51
|
Calderwood AH, Sawhney MS, Thosani NC, Rebbeck TR, Wani S, Canto MI, Fishman DS, Golan T, Hidalgo M, Kwon RS, Riegert-Johnson DL, Sahani DV, Stoffel EM, Vollmer CM, Al-Haddad MA, Amateau SK, Buxbaum JL, DiMaio CJ, Fujii-Lau LL, Jamil LH, Jue TL, Law JK, Lee JK, Naveed M, Pawa S, Storm AC, Qumseya BJ. American Society for Gastrointestinal Endoscopy guideline on screening for pancreatic cancer in individuals with genetic susceptibility: methodology and review of evidence. Gastrointest Endosc 2022; 95:827-854.e3. [PMID: 35183359 DOI: 10.1016/j.gie.2021.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 02/08/2023]
Affiliation(s)
- Audrey H Calderwood
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Nirav C Thosani
- Center for Interventional Gastroenterology at UTHealth, McGovern Medical School, Houston, Texas, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Douglas S Fishman
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Talia Golan
- Cancer Center, Sheba Medical Center, Yehuda, Israel
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard S Kwon
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas L Riegert-Johnson
- Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles M Vollmer
- Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Mohammad A Al-Haddad
- Division of Gastroenterology and Hepatology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| | - Stuart K Amateau
- Division of Gastroenterology Hepatology and Nutrition, University of Minnesota Medical Center, Minneapolis, Minnesota, USA
| | - James L Buxbaum
- Division of Gastrointestinal and Liver Diseases, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
| | - Christopher J DiMaio
- Department of Gastroenterology, Mount Sinai School of Medicine, New York, New York, USA
| | - Larissa L Fujii-Lau
- Department of Gastroenterology, The Queen's Medical Center, Honolulu, Hawaii, USA
| | - Laith H Jamil
- Section of Gastroenterology and Hepatology, Beaumont Health, Royal Oak, Michigan, and Oakland University William Beaumont School of Medicine, Rochester, Michigan, USA
| | - Terry L Jue
- Department of Gastroenterology, The Permanente Medical Group, San Francisco, California, USA
| | - Joanna K Law
- Department of Gastroenterology and Hepatology, Digestive Disease Institute, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Jeffrey K Lee
- Department of Gastroenterology, Kaiser Permanente San Francisco Medical Center, San Francisco, California, USA
| | - Mariam Naveed
- Advent Health Medical Group, Gastroenterology/Hepatology, Advent Health Hospital Altamonte Springs, Altamonte Springs, Florida, USA
| | - Swati Pawa
- Department of Gastroenterology, Wake Forest School of Medicine, Winston Salem, North Carolina, USA
| | - Andrew C Storm
- Department of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bashar J Qumseya
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
52
|
Rabe KG, Stevens MA, Hernández AT, Chandra S, Hubbard JM, Kemppainen JL, Majumder S, Petersen GM. Pancreatic cancer risk to siblings of probands in bilineal cancer settings. Genet Med 2022; 24:1008-1016. [PMID: 35227607 PMCID: PMC9326771 DOI: 10.1016/j.gim.2022.01.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 12/14/2022] Open
Abstract
PURPOSE Pancreatic cancer (PC) risk is increased in families, but PC risk and risk perception have been understudied when both parents have cancer. METHODS An unbiased method defining cancer triads (proband with PC and both parents with cancer) in a prospective registry estimated risk of PC to probands' siblings in triad group 1 (no parent with PC), group 2 (1 parent with PC), and group 3 (both parents with PC). We estimated standardized incidence ratios (SIRs) using a Surveillance, Epidemiology, and End Results (SEER) reference. We also estimated the risk when triad probands carried germline pathogenic/likely pathogenic variants in any of the 6 PC-associated genes (ATM, BRCA1, BRCA2, CDKN2A, MLH1, and TP53). PC risk perception/concern was surveyed in siblings and controls. RESULTS Risk of PC was higher (SIR = 3.5; 95% CI = 2.2-5.2) in 933 at-risk siblings from 297 triads. Risk increased by triad group: 2.8 (95% CI = 1.5-4.5); 4.5 (95% CI = 1.6-9.7); and 21.2 (95% CI = 4.3-62.0). SIR in variant-negative triads was 3.0 (95% CI = 1.6-5.0), whereas SIR in variant-positive triads was 10.0 (95% CI = 3.2-23.4). Siblings' perceived risk/concern of developing PC increased by triad group. CONCLUSION Sibling risks were 2.8- to 21.2-fold higher than that of the general population. Positive variant status increased the risk in triads. Increasing number of PC cases in a triad was associated with increased concern and perceived PC risk.
Collapse
Affiliation(s)
- Kari G Rabe
- Division of Clinical Trials and Biostatistics, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | - Maria A Stevens
- Division of Health Care Policy and Research, Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN
| | - Amanda Toledo Hernández
- School of Medicine, Medical Science Campus, University of Puerto Rico, San Juan, Puerto Rico
| | - Shruti Chandra
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN
| | | | | | - Shounak Majumder
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Gloria M Petersen
- Division of Epidemiology, Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN.
| |
Collapse
|
53
|
Sawhney MS, Calderwood AH, Thosani NC, Rebbeck TR, Wani S, Canto MI, Fishman DS, Golan T, Hidalgo M, Kwon RS, Riegert-Johnson DL, Sahani DV, Stoffel EM, Vollmer CM, Qumseya BJ. ASGE guideline on screening for pancreatic cancer in individuals with genetic susceptibility: summary and recommendations. Gastrointest Endosc 2022; 95:817-826. [PMID: 35183358 DOI: 10.1016/j.gie.2021.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/02/2021] [Indexed: 12/11/2022]
Affiliation(s)
- Mandeep S Sawhney
- Division of Gastroenterology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Audrey H Calderwood
- Section of Gastroenterology and Hepatology, Dartmouth-Hitchcock Medical Center, Dartmouth Geisel School of Medicine, Lebanon, New Hampshire, USA
| | - Nirav C Thosani
- Center for Interventional Gastroenterology at UT Health, McGovern Medical School, Houston, Texas, USA
| | - Timothy R Rebbeck
- Harvard TH Chan School of Public Health and Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Sachin Wani
- Division of Gastroenterology and Hepatology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Marcia I Canto
- Division of Gastroenterology and Hepatology, Johns Hopkins Medicine, Baltimore, Maryland, USA
| | - Douglas S Fishman
- Section of Pediatric Gastroenterology, Hepatology and Nutrition, Baylor College of Medicine, Texas Children's Hospital, Houston, Texas, USA
| | - Talia Golan
- Oncology Institute, Sheba Medical Center, Tel Aviv University, Tel Aviv, Israel
| | - Manuel Hidalgo
- Division of Hematology and Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Richard S Kwon
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas L Riegert-Johnson
- Department of Clinical Genomics and Gastroenterology and Hepatology, Mayo Clinic, Jacksonville, Florida, USA
| | - Dushyant V Sahani
- Department of Radiology, University of Washington, Seattle, Washington, USA
| | - Elena M Stoffel
- Division of Gastroenterology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Charles M Vollmer
- Department of Surgery, Penn Medicine, Philadelphia, Pennsylvania, USA
| | - Bashar J Qumseya
- Department of Gastroenterology, Hepatology and Nutrition, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
54
|
Dalmasso B, Puccini A, Catalano F, Borea R, Iaia ML, Bruno W, Fornarini G, Sciallero S, Rebuzzi SE, Ghiorzo P. Beyond BRCA: The Emerging Significance of DNA Damage Response and Personalized Treatment in Pancreatic and Prostate Cancer Patients. Int J Mol Sci 2022; 23:4709. [PMID: 35563100 PMCID: PMC9099822 DOI: 10.3390/ijms23094709] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/07/2022] Open
Abstract
The BRCA1/2 germline and/or somatic pathogenic variants (PVs) are key players in the hereditary predisposition and therapeutic response for breast, ovarian and, more recently, pancreatic and prostate cancers. Aberrations in other genes involved in homologous recombination and DNA damage response (DDR) pathways are being investigated as promising targets in ongoing clinical trials. However, DDR genes are not routinely tested worldwide. Due to heterogeneity in cohort selection and dissimilar sequencing approaches across studies, neither the burden of PVs in DDR genes nor the prevalence of PVs in genes in common among pancreatic and prostate cancer can be easily quantified. We aim to contextualize these genes, altered in both pancreatic and prostate cancers, in the DDR process, to summarize their hereditary and somatic burden in different studies and harness their deficiency for cancer treatments in the context of currently ongoing clinical trials. We conclude that the inclusion of DDR genes, other than BRCA1/2, shared by both cancers considerably increases the detection rate of potentially actionable variants, which are triplicated in pancreatic and almost doubled in prostate cancer. Thus, DDR alterations are suitable targets for drug development and to improve the outcome in both pancreatic and prostate cancer patients. Importantly, this will increase the detection of germline pathogenic variants, thereby patient referral to genetic counseling.
Collapse
Affiliation(s)
- Bruna Dalmasso
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
| | - Alberto Puccini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Fabio Catalano
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Roberto Borea
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Maria Laura Iaia
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - William Bruno
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| | - Giuseppe Fornarini
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Stefania Sciallero
- IRCCS Ospedale Policlinico San Martino, Medical Oncology Unit 1, 16132 Genoa, Italy; (A.P.); (F.C.); (R.B.); (M.L.I.); (G.F.); (S.S.)
| | - Sara Elena Rebuzzi
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
- Ospedale San Paolo, Medical Oncology, 17100 Savona, Italy
| | - Paola Ghiorzo
- IRCCS Ospedale Policlinico San Martino, Genetics of Rare Cancers, 16132 Genoa, Italy; (B.D.); (W.B.)
- Department of Internal Medicine and Medical Specialties, University of Genoa, 16132 Genoa, Italy;
| |
Collapse
|
55
|
de la Haba-Rodriguez J, Lloret FF, Salgado MAV, Arce MO, Gutiérrez AC, Jiménez JGD, Zambrano CB, Alonso RMR, López RL, Salas NR. SEOM-GETTHI clinical guideline for the practical management of molecular platforms (2021). Clin Transl Oncol 2022; 24:693-702. [PMID: 35362851 PMCID: PMC8986692 DOI: 10.1007/s12094-022-02817-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/13/2022]
Abstract
The improvement of molecular alterations in cancer as well as the development of technology has allowed us to bring closer to clinical practice the determination of molecular alterations in the diagnosis and treatment of cancer. The use of multidetermination platforms is spreading in most Spanish hospitals. The objective of these clinical practice guides is to review their usefulness, and establish usage guidelines that guide their incorporation into clinical practice.
