deserves further consideration.
Collapse
Affiliation(s)
- Iciar Gárate
- Department of Pharmacology, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
52
|
Asadi-Shahmirzadi A, Mozaffari S, Sanei Y, Baeeri M, Hajiaghaee R, Monsef-Esfahani HR, Abdollahi M. Benefit of Aloe vera and Matricaria recutita mixture in rat irritable bowel syndrome: Combination of antioxidant and spasmolytic effects. Chin J Integr Med 2012. [PMID: 23263994 DOI: 10.1007/s11655-012-1027-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE: To evaluate the beneficial effects of a mixture of Aloe vera (AV) and Matricaria recutita (German chamomile, GC) in an experimental model of irritable bowel syndrome (IBS). METHODS: IBS was induced by a 5-day restraint stress in rats including the groups of control (water), GC (300 mg/kg), loperamide (10 mg/kg), mixed AV and GC (50: 50 at doses of 150, 300 or 450 mg/kg assigned as Mix-150, Mix-300 and Mix-450, respectively) and the sham group which did not receive any restraint stress and was fed with saline. All medications were administered intragastrically by gavage for 7 days, 2 days as pre-treatment followed by 5 days during induction of IBS every day before restraining. RESULTS: The increased tumor necrosis factor alpha (TNF-α), myeloperoxidase (MPO) activity, and lipid peroxidation (LPO) in colonic cells in the control group were significantly decreased in the treatment groups. GC inhibited only small bowel transit while the AV/GC mixture delayed gastric emptying at the doses of 150 and 300 mg/kg. The AV/GC mixture also reduced colonic transit and small bowel transit at the dose of 150 mg/kg. CONCLUSIONS: The severity of stress-induced IBS was diminished by the AV/GC mixture at all doses used but not dose-dependently, via inhibiting colonic MPO activity and improving oxidative stress status. The effect of the mixture was more effective than GC alone. The present results support effectiveness of the AV and GC combination in IBS.
Collapse
Affiliation(s)
- Azar Asadi-Shahmirzadi
- Faculty of Pharmacy, Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | | | | | | | | | | | | |
Collapse
|
53
|
Skender B, Vaculova AH, Hofmanova J. Docosahexaenoic fatty acid (DHA) in the regulation of colon cell growth and cell death: a review. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2012; 156:186-99. [PMID: 23069883 DOI: 10.5507/bp.2012.093] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2012] [Accepted: 09/24/2012] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Experimental, epidemiological and clinical data substantiate the beneficial role of n-3 polyunsaturated fatty acids (PUFAs) in preventing inflammation and cancer of the colon. This review covers the unsaturated docosahexaenoic fatty acid (DHA), describes some of its important cellular and molecular mechanisms, its interaction with another dietary lipid, butyrate and with endogenous apoptotic regulators of the tumour necrosis factor (TNF) family. We also discuss the clinical impact of this knowledge and the use of these lipids in colon cancer prevention and treatment. RESULTS From the literature, DHA has been shown to suppress the growth, induce apoptosis in colon cancer cells in vitro and decrease the incidence and growth of experimental tumours in vivo. Based on these data and our own experimental results, we describe and discuss the possible mechanisms of DHA anticancer effects at various levels of cell organization. We show that DHA can sensitize colon cancer cells to other chemotherapeutic/chemopreventive agents and affect the action of physiological apoptotic regulators of the TNF family. CONCLUSION Use of n-3 PUFAs could be a relatively non-toxic form of supportive therapy for improving colon cancer treatment and slowing down or preventing its recurrence. However, it is necessary to use them with caution, based on solid scientific evidence of their mechanisms of action from the molecular to the cellular and organism levels.
Collapse
Affiliation(s)
- Belma Skender
- Department of Cytokinetics, Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i. Brno, Czech Republic
| | | | | |
Collapse
|
54
|
Mozaffari S, Esmaily H, Rahimi R, Baeeri M, Sanei Y, Asadi-Shahmirzadi A, Salehi-Surmaghi MH, Abdollahi M. Effects of Hypericum perforatum extract on rat irritable bowel syndrome. Pharmacogn Mag 2012. [PMID: 21969792 DOI: 10.4103/0973-1296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
CONTEXT In irritable bowel syndrome (IBS), disturbance of bowel motility is associated with infiltration of inflammatory mediators and cytokines into the intestine, such as neutrophils, myeloperoxidase (MPO), tumor necrosis factor alfa (TNF-α), and lipid peroxide. AIMS Regarding promising anti-inflammatory and anti-oxidative effects of Hypericum perforatum (HP) extract, besides its anti-depressant effect, this study was designed to evaluate the effects of HP in an experimental model of IBS. SETTINGS AND DESIGN IBS was induced by a 5-day restraint stress in rats. The HP extract was administered by gavage in doses of 150, 300, and 450 mg/kg for 26 days. Fluoxetine and loperamide were used as positive controls. Gastric emptying and small bowel and colon transit, besides the levels of TNF-α, MPO, lipid peroxidation, and antioxidant power, were determined in colon homogenates. STATISTICAL ANALYSIS USED Data were analyzed by one-way ANOVA followed by Tukey's post hoc test for multiple comparisons. RESULTS A significant reduction in small bowel and colonic transit (450 mg/kg), TNF-α, MPO, and lipid peroxidation and an increase in antioxidant power in all HP-treated groups (150, 300, and 450 mg/kg) were seen as compared with the control group. Gastric emptying did not alter significantly when compared with the control group. Treatment with loperamide (10 mg/kg) significantly inhibited gastric emptying and small bowel and colonic transit, while flouxetine (10 mg/kg) decreased gastric emptying, TNF-α, MPO, and lipid peroxidation and increased the antioxidant power of the samples in comparison with the control group. CONCLUSIONS HP diminished the recruitment of inflammatory cells and TNF-α following restraint stress not in a dose-dependent manner, possibly via inhibition of MPO activity and increasing colon antioxidant power, without any difference with fluoxetine. The HP extract inhibits small bowel and colonic transit acceleration like loperamide but has minimal effect on gastric emptying.
