51
|
Zhao Y, Hu ZY, Lou M, Jiang FW, Huang YF, Chen MS, Wang JX, Liu S, Shi YS, Zhu HM, Li JL. AQP1 Deficiency Drives Phthalate-Induced Epithelial Barrier Disruption through Intestinal Inflammation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15334-15344. [PMID: 38916549 DOI: 10.1021/acs.jafc.4c03764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Di-2-ethylhexyl phthalate (DEHP) is frequently used as a plasticizer to enhance the plasticity and durability of agricultural products, which pose adverse effects to human health and the environment. Aquaporin 1 (AQP1) is a main water transport channel protein and is involved in the maintenance of intestinal integrity. However, the impact of DEHP exposure on gut health and its potential mechanisms remain elusive. Here, we determined that DEHP exposure induced a compromised duodenum structure, which was concomitant with mitochondrial structural injury of epithelial cells. Importantly, DEHP exposure caused duodenum inflammatory epithelial cell damage and strong inflammatory response accompanied by activating the TLR4/MyD88/NF-κB signaling pathway. Mechanistically, DEHP exposure directly inhibits the expression of AQP1 and thus leads to an inflammatory response, ultimately disrupting duodenum integrity and barrier function. Collectively, our findings uncover the role of AQP1 in phthalate-induced intestinal disorders, and AQP1 could be a promising therapeutic approach for treating patients with intestinal disorders or inflammatory diseases.
Collapse
Affiliation(s)
- Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Zi-Yan Hu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming Lou
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Fu-Wei Jiang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yi-Feng Huang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Ming-Shan Chen
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jia-Xin Wang
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Shuo Liu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Hong-Mei Zhu
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
- Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin 150030, P.R. China
- Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin 150030, P.R. China
| |
Collapse
|
52
|
Bu C, Hu M, Su Y, Yuan F, Zhang Y, Xia J, Jia Z, Zhang L. Cell-permeable JNK-inhibitory peptide regulates intestinal barrier function and inflammation to ameliorate necrotizing enterocolitis. J Cell Mol Med 2024; 28:e18534. [PMID: 39031467 PMCID: PMC11258882 DOI: 10.1111/jcmm.18534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 05/06/2024] [Accepted: 07/05/2024] [Indexed: 07/22/2024] Open
Abstract
Intestinal dysbiosis is believed to play a role in the development of necrotizing enterocolitis (NEC). The efficacy of JNK-inhibitory peptide (CPJIP) in treating NEC was assessed. Treatment with CPJIP led to a notable reduction in p-JNK expression in IEC-6 cells and NEC mice. Following LPS stimulation, the expression of RNA and protein of claudin-1, claudin-3, claudin-4 and occludin was significantly decreased, with this decrease being reversed by CPJIP administration, except for claudin-3, which remained consistent in NEC mice. Moreover, the expression levels of the inflammatory factors TNF-α, IL-1β and IL-6 were markedly elevated, a phenomenon that was effectively mitigated by the addition of CPJIP in both IEC-6 cells and NEC mice. CPJIP administration resulted in improved survival rates, ameliorated microscopic intestinal mucosal injury, and increased the total length of the intestines and colon in NEC mice. Additionally, CPJIP treatment led to a reduction in serum concentrations of FD-4, D-lactate and DAO. Furthermore, our results revealed that CPJIP effectively inhibited intestinal cell apoptosis and promoted cell proliferation in the intestine. This study represents the first documentation of CPJIP's ability to enhance the expression of tight junction components, suppress inflammatory responses, and rescue intestinal cell fate by inhibiting JNK activation, ultimately mitigating intestinal severity. These findings suggest that CPJIP has the potential to serve as a promising candidate for the treatment of NEC.
Collapse
Affiliation(s)
- Chaozhi Bu
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
- State Key Laboratory of Reproductive Medicine, Research Institute for Reproductive Health and Genetic Diseases, Wuxi Maternity and Child Health Care HospitalWomen's Hospital of Jiangnan University, Jiangnan UniversityWuxiChina
| | - Mengyuan Hu
- Department of NeonatologyThe Affiliated Wuxi Children's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| | - Yinglin Su
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Fuqiang Yuan
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Yiting Zhang
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Jing Xia
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
| | - Zhenyu Jia
- Department of Gastroenterology and Digestive DiseasesThe First Affiliated Hospital of Soochow UniversitySuzhouJiangsuChina
| | - Le Zhang
- Department of NeonatologyAffiliated Children's Hospital of Jiangnan University (Wuxi Children's Hospital)WuxiChina
- Department of NeonatologyThe Affiliated Wuxi Children's Hospital of Nanjing Medical UniversityWuxiJiangsuChina
| |
Collapse
|
53
|
Ye J, Shi R, Fan H, Wang D, Xiao C, Yang T, Ye P, Xia B, Zhao B, Wang Y, Liu X. Stevioside Ameliorates Prenatal Obesity Induced Postpartum Depression: The Potential Role of Gut Barrier Homeostasis. Mol Nutr Food Res 2024; 68:e2300255. [PMID: 38100291 DOI: 10.1002/mnfr.202300255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/23/2023] [Indexed: 12/17/2023]
Abstract
SCOPE Postpartum depression and cognitive impairment are the common complications of prenatal obesity. Stevioside is a non-nutritive natural sweetener with antioxidant and anti-inflammatory. However, its effects on depression behaviors and cognitive impairment induced by a high-fat diet (HFD) remain unclear. METHODS AND RESULTS An 8-week HFD is used to establish a prenatal obesity model in female C57BL/6J mice to explore the improvement effects of stevioside (0.5 mg mL-1 in drinking water) on maternal depression and cognitive dysfunction after weaning. The results demonstrated that stevioside improves behavioral performance of obese maternal mice, and inhibits neuronal damage and 5-hydroxytryptamine (5-HT) abnormality induced by HFD. In addition, stevioside inhibits oxidative stress by reducing malondialdehyde (MDA) and increasing superoxide dismutase (SOD) and glutathione (GSH) activities in the brains of obese maternal mice. Additionally, stevioside improves gut barrier integrity and prevented lipopolysaccharide (LPS) extravasation, and alleviates neuroinflammation. Correlation analysis shows that gut barrier and serum LPS are closely related to behavioral performance and brain biochemical indicators. CONCLUSION Stevioside is capable to prevent prenatal obesity-induced cognitive and mood disorders by restoring intestinal barrier damage and inhibiting inflammation.
Collapse
Affiliation(s)
- Jin Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Renjie Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Hua Fan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Danna Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chunxia Xiao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Tianyingzi Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Peng Ye
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Bing Xia
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Beita Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutang Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xuebo Liu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
54
|
Zhu J, Wang H, Aisikaer M, Yisimayili Z, Yang T, Zhou W, Zhao J, Yunusi K, Aximujiang K. L.acidophilus HSCC LA042 and HKL suspension ameliorate DSS-induced ulcerative colitis in mice by improving the intestinal barrier inhibiting the NLRP3 inflammasome and pathogenic bacteria. Heliyon 2024; 10:e33053. [PMID: 39027449 PMCID: PMC11254534 DOI: 10.1016/j.heliyon.2024.e33053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024] Open
Abstract
Ulcerative Colitis(UC) is a chronic intestinal inflammation affecting the intestines, yet its underlying causes remain unclear. In recent decades, the global prevalence of UC has been on the rise, leading to an increasing demand for therapeutic drugs with minimal side effects. Huan Kui Le (HKL), a traditional Chinese medicine compound, has demonstrated promising efficacy when combined with Lactobacillus acidophilus (Lac.) for UC intervention. However, the precise therapeutic mechanism of this combination remains unknown. The study focused on understanding the mechanisms of UC by examining the effects of Lac. and HKL (LH) treatment. The outcomes discovered that the disruption of gut microbiota, triggered by the activation of the NLRP3 inflammasome, plays a crucial role in UC development. This disruption exacerbates UC symptoms by causing disturbances in inflammatory cytokines and mucosal permeability. We investigated the dynamic changes following the application of this treatment using 16S rRNA sequencing, HE, WB, IHC, and ELISA. Compared with the UC group, LH treatment reduced colon pathological injury, improved colon length, and decreased IL-1 β serum levels. Furthermore, it restored the expression of TJs and preserved mucosal barrier integrity. LH treatment also mitigated colon injury by attenuating the expression of pyroptosis-related genes and proteins, such as NLRP3 and Caspase-1. Additionally, LH treatment altered the gut microbiota's microecology, characterized by a reduction in pathogenic bacteria abundance like Escherichia-shigella and an increase in beneficial bacteria abundance like Akkermansia and Erysipelatoclostridium. Overall, our findings indicate that LH therapy may be associated with intestinal barrier repair, inflammasome inhibition, and gut microbiota regulation, suggesting its potential as a UC treatment.
Collapse
Affiliation(s)
- Jiwei Zhu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Hanming Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Muaitaer Aisikaer
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | | | - Tongtong Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Wenjun Zhou
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Jianfeng Zhao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
| | - Kurexi Yunusi
- Uygur Medical College, Xinjiang Medical University, Urumqi, 830017, China
| | - Kasimujiang Aximujiang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Disease, Urumqi, Xinjiang, 830017, China
| |
Collapse
|
55
|
Sun Q, Hu M, Yuan C, Ren B, Zhong M, Zhou S, Wang X, Gao Q, Zeng M, Cai X, Song H. Astragaloside IV ameliorates indomethacin-induced intestinal inflammation in rats through inhibiting the activation of NLRP3 inflammasome. Int Immunopharmacol 2024; 135:112281. [PMID: 38762925 DOI: 10.1016/j.intimp.2024.112281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/23/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The administration of nonsteroidal anti-inflammatory drugs (NSAIDs) may cause significant intestinal alteration and inflammation and lead to the occurrence of inflammatory diseases resembling duodenal ulcers. Astragaloside IV (AS-IV) is a glycoside of cycloartane-type triterpene isolated from the dried root of Astragalus membranaceus (Fisch.) Bge. (family Fabaceae), and has been used for ameliorating the NSAID-induced inflammation in the small intestine. The present study aimed to investigate the effects of AS-IV on indomethacin (IND)-induced inflammation in the small intestine of rats and its underlying mechanisms. Hematoxylin-eosin (H&E) staining, transmission and scanning electron microscopy were carried out to observe the surface morphology and ultrastructure of the small intestinal mucosa. Immunofluorescence and ELISA tests were employed to detect the expressions of NLRP3, ASC, caspase-1, and NF-κB proteins, as well as inflammatory factors IL-1β and IL-18, to uncover potential molecular mechanisms responsible for mitigating small intestinal inflammation. The results demonstrated that AS-IV significantly decreased the ulcer index, improved the surface morphology and microstructure of the small intestinal mucosa, and increased mucosal blood flow. Molecular docking revealed a strong and stable binding capacity of AS-IV to NLRP3, ASC, caspase-1, and NF-κB proteins. Further experimental validation exhibited that AS-IV markedly decreased levels of IL-1β and IL-18, and inhibited the protein expression of NLRP3, ASC, caspase-1, and NF-κB. Our data demonstrate that AS-IV ameliorates IND-induced intestinal inflammation in rats by inhibiting the activation of NLRP3 inflammasome and reducing the release of IL-1β and IL-18, thereby representing a promising therapy for IND-induced intestinal inflammation.
Collapse
Affiliation(s)
- Qifang Sun
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China; Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Mingyue Hu
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Chengzhi Yuan
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Baoping Ren
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiqi Zhong
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Shunhua Zhou
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiaojuan Wang
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Qing Gao
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Meiyan Zeng
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China
| | - Xiong Cai
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| | - Houpan Song
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Diagnostics and School of Chinese Medical Sciences, Hunan University of Chinese Medicine, Changsha, Hunan 410208, China.
| |
Collapse
|
56
|
Sun J, Wang S, Zhao Z, Lu J, Zhang Y, An W, Li W, Yang L, Tong X. Oxymatrine Attenuates Ulcerative Colitis through Inhibiting Pyroptosis Mediated by the NLRP3 Inflammasome. Molecules 2024; 29:2897. [PMID: 38930963 PMCID: PMC11206389 DOI: 10.3390/molecules29122897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/13/2024] [Accepted: 06/16/2024] [Indexed: 06/28/2024] Open
Abstract
Ulcerative colitis (UC) is difficult to cure and easy to relapse, leading to poor quality of life for patients. Oxymatrine (OMT) is one of the main alkaloids of Sophora flavescens Aiton, which has many effects, such as anti-inflammation, anti-oxidative stress, and immunosuppression. This study aimed to investigate whether OMT could attenuate ulcerative colitis by inhibiting the NOD-like receptor family pyrin domain containing three (NLRP3) inflammasome-mediated pyroptosis. In this study, the UC rat models were established by 2,4,6-Trinitrobenzenesulfonic acid (TNBS) in vivo, while RAW264.7 cells and peritoneal macrophages were stimulated with Lipopolysaccharides/Adenosine Triphosphate (LPS/ATP) in vitro to simulate pyroptosis models, and Western blotting (WB) and other detection techniques were applied to analyze proteins involved in the NLRP3 inflammasome pathway. Our results showed that OMT alleviated colitis ulcers and pathological damage in the TNBS-induced UC rats and exhibited an inhibitory effect on pyroptosis at the early stage of UC. In the model group, the pyroptosis reached the peak at 24 h after modeling with the contents of active-cysteine-aspartic proteases-1 (caspase-1), Gasdermin D (GSDMD)-N, and cleaved-interleukin-1 beta (IL-1β) to the highest expression level. Meanwhile, we found that OMT (80 mg kg-1) remarkably decreased the expression levels of NLRP3, active-caspase-1, and cleaved-IL-1β at 24 h in the lesion tissue from UC rats. Further experiments on cells demonstrated that OMT at concentrations of 100 and 250 μM significantly inhibited cell death caused by NLRP3 inflammasome activation (p < 0.05), downregulated caspase-1, GSDMD, and decreased the levels of active-caspase-1, GSDMD-N, cleaved-IL-1β in RAW326.7 cells, and peritoneal macrophages. In summary, these results indicated that OMT could attenuate ulcerative colitis through inhibiting pyroptosis mediated by the NLRP3 inflammasome. The inhibition of the NLRP3 inflammasome may be a potential strategy for UC.