Collapse
Affiliation(s)
- Juan de la Haba-Rodriguez
- Department of Medical Oncology, Hospital Universitario Reina Sofia, Instituto Maimonides de Investigacion Biomedica, Universidad de Córdoba, Córdoba, Spain
| | | | | | - Martín Oré Arce
- Department of Medical Oncology, Hospital Marina Baixa de Villajoyosa, Alicante, Spain
| | - Ana Cardeña Gutiérrez
- Department of Medical Oncology, Hospital Universitario Nuestra Señora de la Candelaria, Tenerife, Spain
| | | | - Carmen Beato Zambrano
- Department of Medical Oncology, Hospital Universitario de Jerez de la Frontera, Cádiz, Spain
| | | | - Rafael López López
- Department of Medical Oncology, Complejo Hospitalario Universitario de Santiago, La Coruña, Spain
| | - Nuria Rodriguez Salas
- Department of Medical Oncology, Hospital La Paz, P de la Castellana, 261 - 28046, Madrid, Spain.
| |
Collapse
|
56
|
Vietri MT, D’Elia G, Caliendo G, Albanese L, Signoriello G, Napoli C, Molinari AM. Pancreatic Cancer with Mutation in BRCA1/2, MLH1, and APC Genes: Phenotype Correlation and Detection of a Novel Germline BRCA2 Mutation. Genes (Basel) 2022; 13:321. [PMID: 35205366 PMCID: PMC8872383 DOI: 10.3390/genes13020321] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 01/31/2022] [Accepted: 02/07/2022] [Indexed: 12/22/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the seventh leading cause of cancer death worldwide; most of cases are sporadic, however about 5% to 10% report a hereditary predisposition. Several hereditary syndromes have been associated with familial pancreatic cancer (FPC) onset, including hereditary breast and ovarian cancer syndrome (HBOC), Lynch syndrome (LS), Familial atypical multiple mole melanoma (FAMMM), Familial adenomatous polyposis (FAP), Li-Fraumeni syndrome (LFS), Peutz-Jeghers syndrome (PJS), and Hereditary pancreatitis (HP).The aim of this study was to determine the mutational status of a cohort of 56 HBOC families, 7 LS families, 3 FAP and FAMMM families, and 1 LFS family with at least one case of PDAC. Mutation analysis of BRCA1/2, ATM, CHEK2, PALB2, RAD51C, RAD51D, NBN, CDH1, TP53, MLH1, MSH2, MSH6, and PMS2 genes, showedmutation in BRCA1/2, MLH1, and APC genes. We founda high mutation rate in patients belong HBOC and LS families, with a percentage of 28.6% in both syndromes and prevalence in HBOC of BRCA2 mutations with one case of double mutation in BRCA2 gene. In FAP family, we found a pathogenic mutation in APC gene in 1/3 families. We observed an early onset of PDAC and a lower survival in PDAC patients belonging to mutated families, while no evidence of possible pancreatic cancer cluster regions was found. Moreover, we identified a novel BRCA2 germline mutation, c.5511delT (p.Phe1837LeufsX3), not reported in any database, that segregated with disease in HBOC patients. Mutational analysis was extended to family membersof mutated patients, both healthy and cancer affected, which revealed 23 unaffected family members that inherited the proband's mutation. Although correlative by its nature, the presence of a BRCA mutation in PDAC patients may have benefits in terms of optimized treatment and longer outcome.
Collapse
Affiliation(s)
- Maria Teresa Vietri
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giovanna D’Elia
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Gemma Caliendo
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Luisa Albanese
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| | - Giuseppe Signoriello
- Statistical Unit, Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
| | - Claudio Napoli
- Department of Advanced Medical and Surgical Sciences (DAMSS), University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Clinical Department of Internal Medicine and Specialistic Units, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Anna Maria Molinari
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy;
- Unity of Clinical and Molecular Pathology, AOU, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (G.D.); (G.C.); (L.A.)
| |
Collapse
|
57
|
Epidemiology and Geographic distribution of BRCA1-2 and DNA Damage Response genes pathogenic variants in pancreatic ductal adenocarcinoma patients. Cancer Treat Rev 2022; 104:102357. [DOI: 10.1016/j.ctrv.2022.102357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/06/2023]
|
58
|
Tezuka K, Okamura Y, Sugiura T, Ito T, Yamamoto Y, Ashida R, Ohgi K, Otsuka S, Todaka A, Fukutomi A, Uesaka K. Predictive factors of survival in patients with borderline resectable pancreatic cancer who received neoadjuvant therapy. Pancreatology 2021; 21:1451-1459. [PMID: 34462214 DOI: 10.1016/j.pan.2021.08.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 07/27/2021] [Accepted: 08/22/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES This study aimed to develop the prognostic score (PS) based on clinical factors to stratify the prognosis in borderline resectable pancreatic cancer (BRPC) patients treated with neoadjuvant therapy (NAT). METHODS This retrospective study included 57 BRPC patients who received NAT between April 2012 and December 2017. A score was assigned to each prognostic factor available before and after NAT, according to their β coefficients. RESULTS Multivariate analysis identified the following six prognostic factors, and scores were assigned as follows: being a familial PC patient (HR 4.98, p = 0.029), post-NAT CA19-9 ≥37 U/ml (HR 3.08, p = 0.020), reduction rate of CA19-9 <70% (HR 3.71, p = 0.008), pre-NAT neutrophil-to-lymphocyte ratio ≥2.8 (HR 4.32, p = 0.003), and non-resection (HR 3.98, p = 0.009) were scored as 1; and post-NAT albumin-to-globulin ratio <1.33 (HR 8.31, p < 0.001) was scored as 2. The PS was calculated by summing the scores assigned to each prognostic factor. Patients were then classified into three risk groups (low- [0-1 points], moderate- [2-3 points], and high-risk [4-6 points] groups). Median overall survival in the low-, moderate-, and high-risk groups were not reached, 37.5 months, and 11.8 months, respectively, and there were significant differences in survival among the three groups (p < 0.01 in each group). CONCLUSIONS This study showed that the PS may be useful for predicting the prognosis of BRPC patients treated with NAT.
Collapse
Affiliation(s)
- Koji Tezuka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan.
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhisa Ohgi
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Shimpei Otsuka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akiko Todaka
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Akira Fukutomi
- Division of Gastrointestinal Oncology, Shizuoka Cancer Center, Shizuoka, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
59
|
Brignoni‐Pérez E, Matejko AA, Jamal NI, Eden GF. Functional neuroanatomy of arithmetic in monolingual and bilingual adults and children. Hum Brain Mapp 2021; 42:4880-4895. [PMID: 34255408 PMCID: PMC8449110 DOI: 10.1002/hbm.25587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 06/08/2021] [Accepted: 06/28/2021] [Indexed: 12/31/2022] Open
Abstract
Prior studies on the brain bases of arithmetic have not focused on (or even described) their participants' language backgrounds. Yet, unlike monolinguals, early bilinguals have the capacity to solve arithmetic problems in both of their two languages. This raises the question whether this ability, or any other experience that comes with being bilingual, affects brain activity for arithmetic in bilinguals relative to monolinguals. Here, we used functional magnetic resonance imaging to compare brain activity in 44 English monolinguals and 44 Spanish-English early bilinguals, during the solving of arithmetic problems in English. We used a factorial design to test for a main effect of bilingual Language Experience. Based on the known modulating roles of arithmetic operation and age, we used two arithmetic tasks (addition and subtraction) and studied two age groups (adults and children). When collapsing across operations and age, we found broad bilateral activation for arithmetic in both the monolingual group and the bilingual group. However, an analysis of variance revealed that there was no effect of Language Experience, nor an interaction of Language Experience with Operation or Age Group. Bayesian analyses within regions of interest chosen for their role in arithmetic further supported the finding of no effect of Language Experience on brain activity underlying arithmetic. We conclude that early bilingualism does not influence the functional neuroanatomy of simple arithmetic.
Collapse
Affiliation(s)
- Edith Brignoni‐Pérez
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| | - Anna A. Matejko
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Nasheed I. Jamal
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
| | - Guinevere F. Eden
- Center for the Study of Learning, Department of PediatricsGeorgetown University Medical CenterWashingtonDistrict of ColumbiaUSA
- Interdisciplinary Program in NeuroscienceGeorgetown UniversityWashingtonDistrict of ColumbiaUSA
| |
Collapse
|
60
|
Macchini M, Centonze F, Peretti U, Orsi G, Militello AM, Valente MM, Cascinu S, Reni M. Treatment opportunities and future perspectives for pancreatic cancer patients with germline BRCA1-2 pathogenic variants. Cancer Treat Rev 2021; 100:102262. [PMID: 34418781 DOI: 10.1016/j.ctrv.2021.102262] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/17/2021] [Accepted: 07/19/2021] [Indexed: 01/07/2023]
Abstract
Personalized treatments and predictive biomarkers of pancreatic cancer (PDAC) are still lacking. Recently germline mutations in BRCA 1 and 2 genes, leading to homologous repair deficiency, have emerged as new targets for more specific and effective therapies, exploiting the increased susceptibility to platinum salts and PARP inhibitors. In addition to BRCA, pathogenic variants in PALB2 and in other genes involved in the DNA damage response pathway (DDR) represent potential targets, as well as their respective somatic alterations. This enlarged molecularly-selected population sharing the BRCAness phenotype, is expected to show a higher sensibility to a number of DNA damaging agents and DDR inhibitors. However, the possibility of new therapeutic opportunities for DDR defective PDAC patients has to face the lack of solid evidence about the proper type and timing of targeted-treatments, the potential combination strategies and most importantly, the lack of informations on the functional impact of each specific pathogenic variant on the DDR pathway. This review summarizes the current and near-future options for the clinical management of PDAC patients harboring a DDR deficiency, analyzing the state of the art of the indications of platinum salts and other cytotoxic agents in the advanced and early stage PDAC, the development of PARP inhibitors and the rational for new combinations with immunotherapy and cycle checkpoint inhibitors, as well as the strategy to overcome the development of resistance over treatments.
Collapse
Affiliation(s)
- Marina Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Federico Centonze
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Umberto Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Giulia Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Anna Maria Militello
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Maria Maddalena Valente
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy
| | - Michele Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Vita-Salute University, Milan, Italy; Pancreas Translational & Clinical Research Center, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
61
|
Murali K, Dwarte TM, Nikfarjam M, Tucker KM, Vaughan RB, Efthymiou M, Collins A, Spigelman AD, Salmon L, Johns AL, Williams DB, Delatycki MB, John T, Stoita A. Significant detection of new germline pathogenic variants in Australian Pancreatic Cancer Screening Program participants. Hered Cancer Clin Pract 2021; 19:33. [PMID: 34399810 PMCID: PMC8365963 DOI: 10.1186/s13053-021-00190-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/09/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The Australian Pancreatic Cancer Screening Program (APCSP) offers endoscopic ultrasound surveillance for individuals at increased risk of pancreatic ductal adenocarcinoma (PDAC) with all participants requiring assessment by a Familial Cancer Service before or after study enrolment. METHODS Individuals aged 40-80 years (or 10 years younger than the earliest PDAC diagnosis) were eligible for APCSP study entry if they had 1) ≥ two blood relatives with PDAC (at least one of first-degree association); 2) a clinical or genetic diagnosis of Hereditary Pancreatitis or Peutz-Jeghers syndrome irrespective of PDAC family history; or 3) a known PDAC predisposition germline pathogenic variant (BRCA2, PALB2, CDKN2A, or Lynch syndrome) with ≥one PDAC-affected first- or second-degree relative. Retrospective medical record review was conducted for APCSP participants enrolled at the participating Australian hospitals from January 2011 to December 2019. We audited the genetic investigations offered by multiple Familial Cancer Services who assessed APCSP participants according to national guidelines, local clinical protocol and/or the availability of external research-funded testing, and the subsequent findings. Descriptive statistical analysis was performed using Microsoft Excel. RESULTS Of 189 kindreds (285 participants), 50 kindreds (71 participants) had a known germline pathogenic variant at enrolment (BRCA2 n = 35, PALB2 n = 6, CDKN2A n = 3, STK11 n = 3, PRSS1 n = 2, MLH1 n = 1). Forty-eight of 136 (35%) kindreds with no known germline pathogenic variant were offered mutation analysis; 89% was clinic-funded, with increasing self-funded testing since 2016. The relatively low rates of genetic testing performed reflects initial strict criteria for clinic-funded genetic testing. New germline pathogenic variants were detected in five kindreds (10.4%) after study enrolment (BRCA2 n = 3 kindreds, PALB2 n = 1, CDKN2A n = 1). Of note, only eight kindreds were reassessed by a Familial Cancer Service since enrolment, with a further 21 kindreds identified as being suitable for reassessment. CONCLUSION Germline pathogenic variants associated with PDAC were seen in 29.1% of our high-risk cohort (55/189 kindreds; 82/285 participants). Importantly, 10.4% of kindreds offered genetic testing were newly identified as having germline pathogenic variants, with majority being BRCA2. As genetic testing standards evolve rapidly in PDAC, 5-yearly reassessment of high-risk individuals by Familial Cancer Services is warranted.