Collapse
Affiliation(s)
- Shilan Mozaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Jaudszus A, Jahreis G, Schlörmann W, Fischer J, Kramer R, Degen C, Rohrer C, Roth A, Gabriel H, Barz D, Gruen M. Vaccenic acid-mediated reduction in cytokine production is independent of c9,t11-CLA in human peripheral blood mononuclear cells. Biochim Biophys Acta Mol Cell Biol Lipids 2012; 1821:1316-22. [DOI: 10.1016/j.bbalip.2012.06.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 06/14/2012] [Accepted: 06/21/2012] [Indexed: 10/28/2022]
|
56
|
Zoppi S, Madrigal JLM, Pérez-Nievas BG, Marín-Jiménez I, Caso JR, Alou L, García-Bueno B, Colón A, Manzanares J, Gómez-Lus ML, Menchén L, Leza JC. Endogenous cannabinoid system regulates intestinal barrier function in vivo through cannabinoid type 1 receptor activation. Am J Physiol Gastrointest Liver Physiol 2012; 302:G565-71. [PMID: 22135307 DOI: 10.1152/ajpgi.00158.2011] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The deleterious effects of stress on the gastrointestinal tract seem to be mainly mediated by the induction of intestinal barrier dysfunction and subsequent subtle mucosal inflammation. Cannabinoid 1 receptor (CB1R) is expressed in the mammalian gut under physiological circumstances. The aim of this investigation is to study the possible role of CB1R in the maintenance of mucosal homeostasis after stress exposure. CB1R knockout mice (CB1R(-/-)) and their wild-type (WT) counterparts were exposed to immobilization and acoustic (IA) stress for 2 h per day during 4 consecutive days. Colonic protein expression of the inducible forms of the nitric oxide synthase and cyclooxygenase (NOS2 and COX2), IgA production, permeability to (51)Cr-EDTA, and bacterial translocation to mesenteric lymph nodes were evaluated. Stress exposure induced greater expression of proinflammatory enzymes NOS2 and COX2 in colonic mucosa of CB1R(-/-) mice when compared with WT animals. These changes were related with a greater degree of colonic barrier dysfunction in CB1R(-/-) animals determined by 1) a significantly lower IgA secretion, 2) higher paracellular permeability to (51)Cr-EDTA, and 3) higher bacterial translocation, both under basal conditions and after IA stress exposure. Pharmacological antagonism with rimonabant reproduced stress-induced increase of proinflammatory enzymes in the colon described in CB1R(-/-) mice. In conclusion, CB1R exerts a protective role in the colon in vivo through the regulation of intestinal secretion of IgA and paracellular permeability. Pharmacological modulation of cannabinoid system within the gastrointestinal tract might be therapeutically useful in conditions on which intestinal inflammation and barrier dysfunction takes place after exposure to stress.
Collapse
Affiliation(s)
- Silvia Zoppi
- Departamento de Farmacología, Facultad de Medicina, Universidad Complutense, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Poliska S, Penyige A, Lakatos PL, Papp M, Palatka K, Lakatos L, Molnar T, Nagy L. Association of peroxisome proliferator-activated receptor gamma polymorphisms with inflammatory bowel disease in a Hungarian cohort. Inflamm Bowel Dis 2012; 18:472-479. [PMID: 21710534 DOI: 10.1002/ibd.21798] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2011] [Accepted: 05/17/2011] [Indexed: 01/08/2023]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) shows increasing incidence in the last few years in Eastern Europe, including Hungary. Since genetic susceptibility of patients plays an important role in the development and pathogenesis of IBD, it is important to identify new susceptibility genes. Peroxisome proliferator-activated receptor gamma (PPARγ) is expressed in the colon and has protective effects against inflammatory processes. Our aim was to examine the association of four polymorphisms of PPARγ in a well-characterized Hungarian IBD cohort. METHODS In all, 575 Crohn's disease (CD), 103 ulcerative colitis (UC) patients, and 486 sex- and age-matched controls were examined. Four polymorphisms of PPARγ (rs10865710 [C-681G], rs2067819, rs3892175, and rs1801282 [Pro12Ala]) were genotyped by TaqMan genotyping assays. RESULTS The Pro12Ala polymorphism showed significant association with CD when the frequencies of the homozygous variants (Pro/Pro vs. Ala/Ala) were compared. The minor Ala/Ala genotype was significantly less frequent in CD patients compared to the controls (odds ratio [OR] = 0.33; 95% confidence interval [CI] = 012-0.94; P = 0.03), suggesting a potential protective effect of the Ala allele. The GAGG haplotype of PPARγ confers a protective effect in CD; however, it is not significant, but in UC it has a protective effect with a significant level (OR = 0.14; 95% CI: 0.05-0.42; P = 3.78 × 10(-5) ), while GAGC increases the risk of UC (OR = 6.70; 95% CI: 3.41-13.17; P = 3.85 × 10(-10) ). CONCLUSIONS In the present study we demonstrated a significant association between PPARγ polymorphisms and the development of CD and UC at single loci level and also in haplotype combinations.
Collapse
Affiliation(s)
- Szilard Poliska
- Department of Biochemistry and Molecular Biology, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Gárate I, García-Bueno B, Madrigal JLM, Bravo L, Berrocoso E, Caso JR, Micó JA, Leza JC. Origin and consequences of brain Toll-like receptor 4 pathway stimulation in an experimental model of depression. J Neuroinflammation 2011; 8:151. [PMID: 22053929 PMCID: PMC3219571 DOI: 10.1186/1742-2094-8-151] [Citation(s) in RCA: 132] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/03/2011] [Indexed: 12/18/2022] Open
Abstract
Background There is a pressing need to identify novel pathophysiological pathways relevant to depression that can help to reveal targets for the development of new medications. Toll-like receptor 4 (TLR-4) has a regulatory role in the brain's response to stress. Psychological stress may compromise the intestinal barrier, and increased gastrointestinal permeability with translocation of lipopolysaccharide (LPS) from Gram-negative bacteria may play a role in the pathophysiology of major depression. Methods Adult male Sprague-Dawley rats were subjected to chronic mild stress (CMS) or CMS+intestinal antibiotic decontamination (CMS+ATB) protocols. Levels of components of the TLR-4 signaling pathway, of LPS and of different inflammatory, oxidative/nitrosative and anti-inflammatory mediators were measured by RT-PCR, western blot and/or ELISA in brain prefrontal cortex. Behavioral despair was studied using Porsolt's test. Results CMS increased levels of TLR-4 and its co-receptor MD-2 in brain as well as LPS and LPS-binding protein in plasma. In addition, CMS also increased interleukin (IL)-1β, COX-2, PGE2 and lipid peroxidation levels and reduced levels of the anti-inflammatory prostaglandin 15d-PGJ2 in brain tissue. Intestinal decontamination reduced brain levels of the pro-inflammatory parameters and increased 15d-PGJ2, however this did not affect depressive-like behavior induced by CMS. Conclusions Our results suggest that LPS from bacterial translocation is responsible, at least in part, for the TLR-4 activation found in brain after CMS, which leads to release of inflammatory mediators in the CNS. The use of Gram-negative antibiotics offers a potential therapeutic approach for the adjuvant treatment of depression.
Collapse
Affiliation(s)
- Iciar Gárate
- Department of Pharmacology, Faculty of Medicine, Universidad Complutense, Madrid 28040, Spain
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Alanyl-glutamine restores maternal deprivation-induced TLR4 levels in a rat neonatal model. Clin Nutr 2011; 30:672-7. [DOI: 10.1016/j.clnu.2011.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 03/29/2011] [Accepted: 04/14/2011] [Indexed: 12/27/2022]
|
60
|
Lee H, Chen DL, Rothfuss JM, Welch MJ, Gropler RJ, Mach RH. Synthesis and evaluation of 18F-labeled PPARγ antagonists. Nucl Med Biol 2011; 39:77-87. [PMID: 21907585 DOI: 10.1016/j.nucmedbio.2011.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Revised: 07/05/2011] [Accepted: 07/07/2011] [Indexed: 11/28/2022]
Abstract
INTRODUCTION Peroxisome proliferator-activated receptor gamma (PPARγ) transcriptionally modulates fat metabolism and also plays a role in pathological conditions such as cancer, neurodegenerative disease and inflammation. PPARγ imaging agents are potential tools for investigating these diseases. METHODS Four analogs of GW9662, a PPARγ antagonist, with different fluorine-containing substituents at the para-position of the aniline ring were synthesized and evaluated using two different receptor binding assays for measuring PPARγ affinity. Micro-positron emission tomography (PET) imaging studies were performed in a transgenic mouse model having a heart-specific overexpression of PPARγ. RESULTS All four analogs were found to have binding affinities that were comparable to or better than the reference antagonist, GW9662, using a scintillation proximity assay (SPA). However, only the chloro-based analogs (compounds 3 and 4) had activity in a whole-cell assay measuring activation of the PPARγ/retinoid X receptor complex. The microPET imaging studies in an MHC-PPARγ transgenic mouse model showed high uptake and PPARγ-specific binding for the irreversible antagonist [(18)F]3, whereas the corresponding reversible methoxy analog ([(18)F]5) displayed only nonspecific uptake in heart. CONCLUSIONS The results of this preliminary study show that the irreversible antagonist [(18)F]3 may represent a novel strategy for imaging PPARγ in vivo with PET.