Collapse
Affiliation(s)
- Jing Sun
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Shuai Wang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Zhengtian Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Jiaqi Lu
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Yiming Zhang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Wen An
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Wei Li
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| | - Li Yang
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
- Ningbo Institute of Dalian University of Technology, No. 26, Yucai Road, Jiangbei District, Ningbo 315016, China
| | - Xiaowei Tong
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, No. 2, Linggong Road, Ganjingzi District, Dalian 116024, China (X.T.)
| |
Collapse
|
57
|
Hong Z, Li Y, Chen M, Chen X, Deng X, Wu Y, Wang C, Qiu C. Protosappanin B enhances the chemosensitivity of 5-fluorouracil in colon adenocarcinoma by regulating the LINC00612/microRNA-590-3p/Golgi phosphoprotein 3 axis. Discov Oncol 2024; 15:193. [PMID: 38806777 PMCID: PMC11133243 DOI: 10.1007/s12672-024-01036-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Abstract
BACKGROUND 5-fluorouracil (5-FU) is conventionally used in chemotherapy for colon adenocarcinomas. Acquired resistance of 5-FU remains a clinical challenge in colon cancer, and efforts to develop targeted agents to reduce resistance have not yielded success. Protosappanin B (PSB), the main component of Lignum Sappan extract, is known to exhibit anti-tumor effects. However, whether and how PSB could improve 5-FU resistance in colon cancer have not yet been established. In this study, we aimed to explore the effects and underlying mechanisms of PSB in 5-FU-induced chemoresistance in colon adenocarcinoma. METHODS Forty-seven paired colon cancer tissue samples from patients who received 5-FU chemotherapy were collected as clinical samples. Two 5-FU resistant colon cancer cell lines were established for in vitro experiments. Reverse transcription-quantitative PCR (RT-qPCR) was performed to determine the mRNA and microRNA (miRNA) expression levels in colon adenocarcinoma tissues and cell lines. Cell Counting Kit-8 (CCK-8) and flow cytometry assays were performed to evaluate cell proliferation and apoptosis, respectively. RESULTS LINC00612 was highly expressed in colon adenocarcinoma samples and 5-FU resistant colon cancer cells. LINC00612 knockdown enhances 5-FU chemosensitivity in 5-FU resistant cells. Notably, PSB treatment attenuated LINC00612 expression in 5-FU resistant colon adenocarcinoma cells. Moreover, PSB treatment reversed the increase in LINC00612-induced 5-FU resistance. Mechanistically, LINC00612 specifically bound to miR-590-3p, which promoted 5-FU resistance in colon adenocarcinoma cells and attenuated the inhibitory effect of LINC00612 on GOLPH3 expression. CONCLUSION PSB attenuates 5-FU chemoresistance in colon adenocarcinoma by regulating the LINC00612/miRNA-590-3p/GOLPH3 axis.
Collapse
Affiliation(s)
- Zhongshi Hong
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Yachen Li
- Medical Department, The Second Affiliated Hospital of Fujian Medical University, No.34 Zhongshan North Road, Quanzhou, 362000, Fujian, China
| | - Mingliang Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xiaojing Chen
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Xian Deng
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Yuze Wu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China
| | - Chunxiao Wang
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China.
| | - Chengzhi Qiu
- Department of General Surgery, The Second Affiliated Hospital of Fujian Medical University, No.34, Zhongshan North Road, Quanzhou, Fujian, 362000, China.
| |
Collapse
|
58
|
Deng H, Ye T, Deng Y, Cui Y, Guo H, Deng J. miRNA Expression Analysis of IPEC-J2 Cells Damaged by Soybean 7S Globulin Reveals ssc-miR-221-5p as the Factor Alleviating Cell Damage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11694-11705. [PMID: 38723176 DOI: 10.1021/acs.jafc.4c02047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The most significant and sensitive antigen protein that causes diarrhea in weaned pigs is soybean 7S globulin. Therefore, identifying the primary target for minimizing intestinal damage brought on by soybean 7S globulin is crucial. MicroRNA (miRNA) is closely related to intestinal epithelium's homeostasis and integrity. However, the change of miRNAs' expression and the function of miRNAs in Soybean 7S globulin injured-IPEC-J2 cells are still unclear. In this study, the miRNAs' expression profile in soybean 7S globulin-treated IPEC-J2 cells was investigated. Fifteen miRNAs were expressed differently. The differentially expressed miRNA target genes are mainly concentrated in signal release, cell connectivity, transcriptional inhibition, and Hedgehog signaling pathway. Notably, we noticed that the most significantly decreased miRNA was ssc-miR-221-5p after soybean 7S globulin treatment. Therefore, we conducted a preliminary study on the mechanisms of ssc-miR-221-5p in soybean 7S globulin-injured IPEC-J2 cells. Our research indicated that ssc-miR-221-5p may inhibit ROS production to alleviate soybean 7S globulin-induced apoptosis and inflammation in IPEC-J2 cells, thus protecting the cellular mechanical barrier, increasing cell proliferation, and improving cell viability. This study provides a theoretical basis for the prevention and control of diarrhea of weaned piglets.
Collapse
Affiliation(s)
- Huidan Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Agricultural Bioinformatics, Ministry of Education, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Ting Ye
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Youtian Deng
- College of Food Science, Sichuan Agriculture University, Yaan, Sichuan 625014, China
| | - Yujing Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| | - Junliang Deng
- College of Veterinary Medicine, Sichuan Agricultural University, Wenjiang, Chengdu 611130, China
- Key Laboratory of Animal Diseases and Environmental Hazards of Sichuan Province, Sichuan Agriculture University, Wenjiang, Chengdu 611130, China
| |
Collapse
|
59
|
Narros-Fernández P, Chomanahalli Basavarajappa S, Walsh PT. Interleukin-1 family cytokines at the crossroads of microbiome regulation in barrier health and disease. FEBS J 2024; 291:1849-1869. [PMID: 37300849 DOI: 10.1111/febs.16888] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Accepted: 06/08/2023] [Indexed: 06/12/2023]
Abstract
Recent advances in understanding how the microbiome can influence both the physiology and the pathogenesis of disease in humans have highlighted the importance of gaining a deeper insight into the complexities of the host-microbial dialogue. In tandem with this progress, has been a greater understanding of the biological pathways which regulate both homeostasis and inflammation at barrier tissue sites, such as the skin and the gut. In this regard, the Interleukin-1 family of cytokines, which can be segregated into IL-1, IL-18 and IL-36 subfamilies, have emerged as important custodians of barrier health and immunity. With established roles as orchestrators of various inflammatory diseases in both the skin and intestine, it is now becoming clear that IL-1 family cytokine activity is not only directly influenced by external microbes, but can also play important roles in shaping the composition of the microbiome at barrier sites. This review explores the current knowledge surrounding the evidence that places these cytokines as key mediators at the interface between the microbiome and human health and disease at the skin and intestinal barrier tissues.
Collapse
Affiliation(s)
- Paloma Narros-Fernández
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Shrikanth Chomanahalli Basavarajappa
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| | - Patrick T Walsh
- Trinity Translational Medicine Institute, School of Medicine, Trinity College Dublin, Ireland
- National Children's Research Centre, CHI Crumlin, Dublin 12, Ireland
| |
Collapse
|
60
|
Puzhankara L, Rajagopal A, Kedlaya MN, Karmakar S, Nayak N, Shanmugasundaram S. Cell Junctions in Periodontal Health and Disease: An Insight. Eur J Dent 2024; 18:448-457. [PMID: 38049123 PMCID: PMC11132765 DOI: 10.1055/s-0043-1775726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2023] Open
Abstract
Cells are the building blocks of all living organisms. The presence of cell junctions such as tight junctions, gap junctions, and anchoring junctions between cells play a role in cell-to-cell communication in periodontal health and disease. A literature search was done in Scopus, PubMed, and Web of Science to gather information about the effect of cell junctions on periodontal health and disease. The presence of tight junction in the oral cavity helps in cell-to-cell adhesiveness and assists in the barrier function. The gap junctions help in controlling growth and development and in the cell signaling process. The presence of desmosomes and hemidesmosomes as anchoring junctions aid in mechanical strength and tissue integrity. Periodontitis is a biofilm-induced disease leading to the destruction of the supporting structures of the tooth. The structures of the periodontium possess multiple cell junctions that play a significant role in periodontal health and disease as well as periodontal tissue healing. This review article provides an insight into the role of cell junctions in periodontal disease and health, and offers concepts for development of therapeutic strategies through manipulation of cell junctions.
Collapse
Affiliation(s)
- Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N. Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
61
|
Akinsuyi OS, Xhumari J, Ojeda A, Roesch LFW. Gut permeability among Astronauts during Space missions. LIFE SCIENCES IN SPACE RESEARCH 2024; 41:171-180. [PMID: 38670644 DOI: 10.1016/j.lssr.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 04/28/2024]
Abstract
The space environment poses substantial challenges to human physiology, including potential disruptions in gastrointestinal health. Gut permeability has only recently become widely acknowledged for its potential to cause adverse effects on a systemic level, rendering it a critical factor to investigate in the context of spaceflight. Here, we propose that astronauts experience the onset of leaky gut during space missions supported by transcriptomic and metagenomic analysis of human and murine samples. A genetic map contributing to intestinal permeability was constructed from a systematic review of current literature. This was referenced against our re-analysis of three independent transcriptomic datasets which revealed significant changes in gene expression patterns associated with the gut barrier. Specifically, in astronauts during flight, we observed a substantial reduction in the expression genes that are crucial for intestinal barrier function, goblet cell development, gut microbiota modulation, and immune responses. Among rodent spaceflight studies, differential expression of cytokines, chemokines, and genes which regulate mucin production and post-translational modifications suggest a similar dysfunction of intestinal permeability. Metagenomic analysis of feces from two murine studies revealed a notable reduction probiotic, short chain fatty acid-producing bacteria and an increase in the Gram-negative pathogens, including Citrobacter rodentium, Enterobacter cloacea, Klebsiella aerogenes, and Proteus hauseri which promote LPS circulation, a recipe for barrier disruption and systemic inflammatory activation. These findings emphasize the critical need to understand the underlying mechanisms and develop interventions to maintain gastrointestinal health in space.
Collapse
Affiliation(s)
- Oluwamayowa S Akinsuyi
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Jessica Xhumari
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Amanda Ojeda
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA
| | - Luiz F W Roesch
- Institute of Food and Agricultural Sciences, Department of Microbiology and Cell Science, University of Florida, Gainesville 32611, FL, USA.
| |
Collapse
|
62
|
Lee HR, Jeong YJ, Park SA, Kim HJ, Heo TH. Geraniin Alleviates Inflammation in Caco-2 Cells and Dextran Sulfate Sodium-Induced Colitis Mice by Targeting IL-1β. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:7882-7893. [PMID: 38530797 DOI: 10.1021/acs.jafc.3c09396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
IL-1β is an important cytokine implicated in the progression of inflammatory bowel disease (IBD) and intestinal barrier dysfunction. The polyphenolic compound, geraniin, possesses bioactive properties, such as antitumor, antioxidant, anti-inflammatory, antihypertensive, and antiviral activities; however, its IL-1β-targeted anticolitis activity remains unclear. Here, we evaluated the inhibitory effect of geraniin in IL-1β-stimulated Caco-2 cells and a dextran sulfate sodium (DSS)-induced colitis mouse model. Geraniin blocked the interaction between IL-1β and IL-1R by directly binding to IL-1β and inhibited the IL-1β activity. It suppressed IL-1β-induced intestinal tight junction damage in human Caco-2 cells by inhibiting IL-1β-mediated MAPK, NF-kB, and MLC activation. Moreover, geraniin administration effectively reduced colitis symptoms and attenuated intestinal barrier injury in mice by suppressing elevated intestinal permeability and restoring tight junction protein expression through the inhibition of MAPK, NF-kB, and MLC activation. Thus, geraniin exhibits anti-IL-1β activity and anticolitis effect by hindering the IL-1β and IL-1R interaction and may be a promising therapeutic anti-IL-1β agent for IBD treatment.
Collapse
Affiliation(s)
- Hae-Ri Lee
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Young-Jin Jeong
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Sun-Ae Park
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hee Jung Kim
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Tae-Hwe Heo
- Laboratory of Pharmaco-Immunology, Integrated Research Institute of Pharmaceutical Sciences, BK21 PLUS Team for Creative Leader Program for Pharmacomics-Based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
63
|
Wang J, Wang X, Xiu W, Zhou Z, Yu S, Yang M, Zhou K, Ma Y. The sweet corn cob selenium polysaccharide alleviates type 2 diabetes via modulation of LPS/IκBα/NFκB and the intestinal microbiota. FOOD BIOSCI 2024; 58:103742. [DOI: 10.1016/j.fbio.2024.103742] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
64
|
Wu Z, Li Y, Jiang M, Sang L, Chang B. Selenium Yeast Alleviates Dextran Sulfate Sodium-Induced Chronic Colitis in Mice by Reducing Proinflammatory Cytokines and Regulating the Gut Microbiota and Their Metabolites. J Inflamm Res 2024; 17:2023-2037. [PMID: 38577691 PMCID: PMC10992675 DOI: 10.2147/jir.s449335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic recurrent gastrointestinal inflammatory disease. Selenium has been reported to have therapeutic potential in IBD. Selenium yeast is a common selenium supplement that is convenient to access. This study explored the effect of selenium yeast on dextran sulfate sodium- (DSS-)induced chronic colitis in mice. Methods Mice were randomly divided into four groups: the control group, selenium yeast group, chronic colitis group, and chronic colitis+selenium yeast group (n=6). Mice were killed on the 26th day. The disease activity index (DAI) score and histological damage score were calculated. Cytokines, serum selenium, colonic tissue selenium, gut microbiota and their metabolites short-chain fatty acids (SCFAs) were evaluated. Results Selenium yeast lowered IL-1β, IL-6, TNF-α, IL-17A, IL-22 and IFN-γ (P<0.05). In addition, selenium yeast significantly elevated Turicibacter, Bifidobacterium, Allobaculum, Prevotella, Halomonas, Adlercreutzia (P<0.05), and butyric acid (P<0.05). Conclusion Selenium yeast could improve DSS-induced chronic colitis in mice by regulating cytokines, gut microbiota and their metabolites.