Collapse
Affiliation(s)
- Krithika Murali
- Department of Clinical Genetics, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Tanya M Dwarte
- Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
- Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Mehrdad Nikfarjam
- Division of Surgery, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Katherine M Tucker
- Hereditary Cancer Centre, Prince of Wales Hospital, Randwick, NSW, 2031, Australia
- University of New South Wales, St Vincent's Clinical School and Prince of Wales Clinical School, Randwick, NSW, 2031, Australia
| | - Rhys B Vaughan
- Department of Gastroenterology, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Marios Efthymiou
- Department of Gastroenterology, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Allison Collins
- Clinical Trials Unit, Olivia Newton John Cancer and Wellness Centre, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Allan D Spigelman
- University of New South Wales, St Vincent's Clinical School and Prince of Wales Clinical School, Randwick, NSW, 2031, Australia
- Cancer Genetics Unit, The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Lucinda Salmon
- Department of Clinical Genetics, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Amber L Johns
- Australian Pancreatic Cancer Genome Initiative, Garvan Institute of Medical Research, Darlinghurst, NSW, 2010, Australia
| | - David B Williams
- Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia
| | - Martin B Delatycki
- Department of Clinical Genetics, Austin Health, Heidelberg, VIC, 3084, Australia
| | - Thomas John
- Peter MacCallum Cancer Centre, Parkville, VIC, 3000, Australia
| | - Alina Stoita
- Department of Gastroenterology, St Vincent's Hospital, Darlinghurst, NSW, 2010, Australia.
- University of New South Wales, St Vincent's Clinical School and Prince of Wales Clinical School, Randwick, NSW, 2031, Australia.
| |
Collapse
|
62
|
Astiazaran-Symonds E, Goldstein AM. A systematic review of the prevalence of germline pathogenic variants in patients with pancreatic cancer. J Gastroenterol 2021; 56:713-721. [PMID: 34255164 PMCID: PMC8475496 DOI: 10.1007/s00535-021-01806-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Accepted: 06/22/2021] [Indexed: 02/04/2023]
Abstract
The genetics of pancreatic ductal adenocarcinoma (PDAC) is complex with patients reported to harbor germline pathogenic variants (PVs) in many different genes. PDAC patients with familial pancreatic cancer (FPC) are more likely to carry germline PVs but there is no consensus main gene involved in FPC. We performed a systematic review of publications from PubMed and Scopus reporting PVs in patients with FPC, sporadic pancreatic cancer (SPC) and unselected cohorts of PDAC patients undergoing genetic testing and calculated a cumulative prevalence of PVs for each gene evaluated across these three groups of patients. When available, variants in the selected publications were reclassified according to the American College of Medical Genetics and Genomics classification system and used for prevalence calculations if classified as pathogenic or likely pathogenic. We observed an increased prevalence of PVs in FPC compared to SPC or unselected PDAC patients for most of the 41 genes reported. The genes with the highest prevalence of carriers of PVs in FPC were ATM, BRCA2, and CDKN2A. BRCA2 and ATM showed the highest prevalence of PVs in both SPC and unselected PDAC cohorts. Several genes with the highest prevalence of PVs are involved in breast and ovarian cancer suggesting strong overlap with underlying genetics in these disorders but no single gene was predominant. More research is needed to further understand the risk of PDAC associated with these many diverse genes.
Collapse
Affiliation(s)
- Esteban Astiazaran-Symonds
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA,National Human Genome Research Institute, NIH, Bethesda, MD, USA
| | - Alisa M Goldstein
- Division of Cancer Epidemiology and Genetics, NCI, NIH, Rockville, MD, USA
| |
Collapse
|
63
|
Tan M, Brusgaard K, Gerdes AM, Mortensen MB, Detlefsen S, Schaffalitzky de Muckadell OB, Joergensen MT. Cohort profile and heritability assessment of familial pancreatic cancer: a nation-wide study. Scand J Gastroenterol 2021; 56:965-971. [PMID: 34165379 DOI: 10.1080/00365521.2021.1937697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Familial Pancreatic Cancer (FPC) is responsible for up to 10% of all cases of pancreatic ductal adenocarcinoma (PDAC). Individuals predisposed for FPC have an estimated lifetime risk of 16-39% of developing PDAC. While heritability of PDAC has been estimated to be 36% in a Nordic twin study, no heritability estimate specific on FPC has been reported. METHODS A national cohort of Danish families with predisposition for FPC is currently included in a screening program for PDAC at Odense University Hospital. Family members included in the screening program were interviewed for pedigree data including: cases of PDAC among first-degree relatives (FDRs) and number of affected/unaffected siblings. Heritability for FPC in the predisposed families was assessed by doubling the estimated intra-class correlation coefficient (ICC) from a random intercept logistic model fitted to data on FDRs. RESULTS Among families with predisposition for FPC, 83 cases of PDAC were identified. The median age at diagnosis of PDAC was 66 years, and median time from diagnosis to death was 7.6 months. A total of 359 individuals were found as unaffected FDRs of the 83 PDAC cases. The retrieved FDRs included a total of 247 individuals in sibship and 317 individuals in parent-offspring relatedness. We estimated an ICC of 0.25, corresponding to a narrow sense additive heritability estimate of 0.51 in the FPC family cohort. CONCLUSION We have established a nation-wide cohort of FPC families to facilitate clinical and genetic studies on FPC. The estimated heritability of 51% prominently underlines a strong genetic background of FPC.
Collapse
Affiliation(s)
- Ming Tan
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Klaus Brusgaard
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Clinical Genetics, Odense University Hospital, Odense, Denmark
| | - Anne-Marie Gerdes
- Department of Clinical Genetics, Rigshospitalet, Copenhagen, Denmark
| | - Michael Bau Mortensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Surgery, Odense University Hospital, Odense, Denmark
| | - Sönke Detlefsen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark.,Department of Pathology, Odense University Hospital, Odense, Denmark
| | - Ove B Schaffalitzky de Muckadell
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| | - Maiken Thyregod Joergensen
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.,Department of Medical Gastroenterology, Odense University Hospital, Odense, Denmark.,Odense Pancreas Center (OPAC), Odense University Hospital, Odense, Denmark
| |
Collapse
|
64
|
Screening for pancreatic cancer: a review for general clinicians. ACTA ACUST UNITED AC 2021; 58:119-128. [PMID: 32364522 DOI: 10.2478/rjim-2020-0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 02/06/2023]
Abstract
Pancreatic cancer (PC) is an exceptionally lethal malignancy with increasing incidence and mortality worldwide. One of the principal challenges in the treatment of PC is that the diagnosis is usually made at a late stage when potentially curative surgical resection is no longer an option. General clinicians including internists and family physicians are well positioned to identify high-risk individuals and refer them to centers with expertise in PC screening and treatment where screening modalities can be employed. Here, we provide an up-to-date review of PC precursor lesions, epidemiology, and risk factors to empower the general clinician to recognize high-risk patients and employ risk reduction strategies. We also review current screening guidelines and modalities and preview progress that is being made to improve screening tests and biomarkers. It is our hope that this review article will empower the general clinician to understand which patients need to be screened for PC, strategies that may be used to reduce PC risk, and which screening modalities are available in order to diminish the lethality of PC.
Collapse
|
65
|
Katabathina VS, Buddha S, Rajebi H, Shah JN, Morani AC, Lubner MG, Dasyam A, Nazarullah A, Menias CO, Prasad SR. Pancreas in Hereditary Syndromes: Cross-sectional Imaging Spectrum. Radiographics 2021; 41:1082-1102. [PMID: 34143711 DOI: 10.1148/rg.2021200164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A wide spectrum of hereditary syndromes predispose patients to distinct pancreatic abnormalities, including cystic lesions, recurrent pancreatitis, ductal adenocarcinoma, nonductal neoplasms, and parenchymal iron deposition. While pancreatic exocrine insufficiency and recurrent pancreatitis are common manifestations in cystic fibrosis and hereditary pancreatitis, pancreatic cysts are seen in von Hippel-Lindau disease, cystic fibrosis, autosomal dominant polycystic kidney disease, and McCune-Albright syndrome. Ductal adenocarcinoma can be seen in many syndromes, including Peutz-Jeghers syndrome, familial atypical multiple mole melanoma syndrome, Lynch syndrome, hereditary breast and ovarian cancer syndrome, Li-Fraumeni syndrome, and familial pancreatic cancer syndrome. Neuroendocrine tumors are commonly seen in multiple endocrine neoplasia type 1 syndrome and von Hippel-Lindau disease. Pancreatoblastoma is an essential component of Beckwith-Wiedemann syndrome. Primary hemochromatosis is characterized by pancreatic iron deposition. Pancreatic pathologic conditions associated with genetic syndromes exhibit characteristic imaging findings. Imaging plays a pivotal role in early detection of these conditions and can positively affect the clinical outcomes of those at risk for pancreatic malignancies. Awareness of the characteristic imaging features, imaging-based screening protocols, and surveillance guidelines is crucial for radiologists to guide appropriate patient management. ©RSNA, 2021.