Collapse
Affiliation(s)
- Hsiaoju Lee
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
61
|
Surh YJ, Na HK, Park JM, Lee HN, Kim W, Yoon IS, Kim DD. 15-Deoxy-Δ¹²,¹⁴-prostaglandin J₂, an electrophilic lipid mediator of anti-inflammatory and pro-resolving signaling. Biochem Pharmacol 2011; 82:1335-51. [PMID: 21843512 DOI: 10.1016/j.bcp.2011.07.100] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 01/22/2023]
Abstract
15-deoxy-Δ(12,14)-prostagandin J(2) (15d-PGJ2) is produced in the inflamed cells and tissues as a consequence of upregulation of cyclooxygenase-2 (COX-2). 15d-PGJ2 is known to be the endogenous ligand of peroxisome proliferator-activated receptor gamma (PPARγ) with multiple physiological properties. Though one of the terminal products of the COX-2-catalyzed reactions, this cyclopentenone prostaglandin exerts potent anti-inflammatory actions, in part, by antagonizing the activities of pro-inflammatory transcription factors, such as NF-κB, STAT3, and AP-1, while stimulating the anti-inflammatory transcription factor Nrf2. These effects are not necessarily dependent on its activation of PPARγ, but often involves direct interaction with the above signaling molecules and their regulators. The locally produced 15d-PGJ2 is also involved in the resolution of inflammatory responses. Thus, 15d-PGJ2, especially formed during the late phase of inflammation, might inhibit cytokine secretion and other events by antigen-presenting cells like dendritic cells or macrophages. 15d-PGJ2 can also affect the priming and effector functions of T lymphocytes and induce their apoptotic cell death. These represent a negative feedback explaining how once-initiated immunologic and inflammatory responses are switched off and terminated. In this context, 15d-PGJ2 and its synthetic derivatives have therapeutic potential for the treatment of inflammatory disorders.
Collapse
Affiliation(s)
- Young-Joon Surh
- WCU Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul 151-742, South Korea.
| | | | | | | | | | | | | |
Collapse
|
62
|
Mozaffari S, Esmaily H, Rahimi R, Baeeri M, Sanei Y, Asadi-Shahmirzadi A, Salehi-Surmaghi MH, Abdollahi M. Effects of Hypericum perforatum extract on rat irritable bowel syndrome. Pharmacogn Mag 2011; 7:213-23. [PMID: 21969792 PMCID: PMC3173896 DOI: 10.4103/0973-1296.84235] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2010] [Revised: 03/16/2011] [Accepted: 08/25/2011] [Indexed: 12/13/2022] Open
Abstract
CONTEXT In irritable bowel syndrome (IBS), disturbance of bowel motility is associated with infiltration of inflammatory mediators and cytokines into the intestine, such as neutrophils, myeloperoxidase (MPO), tumor necrosis factor alfa (TNF-α), and lipid peroxide. AIMS Regarding promising anti-inflammatory and anti-oxidative effects of Hypericum perforatum (HP) extract, besides its anti-depressant effect, this study was designed to evaluate the effects of HP in an experimental model of IBS. SETTINGS AND DESIGN IBS was induced by a 5-day restraint stress in rats. The HP extract was administered by gavage in doses of 150, 300, and 450 mg/kg for 26 days. Fluoxetine and loperamide were used as positive controls. Gastric emptying and small bowel and colon transit, besides the levels of TNF-α, MPO, lipid peroxidation, and antioxidant power, were determined in colon homogenates. STATISTICAL ANALYSIS USED Data were analyzed by one-way ANOVA followed by Tukey's post hoc test for multiple comparisons. RESULTS A significant reduction in small bowel and colonic transit (450 mg/kg), TNF-α, MPO, and lipid peroxidation and an increase in antioxidant power in all HP-treated groups (150, 300, and 450 mg/kg) were seen as compared with the control group. Gastric emptying did not alter significantly when compared with the control group. Treatment with loperamide (10 mg/kg) significantly inhibited gastric emptying and small bowel and colonic transit, while flouxetine (10 mg/kg) decreased gastric emptying, TNF-α, MPO, and lipid peroxidation and increased the antioxidant power of the samples in comparison with the control group. CONCLUSIONS HP diminished the recruitment of inflammatory cells and TNF-α following restraint stress not in a dose-dependent manner, possibly via inhibition of MPO activity and increasing colon antioxidant power, without any difference with fluoxetine. The HP extract inhibits small bowel and colonic transit acceleration like loperamide but has minimal effect on gastric emptying.
Collapse
Affiliation(s)
- Shilan Mozaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hadi Esmaily
- Department of Clinical Pharmacy, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Roja Rahimi
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Baeeri
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Yara Sanei
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Azar Asadi-Shahmirzadi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad-Hossein Salehi-Surmaghi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdollahi
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
63
|
Márquez L, Pérez-Nievas BG, Gárate I, García-Bueno B, Madrigal JLM, Menchén L, Garrido G, Leza JC. Anti-inflammatory effects of Mangifera indica L. extract in a model of colitis. World J Gastroenterol 2010; 16:4922-31. [PMID: 20954278 PMCID: PMC2957600 DOI: 10.3748/wjg.v16.i39.4922] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of aqueous extract from Mangifera indica L. (MIE) on dextran sulfate sodium (DSS)-induced colitis in rats.
METHODS: MIE (150 mg/kg) was administered in two different protocols: (1) rectally, over 7 d at the same time as DSS administration; and (2) once daily over 14 d (by oral gavage, 7 d before starting DSS, and rectally for 7 d during DSS administration). General observations of clinical signs were performed. Anti-inflammatory activity of MIE was assessed by myeloperoxidase (MPO) activity. Colonic lipid peroxidation was determined by measuring the levels of thiobarbituric acid reactive substances (TBARS). Reduced glutathione (GSH) levels, expression of inflammatory related mediators [inducible isoforms of nitric oxide synthase (iNOS) and cyclooxygenase (COX)-2, respectively] and cytokines [tumor necrosis factor (TNF)-α and TNF receptors 1 and 2] in colonic tissue were also assessed. Interleukin (IL)-6 and TNF-α serum levels were also measured.