Collapse
Affiliation(s)
- Zeyu Wu
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Yan Li
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Min Jiang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, People’s Republic of China
| | - Bing Chang
- Department of Gastroenterology, First Affiliated Hospital of China Medical University, Shenyang, People’s Republic of China
| |
Collapse
|
65
|
Lv W, Jin W, Lin J, Wang Z, Ma Y, Zhang W, Zhu Y, Hu Y, Qu Q, Guo S. Forsythia suspensa polyphenols regulate macrophage M1 polarization to alleviate intestinal inflammation in mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 125:155336. [PMID: 38295660 DOI: 10.1016/j.phymed.2024.155336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/16/2023] [Accepted: 01/01/2024] [Indexed: 02/13/2024]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) was a chronic intestinal disease related to autoimmunity, and its pathogenesis was complex. Forsythia suspensa (F. suspensa) had good anti-inflammatory and antioxidant effects. The active component polyphenols had significant effects in the treatment of intestinal inflammation. Researches had found that polarization, pyroptosis and apoptosis of macrophages can drive the occurrence and development of colitis. PURPOSE In this study, we examined whether F. suspensa polyphenols (FPP) mitigated DSS-induced colitis, and explored its potential mechanisms. METHODS The potential targets of F. suspensa in intestinal inflammation were predicted through network pharmacology. Using LPS and IFN-γ induced macrophage M1 polarization in J774A.1 cells. Macrophage polarization was detected through RT-qPCR, flow cytometry and ELISA. Ulcerative colitis (UC) in mice was induced by 2.5% DSS for 7 days, and then oral administrated different doses of FPP for another 7 days. Then we assessed the body weight, diarrhea, bleeding in stool, colon length, cytokines of serum and pathology of colon. The effects of FPP on the gut microbiota in mice also tested and evaluated. RESULTS Our results showed that the main active ingredient of F. suspensa in protecting intestinal inflammation were polyphenols and F. suspensa was multi-targeted in the treatment of intestinal inflammation. FPP inhibited M1 polarization and polarizes towards M2 in J774A.1 cells. FPP inhibited pyroptosis and apoptosis to exert anti-inflammatory effects. FPP had a good protective effect on DSS induced UC in mice. In unison, FPP inhibited M1 polarization, apoptosis, and pyroptosis in UC mice. FPP regulated intestinal homeostasis in mice with UC by improving the gut microbiota and enhancing the intestinal metabolites short-chain fatty acid (SCFAs). CONCLUSIONS These data indicated that FPP may alleviate UC by inhibiting M1 polarization in mice. Collectively, these findings suggest that the reduction of colitis by FPP may related to macrophage polarization, pyroptosis and apoptosis.
Collapse
Affiliation(s)
- Weijie Lv
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenxin Jin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Jin Lin
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Zhihua Wang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yimu Ma
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Wenbo Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yongqi Zhu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Yifan Hu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Qian Qu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China.
| | - Shining Guo
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China; Guangdong Research Center for Veterinary Traditional Chinese Medicine and Natural Medicine Engineering Technology, Guangzhou 510642, Guangdong, China.
| |
Collapse
|
66
|
Wang K, Zhang J, Zhang Y, Xue J, Wang H, Tan X, Jiao X, Jiang H. The recovery of intestinal barrier function and changes in oral microbiota after radiation therapy injury. Front Cell Infect Microbiol 2024; 13:1288666. [PMID: 38384432 PMCID: PMC10879579 DOI: 10.3389/fcimb.2023.1288666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 12/27/2023] [Indexed: 02/23/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignant tumor, and neoadjuvant chemo-radiotherapy is usually recommended for advanced stage colorectal cancer. Radiotherapy can cause damage to intestinal mucosal barrier, which may be related to perioperative complications. Intestinal microbiota is one of the constituents of the intestinal mucosal biological barrier, and literature reports that patients with CRC have changes in corresponding oral microbiota. This study aims to analyze the levels of immunoglobulin SIgA, inflammatory factors, lymphocyte subsets quantity, and proportion in surgical specimens of intestinal mucosa at different time intervals after radiotherapy, in order to seek investigation for the optimal surgical time after radiotherapy and to provide evidence for finding probiotics or immunomodulators through high-throughput sequencing of bacterial 16s rRNA in patients' saliva microbiota. Ultimately, this may provide new ideas for reducing perioperative complications caused by radiotherapy-induced intestinal damage. Methods We selected intestinal mucosal tissue and saliva samples from over 40 patients in our center who did not undergo radiotherapy and underwent surgery at different time intervals after radiotherapy. Detection of SIgA was performed using ELISA assay. Western Blotting was used to detect IL-1β, IL-6, and IL-17 in the intestinal mucosal tissue. Flow cytometry was used to detect CD4 and CD8. And the microbial community changes in saliva samples were detected through 16s rRNA sequencing. Results After radiotherapy, changes in SIgA, various cytokines, CD4CD8 lymphocyte subsets, and oral microbiota in the intestinal mucosal tissue of rectal cancer patients may occur. Over time, this change may gradually recover. Discussion In colorectal cancer, oncological aspects often receive more attention, while studies focusing on the intestinal mucosal barrier are less common. This study aims to understand the repair mechanisms of the intestinal mucosal barrier and reduce complications arising from radiotherapy-induced damage. The relationship between oral microbiota and systemic diseases has gained interest in recent years. However, the literature on the oral microbiota after radiotherapy for rectal cancer remains scarce. This study addresses this gap by analysing changes in the salivary microbiota of rectal cancer patients before and after radiotherapy, shedding light on microbiota changes. It aims to lay the groundwork for identifying suitable probiotics or immunomodulators to alleviate perioperative complications and improve the prognosis of CRC.
Collapse
Affiliation(s)
- Kun Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jingjing Zhang
- Department of Pathology, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Yihao Zhang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Junze Xue
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - He Wang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xiaojie Tan
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Xuelong Jiao
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| | - Haitao Jiang
- Department of Gastrointestinal Surgery, Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
67
|
Liu Y, Li S, Huang Z, Dai H, Shi F, Lv Z. Dietary collagen peptide-chelated trace elements supplementation for breeder hens improves the intestinal health of chick offspring. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:174-183. [PMID: 37612258 DOI: 10.1002/jsfa.12938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 08/01/2023] [Accepted: 08/24/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Dietary supplementation with trace elements zinc (Zn), iron (Fe) and manganese (Mn) could promote intestinal development and improve intestinal health. There are, however, few studies examining the possibility that maternal original Zn, Fe and Mn could regulate intestinal development and barrier function in the offspring. This study aimed to investigate how the intestinal growth and barrier function of breeder offspring were affected by collagen peptide-chelated trace elements (PTE; Zn, Fe, Mn). RESULTS PTE supplementation in the diet of breeder hens increased the concentrations of Zn, Fe and Mn in egg yolk. Maternal PTE supplementation improved morphological parameters of the intestine (villi height, crypt depth and villi height/crypt depth) and upregulated the mRNA expression level of leucine-rich repeat-containing G protein-coupled receptor 5 (Lgr5) in the ileum of chick embryos. Furthermore, maternal PTE effect improved villi height/crypt depth of offspring at 1 and 14 days of age, and upregulated Lgr5, Claudin-3 and E-cadherin mRNA expression in the broiler ileum. Additionally, PTE treatment could enhance the intestinal microbial diversity of offspring. Maternal PTE supplementation increased the relative abundance of Clostridiales at the genus level and decreased the relative abundance of Enterococcus in newborn offspring. Moreover, maternal PTE supplementation ameliorated the elevated nuclear factor kappa B, toll-like receptor 4 and interleukin 1β mRNA expression in the ileum of offspring caused by LPS challenge. CONCLUSION Maternal PTE supplementation could promote intestinal development and enhance the intestinal barrier function of chicken offspring. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yongfa Liu
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| | - Simeng Li
- Aksu Vocational and Technical College, Aksu, China
| | - Zhenwu Huang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Hongjian Dai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Fangxiong Shi
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
68
|
Zhu J, Yin J, Chen J, Hu M, Lu W, Wang H, Zhang H, Chen W. Integrative analysis with microbial modelling and machine learning uncovers potential alleviators for ulcerative colitis. Gut Microbes 2024; 16:2336877. [PMID: 38563656 PMCID: PMC10989691 DOI: 10.1080/19490976.2024.2336877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/27/2024] [Indexed: 04/04/2024] Open
Abstract
Ulcerative colitis (UC) is a challenging form of inflammatory bowel disease, and its etiology is intricately linked to disturbances in the gut microbiome. To identify the potential alleviators of UC, we employed an integrative analysis combining microbial community modeling with advanced machine learning techniques. Using metagenomics data sourced from the Integrated Human Microbiome Project, we constructed individualized microbiome community models for each participant. Our analysis highlighted a significant decline in both α and β-diversity of strain-level microbial populations in UC subjects compared to controls. Distinct differences were also observed in the predicted fecal metabolite profiles and strain-to-metabolite contributions between the two groups. Using tree-based machine learning models, we successfully identified specific microbial strains and their associated metabolites as potential alleviators of UC. Notably, our experimental validation using a dextran sulfate sodium-induced UC mouse model demonstrated that the administration of Parabacteroides merdae ATCC 43,184 and N-acetyl-D-mannosamine provided notable relief from colitis symptoms. In summary, our study underscores the potential of an integrative approach to identify novel therapeutic avenues for UC, paving the way for future targeted interventions.
Collapse
Affiliation(s)
- Jinlin Zhu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jialin Yin
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Jing Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Mingyi Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Wenwei Lu
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- International Joint Research Laboratory for Pharmabiotics & Antibiotic Resistance, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
| | - Hongchao Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- (Yangzhou) Institute of Food Biotechnology, Jiangnan University, Yangzhou, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute Wuxi Branch, Wuxi People’s Hospital, Wuxi, China
| | - Wei Chen
- State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, China
| |
Collapse
|
69
|
Butera A, De Simone R, Potenza RL, Sanchez M, Armida M, Campanile D, Di Carlo N, Trenta F, Boirivant M, Ricceri L. Effects of a gut-selective integrin-targeted therapy in male mice exposed to early immune activation, a model for the study of autism spectrum disorder. Brain Behav Immun 2024; 115:89-100. [PMID: 37793488 DOI: 10.1016/j.bbi.2023.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/11/2023] [Accepted: 09/30/2023] [Indexed: 10/06/2023] Open
Abstract
To clarify the role of gut mucosal immunity in ASD, we evaluated, in the early-life immune activation (EIA) mouse model, the effects of administration of a monoclonal antibody directed against the integrin alpha4 beta7 (α4β7 mAb), blocking the leukocyte homing into the gut mucosa. EIA is a double-hit variant of the maternal immune-activation (MIA) model, including both prenatal (Poly I:C) and postnatal (LPS) immune challenges. In C57BL6/J EIA male adult offspring mice, IL-1β and IL-17A mRNA colonic tissue content increased when compared with controls. Cytofluorimetric analyses of lymphocytes isolated from mesenteric lymph-nodes (MLN) and spleens of EIA mice show increased percentage of total and CD4+α4β7+, unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in MLN and CD4+α4β7+ unstimulated and stimulated IL-17A+ and stimulated IFN-γ+ lymphocytes in the spleen. Treatment with anti-α4β7 mAb in EIA male mice was associated with colonic tissue IL-1β, and IL-17A mRNA content and percentage of CD4+ IL-17A+ and IFN-γ+ lymphocytes in MLN and spleens comparable to control mice. The anti-α4β7 mAb treatment rescue social novelty deficit showed in the three-chamber test by EIA male mice. Increased levels of IL-6 and IL-1β and decreased CD68 and TGF-β mRNAs were also observed in hippocampus and prefrontal cortex of EIA male mice together with a reduction of BDNF mRNA levels in all brain regions examined. Anti-α4β7 mAb treatment restored the expression of BDNF, TGF-β and CD68 in hippocampus and prefrontal cortex. Improvement of the gut inflammatory status, obtained by a pharmacological agent acting exclusively at gut level, ameliorates some ASD behavioral features and the neuroinflammatory status. Data provide the first preclinical indication for a therapeutic strategy against gut-immune activation in ASD subjects with peripheral increase of gut-derived (α4β7+) lymphocytes expressing IL-17A.
Collapse
Affiliation(s)
- Alessia Butera
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Roberta De Simone
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Rosa Luisa Potenza
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Cytometry Unit-Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Armida
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Doriana Campanile
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Nazzareno Di Carlo
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy
| | - Francesco Trenta
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy
| | - Monica Boirivant
- National Center for Drug Research and Evaluation Istituto Superiore di Sanità, Rome, Italy.
| | - Laura Ricceri
- Center for Behavioral Science and Mental Health, Istituto Superiore di Sanità, Rome, Italy.
| |
Collapse
|
70
|
Lauko S, Gancarcikova S, Hrckova G, Hajduckova V, Andrejcakova Z, Fecskeova LK, Bertkova I, Hijova E, Kamlarova A, Janicko M, Ambro L, Kvakova M, Gulasova Z, Strojny L, Strkolcova G, Mudronova D, Madar M, Demeckova V, Nemetova D, Pacuta I, Sopkova D. Beneficial Effect of Faecal Microbiota Transplantation on Mild, Moderate and Severe Dextran Sodium Sulphate-Induced Ulcerative Colitis in a Pseudo Germ-Free Animal Model. Biomedicines 2023; 12:43. [PMID: 38255150 PMCID: PMC10813722 DOI: 10.3390/biomedicines12010043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/18/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Transplantation of faecal microbiota (FMT) is generally considered a safe therapeutic procedure with few adverse effects. The main factors that limit the spread of the use of FMT therapy for idiopathic inflammatory bowel disease (IBD) are the necessity of minimising the risk of infection and transfer of another disease. Obtaining the animal model of UC (ulcerative colitis) by exposure to DSS (dextran sodium sulphate) depends on many factors that significantly affect the result. Per os intake of DSS with water is individual for each animal and results in the development of a range of various forms of induced UC. For this reason, the aim of our study was to evaluate the modulation and regenerative effects of FMT on the clinical and histopathological responses and the changes in the bowel microenvironment in pseudo germ-free (PGF) mice of the BALB/c line subjected to chemical induction of mild, moderate and serious forms of UC. The goal was to obtain new data related to the safety and effectiveness of FMT that can contribute to its improved and optimised use. The animals with mild and moderate forms of UC subjected to FMT treatment exhibited lower severity of the disease and markedly lower damage to the colon, including reduced clinical and histological disease index and decreased inflammatory response of colon mucosa. However, FMT treatment failed to achieve the expected therapeutic effect in animals with the serious form of UC activity. The results of our study indicated a potential safety risk involving development of bacteraemia and also translocation of non-pathogenic representatives of bowel microbiota associated with FMT treatment of animals with a diagnosed serious form of UC.