Collapse
Affiliation(s)
- Venkata S Katabathina
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Suryakala Buddha
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Hamid Rajebi
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Jignesh N Shah
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Ajay C Morani
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Meghan G Lubner
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Anil Dasyam
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Alia Nazarullah
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Christine O Menias
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| | - Srinivasa R Prasad
- From the Departments of Radiology (V.S.K., S.B., H.R.) and Pathology (A.N.), University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229; Department of Radiology, Le Bonheur Children's Hospital, Memphis, Tenn (J.N.S.); Department of Radiology, University of Texas M. D. Anderson Cancer Center, Houston, Tex (A.C.M., S.R.P.); Department of Radiology, University of Wisconsin, Madison, Wis (M.G.L.); Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.D.); and Department of Radiology, Mayo Clinic, Scottsdale, Ariz (C.O.M.)
| |
Collapse
|
66
|
Rapposelli IG, Zampiga V, Cangini I, Arcangeli V, Ravegnani M, Valgiusti M, Pini S, Tamberi S, Bartolini G, Passardi A, Martinelli G, Calistri D, Frassineti GL, Falcini F, Danesi R. Comprehensive analysis of DNA damage repair genes reveals pathogenic variants beyond BRCA and suggests the need for extensive genetic testing in pancreatic cancer. BMC Cancer 2021; 21:611. [PMID: 34034685 PMCID: PMC8152298 DOI: 10.1186/s12885-021-08368-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Pancreatic cancer (PC) is a major cause of cancer death. In an effort to improve treatment strategies and outcomes, DNA damage repair (DDR) pathways have been introduced as a new target in PC and in other cancers, through the exploitation of synthetic lethality. Furthermore, genes involved in DDR are among the major determinants of cancer susceptibility. In addition to the well-known BRCA1 and BRCA2 genes, a plethora of other targets in the same pathways are now emerging. METHODS We analyzed samples from 60 patients, affected by PC and already tested for BRCA, using a panel with 24 other cancer susceptibility genes. RESULTS We detected 8 pathogenic or likely pathogenic mutations (13.3% of samples analyzed), 4 of which were found in non-BRCA genes (2 in ATM, 1 each in PALB2 and RAD50). Furthermore, 4 pathogenic or likely pathogenic mutations were found in patients without a personal or familial history of cancer. CONCLUSIONS Our results suggest that genetic testing with a comprehensive gene panel should be perfomed in all patients with PC, in order to allow screening for PC and other gene-related cancers in all at risk family members and to assess patients' eligibility for emerging therapeutic options.
Collapse
Affiliation(s)
- Ilario Giovanni Rapposelli
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Valentina Zampiga
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy.
| | - Ilaria Cangini
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Valentina Arcangeli
- Department of Medical Oncology, Degli Infermi Hospital, 47923, Rimini, Italy
| | - Mila Ravegnani
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Martina Valgiusti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Sara Pini
- Medical Oncology Unit, Department of Oncology AUSL Romagna, Degli Infermi Hospital, Rimini, Italy
| | - Stefano Tamberi
- Oncology Unit, Ravenna Hospital, AUSL Romagna, Ravenna, Italy
| | - Giulia Bartolini
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Alessandro Passardi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Daniele Calistri
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Giovanni Luca Frassineti
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Fabio Falcini
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| | - Rita Danesi
- Romagna Cancer Registry, IRCCS Istituto Romagnolo per lo Studio dei Tumori "Dino Amadori" - IRST, 47014, Meldola, Italy
| |
Collapse
|
67
|
Rosen MN, Goodwin RA, Vickers MM. BRCA mutated pancreatic cancer: A change is coming. World J Gastroenterol 2021; 27:1943-1958. [PMID: 34007132 PMCID: PMC8108028 DOI: 10.3748/wjg.v27.i17.1943] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/04/2021] [Accepted: 04/13/2021] [Indexed: 02/06/2023] Open
Abstract
Pancreatic cancer remains a leading cause of cancer-related death with few available therapies for advanced disease. Recently, patients with germline BRCA mutations have received increased attention due to advances in the management of BRCA mutated ovarian and breast tumors. Germline BRCA mutations significantly increase risk of developing pancreatic cancer and can be found in up to 8% of patients with sporadic pancreatic cancer. In patients with germline BRCA mutations, platinum-based chemotherapies and poly (ADP-ribose) polymerase inhibitors are effective treatment options which may offer survival benefits. This review will focus on the molecular biology, epidemiology, and management of BRCA-mutated pancreatic cancer. Furthermore, we will discuss future directions for this area of research and promising active areas of research.
Collapse
Affiliation(s)
- Michael N Rosen
- Faculty of Medicine, The University of Ottawa, Ottawa K1H 8L6, Ontario, Canada
| | - Rachel A Goodwin
- Faculty of Medicine, The University of Ottawa, Ottawa K1H 8L6, Ontario, Canada
| | - Michael M Vickers
- The Ottawa Hospital Cancer Center, The University of Ottawa, Ottawa K1H 8L6, Ontario, Canada
| |
Collapse
|
68
|
Pietri E, Balsano R, Coriano M, Gelsomino F, Leonardi F, Bui S, Gnetti L, Valle RD, Garajová I. The implication of liquid biopsies to predict chemoresistance in pancreatic cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2021; 4:559-572. [PMID: 35582309 PMCID: PMC9094078 DOI: 10.20517/cdr.2021.01] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/08/2021] [Accepted: 03/29/2021] [Indexed: 12/11/2022]
Abstract
Pancreatic cancer is one of the most aggressive diseases among solid tumors. Most patients are diagnosed with advanced or metastatic disease and are characterized by poor chemosensitivity. Therefore, earlier diagnosis and novel therapeutic possibilities for pancreatic cancer patients are urgently needed. Liquid biopsy is an emerging technology that allows the noninvasive sampling of tumor material. Nowadays, liquid biopsy has shown promising results as diagnostic, prognostic and predictive biomarkers, but it has not yet been universally adopted into regular use by clinicians. In this review, we describe different components of liquid biopsy, especially circulating tumor cells, circulating tumor DNA and exosomes and their potential clinical utility for pancreatic cancer patients.
Collapse
Affiliation(s)
- Elisabetta Pietri
- Medical Oncology Unit, University Hospital of Parma, Parma 43126, Italy
- Authors contributed equally
| | - Rita Balsano
- Medical Oncology Unit, University Hospital of Parma, Parma 43126, Italy
- Authors contributed equally
| | - Matilde Coriano
- Medical Oncology Unit, University Hospital of Parma, Parma 43126, Italy
| | - Fabio Gelsomino
- Department of Oncology and Hematology, University Hospital of Modena, Modena 41124, Italy
| | | | - Simona Bui
- Medical Oncology Unit, University Hospital of Parma, Parma 43126, Italy
| | - Letizia Gnetti
- Unit of Pathological Anatomy, University Hospital of Parma, Parma 43126, Italy
| | | | - Ingrid Garajová
- Medical Oncology Unit, University Hospital of Parma, Parma 43126, Italy
| |
Collapse
|
69
|
Horn IP, Marks DL, Koenig AN, Hogenson TL, Almada LL, Goldstein LE, Romecin Duran PA, Vera R, Vrabel AM, Cui G, Rabe KG, Bamlet WR, Mer G, Sicotte H, Zhang C, Li H, Petersen GM, Fernandez-Zapico ME. A rare germline CDKN2A variant (47T>G; p16-L16R) predisposes carriers to pancreatic cancer by reducing cell cycle inhibition. J Biol Chem 2021; 296:100634. [PMID: 33823155 PMCID: PMC8121974 DOI: 10.1016/j.jbc.2021.100634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 03/29/2021] [Accepted: 04/01/2021] [Indexed: 11/30/2022] Open
Abstract
Germline mutations in CDKN2A, encoding the tumor suppressor p16, are responsible for a large proportion of familial melanoma cases and also increase risk of pancreatic cancer. We identified four families through pancreatic cancer probands that were affected by both cancers. These families bore a germline missense variant of CDKN2A (47T>G), encoding a p16-L16R mutant protein associated with high cancer occurrence. Here, we investigated the biological significance of this variant. When transfected into p16-null pancreatic cancer cells, p16-L16R was expressed at lower levels than wild-type (WT) p16. In addition, p16-L16R was unable to bind CDK4 or CDK6 compared with WT p16, as shown by coimmunoprecipitation assays and also was impaired in its ability to inhibit the cell cycle, as demonstrated by flow cytometry analyses. In silico molecular modeling predicted that the L16R mutation prevents normal protein folding, consistent with the observed reduction in expression/stability and diminished function of this mutant protein. We isolated normal dermal fibroblasts from members of the families expressing WT or L16R proteins to investigate the impact of endogenous p16-L16R mutant protein on cell growth. In culture, p16-L16R fibroblasts grew at a faster rate, and most survived until later passages than p16-WT fibroblasts. Further, western blotting demonstrated that p16 protein was detected at lower levels in p16-L16R than in p16-WT fibroblasts. Together, these results suggest that the presence of a CDKN2A (47T>G) mutant allele contributes to an increased risk of pancreatic cancer as a result of reduced p16 protein levels and diminished p16 tumor suppressor function.
Collapse
Affiliation(s)
- Isaac P Horn
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - David L Marks
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda N Koenig
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Tara L Hogenson
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Luciana L Almada
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Lauren E Goldstein
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Paola A Romecin Duran
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Renzo Vera
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Anne M Vrabel
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Gaofeng Cui
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Kari G Rabe
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - William R Bamlet
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Georges Mer
- Division of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Hugues Sicotte
- Division of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, Minnesota, USA
| | - Cheng Zhang
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | - Hu Li
- Division of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Martin E Fernandez-Zapico
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic, Rochester, Minnesota, USA.
| |
Collapse
|
70
|
de Almeida LC, Calil FA, Machado-Neto JA, Costa-Lotufo LV. DNA damaging agents and DNA repair: From carcinogenesis to cancer therapy. Cancer Genet 2021; 252-253:6-24. [DOI: 10.1016/j.cancergen.2020.12.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 02/09/2023]
|
71
|
Somatic Mutation Profiling in the Liquid Biopsy and Clinical Analysis of Hereditary and Familial Pancreatic Cancer Cases Reveals KRAS Negativity and a Longer Overall Survival. Cancers (Basel) 2021; 13:cancers13071612. [PMID: 33807330 PMCID: PMC8038004 DOI: 10.3390/cancers13071612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 03/27/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Pancreatic ductal adenocarcinoma (PDAC) has a poor prognosis. KRAS mutations occur in up to 95% of cases and render the tumor resistant to many types of therapy. Therefore, these patients are treated with traditional cytotoxic agents, according to guidelines. The familial or hereditary form of the disease accounts for up to 10–15% of cases. We hypothesized that hereditary and Familial Pancreatic Cancer cases (H/FPC) have a distinct tumor specific mutation profile due to the presence of pathogenic germline mutations and we used circulating free DNA (cfDNA) in plasma to assess this hypothesis. H/FPC cases were mainly KRAS mutation negative and harbored tumor specific mutations that are potential treatment targets in the clinic. Thus, we conclude that cases with a hereditary or familial background can be treated with newer and more effective agents that may ultimately improve their overall survival. Abstract Pancreatic ductal adenocarcinoma (PDAC) presents many challenges in the clinic and there are many areas for improvement in diagnostics and patient management. The five-year survival rate is around 7.2% as the majority of patients present with advanced disease at diagnosis that is treatment resistant. Approximately 10–15% of PDAC cases have a hereditary basis or Familial Pancreatic Cancer (FPC). Here we demonstrate the use of circulating free DNA (cfDNA) in plasma as a prognostic biomarker in PDAC. The levels of cfDNA correlated with disease status, disease stage, and overall survival. Furthermore, we show for the first time via BEAMing that the majority of hereditary or familial PDAC cases (around 84%) are negative for a KRAS somatic mutation. In addition, KRAS mutation negative cases harbor somatic mutations in potentially druggable genes such as KIT, PDGFR, MET, BRAF, and PIK3CA that could be exploited in the clinic. Finally, familial or hereditary cases have a longer overall survival compared to sporadic cases (10.2 vs. 21.7 months, respectively). Currently, all patients are treated the same in the clinic with cytotoxic agents, although here we demonstrate that there are different subtypes of tumors at the genetic level that could pave the way to personalized treatment.