RESULTS: The results demonstrated that MIE has anti-inflammatory properties by improvement of clinical signs, reduction of ulceration and reduced MPO activity when administered before DSS. In addition, administration of MIE for 14 d resulted in an increase in GSH and reduction of TBARS levels and iNOS, COX-2, TNF-α and TNF R-2 expression in colonic tissue, and a decrease in IL-6 and TNF-α serum levels.
CONCLUSION: MIE has anti-inflammatory activity in a DSS-induced rat colitis model and preventive administration (prior to DSS) seems to be a more effective protocol.
Collapse
|
64
|
Pérez-Nievas BG, García-Bueno B, Madrigal JLM, Leza JC. Chronic immobilisation stress ameliorates clinical score and neuroinflammation in a MOG-induced EAE in Dark Agouti rats: mechanisms implicated. J Neuroinflammation 2010; 7:60. [PMID: 20929574 PMCID: PMC2958904 DOI: 10.1186/1742-2094-7-60] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 10/07/2010] [Indexed: 02/07/2023] Open
Abstract
Background Multiple sclerosis (MS) is the endpoint of a complex and still poorly understood process which results in inflammation, demyelination and axonal and neuronal degeneration. Since the first description of MS, psychological stress has been suggested to be one of the trigger factors in the onset and/or relapse of symptoms. However, data from animal models of MS, such as experimental autoimmune encephalomyelitis (EAE) are inconsistent and the effect of stress on EAE onset and severity depends on duration and time of application of the stress protocol and the underlying mechanisms. Methods Dark Agouti rats were inoculated with MOG/CFA to induce EAE, and an immobilisation stress protocol with two different durations (12 and 21 days, starting at the moment of MOG-inoculation) was applied in order to analyse the effect of stress on disease onset and neuroinflammation. Results Twelve days of stress exposure increased EAE clinical score in Dark Agouti rats. In addition, these animals presented higher levels of MMP-9 and proinflammatory PGE2 in spinal cord. In contrast, animals chronically exposed to stress (21 days) showed a significantly lower incidence of EAE clinical signs and reduced myelin loss, leukocyte infiltration and accumulation of inflammatory/oxidative mediators in spinal cord. Interestingly, chronically stressed animals showed a parallel increase in levels of the anti-inflammatory prostaglandin 15d-PGJ2, the main endogenous agonist of PPARγ. Conclusions Our results demonstrate that, depending on duration, stress exposure elicits opposite effects on PGE2/15d-PGJ2 ratios in spinal cord of EAE-induced Dark Agouti rats. Further studies are needed to elucidate if these changes in prostaglandin balance are sufficient to mediate the differences in clinical score and inflammation here reported, and to establish the potential utility of pharmacological intervention in MS directed toward anti-inflammatory pathways.
Collapse
Affiliation(s)
- Beatriz G Pérez-Nievas
- Department of Pharmacology, Faculty Medicine, University Complutense, Centro de Investigación Biomédica en red de Salud Mental (CIBERSA), Granada, Spain.
| | | | | | | |
Collapse
|
65
|
Vicario M, Guilarte M, Alonso C, Yang P, Martínez C, Ramos L, Lobo B, González A, Guilà M, Pigrau M, Saperas E, Azpiroz F, Santos J. Chronological assessment of mast cell-mediated gut dysfunction and mucosal inflammation in a rat model of chronic psychosocial stress. Brain Behav Immun 2010; 24:1166-75. [PMID: 20600818 DOI: 10.1016/j.bbi.2010.06.002] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2010] [Revised: 06/04/2010] [Accepted: 06/06/2010] [Indexed: 02/07/2023] Open
Abstract
Life stress and mucosal inflammation may influence symptom onset and severity in certain gastrointestinal disorders, particularly irritable bowel syndrome (IBS), in connection with dysregulated intestinal barrier. However, the mechanism responsible remains unknown. Crowding is a validated animal model reproducing naturalistic psychosocial stress, whose consequences on gut physiology remain unexplored. Our aims were to prove that crowding stress induces mucosal inflammation and intestinal dysfunction, to characterize dynamics in time, and to evaluate the implication of stress-induced mast cell activation on intestinal dysfunction. Wistar-Kyoto rats were submitted to 15 days of crowding stress (8 rats/cage) or sham-crowding (2 rats/cage). We measured spontaneous and corticotropin-releasing factor-mediated release of plasma corticosterone. Stress-induced intestinal chrono-pathobiology was determined by measuring intestinal inflammation, epithelial damage, mast cell activation and infiltration, and intestinal barrier function. Corticosterone release was higher in crowded rats throughout day 15. Stress-induced mild inflammation, manifested earlier in the ileum and the colon than in the jejunum. While mast cell counts remained mostly unchanged, piecemeal degranulation increased along time, as the mucosal content and luminal release of rat mast cell protease-II. Stress-induced mitochondrial injury and increased jejunal permeability, both events strongly correlated with mast cell activation at day 15. Taken together, we have provided evidences that long-term exposure to psychosocial stress promotes mucosal inflammation and mast cell-mediated barrier dysfunction in the rat bowel. The notable resemblance of these findings with those in some IBS patients, support the potential interest and translational validity of this experimental model for the research of stress-sensitive intestinal disorders, particularly IBS.
Collapse
Affiliation(s)
- María Vicario
- Digestive Diseases Research Unit, Lab Neuro-Immuno-Gastroenterology, Institut de Recerca Vall d'Hebron, CIBERehd, Department of Gastroenterology, Barcelona, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Snoek SA, Verstege MI, Boeckxstaens GE, van den Wijngaard RM, de Jonge WJ. The enteric nervous system as a regulator of intestinal epithelial barrier function in health and disease. Expert Rev Gastroenterol Hepatol 2010; 4:637-51. [PMID: 20932148 DOI: 10.1586/egh.10.51] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The intestinal epithelia proliferate and differentiate along the crypt villus axis to constitute a barrier cell layer separating some 10¹³ potentially harmful bacteria from a sterile mucosal compartment. Strict regulatory mechanisms are required to maintain a balance between the appropriate uptake of luminal food components and proteins, while constraining the exposure of the mucosal compartment to luminal antigens and microbes. The enteric nervous system is increasingly recognized as such a regulatory housekeeper of the epithelial barrier integrity, in addition to its ascribed immunomodulatory potential. Inflammation affects both epithelial integrity and barrier function and, in turn, loss of barrier function perpetuates inflammatory conditions. The observation that inflammatory conditions affect enteric neurons may add to the dysregulated barrier function in chronic disease. Here, we review the current understanding of the regulatory role of the nervous system in the maintenance of barrier function in healthy state, or during pathological conditions of, for instance, stress-induced colitis, surgical trauma or inflammation. We will discuss the clinical potential for advances in understanding the role of the enteric nervous system in this important phenomenon.