Collapse
Affiliation(s)
- Stanislav Lauko
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Sona Gancarcikova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Gabriela Hrckova
- Institute of Parasitology, Slovak Academy of Sciences, 041 81 Kosice, Slovakia;
| | - Vanda Hajduckova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Zuzana Andrejcakova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| | - Livia Kolesar Fecskeova
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital (UHLP) in Kosice, 040 11 Kosice, Slovakia;
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Emilia Hijova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Martin Janicko
- 2nd Department of Internal Medicine, Faculty of Medicine, Pavol Jozef Safarik University and Louis Pasteur University Hospital in Kosice, 040 11 Kosice, Slovakia;
| | - Lubos Ambro
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Monika Kvakova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Zuzana Gulasova
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Ladislav Strojny
- Center of Clinical and Preclinical Research—MEDIPARK, Faculty of Medicine, Pavol Jozef Safarik University in Kosice, 040 11 Kosice, Slovakia; (I.B.); (E.H.); (A.K.); (M.K.); (Z.G.); (L.S.)
| | - Gabriela Strkolcova
- Department of Epizootiology, Parasitology and Protection of One Health, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia;
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Marian Madar
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Vlasta Demeckova
- Department of Animal Physiology, Institute of Biology and Ecology, Faculty of Science, Pavol Jozef Safarik University in Kosice, 040 01 Kosice, Slovakia;
| | - Daniela Nemetova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Ivan Pacuta
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (S.L.); (V.H.); (D.M.); (M.M.); (D.N.); (I.P.)
| | - Drahomira Sopkova
- Department of Biology and Physiology, University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia; (Z.A.); (D.S.)
| |
Collapse
|
71
|
Jiang M, Wang Z, Lu T, Li X, Yang K, Zhao L, Zhang D, Li J, Wang L. Integrative analysis of long noncoding RNAs dysregulation and synapse-associated ceRNA regulatory axes in autism. Transl Psychiatry 2023; 13:375. [PMID: 38057311 DOI: 10.1038/s41398-023-02662-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 10/30/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
Autism spectrum disorder (ASD) is a complex disorder of neurodevelopment, the function of long noncoding RNA (lncRNA) in ASD remains essentially unknown. In the present study, gene networks were used to explore the ASD disease mechanisms integrating multiple data types (for example, RNA expression, whole-exome sequencing signals, weighted gene co-expression network analysis, and protein-protein interaction) and datasets (five human postmortem datasets). A total of 388 lncRNAs and five co-expression modules were found to be altered in ASD. The downregulated co-expression M4 module was significantly correlated with ASD, enriched with autism susceptibility genes and synaptic signaling. Integrating lncRNAs from the M4 module and microRNA (miRNA) dysregulation data from the literature identified competing endogenous RNA (ceRNA) network. We identified the downregulated mRNAs that interact with miRNAs by the miRTarBase, miRDB, and TargetScan databases. Our analysis reveals that MIR600HG was downregulated in multiple brain tissue datasets and was closely associated with 9 autism-susceptible miRNAs in the ceRNA network. MIR600HG and target mRNAs (EPHA4, MOAP1, MAP3K9, STXBP1, PRKCE, and SCAMP5) were downregulated in the peripheral blood by quantitative reverse transcription polymerase chain reaction analysis (false discovery rate <0.05). Subsequently, we assessed the role of lncRNA dysregulation in altered mRNA levels. Experimental verification showed that some synapse-associated mRNAs were downregulated after the MIR600HG knockdown. BrainSpan project showed that the expression patterns of MIR600HG (primate-specific lncRNA) and synapse-associated mRNA were similar in different human brain regions and at different stages of development. A combination of support vector machine and random forest machine learning algorithms retrieved the marker gene for ASD in the ceRNA network, and the area under the curve of the diagnostic nomogram was 0.851. In conclusion, dysregulation of MIR600HG, a novel specific lncRNA associated with ASD, is responsible for the ASD-associated miRNA-mRNA axes, thereby potentially regulating synaptogenesis.
Collapse
Affiliation(s)
- Miaomiao Jiang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Ziqi Wang
- Beijing Key Laboratory of Mental Disorders, National Clinical Research Center for Mental Disorders & National Center for Mental Disorders, Beijing Anding Hospital, Capital Medical University, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Tianlan Lu
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Xianjing Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Kang Yang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Liyang Zhao
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
| | - Dai Zhang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China
- Guangdong Key Laboratory of Mental Health and Cognitive Science, Institute for Brain Research and Rehabilitation (IBRR), South China Normal University, Guangzhou, China
| | - Jun Li
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| | - Lifang Wang
- National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), NHC Key Laboratory of Mental Health (Peking University), Peking University Sixth Hospital, Peking University Institute of Mental Health, Beijing, China.
| |
Collapse
|
72
|
Li G, Yan X. Long non-coding RNA GAS5 promotes cisplatin-chemosensitivity of osteosarcoma cells via microRNA-26b-5p/TP53INP1 axis. J Orthop Surg Res 2023; 18:890. [PMID: 37993867 PMCID: PMC10666340 DOI: 10.1186/s13018-023-04387-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/18/2023] [Indexed: 11/24/2023] Open
Abstract
Osteosarcoma is a common malignant bone tumor. Cisplatin (DDP) achieves a high response rate in osteosarcoma. Here we aim to study the dysregulation of long non-coding RNA the growth arrest-specific transcript 5 (GAS5), and its roles in DDP-resistance of osteosarcoma. The expression of mRNA and microRNA in osteosarcoma tissues and osteosarcoma cell lines were detected by quantitative reverse-transcription polymerase chain reaction, and protein expression levels were measured by western blotting assay. Cell Counting Kit-8 and 5-Ethynyl-2'-deoxyuridine were used to measure cell proliferation. Flow cytometer assay was used to evaluate cell apoptosis. The interactions between miR-26b-5p and GAS5 or tumor protein p53-induced nuclear protein 1 (TP53INP1) were verified by dual luciferase reporter along with biotin RNA pull-down assays. GAS5 was identified to be significantly lowly expressed in osteosarcoma samples especially in cisplatin-resistant (DDP-resistant) tissues. GAS5 was also downregulated in DDP-resistant cells. Over-expressed GAS5 prominently increased the sensitivity of osteosarcoma cells to DDP in vitro. Furthermore, over-expression of GAS5 suppressed cell proliferation and facilitated apoptosis of DDP-resistant cells. Mechanistically, GAS5 sponged miR-26b-5p, over-expression of which reversed the effects of GAS5 on cell proliferation and apoptosis of DDP-resistant cells. In addition, miR-26b-5p targeted TP53INP1. TP53INP1 abrogated the functions of miR-26b-5p on cell proliferation and apoptosis in DDP-resistant cells. Taken together, GAS5 enhanced the sensitivity of osteosarcoma cells to DDP via GAS5/miR-26b-5p/TP53INP1 axis. Therefore, GAS5 may be a potential indicator for the management of osteosarcoma.
Collapse
Affiliation(s)
- Guowei Li
- Department of Spine Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121000, Liaoning, China
| | - Xue Yan
- Respiration Medicine, The First Affiliated Hospital of Jinzhou Medical University, No. 2, Section 5, Renmin Street, Guta District, Jinzhou, 121000, Liaoning, China.
| |
Collapse
|
73
|
Guo X, Li X, Dong Y, Xie W, Jin T, Xu D, Liu L. Cod (Gadus) skin collagen peptide powder reduces inflammation, restores mucosal barrier function, and inhibits fibrosis in dextran sodium sulfate-induced colitis in mice. JOURNAL OF ETHNOPHARMACOLOGY 2023; 316:116728. [PMID: 37277083 DOI: 10.1016/j.jep.2023.116728] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/24/2023] [Accepted: 06/02/2023] [Indexed: 06/07/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a chronic inflammatory bowel disease of unknown etiology. Cod (Gadus), a kind of herb from the Chinese herb. Traditionally, it has used to treat trauma, reduce swelling and relieve pain in order to exert its anti-inflammatory activity. Recent reports based on its hydrolyzed or enzymatic extracts have shown its anti-inflammatory, mucosal barrier protecting properties. However, its mechanism of improvement in ulcerative colitis is not clear. AIM OF THE STUDY This study aimed to explore the preventive and protective effect of cod skin collagen peptide powder (CP) on mice with UC and to explore the underlying mechanism. MATERIALS AND METHODS Mice with dextran sodium sulfate (DSS)-induced UC were treated with CP by gavage, and the anti-inflammatory effects of CP were assessed using general physical, pro-inflammatory cytokine, histopathological, immunohistochemical, macrophage flow cytometry, and inflammatory signaling pathway assays. RESULTS CP ameliorates inflammation by upregulating mitogen-activated protein kinase phosphatase-1 (MKP-1) and thereby decreasing the phosphorylation levels of P38 and JNK. It also polarizes macrophages in the colon towards the M2 phenotype, which helps to reduce tissue damage and promotes colon repair. At the same time, CP also inhibits the development of fibrosis, one of the complications of UC, by upregulating ZO-1, Occludin, and downregulating α-SMA, Vimentin, Snail, and Slug. CONCLUSION In this study, we found CP reduced inflammation in mice with UC by inducing MKP-1 expression, which caused dephosphorylation of mitogen-activated protein kinase (MAPK). CP also restored mucosal barrier function and inhibited the development of fibrosis complicating UC in these mice. Taken together, these results suggested that CP improved the pathological manifestations of UC in mice, suggesting that it can play a biological role as a nutritional supplement for preventing and treating UC.
Collapse
Affiliation(s)
- Xiangyu Guo
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Xiangdan Li
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Yanru Dong
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China
| | - Wei Xie
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, China
| | - Toufeng Jin
- Department of General Surgery, Yanbian University Hospital, Yanji, Jilin Province, China
| | - Dongyuan Xu
- Key Laboratory of Cellular Function and Pharmacology of Jilin Province, Yanbian University, Yanji, China.
| | - Lan Liu
- Department of Pathology, Yanbian University Hospital, Yanji, Jilin Province, China.
| |
Collapse
|
74
|
Wei J, Chen C, Feng J, Zhou S, Feng X, Yang Z, Lu H, Tao H, Li L, Xv H, Xuan J, Wang F. Muc2 mucin O-glycosylation interacts with enteropathogenic Escherichia coli to influence the development of ulcerative colitis based on the NF-kB signaling pathway. J Transl Med 2023; 21:793. [PMID: 37940996 PMCID: PMC10631195 DOI: 10.1186/s12967-023-04687-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic inflammatory disease of the intestine characterized by a compromised intestinal epithelial barrier. Mucin glycans are crucial in preserving barrier function during bacterial infections, although the underlying mechanisms remain largely unexplored. METHODS A cohort comprising 15 patients diagnosed with UC and 15 healthy individuals was recruited. Stool samples were collected to perform 16S rRNA gene sequencing, while biopsy samples were subjected to nanocapillary liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) to assess O-glycosylation. Gene expression was evaluated through qPCR analysis and Western blotting. Furthermore, animal experiments were conducted to investigate the effects of Escherichia coli and/or O-glycan inhibitor benzyl-α-GalNAc on the development of colitis in mice. RESULTS Our findings revealed that the mucus barrier was disrupted during the early stages of UC, while the MUC2 protein content remained unaltered. Additionally, a noteworthy reduction in the O-glycosylation of MUC2 was observed, along with significant changes in the intestinal microbiota during the early stages of UC. These changes included a decrease in intestinal species richness and an increase in the abundance of Escherichia coli (E. coli). Moreover, subsequent to the administration of galactose or O-glycan inhibitor to intestinal epithelial cells, it was observed that the cell culture supernatant had the ability to modify the proliferation and adhesive capacity of E. coli. Furthermore, when pathogenic E. coli or commensal E. coli were cocultured with intestinal epithelium, both strains elicited activation of the NF-KB signaling pathway in epithelial cells and facilitated the expression of serine protease in comparison to the untreated control. Consistently, the inhibition of O-glycans has been observed to enhance the pathogenicity of E. coli in vivo. Furthermore, a correlation has been established between the level of O-glycans and the development of ulcerative colitis. Specifically, a reduction in the O-glycan content of MUC2 cells has been found to increase the virulence of E. coli, thereby compromising the integrity of the intestinal epithelial barrier. CONCLUSIONS Together, there exist complex interactions between the intestinal epithelium, O-glycans, and the intestinal microbiota, which may inform the development of novel therapeutic strategies for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Juan Wei
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Chunyan Chen
- Department of Gastroenterology and Hepatology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jing Feng
- Department of Gastroenterology and Hepatology, The First School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shuping Zhou
- Department of Gastroenterology and Hepatology, Huainan First People's Hospital and, First Affiliated Hospital of The Medical College of Anhui, University of Science and Technology, Huainan, 232000, Anhui, People's Republic of China
| | - Xiaoyue Feng
- Department of Gastroenterology and Hepatology, Jinling Clinical College of Nanjing Medical University, Nanjing, 210002, People's Republic of China
| | - Zhao Yang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Heng Lu
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Hui Tao
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Liuying Li
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Huabing Xv
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China
| | - Ji Xuan
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China.
| | - Fangyu Wang
- Department of Gastroenterology and Hepatology, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, No. 305 East Zhongshan Road, Nanjing, 210002, People's Republic of China.