Collapse
|
72
|
Zimmermann MT, Mathison AJ, Stodola T, Evans DB, Abrudan JL, Demos W, Tschannen M, Aldakkak M, Geurts J, Lomberk G, Tsai S, Urrutia R. Interpreting Sequence Variation in PDAC-Predisposing Genes Using a Multi-Tier Annotation Approach Performed at the Gene, Patient, and Cohort Level. Front Oncol 2021; 11:606820. [PMID: 33747920 PMCID: PMC7973372 DOI: 10.3389/fonc.2021.606820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 01/21/2021] [Indexed: 12/12/2022] Open
Abstract
We investigated germline variation in pancreatic ductal adenocarcinoma (PDAC) predisposition genes in 535 patients, using a custom-built panel and a new complementary bioinformatic approach. Our panel assessed genes belonging to DNA repair, cell cycle checkpoints, migration, and preneoplastic pancreatic conditions. Our bioinformatics approach integrated annotations of variants by using data derived from both germline and somatic references. This integrated approach with expanded evidence enabled us to consider patterns even among private mutations, supporting a functional role for certain alleles, which we believe enhances individualized medicine beyond classic gene-centric approaches. Concurrent evaluation of three levels of evidence, at the gene, sample, and cohort level, has not been previously done. Overall, we identified in PDAC patient germline samples, 12% with mutations previously observed in pancreatic cancers, 23% with mutations previously discovered by sequencing other human tumors, and 46% with mutations with germline associations to cancer. Non-polymorphic protein-coding pathogenic variants were found in 18.4% of patient samples. Moreover, among patients with metastatic PDAC, 16% carried at least one pathogenic variant, and this subgroup was found to have an improved overall survival (22.0 months versus 9.8; p=0.008) despite a higher pre-treatment CA19-9 level (p=0.02). Genetic alterations in DNA damage repair genes were associated with longer overall survival among patients who underwent resection surgery (92 months vs. 46; p=0.06). ATM alterations were associated with more frequent metastatic stage (p = 0.04) while patients with BRCA1 or BRCA2 alterations had improved overall survival (79 months vs. 39; p=0.05). We found that mutations in genes associated with chronic pancreatitis were more common in non-white patients (p<0.001) and associated with longer overall survival (52 months vs. 26; p=0.004), indicating the need for greater study of the relationship among these factors. More than 90% of patients were found to have variants of uncertain significance, which is higher than previously reported. Furthermore, we generated 3D models for selected mutant proteins, which suggested distinct mechanisms underlying their dysfunction, likely caused by genetic alterations. Notably, this type of information is not predictable from sequence alone, underscoring the value of structural bioinformatics to improve genomic interpretation. In conclusion, the variation in PDAC predisposition genes appears to be more extensive than anticipated. This information adds to the growing body of literature on the genomic landscape of PDAC and brings us closer to a more widespread use of precision medicine for this challenging disease.
Collapse
Affiliation(s)
- Michael T Zimmermann
- Bioinformatics Research and Development Laboratory, Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Clinical and Translational Sciences Institute, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Angela J Mathison
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Tim Stodola
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Douglas B Evans
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jenica L Abrudan
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Wendy Demos
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael Tschannen
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Mohammed Aldakkak
- Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jennifer Geurts
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,Genetic Counseling Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Gwen Lomberk
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Susan Tsai
- Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Surgical Oncology, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Raul Urrutia
- Department of Biochemistry, Medical College of Wisconsin, Milwaukee, WI, United States.,Division of Research, Department of Surgery, Medical College of Wisconsin, Milwaukee, WI, United States.,Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin, Milwaukee, WI, United States.,LaBahn Pancreatic Cancer Program, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
73
|
Fahrmann JF, Schmidt CM, Mao X, Irajizad E, Loftus M, Zhang J, Patel N, Vykoukal J, Dennison JB, Long JP, Do KA, Zhang J, Chabot JA, Kluger MD, Kastrinos F, Brais L, Babic A, Jajoo K, Lee LS, Clancy TE, Ng K, Bullock A, Genkinger J, Yip-Schneider MT, Maitra A, Wolpin BM, Hanash S. Lead-Time Trajectory of CA19-9 as an Anchor Marker for Pancreatic Cancer Early Detection. Gastroenterology 2021; 160:1373-1383.e6. [PMID: 33333055 PMCID: PMC8783758 DOI: 10.1053/j.gastro.2020.11.052] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND & AIMS There is substantial interest in liquid biopsy approaches for cancer early detection among subjects at risk, using multi-marker panels. CA19-9 is an established circulating biomarker for pancreatic cancer; however, its relevance for pancreatic cancer early detection or for monitoring subjects at risk has not been established. METHODS CA19-9 levels were assessed in blinded sera from 175 subjects collected up to 5 years before diagnosis of pancreatic cancer and from 875 matched controls from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. For comparison of performance, CA19-9 was assayed in blinded independent sets of samples collected at diagnosis from 129 subjects with resectable pancreatic cancer and 275 controls (100 healthy subjects; 50 with chronic pancreatitis; and 125 with noncancerous pancreatic cysts). The complementary value of 2 additional protein markers, TIMP1 and LRG1, was determined. RESULTS In the PLCO cohort, levels of CA19-9 increased exponentially starting at 2 years before diagnosis with sensitivities reaching 60% at 99% specificity within 0 to 6 months before diagnosis for all cases and 50% at 99% specificity for cases diagnosed with early-stage disease. Performance was comparable for distinguishing newly diagnosed cases with resectable pancreatic cancer from healthy controls (64% sensitivity at 99% specificity). Comparison of resectable pancreatic cancer cases to subjects with chronic pancreatitis yielded 46% sensitivity at 99% specificity and for subjects with noncancerous cysts, 30% sensitivity at 99% specificity. For prediagnostic cases below cutoff value for CA19-9, the combination with LRG1 and TIMP1 yielded an increment of 13.2% in sensitivity at 99% specificity (P = .031) in identifying cases diagnosed within 1 year of blood collection. CONCLUSION CA19-9 can serve as an anchor marker for pancreatic cancer early detection applications.
Collapse
Affiliation(s)
- Johannes F Fahrmann
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - C Max Schmidt
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Xiangying Mao
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Ehsan Irajizad
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Maureen Loftus
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Jinming Zhang
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nikul Patel
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jody Vykoukal
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jennifer B Dennison
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - James P Long
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Kim-Anh Do
- Department of Biostatistics, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Jianjun Zhang
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - John A Chabot
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Department of Epidemiology, Columbia Mailman School of Public Health, New York, New York
| | - Michael D Kluger
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Department of Epidemiology, Columbia Mailman School of Public Health, New York, New York
| | - Fay Kastrinos
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, New York, Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas; Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Department of Surgery, New York, New York
| | - Lauren Brais
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Ana Babic
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Kunal Jajoo
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Linda S Lee
- Division of Gastroenterology, Hepatology and Endoscopy, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Thomas E Clancy
- Dana-Farber Brigham and Women's Cancer Center, Division of Surgical Oncology, Department of Surgery, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Kimmie Ng
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Andrea Bullock
- Division of Hematology/Oncology, Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts
| | - Jeanine Genkinger
- Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, Department of Epidemiology, Columbia Mailman School of Public Health, New York, New York
| | | | - Anirban Maitra
- Division of Digestive and Liver Diseases, Columbia University Irving Medical Cancer and the Vagelos College of Physicians and Surgeons, New York, New York, Department of Pathology, The University of Texas M. D. Anderson Cancer Center, Houston, Texas
| | - Brian M Wolpin
- Dana-Farber Brigham and Women's Cancer Center, Division of Gastrointestinal Oncology, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Samir Hanash
- Department of Clinical Cancer Prevention, The University of Texas M. D. Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
74
|
Peretti U, Cavaliere A, Niger M, Tortora G, Di Marco MC, Rodriquenz MG, Centonze F, Rapposelli IG, Giordano G, De Vita F, Stuppia L, Avallone A, Ratti M, Paratore C, Forti LG, Orsi G, Valente MM, Gaule M, Macchini M, Carrera P, Calzavara S, Simbolo M, Melisi D, De Braud F, Salvatore L, De Lorenzo S, Chiarazzo C, Falconi M, Cascinu S, Milella M, Reni M. Germinal BRCA1-2 pathogenic variants (gBRCA1-2pv) and pancreatic cancer: epidemiology of an Italian patient cohort. ESMO Open 2021; 6:100032. [PMID: 33399070 PMCID: PMC7807989 DOI: 10.1016/j.esmoop.2020.100032] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 02/08/2023] Open
Abstract
OBJECTIVE Germline BRCA1-2 pathogenic variants (gBRCApv) increase the risk of pancreatic cancer and predict for response to platinating agents and poly(ADP-ribose) polymerase inhibitors. Data on worldwide gBRCApv incidence among pancreatic ductal adenocarcinoma (PDAC) patients are sparse and describe a remarkable geographic heterogeneity. The aim of this study is to analyze the epidemiology of gBRCApv in Italian patients. MATERIALS AND METHODS Patients of any age with pancreatic adenocarcinoma, screened within 3 months from diagnosis for gBRCApv in Italian oncologic centers systematically performing tests without any selection. For the purposes of our analysis, breast, ovarian, pancreas, and prostate cancer in a patient's family history was considered as potentially BRCA-associated. Patients or disease characteristics were examined using the χ2 test or Fisher's exact test for qualitative variables and the Student's t-test or Mann-Whitney test for continuous variables, as appropriate. RESULTS Between June 2015 and May 2020, 939 patients were tested by 14 Italian centers; 492 (52%) males, median age 62 years (range 28-87), 569 (61%) metastatic, 273 (29%) with a family history of potentially BRCA-associated cancers. gBRCA1-2pv were found in 76 patients (8.1%; 9.1% in metastatic; 6.4% in non-metastatic). The gBRCA2/gBRCA1 ratio was 5.4 : 1. Patients with gBRCApv were younger compared with wild-type (59 versus 62 years, P = 0.01). The gBRCApv rate was 17.1% among patients <40 years old, 10.4% among patients 41-50 years old, 9.2% among patients 51-60 years old, 6.7% among patients aged 61-70 years, and 6.2% among patients >70 years old (none out of 94 patients >73 years old). gBRCApv frequency in 845 patients <74 years old was 9%. Patients with/without a family history of potentially BRCA-associated tumors had 14%/6% mutations. CONCLUSION Based on our findings of a gBRCApv incidence higher than expected in a real-life series of Italian patients with incident PDAC, we recommend screening all PDAC patients <74 years old, regardless of family history and stage, due to the therapeutic implications and cancer risk prevention in patients' relatives.