Collapse
Affiliation(s)
- Susanne A Snoek
- Tytgat Institute for Liver and Intestinal Research, Academic Medical Center, Amsterdam, The Netherlands
| | | | | | | | | |
Collapse
|
67
|
Pedersen G, Brynskov J. Topical rosiglitazone treatment improves ulcerative colitis by restoring peroxisome proliferator-activated receptor-gamma activity. Am J Gastroenterol 2010; 105:1595-603. [PMID: 20087330 DOI: 10.1038/ajg.2009.749] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Impaired epithelial expression of peroxisome proliferator-activated receptor-gamma (PPARgamma) has been described in animal colitis models and briefly in patients with ulcerative colitis, but the functional significance in humans is not well defined. We examined PPARgamma expression and functional activity in human colonic epithelium and explored the potential of topical treatment with rosiglitazone (a PPARgamma ligand) in patients with ulcerative colitis. METHODS Spontaneous and rosiglitazone-mediated PPARgamma and adipophillin expression (a gene transcriptionally activated by PPARgamma) were measured by reverse transcriptase PCR in colonic biopsies and isolated epithelial cells from patients with ulcerative colitis and controls. Fourteen patients with active distal ulcerative colitis were randomized to either rosiglitazone (4 mg) or mesalazine (1 g) enema treatment once daily for 14 days. RESULTS PPARgamma expression was fourfold reduced in epithelial cells from inflamed compared with uninflamed mucosa and controls. Adipophillin levels were decreased in parallel. Rosiglitazone induced a concentration-dependent increase in adipophillin levels and restored PPARgamma activity in epithelial cells from inflamed mucosa in vitro. Rosiglitazone enema treatment was well tolerated and reduced the Mayo ulcerative colitis score from 8.9 to 4.3 (P<0.01), similar to the effect of mesalazine. Rosiglitazone increased adipophillin levels in the epithelial cells of the patients, indicating PPARgamma activation in vivo. CONCLUSIONS Roziglitasone enemas improve impaired PPARgamma activity in inflamed colonic epithelium and have beneficial clinical effect in patients with active distal ulcerative colitis. These findings raise interest in further studies of PPARgamma ligands that exhibit their anti-inflammatory effect locally in the gut to avoid possible systemic side effects.
Collapse
Affiliation(s)
- Gitte Pedersen
- Department of Gastroenterology, 439, Hvidovre University Hospital , Kettegårds Alle 30, Hvidovre DK-2650, Denmark.
| | | |
Collapse
|
68
|
Abstract
BACKGROUND The ability to control uptake across the mucosa and protect from damage of harmful substances from the lumen is defined as intestinal barrier function. A disturbed barrier dysfunction has been described in many human diseases and animal models, for example, inflammatory bowel disease, irritable bowel syndrome, and intestinal hypersensitivity. In most diseases and models, alterations are seen both of the paracellular pathway, via the tight junctions, and of the transcellular routes, via different types of endocytosis. Recent studies of pathogenic mechanisms have demonstrated the important role of neuroimmune interaction with the epithelial cells in the regulation of barrier function. Neural impulses from extrinsic vagal and/or sympathetic efferent fibers or intrinsic enteric nerves influence mucosal barrier function via direct effects on epithelial cells or via interaction with immune cells. For example, by nerve-mediated activation by corticotropin-releasing hormone or cholinergic pathways, mucosal mast cells release a range of mediators with effects on transcellular, and/or paracellular permeability (for example, tryptase, TNF-alpha, nerve growth factor, and interleukins). PURPOSE In this review, we discuss current physiological and pathophysiological aspects of the intestinal barrier and, in particular, its regulation by neuroimmune factors.
Collapse
Affiliation(s)
- A V Keita
- Department of Clinical and Experimental Medicine, Division of Surgery and Clinical Oncology, Faculty of Health Science, University Hospital, Linköping, Sweden
| | | |
Collapse
|
69
|
Menchén L. [Cellular and molecular bases of intestinal barrier dysfunction induced by experimental stress]. GASTROENTEROLOGIA Y HEPATOLOGIA 2010; 32 Suppl 2:55-61. [PMID: 19900630 DOI: 10.1016/s0210-5705(09)72607-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
There is a widespread impression that stressful life situations influence the clinical course of a wide variety of gastrointestinal disorders, including inflammatory bowel disease. However, demonstrating a causal relationship is complex and the results obtained in clinical studies are contradictory. In the last few years, the use of experimental stress models in laboratory animals have provided solid evidence of the physiopathological effects of stress on the digestive tract as well as of the cellular and molecular mechanisms underlying the association between physical and/or psychological stress and gastrointestinal disorders. In inflammatory bowel disease, the marked intestinal barrier dysfunction, which is mainly related to the stress-induced increase in paracellular epithelial permeability, could be partially responsible for the reactivation and increase in the severity of inflammatory bowel disease observed in various experimental stress models.
Collapse
Affiliation(s)
- Luis Menchén
- Sección de Gastroenterología, Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Madrid, España.
| |
Collapse
|
70
|
Bach-Ngohou K, Mahé MM, Aubert P, Abdo H, Boni S, Bourreille A, Denis MG, Lardeux B, Neunlist M, Masson D. Enteric glia modulate epithelial cell proliferation and differentiation through 15-deoxy-12,14-prostaglandin J2. J Physiol 2010; 588:2533-44. [PMID: 20478974 DOI: 10.1113/jphysiol.2010.188409] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The enteric nervous system (ENS) and its major component, enteric glial cells (EGCs), have recently been identified as a major regulator of intestinal epithelial barrier functions. Indeed, EGCs inhibit intestinal epithelial cell (IEC) proliferation and increase barrier resistance and IEC adhesion via the release of EGC-derived soluble factors. Interestingly, EGC regulation of intestinal epithelial barrier functions is reminiscent of previously reported peroxisome proliferator-activated receptor gamma (PPARgamma)-dependent functional effects. In this context, the present study aimed at identifying whether EGC could synthesize and release the main PPARgamma ligand, 15-deoxy-(12,14)-prostaglandin J2 (15dPGJ2), and regulate IEC functions such as proliferation and differentiation via a PPARgamma dependent pathway. First, we demonstrated that the lipocalin but not the haematopoetic form for prostaglandin D synthase (PGDS), the enzyme responsible of 15dPGJ2 synthesis, was expressed in EGCs of the human submucosal plexus and of the subepithelium, as well as in rat primary culture of ENS and EGC lines. Next, 15dPGJ2 was identified in EGC supernatants of various EGC lines. 15dPGJ2 reproduced EGC inhibitory effects upon IEC proliferation, and inhibition of lipocalin PGDS expression by shRNA abrogated these effects. Furthermore, EGCs induced nuclear translocation of PPARgamma in IEC, and both EGC and 15dPGJ2 effects upon IEC proliferation were prevented by the PPARgamma antagonist GW9662. Finally, EGC induced differentiation-related gene expression in IEC through a PPARgamma-dependent pathway. Our results identified 15dPGJ2 as a novel glial-derived mediator involved in the control of IEC proliferation/differentiation through activation of PPARgamma. They also suggest that alterations of glial PGDS expression may modify intestinal epithelial barrier functions and be involved in the development of pathologies such as cancer or inflammatory bowel diseases.