| |
Collapse
|
75
|
Wang C, Bai J, Wang B, Yu L, Tian F, Zhao J, Zhang H, Suo H, Chen W, Zhai Q. Stachyose modulates gut microbiota and alleviates DSS-induced ulcerative colitis in mice. FOOD SCIENCE AND HUMAN WELLNESS 2023. [DOI: 10.1016/j.fshw.2023.03.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
76
|
Hung YH, Capeling M, Villanueva JW, Kanke M, Shanahan MT, Huang S, Cubitt R, Rinaldi VD, Schimenti JC, Spence JR, Sethupathy P. Integrative genome-scale analyses reveal post-transcriptional signatures of early human small intestinal development in a directed differentiation organoid model. BMC Genomics 2023; 24:641. [PMID: 37884859 PMCID: PMC10601309 DOI: 10.1186/s12864-023-09743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Meghan Capeling
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael T Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Cubitt
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vera D Rinaldi
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
77
|
Mao A, Zhao W, Zhu Y, Kong F, Chen D, Si H, Xu C. Gut Bacterial Community Determines the Therapeutic Effect of Ginsenoside on Canine Inflammatory Bowel Disease by Modulating the Colonic Mucosal Barrier. Microorganisms 2023; 11:2616. [PMID: 38004628 PMCID: PMC10672857 DOI: 10.3390/microorganisms11112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Inflammatory bowel disease (IBD) comprises systemic inflammatory conditions primarily affecting the gastrointestinal tract, including Crohn's disease and ulcerative colitis. This research aims to analyze the clinical symptoms and pathogenesis of a Dextran sodium sulfate (DSS)-induced canine IBD model and evaluate the restorative effect of ginsenoside from a pathogenesis perspective. We established the DSS-induced canine IBD model and studied the pathological mechanisms. Additionally, we examined the therapeutic effect of ginsenosides by assessing the Canine Inflammatory Bowel Disease Activity Index (CIBDAI), C-reactive protein (CRP) levels, colonic tissue morphology, protein expression, and mucosal bacterial community analysis. Our findings revealed a total ginsenoside content of 22.7% in the ginsenoside extract. Animal experiments demonstrated that dogs with IBD exhibited decreased mental state, significantly increased CIBDAI and CRP levels, disrupted colonic epithelial tissue structure, decreased expression of mucin, tight junctions, and adherens junctions, as well as reduced diversity of the colonic mucosal bacterial community. Furthermore, correlation analysis highlighted a total of 38 bacterial strains correlated with physiological indices. Significantly, ginsenoside treatment could improve these symptoms and reverse the relative abundance of some bacterial communities. In conclusion, alterations in the properties of the colonic mucus layer or the reduction in MUC2, its core component, in dogs with IBD can lead to bacterial penetration of the mucus layer and subsequent contact with intestinal epithelial cells, resulting in inflammation. Remarkably, ginsenoside intervention showcased the capacity to positively influence the relative abundance of bacteria and impact the colonic mucus layer properties, thereby offering promising prospects for IBD management and recovery.
Collapse
Affiliation(s)
- Aipeng Mao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Weigang Zhao
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Yuhang Zhu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Fantao Kong
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Danyang Chen
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| | - Huazhe Si
- College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China;
| | - Chao Xu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Research Center for Microbial Feed Engineering of Special Animals in Jilin Province, Innovation Center for Feeding and Utilization of Special Animals in Jilin Province, Changchun 130112, China; (A.M.); (W.Z.); (F.K.); (D.C.)
| |
Collapse
|
78
|
Zhang D, Duan S, He Z, Zhu Z, Li Z, Yi Q, Cai T, Li J, Chen N, Guo S. Sijunzi Decoction Targets IL1B and TNF to Reduce Neutrophil Extracellular Traps (NETs) in Ulcerative Colitis: Evidence from Silicon Prediction and Experiment Validation. Drug Des Devel Ther 2023; 17:3103-3128. [PMID: 37868820 PMCID: PMC10590142 DOI: 10.2147/dddt.s428814] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/07/2023] [Indexed: 10/24/2023] Open
Abstract
Purpose This study was conducted to explore the mechanism of Sijunzi Decoction (SJZ) in the treatment of ulcerative colitis (UC). Methods The study aimed to investigate the active components and targets of SJZ in the treatment of UC by screening databases such as TCMSP, GeneCards, OMIM, Distinct, TTD, and Drugbank. An online Venn tool, Cytoscape 3.7.2, and Autodock Tools were used to analyze the components and targets. The study also used a mouse model of UC to further investigate the effects of SJZ. HE staining, immunofluorescence, ELISA, qPCR, and Western blot were used to detect various indices. Results Eighty-three active components and 112 action targets were identified from SJZ, including 67 targets for treating UC-related NETs. The five core targets identified were AKT1, JUN, IL1B, PTGS2, and TNF, and molecular docking studies indicated that the five targets were well-docked with ginsenoside Rh2, isoflavones, and formononetin. Animal experiments demonstrated that SJZ could alleviate various parameters such as weight, colon length, spleen index, disease activity index, and intestinal pathology of the UC mice. Immunofluorescence and Western blot showed that SJZ could reduce the expression of IL1B and TNF in intestinal neutrophils while increasing the expression of Occludin. Cellular immunofluorescence suggests that SJZ can reduce the expression of TNF and IL1B in NETs. The qPCR results also suggested that SJZ could inhibit TNF signal. Furthermore, ELISA results suggested that SJZ could inhibit the expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) while promoting the expression of anti-inflammatory cytokines (IL-10, IL-37, TGF-β). Conclusion SJZ treats UC by reducing the content of intestinal NETs, with primary targets on the NETs being IL1B and TNFand suppress TNF signal. The practical components of SJZ may be ginsenoside Rh2, isoflavones, and formononetin.
Collapse
Affiliation(s)
- Dong Zhang
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Siwei Duan
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhangyou He
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zeming Zhu
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Zhiping Li
- Institute of Gastroenterology, Science and Technology Innovation Center of Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Qincheng Yi
- Institute of Gastroenterology, Guangzhou University of Chinese Medicine, Guangzhou, People’s Republic of China
| | - Tiantian Cai
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Juanjuan Li
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Nan Chen
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| | - Shaoju Guo
- Gastrointestinal Ward, The Fourth Clinical Medical College of Guangzhou University of Chinese Medicine, Shenzhen, People’s Republic of China
- Gastrointestinal Ward, Shenzhen Hospital of Traditional Chinese Medicine, Shenzhen, People’s Republic of China
| |
Collapse
|
79
|
Zogg H, Singh R, Ha SE, Wang Z, Jin B, Ha M, Dafinone M, Batalon T, Hoberg N, Poudrier S, Nguyen L, Yan W, Layden BT, Dugas LR, Sanders KM, Ro S. miR-10b-5p rescues leaky gut linked with gastrointestinal dysmotility and diabetes. United European Gastroenterol J 2023; 11:750-766. [PMID: 37723933 PMCID: PMC10576606 DOI: 10.1002/ueg2.12463] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 07/31/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND/AIM Diabetes has substantive co-occurrence with disorders of gut-brain interactions (DGBIs). The pathophysiological and molecular mechanisms linking diabetes and DGBIs are unclear. MicroRNAs (miRNAs) are key regulators of diabetes and gut dysmotility. We investigated whether impaired gut barrier function is regulated by a key miRNA, miR-10b-5p, linking diabetes and gut dysmotility. METHODS We created a new mouse line using the Mb3Cas12a/Mb3Cpf1 endonuclease to delete mir-10b globally. Loss of function studies in the mir-10b knockout (KO) mice were conducted to characterize diabetes, gut dysmotility, and gut barrier dysfunction phenotypes in these mice. Gain of function studies were conducted by injecting these mir-10b KO mice with a miR-10b-5p mimic. Further, we performed miRNA-sequencing analysis from colonic mucosa from mir-10b KO, wild type, and miR-10b-5p mimic injected mice to confirm (1) deficiency of miR-10b-5p in KO mice, and (2) restoration of miR-10b-5p after the mimic injection. RESULTS Congenital loss of mir-10b in mice led to the development of hyperglycemia, gut dysmotility, and gut barrier dysfunction. Gut permeability was increased, but expression of the tight junction protein Zonula occludens-1 was reduced in the colon of mir-10b KO mice. Patients with diabetes or constipation- predominant irritable bowel syndrome, a known DGBI that is linked to leaky gut, had significantly reduced miR-10b-5p expression. Injection of a miR-10b-5p mimic in mir-10b KO mice rescued these molecular alterations and phenotypes. CONCLUSIONS Our study uncovered a potential pathophysiologic mechanism of gut barrier dysfunction that links both the diabetes and gut dysmotility phenotypes in mice lacking miR-10b-5p. Treatment with a miR-10b-5p mimic reversed the leaky gut, diabetic, and gut dysmotility phenotypes, highlighting the translational potential of the miR-10b-5p mimic.
Collapse
Affiliation(s)
- Hannah Zogg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Rajan Singh
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Se Eun Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Zhuqing Wang
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Byungchang Jin
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mariah Ha
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Mirabel Dafinone
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Tylar Batalon
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Nicholas Hoberg
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Sandra Poudrier
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Linda Nguyen
- Division of Gastroenterology & HepatologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Wei Yan
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Brian T. Layden
- Division of Endocrinology, Diabetes, and MetabolismDepartment of MedicineThe University of Illinois at ChicagoChicagoIllinoisUSA
- Jesse Brown Veterans Affairs Medical CenterChicagoIllinoisUSA
| | - Lara R. Dugas
- Loyola University ChicagoPublic Health SciencesMaywoodIllinoisUSA
- Division of Epidemiology & BiostatisticsSchool of Public HealthFaculty of Health SciencesUniversity of Cape TownCape TownSouth Africa
| | - Kenton M. Sanders
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
| | - Seungil Ro
- Department of Physiology and Cell BiologySchool of MedicineUniversity of NevadaRenoNevadaUSA
- RosVivo TherapeuticsApplied Research FacilityRenoNevadaUSA
| |
Collapse
|
80
|
El Gazzar WB, Sliem RE, Bayoumi H, Nasr HE, Shabanah M, Elalfy A, Radwaan SE, Gebba MA, Mansour HM, Badr AM, Amer MF, Ashour SS, Morsi H, Aboelkomsan ESAF, Baioumy B, Sayed AEDH, Farag AA. Melatonin Alleviates Intestinal Barrier Damaging Effects Induced by Polyethylene Microplastics in Albino Rats. Int J Mol Sci 2023; 24:13619. [PMID: 37686424 PMCID: PMC10488227 DOI: 10.3390/ijms241713619] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There have been concerns about the potential health risks posed by microplastics (MP). The detection of MP in a variety of food products revealed that humans are ingesting MP. Nevertheless, there is a paucity of data about their impacts, as well as their uptake, on intestinal barrier integrity. This study examined the toxic effects of oral administration of two doses of polyethylene microplastics (PE-MP) (3.75 or 15 mg/kg/day for 5 weeks; mean particle size: 4.0-6.0 µm) on the intestinal barrier integrity in rats. Moreover, the effect of melatonin treatment with MP exposure was also assessed. The PE-MP particle uptake, histopathological changes, Alcian blue staining, Muc2 mRNA, proinflammatory cytokines (IL-1β and TNF-α), and cleaved caspase-3, as well as tight junction proteins (claudin-1, myosin light-chain kinase (MLCK), occludin, and zonula occludens-1 (ZO-1)) were assessed. Oral administration of PE-MP resulted in apparent jejunal histopathological alterations; significantly decreased mucin secretion, occludin, ZO-1, and claudin-1 expression; and significantly upregulated MLCK mRNA, IL-1β concentration, and cleaved caspase-3 expression. Melatonin reversed these altered parameters and improved the PE-MP-induced histopathological and ultrastructure changes. This study highlighted the PE-MP's toxic effect on intestinal barrier integrity and revealed the protective effect of melatonin.
Collapse
Affiliation(s)
- Walaa Bayoumie El Gazzar
- Department of Anatomy, Physiology and Biochemistry, Faculty of Medicine, The Hashemite University, P.O. Box 330127, Zarqa 13133, Jordan
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Rania E. Sliem
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (R.E.S.); (S.E.R.)
| | - Heba Bayoumi
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (A.E.)
| | - Hend Elsayed Nasr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| | - Manar Shabanah
- Department of Physiology, Faculty of Medicine, Mansoura University, Mansoura 35511, Egypt;
| | - Amira Elalfy
- Department of Histology and Cell Biology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (H.B.); (A.E.)
| | - Shaimaa E. Radwaan
- Department of Zoology, Faculty of Science, Benha University, Benha 13518, Egypt; (R.E.S.); (S.E.R.)
| | - Mohammed A. Gebba
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (M.A.G.)
- Department of Anatomy and Embryology, Faculty of Medicine, Merit University, Sohag 82524, Egypt
| | - Heba M. Mansour
- Department of Pharmacology and Toxicology, College of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology, 6th of October City 12573, Egypt;
| | - Amul M. Badr
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Marwa Fathy Amer
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Sara S. Ashour
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | - Heba Morsi
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo 11451, Egypt; (A.M.B.); (M.F.A.); (S.S.A.); (H.M.)
| | | | - Bodour Baioumy
- Department of Anatomy and Embryology, Faculty of Medicine, Benha University, Benha 13518, Egypt; (M.A.G.)
| | | | - Amina A. Farag
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Benha University, Benha 13518, Egypt;
| |
Collapse
|
81
|
Kapoor S, Padwad YS. Phloretin suppresses intestinal inflammation and maintained epithelial tight junction integrity by modulating cytokines secretion in in vitro model of gut inflammation. Cell Immunol 2023; 391-392:104754. [PMID: 37506521 DOI: 10.1016/j.cellimm.2023.104754] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 07/22/2023] [Accepted: 07/23/2023] [Indexed: 07/30/2023]
Abstract
Ulcerative colitis is a type of inflammatory bowel disease which in long run can lead to colorectal cancer (CRC). Chronic inflammation can be a key factor for the occurrence of CRC thus mitigating an inflammation can be a preventive strategy for the occurrence of CRC. In this study we have explored the anti-inflammatory potential of phloretin, in in vitro gut inflammation model, developed by co-culture of Caco2 (intestinal epithelial) cells and RAW264.7 macrophages (immune cells). Phloretin is a dihydrochalcone present in apple, pear and strawberries. An anti-inflammatory effect of phloretin in reducing LPS induced inflammation and maintenance of transepithelial electric resistance (TEER) in Caco2 cells was examined. Paracellular permeability assay was performed using Lucifer yellow dye to evaluate the effect of phloretin in inhibiting gut leakiness caused by inflammatory mediators secreted by activated macrophages. Phloretin attenuated LPS induced nitric oxide levels, oxidative stress, depolarization of mitochondrial membrane potential in Caco2 cells as evidenced by reduction in reactive oxygen species (ROS), and enhancement of MMP, and decrease in inflammatory cytokines IL8, TNFα, IL1β and IL6. It exhibited anti-inflammatory activity by inhibiting the expression of NFκB, iNOS and Cox2. Phloretin maintained the epithelial integrity by regulating the expression of tight junction proteins ZO1, occludin, Claudin1 and JAM. Phloretin reduced LPS induced levels of Cox2 along with the reduction in Src expression which further regulated an expression of tight junction protein occludin. Phloretin in combination to sodium pyruvate exhibited potential anti-inflammatory activity via targeting NFkB signaling. Our findings paved a way to position phloretin as nutraceutical in preventing the occurrence of colitis and culmination of disease into colitis associated colorectal cancer.