Collapse
Affiliation(s)
- U Peretti
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - A Cavaliere
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Niger
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - G Tortora
- Department of Medicine, Section of Medical Oncology, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - M C Di Marco
- Medical Oncology Division, Department of Experimental, Diagnostic and Specialty Medicine - DIMES, University of Bologna, S. Orsola-Malpighi Hospital, Bologna, Italy; Medical Oncology Division, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - M G Rodriquenz
- Oncology Unit, foundation IRCCS Casa Sollievo della sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - F Centonze
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - I G Rapposelli
- Department of Medical Oncology, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST) IRCCS, Meldola, Italy
| | - G Giordano
- Department of Medical Oncology, Policlinico Riuniti, Azienda Ospedaliero Universitarià, Foggia, Italy
| | - F De Vita
- Division of Medical Oncology, Department of Precision Medicine, School of Medicine, 'Luigi Vanvitelli' University of Campania, Naples, Italy
| | - L Stuppia
- Medical Genetics, Department of Psychological, Health and Territorial Sciences Center for Advanced Sciences and Technology G. d'Annunzio University Chieti-Pescara Italy, Chieti, Italy
| | - A Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Naples, Italy
| | - M Ratti
- Department of Oncology, Medical Department, ASST di Cremona, Ospedale di Cremona, Cremona, Italy
| | - C Paratore
- Chiara Paratore, University of Turin, Ordine Mauriziano Hospital, Largo Filippo Turati, Turin, Italy
| | - L G Forti
- SCDU Oncologia, AOU Maggiore della Carità, Novara, Italy
| | - G Orsi
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - M M Valente
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - M Gaule
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Macchini
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - P Carrera
- Clinical Genomics - Molecular Genetics Service, Genomics for Diagnosis of Human Diseases, San Raffaele Hospital, Milan, Italy
| | - S Calzavara
- Clinical Genomics - Molecular Genetics Service, Genomics for Diagnosis of Human Diseases, San Raffaele Hospital, Milan, Italy
| | - M Simbolo
- Section of Pathology, Department of Diagnostics and Public Health, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - D Melisi
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - F De Braud
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy; Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - L Salvatore
- Department of Medicine, Section of Medical Oncology, Fondazione Policlinico Universitario Gemelli IRCCS, Rome, Italy
| | - S De Lorenzo
- Medical Oncology Division, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - C Chiarazzo
- Oncology Unit, foundation IRCCS Casa Sollievo della sofferenza, San Giovanni Rotondo, Foggia, Italy
| | - M Falconi
- Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy; Department of Surgery, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - S Cascinu
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy
| | - M Milella
- Section of Oncology, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - M Reni
- Department of Medical Oncology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Pancreas Translational & Clinical Research Center, 'Vita-Salute' University, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
75
|
Tezuka K, Okamura Y, Sugiura T, Ito T, Yamamoto Y, Ashida R, Ohgi K, Uesaka K. The influence of familial pancreatic cancer on postoperative outcome in pancreatic cancer: relevance to adjuvant chemotherapy. J Gastroenterol 2021; 56:101-113. [PMID: 33094352 DOI: 10.1007/s00535-020-01730-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/12/2020] [Indexed: 02/04/2023]
Abstract
BACKGROUND Familial pancreatic cancer (FPC) is defined as a family in which at least two first-degree relatives have pancreatic cancer (PC). The prognostic significance of PC in an FPC family after surgery is not fully understood. METHODS This was a retrospective study of 427 patients who underwent pancreatectomy for pancreatic ductal adenocarcinoma between January 2008 and December 2016. PC patients who also had at least one first-degree relative with PC were defined as FPC patients. The associations between recurrence and clinicopathological characteristics were analyzed for both FPC and non-FPC patients. RESULTS FPC patients accounted for 31 of the 427 (7.3%) patients. Recurrence occurred in 72.1% of the total cohort and in 87.1% of the 31 FPC patients. Multivariate analysis showed that being an FPC patient was an independent predictor for relapse-free survival (RFS) (hazard ratio [HR] 1.52, P = 0.038). Although univariate analysis revealed that being an FPC patient was significantly associated with poorer overall survival (OS) (P < 0.001), multivariate analysis showed that being an FPC patient was not an independent predictor for OS (P = 0.164). Dichotomization of the 427 patients into those who received (n = 317: 17 FPC and 300 non-FPC patients) and did not receive (n = 110: 14 FPC and 96 non-FPC patients) adjuvant chemotherapy revealed that being an FPC patient was an independent predictor for RFS (HR 2.50, P < 0.001) and OS (HR 2.30, P = 0.003) only for patients who received adjuvant chemotherapy. CONCLUSIONS This study has shown that being an FPC patient is a significant prognostic indicator for PC patients who undergo resection and receive adjuvant chemotherapy.
Collapse
Affiliation(s)
- Koji Tezuka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Yukiyasu Okamura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan.
| | - Teiichi Sugiura
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Takaaki Ito
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Yusuke Yamamoto
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Ryo Ashida
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Katsuhisa Ohgi
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka Cancer Center Hospital, 1007, Shimo-Nagakubo, Sunto-Nagaizumi, Shizuoka, 411-8777, Japan
| |
Collapse
|
76
|
The Impact of Clinical and Pathological Features on Intraductal Papillary Mucinous Neoplasm Recurrence After Surgical Resection: Long-Term Follow-Up Analysis. Ann Surg 2020; 275:1165-1174. [PMID: 33214420 PMCID: PMC9516436 DOI: 10.1097/sla.0000000000004427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
OBJECTIVE This study aimed to identify risk factors for recurrence after pancreatic resection for intraductal papillary mucinous neoplasm (IPMN). SUMMARY BACKGROUND DATA Long-term follow-up data on recurrence after surgical resection for IPMN are currently lacking. Previous studies have presented mixed results on the role of margin status in risk of recurrence after surgical resection. METHODS A total of 126 patients that underwent resection for noninvasive IPMN were followed for a median of 9.5 years. Dedicated pathological and radiological reviews were performed to correlate clinical and pathological features (including detailed pathological features of the parenchymal margin) with recurrence after surgical resection. In addition, in a subset of 32 patients with positive margins, we determined the relationship between the margin and original IPMN using driver gene mutations identified by next-generation sequencing. RESULTS Family history of pancreatic cancer and high-grade IPMN was identified as risk factors for recurrence in both uni- and multivariate analysis (adjusted hazard ratio 3.05 and 1.88, respectively). Although positive margin was not significantly associated with recurrence in our cohort, the size and grade of the dysplastic focus at the margin were significantly correlated with recurrence in margin-positive patients. Genetic analyses showed that the neoplastic epithelium at the margin was independent from the original IPMN in at least 9 of 32 cases (28%). The majority of recurrences (74%) occurred after 3 years, and a significant minority (32%) occurred after 5 years. CONCLUSION Sustained postoperative surveillance for all patients is indicated, particularly those with risk factors such has family history and high-grade dysplasia.
Collapse
|
77
|
Liu D, Zhou D, Sun Y, Zhu J, Ghoneim D, Wu C, Yao Q, Gamazon ER, Cox NJ, Wu L. A Transcriptome-Wide Association Study Identifies Candidate Susceptibility Genes for Pancreatic Cancer Risk. Cancer Res 2020; 80:4346-4354. [PMID: 32907841 PMCID: PMC7572664 DOI: 10.1158/0008-5472.can-20-1353] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/25/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer is among the most well-characterized cancer types, yet a large proportion of the heritability of pancreatic cancer risk remains unclear. Here, we performed a large transcriptome-wide association study to systematically investigate associations between genetically predicted gene expression in normal pancreas tissue and pancreatic cancer risk. Using data from 305 subjects of mostly European descent in the Genotype-Tissue Expression Project, we built comprehensive genetic models to predict normal pancreas tissue gene expression, modifying the UTMOST (unified test for molecular signatures). These prediction models were applied to the genetic data of 8,275 pancreatic cancer cases and 6,723 controls of European ancestry. Thirteen genes showed an association of genetically predicted expression with pancreatic cancer risk at an FDR ≤ 0.05, including seven previously reported genes (INHBA, SMC2, ABO, PDX1, RCCD1, CFDP1, and PGAP3) and six novel genes not yet reported for pancreatic cancer risk [6q27: SFT2D1 OR (95% confidence interval (CI), 1.54 (1.25-1.89); 13q12.13: MTMR6 OR (95% CI), 0.78 (0.70-0.88); 14q24.3: ACOT2 OR (95% CI), 1.35 (1.17-1.56); 17q12: STARD3 OR (95% CI), 6.49 (2.96-14.27); 17q21.1: GSDMB OR (95% CI), 1.94 (1.45-2.58); and 20p13: ADAM33 OR (95% CI): 1.41 (1.20-1.66)]. The associations for 10 of these genes (SFT2D1, MTMR6, ACOT2, STARD3, GSDMB, ADAM33, SMC2, RCCD1, CFDP1, and PGAP3) remained statistically significant even after adjusting for risk SNPs identified in previous genome-wide association study. Collectively, this analysis identified novel candidate susceptibility genes for pancreatic cancer that warrant further investigation. SIGNIFICANCE: A transcriptome-wide association analysis identified seven previously reported and six novel candidate susceptibility genes for pancreatic cancer risk.
Collapse
Affiliation(s)
- Duo Liu
- Department of Pharmacy, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang, P.R. China
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Dan Zhou
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yanfa Sun
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
- College of Life Science, Longyan University, Longyan, Fujian, P.R. China
- Fujian Provincial Key Laboratory for the Prevention and Control of Animal Infectious Diseases and Biotechnology, Longyan, Fujian, P.R. China
- Key Laboratory of Preventive Veterinary Medicine and Biotechnology (Longyan University), Fujian Province University, Longyan, Fujian, P.R. China
| | - Jingjing Zhu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Dalia Ghoneim
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii
| | - Chong Wu
- Department of Statistics, Florida State University, Tallahassee, Florida
| | - Qizhi Yao
- Division of Surgical Oncology, Michael E. DeBakey Department of Surgery, Baylor College of Medicine, Houston, Texas
- Center for Translational Research on Inflammatory Diseases (CTRID), Michael E. DeBakey VA Medical Center, Houston, Texas
| | - Eric R Gamazon
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
- Clare Hall, University of Cambridge, Cambridge, United Kingdom
- MRC Epidemiology Unit, School of Clinical Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Nancy J Cox
- Vanderbilt Genetics Institute and Division of Genetic Medicine, Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Lang Wu
- Division of Cancer Epidemiology, Population Sciences in the Pacific Program, University of Hawaii Cancer Center, University of Hawaii at Manoa, Honolulu, Hawaii.