Collapse
Affiliation(s)
- Kalyane Bach-Ngohou
- INSERM U913 and Institut des Maladies de l'Appareil Digestif, 1, place Alexis Ricordeau, 44093 Nantes Cedex 01, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Ogasawara N, Kojima T, Go M, Ohkuni T, Koizumi JI, Kamekura R, Masaki T, Murata M, Tanaka S, Fuchimoto J, Himi T, Sawada N. PPARgamma agonists upregulate the barrier function of tight junctions via a PKC pathway in human nasal epithelial cells. Pharmacol Res 2010; 61:489-98. [PMID: 20227502 DOI: 10.1016/j.phrs.2010.03.002] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2010] [Revised: 02/19/2010] [Accepted: 03/06/2010] [Indexed: 12/13/2022]
Abstract
Peroxisome proliferator activated (PPAR)gamma plays a critical role in the control of not only adipocyte differentiation, lipid metabolism and immunity but also the barrier functions of epithelial and endothelial cells. In the present study, to investigate effects of PPAR gamma agonists on the tight junctional barrier of human nasal epithelial cells (HNECs), hTERT-transfected HNECs, which highly express both PPAR gamma and tight junction proteins, were treated with the PPAR gamma agonists rosiglitazone and troglitazone. Treatment with the PPAR gamma agonists enhanced the barrier function of hTERT-transfected HNECs together with the upregulation of tight junction molecules claudin-1 and -4, occludin, and tricellulin at the transcriptional level. A significant increase of tight junction strands was also observed after treatment with rosiglitazone. Treatment with PPAR gamma agonists induced the activity of phospho-PKC in hTERT-transfected HNECs. The upregulation of the tight junction molecules in hTERT-transfected HNECs by rosiglitazone was inhibited by not only PPAR gamma antagonists GW9662 and T0070907, but also the panPKC inhibitor GF109203X. These findings suggest that PPAR gamma agonists upregulate the barrier function of tight junctions of human nasal epithelial cells via a PKC signaling pathway and could be novel drugs for protection against inhaled substances and pathogens in the airway epithelium of human nasal mucosa.
Collapse
Affiliation(s)
- Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Goodhand JR, Wahed M, Rampton DS. Management of stress in inflammatory bowel disease: a therapeutic option? Expert Rev Gastroenterol Hepatol 2009; 3:661-79. [PMID: 19929586 DOI: 10.1586/egh.09.55] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
There is increasing evidence that psychological stress and associated mood disorders are linked with, and can adversely affect the course of, inflammatory bowel disease (IBD). Unfortunately, owing to methodological difficulties inherent in undertaking appropriately targeted and blinded trials, there are limited high-quality data regarding the effects on IBD of interventions aimed to ameliorate stress and mood disorders. Nevertheless, patients want psychological intervention as well as conventional medical strategies. Emerging trial evidence supports the suggestion that psychologically orientated therapy may ameliorate IBD-associated mood disorders, but there are no strong data as of yet to indicate that stress management has a beneficial effect on the activity or course of IBD. As yet, which, when and how interventions targeted at psychological stress and mood disturbances should be offered to individual patients with IBD is not clear.
Collapse
Affiliation(s)
- James R Goodhand
- Centre for Gastroenterology, Institute of Cell and Molecular Science, Barts and the London School of Medicine and Dentistry, 4 Newark Street, London, E1 2AT, UK.
| | | | | |
Collapse
|
73
|
Analyses of human colonic mucus obtained by an in vivo sampling technique. Dig Liver Dis 2009; 41:559-64. [PMID: 19213618 DOI: 10.1016/j.dld.2008.12.100] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Revised: 11/19/2008] [Accepted: 12/04/2008] [Indexed: 12/11/2022]
Abstract
BACKGROUND The mucus layer is an important dynamic component of the epithelial barrier. It contains mucin glycoproteins and other compounds secreted by the intestinal epithelium, such as secretory IgA. However, a standardized in vivo sampling technique of mucus in humans is not yet available. AIM To assess the validity and feasibility of mucin and protein determinations in human colonic mucus collected under physiological conditions. SUBJECTS AND METHODS Triplicate colonic mucus samples were collected in 11 healthy volunteers using cytology brushes during sigmoidoscopy. As an indication of the quantity of collected mucus, total protein and mucin concentrations were determined by measuring oligosaccharide equivalents and monosaccharides. Also secretory IgA and sialic acid concentrations were determined and proteomic analysis was performed using surface enhanced laser desorption/ionization-time of flight-mass spectrometry. RESULTS Mean values of secretory IgA and sialic acid corrected for the amount of mucus ranged from 0.16 to 1.81 g secretory IgA/mmol oligosaccharide equivalents and from 12.6 to 48.6g sialic acid/mmol oligosaccharide equivalents. Proteomic analysis of mucus is feasible and cluster analysis showed subject specific profiles. CONCLUSION Using cytology brushes, human colonic mucus can be sampled and under physiological conditions. These samples could give information on the composition and quality of the mucus layer.
Collapse
|
74
|
Ogino S, Shima K, Baba Y, Nosho K, Irahara N, Kure S, Chen L, Toyoda S, Kirkner GJ, Wang YL, Giovannucci EL, Fuchs CS. Colorectal cancer expression of peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is associated with good prognosis. Gastroenterology 2009; 136:1242-50. [PMID: 19186181 PMCID: PMC2663601 DOI: 10.1053/j.gastro.2008.12.048] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 12/03/2008] [Accepted: 12/18/2008] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated receptor gamma (PPARG, PPARgamma) is a nuclear receptor that regulates expression of mediators of lipid metabolism and the inflammatory response. There is controversy over the pro-oncogenic or antioncogenic effects of PPARG, and little is known about its prognostic significance in colon cancer. METHODS Among 470 patients with colorectal cancer (stages I-IV) identified in 2 independent prospective cohorts, PPARG expression was detected in 102 tumors (22%) by immunohistochemistry. Cox proportional hazards models were used to compute hazard ratios (HRs) of colorectal cancer-specific and overall mortalities, adjusted for patient characteristics and molecular features including cyclooxygenase 2, fatty acid synthase, KRAS, BRAF, PIK3CA, p53, p21, beta-catenin, LINE-1 hypomethylation, microsatellite instability (MSI), and the CpG island methylation phenotype (CIMP). RESULTS Compared with patients with PPARG-negative tumors, patients with PPARG-positive tumors had significantly lower overall mortality, determined by Kaplan-Meier analysis (P=.0047), univariate Cox regression (HR, 0.55; 95% confidence interval [CI], 0.37-0.84; P=.0053), and multivariate analysis (adjusted HR, 0.43; 95% CI, 0.27-0.69; P=.0004). Patients with PPARG-positive tumors experienced lower colorectal cancer-specific mortality (adjusted HR, 0.44; 95% CI, 0.25-0.79; P=.0054). The relationship between PPARG and lower mortality did not appear to be significantly modified by MSI, CIMP, LINE-1, or the other clinical and molecular variables examined (all P(interaction)>.05). CONCLUSIONS Tumor expression of PPARG is independently associated with longer survival of patients. PPARG expression appears to mark an indolent subset of colorectal cancers.