Collapse
Affiliation(s)
- Smita Kapoor
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Yogendra S Padwad
- Pharmacology and Toxicology Lab, Dietetics & Nutrition Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176 061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
82
|
Guo W, Hu Y, Qian J, Zhu L, Cheng J, Liao J, Fan X. Laser capture microdissection for biomedical research: towards high-throughput, multi-omics, and single-cell resolution. J Genet Genomics 2023; 50:641-651. [PMID: 37544594 DOI: 10.1016/j.jgg.2023.07.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/08/2023]
Abstract
Spatial omics technologies have become powerful methods to provide valuable insights into cells and tissues within a complex context, significantly enhancing our understanding of the intricate and multifaceted biological system. With an increasing focus on spatial heterogeneity, there is a growing need for unbiased, spatially resolved omics technologies. Laser capture microdissection (LCM) is a cutting-edge method for acquiring spatial information that can quickly collect regions of interest (ROIs) from heterogeneous tissues, with resolutions ranging from single cells to cell populations. Thus, LCM has been widely used for studying the cellular and molecular mechanisms of diseases. This review focuses on the differences among four types of commonly used LCM technologies and their applications in omics and disease research. Key attributes of application cases are also highlighted, such as throughput and spatial resolution. In addition, we comprehensively discuss the existing challenges and the great potential of LCM in biomedical research, disease diagnosis, and targeted therapy from the perspective of high-throughput, multi-omics, and single-cell resolution.
Collapse
Affiliation(s)
- Wenbo Guo
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Yining Hu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jingyang Qian
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Lidan Zhu
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Junyun Cheng
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Jie Liao
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| | - Xiaohui Fan
- Pharmaceutical Informatics Institute, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China; National Key Laboratory of Chinese Medicine Modernization, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China.
| |
Collapse
|
83
|
Mankarious MM, Connelly TM, Harris L, Deiling S, Yochum GS, Koltun WA. Creating a Surgical Biobank: The Hershey Medical Center Experience. Dis Colon Rectum 2023; 66:1174-1184. [PMID: 37378558 DOI: 10.1097/dcr.0000000000002944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
BACKGROUND Tissue harvesting at the time of surgery offers surgeons and scientists a unique opportunity to discover and better understand disease pathophysiology. Tissue biobanking presents challenges in patient consents, specimen collection, preparation, and storage, but the potential for scientific discovery justifies the effort. Although the number of tissue biobanks is increasing worldwide, information regarding necessary infrastructure, process flow, and management of expected obstacles is lacking. OBJECTIVE To provide a framework and motivation for clinician scientists intending to start an intestinal tissue biobank under their direction. DATA SOURCES The Carlino Family Inflammatory Bowel and Colorectal Diseases Biobank is housed at the Milton S. Hershey Medical Center. STUDY SELECTION Review. INTERVENTION Implementation of a surgical tissue biobank at a large tertiary care institution. MAIN OUTCOME MEASURES Assess critical challenges and obstacles over the years as well as keys to the success of the program. RESULTS Over 2 decades, the institutional biobank grew from an IBD biobank to one which now incorporates thousands of surgical specimens representing numerous colorectal diseases. This was done through a process of refinement focusing on patient recruitment and an efficient consenting and specimen management process. The biobank's success is further insured by institutional, external, and philanthropic support; scientific collaborations; and sharing of biological specimens with other groups of dedicated researchers. LIMITATIONS This is a single-center experience in collecting surgically resected colorectal specimens. CONCLUSIONS Surgical specimen biobanks are essential in studying disease cause using genomics, transcriptomics, and proteomic technologies. Therefore, surgeons, clinicians, and scientists should build biobanks at their institutions to promote further scientific discovery and improve specimen diversity.
Collapse
Affiliation(s)
- Marc M Mankarious
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Tara M Connelly
- Department of Surgery, University Hospital Limerick, Dooradoyle, Limerick, Ireland
| | - Leonard Harris
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Sue Deiling
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Gregory S Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
- Department of Biochemistry and Molecular Biology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Walter A Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
84
|
Ma S, Yang B, Du Y, Lv Y, Liu J, Shi Y, Huang T, Xu H, Deng L, Chen X. 1,8-cineole ameliorates colon injury by downregulating macrophage M1 polarization via inhibiting the HSP90-NLRP3-SGT1 complex. J Pharm Anal 2023; 13:984-998. [PMID: 37842654 PMCID: PMC10568110 DOI: 10.1016/j.jpha.2023.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 06/08/2023] [Accepted: 07/01/2023] [Indexed: 10/17/2023] Open
Abstract
Ulcerative colitis (UC) is characterized by chronic relapsing intestinal inflammation. Currently, there is no effective treatment for the disease. According to our preliminary data, 1,8-cineole, which is the main active compound of Amomum compactum Sol. ex Maton volatile oil and an effective drug for the treatment of pneumonia, showed remarkable anti-inflammatory effects on colitis pathogenesis. However, its mechanism of action and direct targets remain unclear. This study investigated the direct targets and mechanism through which 1,8-cineole exerts its anti-inflammatory effects using a dextran sulfate sodium salt-induced colitis mouse model. The effects of 1,8-cineole on macrophage polarization were investigated using activated bone marrow-derived macrophages and RAW264.7 cells. In addition, 1,8-cineole targets were revealed by drug affinity responsive target stability, thermal shift assay, cellular thermal shift assay, and heat shock protein 90 (HSP90) adenosine triphosphatases (ATPase) activity assays. The results showed that 1,8-cineole exhibited powerful anti-inflammatory properties in vitro and in vivo by inhibiting the macrophage M1 polarization and protecting intestinal barrier function. Mechanistically, 1,8-cineole directly interacted with HSP90 and decreased its ATPase activity, also inhibited nucleotide-binding and oligomerization domain-, leucine rich repeat-, and pyrin domain-containing 3 (NLRP3) binding to HSP90 and suppressor of G-two allele of SKP1 (SGT1) and suppressed NLRP3 inflammasome activation in macrophages. These results demonstrated that 1,8-cineole is a potential drug candidate for UC treatment.
Collapse
Affiliation(s)
- Shengsuo Ma
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Bing Yang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yang Du
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yiwen Lv
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Jiarong Liu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Yucong Shi
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Ting Huang
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Huachong Xu
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Li Deng
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiaoyin Chen
- School of Traditional Chinese Medicine, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
85
|
Li H, Ye XF, Su YS, He W, Zhang JB, Zhang Q, Zhan LB, Jing XH. Mechanism of Acupuncture and Moxibustion on Promoting Mucosal Healing in Ulcerative Colitis. Chin J Integr Med 2023; 29:847-856. [PMID: 35412218 DOI: 10.1007/s11655-022-3531-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Abstract
The latest guideline about ulcerative colitis (UC) clinical practice stresses that mucosal healing, rather than anti-inflammation, is the main target in UC clinical management. Current mucosal dysfunction mainly closely relates to the endoscopic intestinal wall (mechanical barrier) injury with the imbalance between intestinal epithelial cells (IECs) regeneration and death, as well as tight junction (TJ) dysfunction. It is suggested that biological barrier (gut microbiota), chemical barrier (mucus protein layer, MUC) and immune barrier (immune cells) all take part in the imbalance, leading to mechanical barrier injury. Lots of experimental studies reported that acupuncture and moxibustion on UC recovery by adjusting the gut microbiota, MUC and immune cells on multiple targets and pathways, which contributes to the balance of IEC regeneration and death, as well as TJ structure recovery in animals. Moreover, the validity and superiority of acupuncture and moxibustion were also demonstrated in clinic. This study aims to review the achievements of acupuncture and moxibustion on mucosal healing and analyse the underlying mechanisms.
Collapse
Affiliation(s)
- Han Li
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Feng Ye
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Yang-Shuai Su
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Wei He
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Jian-Bin Zhang
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Department of Acupuncture and Moxibustion, the Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 211005, China
| | - Qi Zhang
- Department of Acupuncture and Moxibustion, Changzhou Traditional Chinese Medicine Hospital Affiliated to Nanjing University of Chinese Medicine, Changzhou, Jiangsu Province, 213002, China
| | - Li-Bin Zhan
- Nanjing University of Chinese Medicine, Nanjing, 210023, China
- Liaoning University of Chinese Medicine, Shenyang, 116600, China
| | - Xiang-Hong Jing
- Research Center of Meridians, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
86
|
Meng G, Monaghan TM, Duggal NA, Tighe P, Peerani F. Microbial-Immune Crosstalk in Elderly-Onset Inflammatory Bowel Disease: Unchartered Territory. J Crohns Colitis 2023; 17:1309-1325. [PMID: 36806917 DOI: 10.1093/ecco-jcc/jjad025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Indexed: 02/23/2023]
Abstract
Elderly-onset inflammatory bowel disease [IBD] patients exhibit a distinct natural history compared to younger IBD patients, with unique disease phenotypes, differential responses to therapy, and increased surgical morbidity and mortality. Despite the foreseeable high demand for personalized medicine and specialized IBD care in the elderly, current paradigms of IBD management fail to capture the required nuances of care for elderly-onset IBD patients. Our review postulates the roles of systemic and mucosal immunosenescence, inflammageing and a dysbiotic microbial ecosystem in the pathophysiology of elderly-onset IBD. Ultimately, a better understanding of elderly-onset IBD can lead to improved patient outcomes and the tailoring of future preventative and treatment strategies.
Collapse
Affiliation(s)
- Guanmin Meng
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| | - Tanya M Monaghan
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham, UK
- Nottingham Digestive Diseases Centre, School of Medicine, University of Nottingham, Nottingham, UK
| | - Niharika A Duggal
- MRC-Arthritis Research UK Centre for Musculoskeletal Ageing Research, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Paddy Tighe
- School of Life Sciences, University of Nottingham, Nottingham, UK
| | - Farhad Peerani
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, AB, Canada
| |
Collapse
|
87
|
Wang HY, Lin X, Huang GG, Zhou R, Lei SY, Ren J, Zhang KR, Feng CL, Wu YW, Tang W. Atranorin inhibits NLRP3 inflammasome activation by targeting ASC and protects NLRP3 inflammasome-driven diseases. Acta Pharmacol Sin 2023; 44:1687-1700. [PMID: 36964308 PMCID: PMC10374890 DOI: 10.1038/s41401-023-01054-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/09/2023] [Indexed: 03/26/2023]
Abstract
Aberrant NLRP3 activation has been implicated in the pathogenesis of numerous inflammation-associated diseases. However, no small molecular inhibitor that directly targets NLRP3 inflammasome has been approved so far. In this study, we show that Atranorin (C19H18O8), the secondary metabolites of lichen family, effectively prevents NLRP3 inflammasome activation in macrophages and dendritic cells. Mechanistically, Atranorin inhibits NLRP3 activation induced cytokine secretion and cell pyroptosis through binding to ASC protein directly and therefore restraining ASC oligomerization. The pharmacological effect of Atranorin is evaluated in NLRP3 inflammasome-driven disease models. Atranorin lowers serum IL-1β and IL-18 levels in LPS induced mice acute inflammation model. Also, Atranorin protects against MSU crystal induced mice gouty arthritis model and lowers ankle IL-1β level. Moreover, Atranorin ameliorates intestinal inflammation and epithelial barrier dysfunction in DSS induced mice ulcerative colitis and inhibits NLRP3 inflammasome activation in colon. Altogether, our study identifies Atranorin as a novel NLRP3 inhibitor that targets ASC protein and highlights the potential therapeutic effects of Atranorin in NLRP3 inflammasome-driven diseases including acute inflammation, gouty arthritis and ulcerative colitis.
Collapse
Affiliation(s)
- Hao-Yu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xi Lin
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Guan-Gen Huang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Rong Zhou
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Shu-Yue Lei
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Jing Ren
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Kai-Rong Zhang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- School of Pharmaceutical Science, Nanchang University, Nanchang, 330006, China
| | - Chun-Lan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yan-Wei Wu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
88
|
Cheng T, Xu C, Shao J. Updated immunomodulatory roles of gut flora and microRNAs in inflammatory bowel diseases. Clin Exp Med 2023; 23:1015-1031. [PMID: 36385416 PMCID: PMC9668223 DOI: 10.1007/s10238-022-00935-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/27/2022] [Indexed: 11/17/2022]
Abstract
Inflammatory bowel disease is a heterogeneous intestinal inflammatory disorder, including ulcerative colitis (UC) and Crohn's disease (CD). Existing studies have shown that the pathogenesis of IBD is closely related to the host's genetic susceptibility, intestinal flora disturbance and mucosal immune abnormalities, etc. It is generally believed that there are complicated interactions between host immunity and intestinal microflora/microRNAs during the occurrence and progression of IBD. Intestinal flora is mainly composed of bacteria, fungi, viruses and helminths. These commensals are highly implicated in the maintenance of intestinal microenvironment homeostasis alone or in combination. MiRNA is an endogenous non-coding small RNA with a length of 20 to 22 nucleotides, which can perform a variety of biological functions by silencing or activating target genes through complementary pairing bonds. A large quantity of miRNAs are involved in intestinal inflammation, mucosal barrier integrity, autophagy, vesicle transportation and other small RNA alterations in IBD circumstance. In this review, the immunomodulatory roles of gut flora and microRNAs are updated in the occurrence and progression of IBD. Meanwhile, the gut flora and microRNA targeted therapeutic strategies as well as other immunomodulatory approaches including TNF-α monoclonal antibodies are also emphasized in the treatment of IBD.