| |
Collapse
|
78
|
Zhong J, Jermusyk A, Wu L, Hoskins JW, Collins I, Mocci E, Zhang M, Song L, Chung CC, Zhang T, Xiao W, Albanes D, Andreotti G, Arslan AA, Babic A, Bamlet WR, Beane-Freeman L, Berndt S, Borgida A, Bracci PM, Brais L, Brennan P, Bueno-de-Mesquita B, Buring J, Canzian F, Childs EJ, Cotterchio M, Du M, Duell EJ, Fuchs C, Gallinger S, Gaziano JM, Giles GG, Giovannucci E, Goggins M, Goodman GE, Goodman PJ, Haiman C, Hartge P, Hasan M, Helzlsouer KJ, Holly EA, Klein EA, Kogevinas M, Kurtz RJ, LeMarchand L, Malats N, Männistö S, Milne R, Neale RE, Ng K, Obazee O, Oberg AL, Orlow I, Patel AV, Peters U, Porta M, Rothman N, Scelo G, Sesso HD, Severi G, Sieri S, Silverman D, Sund M, Tjønneland A, Thornquist MD, Tobias GS, Trichopoulou A, Van Den Eeden SK, Visvanathan K, Wactawski-Wende J, Wentzensen N, White E, Yu H, Yuan C, Zeleniuch-Jacquotte A, Hoover R, Brown K, Kooperberg C, Risch HA, Jacobs EJ, Li D, Yu K, Shu XO, Chanock SJ, Wolpin BM, Stolzenberg-Solomon RZ, Chatterjee N, Klein AP, Smith JP, Kraft P, Shi J, Petersen GM, Zheng W, Amundadottir LT. A Transcriptome-Wide Association Study Identifies Novel Candidate Susceptibility Genes for Pancreatic Cancer. J Natl Cancer Inst 2020; 112:1003-1012. [PMID: 31917448 PMCID: PMC7566474 DOI: 10.1093/jnci/djz246] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/12/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Although 20 pancreatic cancer susceptibility loci have been identified through genome-wide association studies in individuals of European ancestry, much of its heritability remains unexplained and the genes responsible largely unknown. METHODS To discover novel pancreatic cancer risk loci and possible causal genes, we performed a pancreatic cancer transcriptome-wide association study in Europeans using three approaches: FUSION, MetaXcan, and Summary-MulTiXcan. We integrated genome-wide association studies summary statistics from 9040 pancreatic cancer cases and 12 496 controls, with gene expression prediction models built using transcriptome data from histologically normal pancreatic tissue samples (NCI Laboratory of Translational Genomics [n = 95] and Genotype-Tissue Expression v7 [n = 174] datasets) and data from 48 different tissues (Genotype-Tissue Expression v7, n = 74-421 samples). RESULTS We identified 25 genes whose genetically predicted expression was statistically significantly associated with pancreatic cancer risk (false discovery rate < .05), including 14 candidate genes at 11 novel loci (1p36.12: CELA3B; 9q31.1: SMC2, SMC2-AS1; 10q23.31: RP11-80H5.9; 12q13.13: SMUG1; 14q32.33: BTBD6; 15q23: HEXA; 15q26.1: RCCD1; 17q12: PNMT, CDK12, PGAP3; 17q22: SUPT4H1; 18q11.22: RP11-888D10.3; and 19p13.11: PGPEP1) and 11 at six known risk loci (5p15.33: TERT, CLPTM1L, ZDHHC11B; 7p14.1: INHBA; 9q34.2: ABO; 13q12.2: PDX1; 13q22.1: KLF5; and 16q23.1: WDR59, CFDP1, BCAR1, TMEM170A). The association for 12 of these genes (CELA3B, SMC2, and PNMT at novel risk loci and TERT, CLPTM1L, INHBA, ABO, PDX1, KLF5, WDR59, CFDP1, and BCAR1 at known loci) remained statistically significant after Bonferroni correction. CONCLUSIONS By integrating gene expression and genotype data, we identified novel pancreatic cancer risk loci and candidate functional genes that warrant further investigation.
Collapse
Affiliation(s)
- Jun Zhong
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ashley Jermusyk
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lang Wu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jason W Hoskins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Irene Collins
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Evelina Mocci
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Mingfeng Zhang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- US Food and Drug Administration, Silver Spring, MD, USA
| | - Lei Song
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles C Chung
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tongwu Zhang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Wenming Xiao
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, AR, USA
- Division of Molecular Genetics and Pathology, Center for Devices and Radiological Health, US Food and Drug Administration, Silver Spring, MD, USA
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gabriella Andreotti
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alan A Arslan
- Department of Obstetrics and Gynecology, New York University School of Medicine, New York, NY, USA
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Ana Babic
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - William R Bamlet
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Laura Beane-Freeman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sonja Berndt
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Paige M Bracci
- Department of Epidemiology and Biostatistics, University of California, CA, USA
| | - Lauren Brais
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Bas Bueno-de-Mesquita
- Department for Determinants of Chronic Diseases, National Institute for Public Health and the Environment, BA, Bilthoven, The Netherlands
- Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, The Netherlands
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Julie Buring
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Federico Canzian
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Erica J Childs
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Michelle Cotterchio
- Cancer Care Ontario, University of Toronto, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Mengmeng Du
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Eric J Duell
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Program, Bellvitge Biomedical Research Institute, Catalan Institute of Oncology, Barcelona, Spain
| | | | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute of Mount Sinai Hospital, Toronto, Ontario, Canada
| | - J Michael Gaziano
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Division of Aging, Brigham and Women’s Hospital, Boston, MA, USA
- Boston VA Healthcare System, Boston, MA, USA
| | - Graham G Giles
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Department of Epidemiology and Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Edward Giovannucci
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Michael Goggins
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Gary E Goodman
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Phyllis J Goodman
- SWOG Statistical Center, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Christopher Haiman
- Department of Preventive Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Patricia Hartge
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Manal Hasan
- Department of Epidemiology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kathy J Helzlsouer
- Division of Cancer Control and Population Sciences, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Elizabeth A Holly
- Department of Epidemiology and Biostatistics, University of California, San Francisco, CA, USA
| | - Eric A Klein
- Glickman Urological and Kidney Institute, Cleveland Clinic, Cleveland, OH, USA
| | - Manolis Kogevinas
- ISGlobal, Centre for Research in Environmental Epidemiology, Barcelona, Spain
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Hospital del Mar Institute of Medical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - Robert J Kurtz
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Loic LeMarchand
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Núria Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Center, Madrid, Spain
| | - Satu Männistö
- Department of Public Health Solutions, National Institute for Health and Welfare, Helsinki, Finland
| | - Roger Milne
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
- Precision Medicine, School of Clinical Sciences at Monash Health, Monash University, Melbourne, VIC, Australia
| | - Rachel E Neale
- Population Health Department, QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | - Kimmie Ng
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Ofure Obazee
- Genomic Epidemiology Group, German Cancer Research Center, Heidelberg, Germany
| | - Ann L Oberg
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Irene Orlow
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alpa V Patel
- Epidemiology Research Program, American Cancer Society, Atlanta, GA, USA
| | - Ulrike Peters
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Miquel Porta
- CIBER Epidemiología y Salud Pública, Barcelona, Spain
- Hospital del Mar Institute of Medical Research, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ghislaine Scelo
- International Agency for Research on Cancer, Lyon, France
- Cancer Epidemiology and Intelligence Division, Cancer Council Victoria, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Parkville, VIC, Australia
| | - Howard D Sesso
- Division of Preventive Medicine, Brigham and Women’s Hospital, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Gianluca Severi
- Centre de Recherche en Épidémiologie et Santé des Populations (CESP, Inserm U1018), Facultés de Medicine, Université Paris-Saclay, UPS, UVSQ, Gustave Roussy, Villejuif, France
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Debra Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Malin Sund
- Department of Surgical and Perioperative Sciences, Umeå University, Umeå, Sweden
| | - Anne Tjønneland
- Danish Cancer Society Research Center, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
- Hellenic Health Foundation, Athens, Greece
| | - Mark D Thornquist
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Geoffrey S Tobias
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | | | | | - Kala Visvanathan
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jean Wactawski-Wende
- Department of Epidemiology and Environmental Health, University at Buffalo, Buffalo, NY, USA
| | - Nicolas Wentzensen
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Emily White
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
- Department of Epidemiology, University of Washington, Seattle, WA, USA
| | - Herbert Yu
- Cancer Epidemiology Program, University of Hawaii Cancer Center, Honolulu, HI, USA
| | - Chen Yuan
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Anne Zeleniuch-Jacquotte
- Department of Population Health, New York University School of Medicine, New York, NY, USA
- Perlmutter Cancer Center, New York University School of Medicine, New York, NY, USA
| | - Robert Hoover
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kevin Brown
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Charles Kooperberg
- Division of Public Health Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Harvey A Risch
- Department of Chronic Disease Epidemiology, Yale School of Public Health, New Haven, CT, USA
| | - Eric J Jacobs
- Behavioral and Epidemiology Research Group, American Cancer Society, Atlanta, GA, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kai Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xiao-Ou Shu
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Brian M Wolpin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Rachael Z Stolzenberg-Solomon
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Department of Biostatistics, Bloomberg School of Public Health, Baltimore, MD, USA
| | - Alison P Klein
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Department of Pathology, Sol Goldman Pancreatic Cancer Research Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Jill P Smith
- Department of Medicine, Georgetown University, Washington, DC, USA
| | - Peter Kraft
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Biostatistics, Harvard School of Public Health, Boston, MA, USA
| | - Jianxin Shi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine, Rochester, MN, USA
| | - Wei Zheng
- Division of Epidemiology, Department of Medicine, Vanderbilt Epidemiology Center, Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Laufey T Amundadottir
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
79
|
Wang Y, Lakoma A, Zogopoulos G. Building towards Precision Oncology for Pancreatic Cancer: Real-World Challenges and Opportunities. Genes (Basel) 2020; 11:E1098. [PMID: 32967105 PMCID: PMC7563487 DOI: 10.3390/genes11091098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
The advent of next-generation sequencing (NGS) has provided unprecedented insight into the molecular complexity of pancreatic ductal adenocarcinoma (PDAC). This has led to the emergence of biomarker-driven treatment paradigms that challenge empiric treatment approaches. However, the growth of sequencing technologies is outpacing the development of the infrastructure required to implement precision oncology as routine clinical practice. Addressing these logistical barriers is imperative to maximize the clinical impact of molecular profiling initiatives. In this review, we examine the evolution of precision oncology in PDAC, spanning from germline testing for cancer susceptibility genes to multi-omic tumor profiling. Furthermore, we highlight real-world challenges to delivering precision oncology for PDAC, and propose strategies to improve the generation, interpretation, and clinical translation of molecular profiling data.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Anna Lakoma
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - George Zogopoulos
- Department of Surgery, McGill University, Montreal, QC H4A 3J1, Canada; (Y.W.); (A.L.)