Collapse
Affiliation(s)
- Shuji Ogino
- Department of Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, and Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Baregamian N, Mourot JM, Ballard AR, Evers BM, Chung DH. PPAR-gamma agonist protects against intestinal injury during necrotizing enterocolitis. Biochem Biophys Res Commun 2009; 379:423-7. [PMID: 19114032 PMCID: PMC2652838 DOI: 10.1016/j.bbrc.2008.11.155] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2008] [Accepted: 11/25/2008] [Indexed: 12/11/2022]
Abstract
Necrotizing enterocolitis (NEC) remains a lethal condition for many premature infants. Peroxisome proliferator-activated receptor-gamma (PPAR-gamma), a member of the nuclear hormone receptor family, has been shown to play a protective role in cellular inflammatory responses; however, its role in NEC is not clearly defined. We sought to examine the expression of PPAR-gamma in the intestine using an ischemia-reperfusion (I/R) model of NEC, and to assess whether PPAR-gamma agonist treatment would ameliorate I/R-induced gut injury. Swiss-Webster mice were randomized to receive sham (control) or I/R injury to the gut induced by transient occlusion of superior mesenteric artery for 45 min with variable periods of reperfusion. I/R injury resulted in early induction of PPAR-gamma expression and activation of NF-kappaB in small intestine. Pretreatment with PPAR-gamma agonist, 15d-PGJ(2), attenuated intestinal NF-kappaB response and I/R-induced gut injury. Activation of PPAR-gamma demonstrated a protective effect on small bowel during I/R-induced gut injury.
Collapse
Affiliation(s)
- Naira Baregamian
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Joshua M. Mourot
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Amie R. Ballard
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
| | - B. Mark Evers
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555
| | - Dai H. Chung
- Department of Surgery, The University of Texas Medical Branch, Galveston, Texas 77555
- Sealy Center for Cancer Cell Biology, The University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
76
|
McColl BW, Allan SM, Rothwell NJ. Systemic infection, inflammation and acute ischemic stroke. Neuroscience 2009; 158:1049-61. [PMID: 18789376 DOI: 10.1016/j.neuroscience.2008.08.019] [Citation(s) in RCA: 249] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2008] [Revised: 08/08/2008] [Accepted: 08/11/2008] [Indexed: 12/16/2022]
Abstract
Extensive evidence implicates inflammation in multiple phases of stroke etiology and pathology. In particular, there is growing awareness that inflammatory events outside the brain have an important impact on stroke susceptibility and outcome. Numerous conditions, including infection and chronic non-infectious diseases, that are established risk factors for stroke are associated with an elevated systemic inflammatory profile. Recent clinical and pre-clinical studies support the concept that the systemic inflammatory status prior to and at the time of stroke is a key determinant of acute outcome and long-term prognosis. Here, we provide an overview of the impact of systemic inflammation on stroke susceptibility and outcome. We discuss potential mechanisms underlying the impact on ischemic brain injury and highlight the implications for stroke prevention, therapy and modeling.
Collapse
Affiliation(s)
- B W McColl
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Manchester M13 9PT, UK.
| | | | | |
Collapse
|
77
|
Caso JR, Hurtado O, Pereira MP, García-Bueno B, Menchén L, Alou L, Gómez-Lus ML, Moro MA, Lizasoain I, Leza JC. Colonic bacterial translocation as a possible factor in stress-worsening experimental stroke outcome. Am J Physiol Regul Integr Comp Physiol 2009; 296:R979-85. [PMID: 19193944 DOI: 10.1152/ajpregu.90825.2008] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Stress is known to be one of the risk factors of stroke, but only a few experimental studies have examined the possible mechanisms by which prior stress may affect stroke outcome. In stroke patients, infections impede neurological recovery and increase morbidity as well as mortality. We previously reported that stress induces a bacterial translocation and that prior immobilization stress worsens experimental stroke outcome through mechanisms that involve inflammatory mediators such as release of proinflammatory cytokines and enzyme activation. We now investigate whether bacterial translocation from the intestinal flora of rats with stress before experimental ischemia is involved in stroke outcome. We used an experimental paradigm consisting of exposure of Fischer rats to repeated immobilization sessions before permanent middle cerebral artery occlusion (MCAO). The presence of bacteria and the levels and expression of different mediators involved in the bacterial translocation were analyzed. Our results indicate that stress before stroke is related to the presence of bacteria in different organs (mesenteric nodes, spleen, liver, and lung) after MCAO and increases inflammatory colonic parameters (such as cyclooxygenase-2, inducible nitric oxide synthase, and myeloperoxidase), but decreases colonic immunoglobulin A, and these results are correlated with colonic inflammation and bacterial translocation. Understanding the implication of bacterial translocation during stress-induced stroke worsening is of great potential clinical relevance, given the high incidence of infections after severe stroke and their main role in mortality and morbidity in stroke patients.
Collapse
Affiliation(s)
- Javier R Caso
- Department of Pharmacology, Univesity Complutense, 28040 Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Michalik L, Wahli W. PPARs Mediate Lipid Signaling in Inflammation and Cancer. PPAR Res 2008; 2008:134059. [PMID: 19125181 PMCID: PMC2606065 DOI: 10.1155/2008/134059] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2008] [Accepted: 09/17/2008] [Indexed: 02/06/2023] Open
Abstract
Lipid mediators can trigger physiological responses by activating nuclear hormone receptors, such as the peroxisome proliferator-activated receptors (PPARs). PPARs, in turn, control the expression of networks of genes encoding proteins involved in all aspects of lipid metabolism. In addition, PPARs are tumor growth modifiers, via the regulation of cancer cell apoptosis, proliferation, and differentiation, and through their action on the tumor cell environment, namely, angiogenesis, inflammation, and immune cell functions. Epidemiological studies have established that tumor progression may be exacerbated by chronic inflammation. Here, we describe the production of the lipids that act as activators of PPARs, and we review the roles of these receptors in inflammation and cancer. Finally, we consider emerging strategies for therapeutic intervention.
Collapse
Affiliation(s)
- Liliane Michalik
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Walter Wahli
- Center for Integrative Genomics, National Research Center Frontiers in Genetics, University of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
79
|
Pérez-Cano FJ, Ramírez-Santana C, Molero-Luís M, Castell M, Rivero M, Castellote C, Franch À. Mucosal IgA increase in rats by continuous CLA feeding during suckling and early infancy. J Lipid Res 2008; 50:467-476. [PMID: 18824724 DOI: 10.1194/jlr.m800356-jlr200] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The aim of this work was to establish the effect of the cis9,trans11 conjugated linoleic acid (CLA) isomer on mucosal immunity during early life in rats, a period when mucosal immunoglobulin production is poorly developed, as is also the case in humans. CLA supplementation was performed during three life periods: gestation, suckling, and early infancy. The immune status of supplemented animals was evaluated at two time points: at the end of the suckling period (21-day-old rats) and 1 week after weaning (28-day-old rats). Secretory IgA was quantified in intestinal washes from 28-day-old rats by ELISA technique. IgA, TGFbeta, and PPARgamma mRNA expression was measured in small intestine and colon by real time PCR, using Taqman specific probes and primers. IgA mucosal production was enhanced in animals supplemented with CLA during suckling and early infancy: in 28-day-old rats, IgA mRNA expression was increased in small intestine and colon by approximately 6- and 4-fold, respectively, and intestinal IgA protein by approximately 2-fold. TGFbeta gene expression was independent of age and type of tissue considered, and was not modified by dietary CLA. Gene expression of PPARgamma, a possible mediator of CLA's effects was also upregulated in animals receiving CLA during early life. In conclusion, dietary supplementation with CLA during suckling and extended to early infancy enhances development of the intestinal immune response in rats.