Collapse
Affiliation(s)
- Ting Cheng
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Chen Xu
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China
| | - Jing Shao
- Laboratory of Infection and Immunity, College of Integrated Chinese and Western Medicine (College of Life Science), Anhui University of Chinese Medicine, Zhijing Building, 433 Room, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, 350 Longzihu Road, Xinzhan District, Hefei, 230012, Anhui, People's Republic of China.
| |
Collapse
|
89
|
Yang N, Lan T, Han Y, Zhao H, Wang C, Xu Z, Chen Z, Tao M, Li H, Song Y, Ma X. Tributyrin alleviates gut microbiota dysbiosis to repair intestinal damage in antibiotic-treated mice. PLoS One 2023; 18:e0289364. [PMID: 37523400 PMCID: PMC10389721 DOI: 10.1371/journal.pone.0289364] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/17/2023] [Indexed: 08/02/2023] Open
Abstract
Tributyrin (TB) is a butyric acid precursor and has a key role in anti-inflammatory and intestinal barrier repair effects by slowly releasing butyric acid. However, its roles in gut microbiota disorder caused by antibiotics remain unclear. Herein, we established an intestinal microbiota disorder model using ceftriaxone sodium via gavage to investigate the effects of different TB doses for restoring gut microbiota and intestinal injury. First, we divided C57BL/6 male mice into two groups: control (NC, n = 8) and experimental (ABx, n = 24) groups, receiving gavage with 0.2 mL normal saline and 400 mg/mL ceftriaxone sodium solution for 7 d (twice a day and the intermediate interval was 6 h), respectively. Then, mice in the ABx group were randomly split into three groups: model (M, 0.2 mL normal saline), low TB group (TL, 0.3 g/kg BW), and high TB group (TH, 3 g/kg BW) for 11 d. We found that TB supplementation alleviated antibiotics-induced weight loss, diarrhea, and intestinal tissue damage. The 16S rRNA sequence analysis showed that TB intervention increased the α diversity of intestinal flora, increased potential short-chain fatty acids (SCFAs)-producing bacteria (such as Muribaculaceae and Bifidobacterium), and inhibited the relative abundance of potentially pathogenic bacteria (such as Bacteroidetes and Enterococcus) compared to the M group. TB supplementation reversed the reduction in SCFAs production in antibiotic-treated mice. Additionally, TB downregulated the levels of serum LPS and zonulin, TNF-α, IL-6, IL-1β and NLRP3 inflammasome-related factors in intestinal tissue and upregulated tight junction proteins (such as ZO-1 and Occludin) and MUC2. Overall, the adjustment ability of low-dose TB to the above indexes was stronger than high-dose TB. In conclusion, TB can restore the dysbiosis of gut microbiota, increase SCFAs, suppress inflammation, and ameliorate antibiotic-induced intestinal damage, indicating that TB might be a potential gut microbiota modulator.
Collapse
Affiliation(s)
- Ning Yang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Tongtong Lan
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yisa Han
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Haifeng Zhao
- Qingdao Institute of Food and Drug Control, Key Laboratory of Quality Research and Evaluation of Marine Traditional Chinese Medicine, State Medical Products Administration, Qingdao, China
| | - Chuhui Wang
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhen Xu
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Zhao Chen
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Meng Tao
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Hui Li
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Yang Song
- Department of Nutrition and Food Hygiene, School of Public Health, College of Medicine, Qingdao University, Qingdao, China
| | - Xuezhen Ma
- The Affiliated Qingdao Central Hospital of Qingdao University, The Second Affiliated Hospital of Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
90
|
Li G, Yu X, Portela Fontoura AB, Javaid A, de la Maza-Escolà VS, Salandy NS, Fubini SL, Grilli E, McFadden JW, Duan JE. Transcriptomic regulations of heat stress response in the liver of lactating dairy cows. BMC Genomics 2023; 24:410. [PMID: 37474909 PMCID: PMC10360291 DOI: 10.1186/s12864-023-09484-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/24/2023] [Indexed: 07/22/2023] Open
Abstract
BACKGROUND The global dairy industry is currently facing the challenge of heat stress (HS). Despite the implementation of various measures to mitigate the negative impact of HS on milk production, the cellular response of dairy cows to HS is still not well understood. Our study aims to analyze transcriptomic dynamics and functional changes in the liver of cows subjected to heat stress (HS). To achieve this, a total of 9 Holstein dairy cows were randomly selected from three environmental conditions - heat stress (HS), pair-fed (PF), and thermoneutral (TN) groups - and liver biopsies were obtained for transcriptome analysis. RESULTS Both the dry matter intake (DMI) and milk yield of cows in the HS group exhibited significant reduction compared to the TN group. Through liver transcriptomic analysis, 483 differentially expressed genes (DEGs) were identified among three experimental groups. Especially, we found all the protein coding genes in mitochondria were significantly downregulated under HS and 6 heat shock proteins were significant upregulated after HS exposure, indicating HS may affect mitochondria integrity and jeopardize the metabolic homeostasis in liver. Furthermore, Gene ontology (GO) enrichment of DEGs revealed that the protein folding pathway was upregulated while oxidative phosphorylation was downregulated in the HS group, corresponding to impaired energy production caused by mitochondria dysfunction. CONCLUSIONS The liver transcriptome analysis generated a comprehensive gene expression regulation network upon HS in lactating dairy cows. Overall, this study provides novel insights into molecular and metabolic changes of cows conditioned under HS. The key genes and pathways identified in this study provided further understanding of transcriptome regulation of HS response and could serve as vital references to mitigate the HS effects on dairy cow health and productivity.
Collapse
Affiliation(s)
- Guangsheng Li
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Xingtan Yu
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Ananda B Portela Fontoura
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Awais Javaid
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
| | - Víctor Sáinz de la Maza-Escolà
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
- Dipartamento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, 40064, Italy
| | - Nia S Salandy
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA
- Department of Agriculture and Environmental Sciences, Tuskegee University, Tuskegee, 36088, USA
| | - Susan L Fubini
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, 14853, USA
| | - Ester Grilli
- Dipartamento di Scienze Mediche Veterinarie, Università di Bologna, Bologna, 40064, Italy
- VetAgro S.p.A, Reggio Emilia, 42124, Italy
| | - Joseph W McFadden
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA.
| | - Jingyue Ellie Duan
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, 14853, USA.
| |
Collapse
|
91
|
Shu Y, Peng F, Zhao B, Liu C, Li Q, Li H, Wang Y, Jiang Y, Lu T, Wang Q, Sun J, Feng H, Lu Z, Liu X, Wang J, Qiu W. Transfer of patient's peripheral blood mononuclear cells (PBMCs) disrupts blood-brain barrier and induces anti-NMDAR encephalitis: a study of novel humanized PBMC mouse model. J Neuroinflammation 2023; 20:164. [PMID: 37443034 DOI: 10.1186/s12974-023-02844-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
BACKGROUND Anti-N-methyl-D-aspartate receptor (NMDAR) encephalitis is a severe autoimmune neuropsychiatric disease. Brain access of anti-NMDAR autoantibody through the blood-brain barrier (BBB) is essential for pathogenesis. Most previous animal models limit the investigation of etiologies of BBB damage in patients. METHODS In this study, we established a novel humanized mouse model of anti-NMDAR encephalitis by intraperitoneal injection of patients' peripheral blood mononuclear cells (PBMCs) into BALB/c Rag2-/-Il2rg-/-SirpαNODFlk2-/- mice. RESULTS We found that engraftment of patients' PBMCs not only produced potent anti-GluN1 autoantibodies, but also disrupted BBB integrity to allow brain access of autoantibodies, resulting in a hyperactive locomotor phenotype, anxiety- and depressive-like behaviors, cognitive deficits, as well as functional changes in corresponding brain regions. Transcriptome analysis suggested an exaggerated immune response and impaired neurotransmission in the mouse model and highlighted Il-1β as a hub gene implicated in pathological changes. We further demonstrated that Il-1β was produced by endothelial cells and disrupted BBB by repressing tight junction proteins. Treatment with Anakinra, an Il-1 receptor antagonist, ameliorated BBB damage and neuropsychiatric behaviors. CONCLUSIONS Our study provided a novel and clinically more relevant humanized mouse model of anti-NMDAR encephalitis and revealed an intrinsic pathogenic property of the patient's lymphocytes.
Collapse
Affiliation(s)
- Yaqing Shu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Fuhua Peng
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Bingchu Zhao
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China
| | - Chunxin Liu
- Department of Emergency, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Qihui Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Huilu Li
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yuge Wang
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Tingting Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Qin Wang
- Department of Pharmacology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, China
| | - Jian Sun
- Guangdong Laboratory for Lingnan Modern Agriculture, National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original BacteriaCollege of Veterinary Medicine, South China Agricultural University, Guangzhou, China
| | - Huiyu Feng
- Department of Neurology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Zhengqi Lu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Xiaodong Liu
- Department of Anaesthesia and Intensive Care, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Li Ka Shing Institute of Health Science, The Chinese University of Hong Kong, Hong Kong SAR, China.
- Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, China.
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan, 430071, China.
- Institute of Neuroscience and Brain Diseases; Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Wei Qiu
- Department of Neurology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China.
| |
Collapse
|
92
|
Abstract
Inflammatory bowel disease (IBD) is an idiopathic disease of disordered chronic inflammation in the intestines that affects many people across the world. While the disease is still being better characterized, greater progress has been made in understanding the many components that intersect in the disease. Among these components are the many pieces that compose the intestinal epithelial barrier, the various cytokines and immune cells, and the population of microbes that reside in the intestinal lumen. Since their discovery, the hypoxia-inducible factors (HIFs) have been found to play an expansive role in physiology as well as diseases such as inflammation due to their role in oxygen sensing-related gene transcription, and metabolic control. Making use of existing and developing paradigms in the immuno-gastroenterology of IBD, we summarized that hypoxic signaling plays as another component in the status and progression of IBD, which may include possible functions at the origins of inflammatory dysregulation. © 2023 American Physiological Society. Compr Physiol 13:4767-4783, 2023.
Collapse
Affiliation(s)
- Michael Morales
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| | - Xiang Xue
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico, USA
| |
Collapse
|
93
|
Han Z, Ge L, Wen S, Sun J. Dysfunction of the intestinal physical barrier in the intestinal inflammation of tongue sole, Cynoglossus semilaevis, induced by Shewanella algae infection. FISH & SHELLFISH IMMUNOLOGY 2023:108900. [PMID: 37315911 DOI: 10.1016/j.fsi.2023.108900] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 06/10/2023] [Accepted: 06/12/2023] [Indexed: 06/16/2023]
Abstract
Bacterial intestinal inflammation occurs frequently in cultured fish. However, research on the dysfunction of the intestinal physical barrier in fish intestinal inflammation is scarce. In this study, intestinal inflammation in tongue sole Cynoglossus semilaevis was induced by Shewanella algae and the intestinal permeability was investigated. Gene expression patterns in inflammatory factors, tight junction molecules, and keratins 8 and 18 in the intestines were further explored. Histological examinations of the middle intestines showed that S. algae induced pathological lesions of intestinal inflammation and significantly increased the total number of mucous cells (p < 0.01). Ultrastructural observation in the middle intestines showed that intercellular spaces between epithelial cells were significantly wider in infected fish compared with the control (p < 0.01). The positive result of fluorescence in situ hybridization confirmed the presence of S. algae in the intestine. Enhanced Evans blue exudation and increased levels of serum d-lactate and intestinal fatty acid binding protein were suggestive of increased intestinal barrier permeability. The mRNA levels of four pro-inflammatory cytokines, namely IL-6, IL-8, IL-β, and TNF-α, were significantly increased after S. algae infection at most tested time points (p < 0.01 or p < 0.05), while there was an alternating increasing and decreasing trend in the gene expression patterns of IL-10, TGF-β, TLR-2, AP-1, and CASP-1. The mRNA expression of tight junction molecules (claudin-1, claudin-2, ZO-1, JAM-A, and MarvelD3) and keratins 8 and 18 in the intestines was significantly decreased at 6, 12, 24, 48, or 72 h post infection (p < 0.01 or p < 0.05). In conclusion, S. algae infection induced intestinal inflammation accompanied by increased intestinal permeability in tongue sole, and tight junction molecules and keratins were probably associated with the pathological process.
Collapse
Affiliation(s)
- Zhuoran Han
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Lunhua Ge
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Siyi Wen
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| | - Jingfeng Sun
- Tianjin Key Lab of Aqua-ecology and Aquaculture, Fisheries College, Tianjin Agricultural University, Tianjin, 300384, China.
| |
Collapse
|
94
|
Tan Z, Zhang Q, Zhao R, Huang T, Tian Y, Lin Y. A Comparative Study on the Effects of Different Sources of Carboxymethyl Poria Polysaccharides on the Repair of DSS-Induced Colitis in Mice. Int J Mol Sci 2023; 24:ijms24109034. [PMID: 37240380 DOI: 10.3390/ijms24109034] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Carboxymethyl poria polysaccharide plays important anti-tumor, antioxidant, and anti-inflammatory roles. Therefore, this study aimed to compare the healing impacts of two different sources of carboxymethyl poria polysaccharides [Carboxymethylat Poria Polysaccharides I (CMP I) and Carboxymethylat Poria Polysaccharides II (CMP II)] on ulcerative colitis in mice caused by dextran sulfate sodium (DSS). All the mice were arbitrarily split into five groups (n = 6): (a) control (CTRL), (b) DSS, (c) SAZ (sulfasalazine), (d) CMP I, and (e) CMP II. The experiment lasted for 21 days, and the body weight and final colon length were monitored. A histological analysis of the mouse colon tissue was carried out using H&E staining to assess the degree of inflammatory infiltration. The levels of inflammatory cytokines [interleukin-1β (IL-1β), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-4 (IL-4)] and enzymes [superoxide dismutase (SOD) and myeloperoxidase (MPO)] in the serum were examined using ELISA. Additionally, 16S ribosomal RNA sequencing was used to analyze the microorganisms in the colon. The results indicated that both CMP I and CMP II alleviated weight loss, colonic shortening, and inflammatory factor infestation in colonic tissues caused by DSS (p < 0.05). Furthermore, the ELISA results revealed that both CMP I and CMP II reduced the expression of IL-1β, IL-6, TNF-α, and MPO, and elevated the expression of IL-4 and SOD in the sera of the mice (p < 0.05). Moreover, 16S rRNA sequencing showed that CMP I and CMP II increased the plenitude of microorganisms in the mouse colon relative to that in the DSS group. The results also indicated that the therapeutic effect of CMP I on DSS-induced colitis in the mice was superior to that of CMP II. This study demonstrated that carboxymethyl poria polysaccharide from Poria cocos had therapeutic effects on DSS-induced colitis in mice, with CMP I being more effective than CMP II.
Collapse
Affiliation(s)
- Zhijie Tan
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| | - Qiaoyi Zhang
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Rou Zhao
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Ting Huang
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Yun Tian
- Agricultural Bioengineering Institute, Changsha 410128, China
| | - Yuanshan Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China
| |
Collapse
|
95
|
Wang HW, Tang J, Sun L, Li Z, Deng M, Dai Z. Mechanism of immune attack in the progression of obesity-related type 2 diabetes. World J Diabetes 2023; 14:494-511. [PMID: 37273249 PMCID: PMC10236992 DOI: 10.4239/wjd.v14.i5.494] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/06/2023] [Accepted: 03/30/2023] [Indexed: 05/15/2023] Open
Abstract
Obesity and overweight are widespread issues in adults, children, and adolescents globally, and have caused a noticeable rise in obesity-related complications such as type 2 diabetes mellitus (T2DM). Chronic low-grade inflammation is an important promotor of the pathogenesis of obesity-related T2DM. This proinflammatory activation occurs in multiple organs and tissues. Immune cell-mediated systemic attack is considered to contribute strongly to impaired insulin secretion, insulin resistance, and other metabolic disorders. This review focused on highlighting recent advances and underlying mechanisms of immune cell infiltration and inflammatory responses in the gut, islet, and insulin-targeting organs (adipose tissue, liver, skeletal muscle) in obesity-related T2DM. There is current evidence that both the innate and adaptive immune systems contribute to the development of obesity and T2DM.
Collapse
Affiliation(s)
- Hua-Wei Wang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Jun Tang
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li Sun
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhen Li
- Department of Hepatobiliary and Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ming Deng
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| | - Zhe Dai
- Department of Endocrinology, Zhongnan Hospital of Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
96
|
Wu R, Yang J, Cao J, Wang P, Wang C, Chen W, Wu Y, Zheng X, Jin Y, Yang H. Efficacy of short-chain polypeptide-based EEN formulas in alleviating intestinal injury in children with Crohn's disease: a single-center study in China. Front Nutr 2023; 10:931004. [PMID: 37215203 PMCID: PMC10198436 DOI: 10.3389/fnut.2023.931004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 04/03/2023] [Indexed: 05/24/2023] Open
Abstract
Short-chain polypeptides are composed of three to nine amino acids, which can be absorbed by the intestinal tract without digestive enzymes and ATP energy. Crohn's disease (CD) is a chronic non-specific disease derived from inflammation and damage of the gastrointestinal tract. In this study, we aim to investigate the effect of short-chain polypeptide-based exclusive enteral nutrition (EEN) formulas on intestinal injury in Chinese children with active CD. From January 2013 to January 2019, a total of 84 consecutive children with a diagnosis of Crohn's disease (CD) in the Department of Pediatric Gastroenterology, Children's Hospital of Nanjing Medical University, were divided into mild and moderate-to-severe active CD groups. Each group was further divided into two subgroups: drug group and short-chain polypeptide plus drug group. Tests were carried out on the levels of intestinal fatty acid binding protein (I-FABP) in the blood, fecal calprotectin (FC), and occludin protein in the intestinal mucosa 1 day before treatment and 8 weeks after treatment. Endoscopic and histopathological observations were detected to compare the changes in intestinal injury in children with active CD. After 8 weeks of treatment, the SES-CD scores and Chiu scores of the ileocecal area and terminal ileum of children with mild active CD and the ileocecal area of children with moderate-to-severe active CD in short-chain polypeptide plus drug group were significantly lower than those in the drug group. The OD value of occludin in the terminal ileum and ileocecal area of children with mild active CD and the ileocecal area of children with moderate-to-severe active CD after short-chain polypeptide-based EEN formulas and drug treatment was significantly higher than those in the drug group (p < 0.05). Meanwhile, the levels of FC and I-FABP were significantly decreased (p < 0.05). The results showed that short-chain polypeptide-based EEN formulas effectively alleviate intestinal injury in children with active CD.
Collapse
Affiliation(s)
- Runqiu Wu
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jin Yang
- Department of Pediatric Anesthesiology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Jinjin Cao
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Peng Wang
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Chenhui Wang
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Wenxin Chen
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yanling Wu
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Xinguo Zheng
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Yu Jin
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Yang
- Department of Pediatric Gastroenterology, Children’s Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
97
|
He Q, Guo K, Wang L, Xie F, Zhao Q, Jiang X, He Z, Wang P, Li S, Huang Y, Zhang C, Huang R, Liu Y, Wang F, Zhou X, Niu R, Zuo T, Wang Y, Li C. Tannins amount determines whether tannase-containing bacteria are probiotic or pathogenic in IBD. Life Sci Alliance 2023; 6:e202201702. [PMID: 36759174 PMCID: PMC9911794 DOI: 10.26508/lsa.202201702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/01/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
The role of dietary tannin in inflammatory bowel disease (IBD) is still not clear. Therefore, we aim to study the effect of TA in the progression of IBD. Dextran sulphate sodium (DSS)-induced model was used to mimic IBD. Metagenomics and metabolomics were performed to study the alteration of intestinal microbiota and metabolites. NCM460 and THP-1 cells were used for in vitro study. The amount of TA was associated with the outcomes of DSS-induced IBD as evidenced by in vivo and in vitro studies. Metabolomic and metagenomic analyses revealed that TA-induced enrichment of microbial metabolite gallic acid (GA) was responsible for the action of TA. Mechanistically, protective dose of GA promoted colonic mucus secretion to suppress bacterial infection and that it ameliorated DSS-induced epithelial damage by inhibiting p53 signaling, whereas toxic dose of GA directly caused epithelial damage by promoting cell cycle arrest. Therapeutic experiment showed protective dose of GA-promoted recovery of DSS-induced colonic inflammation. The role of tannase-containing bacteria can be transformed under different conditions in IBD progression.
Collapse
Affiliation(s)
- Qiuyue He
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Kenan Guo
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Lulu Wang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Fei Xie
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Qingyuan Zhao
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Xianhong Jiang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Zhongming He
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Peng Wang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Shiqiang Li
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Yan Huang
- Department of Pharmaceutics, College of Pharmacy, Army Medical University, Chongqing, China
| | - Cong Zhang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Rongjuan Huang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Yang Liu
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Fengchao Wang
- State Key Laboratory of Trauma, Burns and Combined Injury, Institute of Combined Injury, Chongqing Engineering Research Center for Nanomedicine, College of Preventive Medicine, Army Medical University, Chongqing, China
| | - Xiaoyang Zhou
- Department of Biological Safety, Army Medical University, Chongqing, China
| | - Rong Niu
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yong Wang
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| | - Chuangen Li
- Department of Laboratory Animal Science, Army Medical University, Chongqing, China
| |
Collapse
|
98
|
Wu T, Li N, Luo F, Chen Z, Ma L, Hu T, Hong G, Li H. Screening prognostic markers for hepatocellular carcinoma based on pyroptosis-related lncRNA pairs. BMC Bioinformatics 2023; 24:176. [PMID: 37120506 PMCID: PMC10148420 DOI: 10.1186/s12859-023-05299-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/20/2023] [Indexed: 05/01/2023] Open
Abstract
BACKGROUND Pyroptosis is closely related to cancer prognosis. In this study, we tried to construct an individualized prognostic risk model for hepatocellular carcinoma (HCC) based on within-sample relative expression orderings (REOs) of pyroptosis-related lncRNAs (PRlncRNAs). METHODS RNA-seq data of 343 HCC samples derived from The Cancer Genome Atlas (TCGA) database were analyzed. PRlncRNAs were detected based on differentially expressed lncRNAs between sample groups clustered by 40 reported pyroptosis-related genes (PRGs). Univariate Cox regression was used to screen out prognosis-related PRlncRNA pairs. Then, based on REOs of prognosis-related PRlncRNA pairs, a risk model for HCC was constructed by combining LASSO and stepwise multivariate Cox regression analysis. Finally, a prognosis-related competing endogenous RNA (ceRNA) network was built based on information about lncRNA-miRNA-mRNA interactions derived from the miRNet and TargetScan databases. RESULTS Hierarchical clustering of HCC patients according to the 40 PRGs identified two groups with a significant survival difference (Kaplan-Meier log-rank, p = 0.026). Between the two groups, 104 differentially expressed lncRNAs were identified (|log2(FC)|> 1 and FDR < 5%). Among them, 83 PRlncRNA pairs showed significant associations between their REOs within HCC samples and overall survival (Univariate Cox regression, p < 0.005). An optimal 11-PRlncRNA-pair prognostic risk model was constructed for HCC. The areas under the curves (AUCs) of time-dependent receiver operating characteristic (ROC) curves of the risk model for 1-, 3-, and 5-year survival were 0.737, 0.705, and 0.797 in the validation set, respectively. Gene Set Enrichment Analysis showed that inflammation-related interleukin signaling pathways were upregulated in the predicted high-risk group (p < 0.05). Tumor immune infiltration analysis revealed a higher abundance of regulatory T cells (Tregs) and M2 macrophages and a lower abundance of CD8 + T cells in the high-risk group, indicating that excessive pyroptosis might occur in high-risk patients. Finally, eleven lncRNA-miRNA-mRNA regulatory axes associated with pyroptosis were established. CONCLUSION Our risk model allowed us to determine the robustness of the REO-based PRlncRNA prognostic biomarkers in the stratification of HCC patients at high and low risk. The model is also helpful for understanding the molecular mechanisms between pyroptosis and HCC prognosis. High-risk patients may have excessive pyroptosis and thus be less sensitive to immune therapy.
Collapse
Affiliation(s)
- Tong Wu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Na Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Fengyuan Luo
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Zhihong Chen
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Liyuan Ma
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, 341000, China
| | - Tao Hu
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China
| | - Guini Hong
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| | - Hongdong Li
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
99
|
Meyer F, Wendling D, Demougeot C, Prati C, Verhoeven F. Cytokines and intestinal epithelial permeability: A systematic review. Autoimmun Rev 2023; 22:103331. [PMID: 37030338 DOI: 10.1016/j.autrev.2023.103331] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 04/03/2023] [Indexed: 04/10/2023]
Abstract
BACKGROUND The intestinal mucosa is composed of a well-organized epithelium, acting as a physical barrier to harmful luminal contents, while simultaneously ensuring absorption of physiological nutrients and solutes. Increased intestinal permeability has been described in various chronic diseases, leading to abnormal activation of subepithelial immune cells and overproduction of inflammatory mediators. This review aimed to summarize and evaluate the effects of cytokines on intestinal permeability. METHODS A systematic review of the literature was performed in the Medline, Cochrane and Embase databases, up to 01/04/2022, to identify published studies assessing the direct effect of cytokines on intestinal permeability. We collected data on the study design, the method of assessment of intestinal permeability, the type of intervention and the subsequent effect on gut permeability. RESULTS A total of 120 publications were included, describing a total of 89 in vitro and 44 in vivo studies. TNFα, IFNγ or IL-1β were the most frequently studied cytokines, inducing an increase in intestinal permeability through a myosin light-chain-mediated mechanism. In situations associated with intestinal barrier disruption, such as inflammatory bowel diseases, in vivo studies showed that anti-TNFα treatment decreased intestinal permeability while achieving clinical recovery. In contrast to TNFα, IL-10 decreased permeability in conditions associated with intestinal hyperpermeability. For some cytokines (e.g. IL-17, IL-23), results are conflicting, with both an increase and a decrease in gut permeability reported, depending on the study model, methodology, or the studied conditions (e.g. burn injury, colitis, ischemia, sepsis). CONCLUSION This systematic review provides evidence that intestinal permeability can be directly influenced by cytokines in numerous conditions. The immune environment probably plays an important role, given the variability of their effect, according to different conditions. A better understanding of these mechanisms could open new therapeutic perspectives for disorders associated with gut barrier dysfunction.
Collapse
Affiliation(s)
- Frédéric Meyer
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Daniel Wendling
- Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France; EA 4266, EPILAB, Université de Franche-Comté, F-25000 Besançon, France
| | - Céline Demougeot
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France
| | - Clément Prati
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France
| | - Frank Verhoeven
- PEPITE EA4267, Université de Franche-Comté, F-25000 Besançon, France; Department of rheumatology, University Hospital Besançon, F-25000 Besançon, France.
| |
Collapse
|
100
|
Herba Origani alleviated DSS-induced ulcerative colitis in mice through remolding gut microbiota to regulate bile acid and short-chain fatty acid metabolisms. Biomed Pharmacother 2023; 161:114409. [PMID: 36822021 DOI: 10.1016/j.biopha.2023.114409] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/12/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
This study aimed to investigate the protective effect of Herba Origani, the dried whole herb of Origanum vulgare L., on dextran sodium sulfate (DSS)-induced ulcerative colitis in mice and explore its mechanisms of action through analyzing the intestinal microbiota in cecum contents and metabolites in colonic tissues. HOEP alleviated colitis symptoms, colonic inflammation and pathological injury as well as repaired intestinal barrier function in DSS-induced UC mice. The intestinal microbiota analysis showed that HOEP restored the gut microbiota dysbiosis in DSS-treated mice by increasing the alpha diversity of the intestinal microbiota, increasing the abundance of the Bacteroidota community and adjusting short-chain fatty acids (SCFAs), which maintain mucosal immunity and intestinal barrier. Metabolomic analysis revealed that HOEP promoted bile acids absorption and regulated bile acids metabolism in the intestine, thereby maintaining intestinal mucosal immune homeostasis. In addition, HOEP might also regulate the intestinal immune system through the phosphatidylinositol signaling system. These findings suggested that HOEP exerted promising protection against DSS-induced ulcerative mice through remolding gut microbiota to regulate bile acid and SCFA metabolism, and that HOEP have a potential to be utilized for the treatment of inflammatory intestinal diseases.
Collapse
|