Collapse
Affiliation(s)
- Francisco J Pérez-Cano
- F. J. Pérez-Cano and C. Ramírez-Santana contributed equally to this work; Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain.
| | - Carolina Ramírez-Santana
- F. J. Pérez-Cano and C. Ramírez-Santana contributed equally to this work; Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Marta Molero-Luís
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Margarida Castell
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Montserrat Rivero
- Ordesa Group, Research Department, Scientific Park of Barcelona, Barcelona, Spain CIBER Epidemiología y Salud Pública (CIBERESP), Spain
| | - Cristina Castellote
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| | - Àngels Franch
- Department of Physiology, Faculty of Pharmacy, University of Barcelona, Barcelona, Spain
| |
Collapse
|
80
|
Melgar S, Engström K, Jägervall A, Martinez V. Psychological stress reactivates dextran sulfate sodium-induced chronic colitis in mice. Stress 2008; 11:348-62. [PMID: 18666024 DOI: 10.1080/10253890701820166] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition with alternating active and quiescent phases of inflammation. Stress has been suggested as a factor triggering a relapse of IBD. We investigated the role of repetitive psychological stress [water avoidance stress (WAS)] in reactivating colonic inflammation in a murine model of dextran sulfate sodium (DSS)-induced chronic colitis. Colitis was induced in C57BL/6 female mice by exposure to 3% DSS (5 days). During chronic inflammation(day 34), mice underwent repetitive WAS (1 h/day/7 days) and were given a sub-threshold concentration of DSS (1%, 5 days)or normal water to drink. At euthanasia (day 40), inflammatory parameters were assessed (colon inflammatory score, levels of inflammatory markers and histology). Mice with chronic colitis exposed to WAS had higher macroscopic and microscopic colonic inflammatory scores and levels of inflammatory markers (mainly IL-1beta, IL12p40 and CCL5) than non-stressed mice. Inflammatory responses were further enhanced by the presence of a sub-threshold concentration of DSS (1%). In mice without chronic inflammation, neither WAS nor 1% DSS, individually or in combination, elicited any inflammation. Hence stress, per se, reactivates a quiescent chronic inflammation, but does not initiate inflammation in healthy mice. Stress should be regarded as an environmental factor triggering IBD relapses in humans.
Collapse
Affiliation(s)
- S Melgar
- Department of Integrative Pharmacology, AstraZeneca R&D Mölndal, Mölndal, Sweden
| | | | | | | |
Collapse
|
81
|
Caso JR, Pradillo JM, Hurtado O, Leza JC, Moro MA, Lizasoain I. Toll-like receptor 4 is involved in subacute stress-induced neuroinflammation and in the worsening of experimental stroke. Stroke 2008; 39:1314-20. [PMID: 18309167 DOI: 10.1161/strokeaha.107.498212] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Psychological stress causes an inflammatory response in the brain and is able to exacerbate brain damage caused by experimental stroke. We previously reported that subacute immobilization stress in mice worsens stroke outcome through mechanisms that involve inflammatory mechanisms, such as accumulation of oxidative/nitrosative mediators and expression of inducible nitric oxide synthase and cyclooxygenase-2 in the brain. Some of these inflammatory mediators could be regulated by innate immunity, the activation of which takes place in the brain and produces an inflammatory response mediated by toll-like receptors (TLRs). Recently, we described the implications of TLR4 in ischemic injury, but the role of TLR4 in stress has not yet been examined. We therefore investigated whether inflammation produced by immobilization stress differs in mice that lack a functional TLR4 signaling pathway. METHODS We used an experimental paradigm consisting of the exposure of mice to repeated immobilization sessions (1 hour daily for 7 days) before permanent middle cerebral artery occlusion. RESULTS We found that TLR4-deficient mice subjected to subacute stress had a better behavioral condition compared with normal mice (C3H/HeN) and that this effect was associated with a minor inflammatory response (cyclooxygenase-2 and inducible nitric oxide synthase expression) and lipid peroxidation (malondialdehyde levels) in brain tissue. Furthermore, previous exposure to stress was followed by a smaller infarct volume after permanent middle cerebral artery occlusion in TLR4-deficient mice than in mice that express TLR4 normally. CONCLUSIONS Our results indicate that TLR4 is involved in the inflammatory response after subacute stress and its exacerbating effect on stroke. These data implicate the effects of innate immunity on inflammation and damage in the brain after stroke.
Collapse
Affiliation(s)
- Javier R Caso
- Facultad de Medicina, Universidad Complutense Madrid, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
82
|
Fiasse R, Dewit O. Novel therapies based on enhancement of gut innate immunity in inflammatory bowel disease. Expert Opin Ther Pat 2007. [DOI: 10.1517/13543776.17.12.1423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
83
|
|
84
|
Richard CL, Lowthers EL, Blay J. 15-Deoxy-delta(12,14)-prostaglandin J(2) down-regulates CXCR4 on carcinoma cells through PPARgamma- and NFkappaB-mediated pathways. Exp Cell Res 2007; 313:3446-58. [PMID: 17707368 DOI: 10.1016/j.yexcr.2007.06.027] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2007] [Revised: 06/28/2007] [Accepted: 06/28/2007] [Indexed: 12/17/2022]
Abstract
The chemokine receptor CXCR4 plays a key role in the metastasis of colorectal cancer and its growth at metastatic sites. Here, we have investigated the mechanisms by which CXCR4 on cancer cells might be regulated by eicosanoids present within the colorectal tumor microenvironment. We show that prostaglandins PGE(2), PGA(2), PGD(2), PGJ(2) and 15dPGJ(2) each down-regulates CXCR4 receptor expression on human colorectal carcinoma cells to differing degrees. The most potent of these were PGD(2) and its metabolites PGJ(2) and 15dPGJ(2). Down-regulation was most rapid with the end-product 15dPGJ(2) and was accompanied by a marked reduction in CXCR4 mRNA. 15dPGJ(2) is known to be a ligand for the nuclear receptor PPARgamma. Down-regulation of CXCR4 was also observed with the PPARgamma agonist rosiglitazone, while 15dPGJ(2)-induced CXCR4 down-regulation was substantially diminished by the PPARgamma antagonists GW9662 and T0070907. These data support the involvement of PPARgamma. However, the 15dPGJ(2) analogue CAY10410, which can act on PPARgamma but which lacks the intrinsic cyclopentenone structure found in 15dPGJ(2), down-regulated CXCR4 substantially less potently than 15dPGJ(2). The cyclopentenone grouping is known to inhibit the activity of NFkappaB. Consistent with an additional role for NFkappaB, we found that the cyclopentenone prostaglandin PGA(2) and cyclopentenone itself could also down-regulate CXCR4. Immunolocalization studies showed that the cellular context was sufficient to trigger a focal nuclear pattern of NFkappaB p50 and that 15dPGJ(2) interfered with this p50 nuclear localization. These data suggest that 15dPGJ(2) can down-regulate CXCR4 on cancer cells through both PPARgamma and NFkappaB. 15dPGJ(2), present within the tumor microenvironment, may act to down-regulate CXCR4 and impact upon the overall process of tumor expansion.
Collapse
Affiliation(s)
- Cynthia Lee Richard
- Department of Pharmacology, Faculty of Medicine, Sir Charles Tupper Building, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|