- Research Institute of the McGill University Health Centre, McGill University, Montreal, QC H4A 3J1, Canada
- The Rosalind and Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| |
Collapse
|
80
|
Figueroa-González G, Carrillo-Hernández JF, Perez-Rodriguez I, Cantú de León D, Campos-Parra AD, Martínez-Gutiérrez AD, Coronel-Hernández J, García-Castillo V, López-Camarillo C, Peralta-Zaragoza O, Jacobo-Herrera NJ, Guardado-Estrada M, Pérez-Plasencia C. Negative Regulation of Serine Threonine Kinase 11 (STK11) through miR-100 in Head and Neck Cancer. Genes (Basel) 2020; 11:1058. [PMID: 32911741 PMCID: PMC7563199 DOI: 10.3390/genes11091058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/18/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Serine Threonine Kinase 11 (STK11), also known as LKB1, is a tumor suppressor gene that regulates several biological processes such as apoptosis, energetic metabolism, proliferation, invasion, and migration. During malignant progression, different types of cancer inhibit STK11 function by mutation or epigenetic inactivation. In Head and Neck Cancer, it is unclear what mechanism is involved in decreasing STK11 levels. Thus, the present work aims to determine whether STK11 expression might be regulated through epigenetic or post-translational mechanisms. METHODS Expression levels and methylation status for STK11 were analyzed in 59 cases of head and neck cancer and 10 healthy tissue counterparts. Afterward, we sought to identify candidate miRNAs exerting post-transcriptional regulation of STK11. Then, we assessed a luciferase gene reporter assay to know if miRNAs directly target STK11 mRNA. The expression levels of the clinical significance of mir-100-3p, -5p, and STK11 in 495 HNC specimens obtained from the TCGA database were further analyzed. Finally, the Kaplan-Meier method was used to estimate the prognostic significance of the miRNAs for Overall Survival, and survival curves were compared through the log-rank test. RESULTS STK11 was under-expressed, and its promoter region was demethylated or partially methylated. miR-17-5p, miR-106a-5p, miR-100-3p, and miR-100-5p could be negative regulators of STK11. Our experimental data suggested evidence that miR-100-3p and -5p were over-expressed in analyzed tumor patient samples. Luciferase gene reporter assay experiments showed that miR-100-3p targets and down-regulates STK11 mRNA directly. With respect to overall survival, STK11 expression level was significant for predicting clinical outcomes. CONCLUSION This is, to our knowledge, the first report of miR-100-3p targeting STK11 in HNC. Together, these findings may support the importance of regulation of STK11 through post-transcriptional regulation in HNC and the possible contribution to the carcinogenesis process in this neoplasia.
Collapse
Affiliation(s)
- Gabriela Figueroa-González
- Unidad Multidisciplinaria de Investigación Experimental Zaragoza (UMIEZ), Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, Mexico City 09230, Mexico;
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - José F. Carrillo-Hernández
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Itzel Perez-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - David Cantú de León
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Alma D. Campos-Parra
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Antonio D. Martínez-Gutiérrez
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Jossimar Coronel-Hernández
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
| | - Verónica García-Castillo
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica del Cáncer, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edo.Mex, Mexico;
| | - César López-Camarillo
- Posgrado en Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Mexico City 09790, Mexico;
| | - Oscar Peralta-Zaragoza
- Dirección de Infecciones Crónicas y Cáncer, Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Morelos, Mexico;
| | - Nadia J. Jacobo-Herrera
- Unidad de Bioquímica, Instituto Nacional de Nutrición y Ciencias Médicas, Salvador Zubirán, Mexico City 14000, Mexico;
| | - Mariano Guardado-Estrada
- Laboratorio de Genética, Licenciatura en Ciencia Forense, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City 04360, Mexico;
| | - Carlos Pérez-Plasencia
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica, Instituto Nacional de Cancerología, Mexico City 14080, Mexico; (J.F.C.-H.); (I.P.-R.); (D.C.d.L.); (A.D.C.-P.); (A.D.M.-G.); (J.C.-H.)
- Unidad de Investigación Biomédica en Cáncer, Laboratorio de Genómica del Cáncer, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla 54090, Edo.Mex, Mexico;
| |
Collapse
|
81
|
Abstract
PURPOSE OF REVIEW Pancreatic cancer is the third leading cause of cancer death and with a dismal 5-year survival of 10%. Poor survival of pancreatic cancer is mostly due to its presentation and diagnosis at a late stage. The present article aims to update clinicians with recent progress in the field of early detection of pancreatic cancer. RECENT FINDINGS Pancreatic cancer screening is not recommended in the general population due to its low prevalence. In this review, we discuss high-risk groups for pancreatic cancer, including inherited predisposition to pancreatic cancer, new-onset diabetes, mucinous pancreatic cyst, and chronic pancreatitis. We discuss methods of enrichment of high-risk groups with clinical models using electronic health records and biomarkers. We also discuss improvements in imaging modalities and emerging role of machine learning and artificial intelligence in the field of imaging and biomarker to aid in early identification of pancreatic cancer. SUMMARY There are still vast challenges in the field of early detection of pancreatic cancer. We need to develop noninvasive prediagnostic validated biomarkers for longitudinal surveillance of high-risk individuals and imaging modalities that can identify pancreatic cancer early.
Collapse
|
82
|
Grossberg AJ, Chu LC, Deig CR, Fishman EK, Hwang WL, Maitra A, Marks DL, Mehta A, Nabavizadeh N, Simeone DM, Weekes CD, Thomas CR. Multidisciplinary standards of care and recent progress in pancreatic ductal adenocarcinoma. CA Cancer J Clin 2020; 70:375-403. [PMID: 32683683 PMCID: PMC7722002 DOI: 10.3322/caac.21626] [Citation(s) in RCA: 282] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/21/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022] Open
Abstract
Despite tremendous gains in the molecular understanding of exocrine pancreatic cancer, the prognosis for this disease remains very poor, largely because of delayed disease detection and limited effectiveness of systemic therapies. Both incidence rates and mortality rates for pancreatic cancer have increased during the past decade, in contrast to most other solid tumor types. Recent improvements in multimodality care have substantially improved overall survival, local control, and metastasis-free survival for patients who have localized tumors that are amenable to surgical resection. The widening gap in prognosis between patients with resectable and unresectable or metastatic disease reinforces the importance of detecting pancreatic cancer sooner to improve outcomes. Furthermore, the developing use of therapies that target tumor-specific molecular vulnerabilities may offer improved disease control for patients with advanced disease. Finally, the substantial morbidity associated with pancreatic cancer, including wasting, fatigue, and pain, remains an under-addressed component of this disease, which powerfully affects quality of life and limits tolerance to aggressive therapies. In this article, the authors review the current multidisciplinary standards of care in pancreatic cancer with a focus on emerging concepts in pancreatic cancer detection, precision therapy, and survivorship.
Collapse
Affiliation(s)
- Aaron J. Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR
- Cancer Early Detection Advanced Research Center, Oregon Health & Science University, Portland, OR
| | - Linda C. Chu
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Christopher R. Deig
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| | - Eliot K. Fishman
- The Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD
| | - William L. Hwang
- Department of Radiation Oncology, Massachusetts General Hospital, Boston, MA
- Broad Institute of Harvard and MIT, Cambridge, MA
| | - Anirban Maitra
- Departments of Pathology and Translational Molecular Pathology, Sheikh Ahmed Pancreatic Cancer Research Center, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Daniel L. Marks
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, Portland, OR
- Department of Pediatrics and Pape Family Pediatric Research Institute, Oregon Health & Science University, Portland, OR
| | - Arnav Mehta
- Broad Institute of Harvard and MIT, Cambridge, MA
- Dana Farber Cancer Institute, Boston, MA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| | - Diane M. Simeone
- Departments of Surgery and Pathology, Perlmutter Cancer Center, NYU Langone Health, New York, NY
| | - Colin D. Weekes
- Division of Hematology/Oncology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Charles R. Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR
| |
Collapse
|
83
|
Informing patients about their mutation tests: CDKN2A c.256G>A in melanoma as an example. Hered Cancer Clin Pract 2020; 18:15. [PMID: 32760473 PMCID: PMC7393828 DOI: 10.1186/s13053-020-00146-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/21/2020] [Indexed: 11/10/2022] Open
Abstract
Background When germline mutations are suspected as causal in cancer, patient DNA may be sequenced to detect variants in relevant genes. If a particular mutation has not been reported in reliable family studies, genetic counselors are facing a dilemma of appropriately informing patients. Many sequencing facilities provide an interpretation of the findings based on the available sequence databases or on prediction tools that are curated from bioinformatics and mechanistic datasets. The counseling dilemma is exacerbated if the pedigree data are not informative but the in silico predictions suggest pathogenicity. Methods We present here a real world example of the c.256G > A CDKN2A variant, which was detected in one melanoma patient where two siblings were diagnosed with melanoma in situ. We investigated a detailed family history of the affected siblings in order to survey probability of the cancer risks within the context to this mutation. Results This c.256G > A CDKN2A variant was detected in one of the brothers and in the melanoma-free mother while the other brother in the family tested negative. The variant had been previously described in one patient from a melanoma family. In the family under investigation, the mother’s 16 first-and second-degree relatives had survived past the median onset age for melanoma and none presented melanoma. We tested the variant using multiple bioinformatic tools that all predicted deleteriousness of the variant. The genetic counseling report to the melanoma patient stated that the CDKN2A variant was ‘likely pathogenic’ and the disease was defined as ‘likely hereditary melanoma’. Conclusions The pedigree data showed at the most a low penetrance variant, which, if taken into consideration, might have altered the provided diagnosis. When dealing with ‘practically’ unknown variants the counselors would be advised to incorporate a detailed family history rather than basing predictions on functionality provided by sequencing facilities.
Collapse
|
84
|
Ciernikova S, Earl J, García Bermejo ML, Stevurkova V, Carrato A, Smolkova B. Epigenetic Landscape in Pancreatic Ductal Adenocarcinoma: On the Way to Overcoming Drug Resistance? Int J Mol Sci 2020; 21:ijms21114091. [PMID: 32521716 PMCID: PMC7311973 DOI: 10.3390/ijms21114091] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 06/02/2020] [Accepted: 06/06/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggressive solid malignancies due to the rapid rate of metastasis and high resistance to currently applied cancer therapies. The complex mechanism underlying the development and progression of PDAC includes interactions between genomic, epigenomic, and signaling pathway alterations. In this review, we summarize the current research findings on the deregulation of epigenetic mechanisms in PDAC and the influence of the epigenome on the dynamics of the gene expression changes underlying epithelial–mesenchymal transition (EMT), which is responsible for the invasive phenotype of cancer cells and, therefore, their metastatic potential. More importantly, we provide an overview of the studies that uncover potentially actionable pathways. These studies provide a scientific basis to test epigenetic drug efficacy in synergy with other anticancer therapies in future clinical trials, in order to reverse acquired therapy resistance. Thus, epigenomics has the potential to generate relevant new knowledge of both a biological and clinical impact. Moreover, the potential, hurdles, and challenges of predictive biomarker discoveries will be discussed, with a special focus on the promise of liquid biopsies.
Collapse
Affiliation(s)
- Sona Ciernikova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
- Correspondence: ; Tel.: +421-2-3229-5198
| | - Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - María Laura García Bermejo
- Biomarkers and Therapeutic Targets Group, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain;
| | - Viola Stevurkova
- Department of Genetics, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; (J.E.); (A.C.)
| | - Bozena Smolkova
- Department of Molecular Oncology, Cancer Research Institute, Biomedical Research Center of the Slovak Academy of Sciences, Dúbravská cesta 9, 845 05 Bratislava, Slovakia;
| |
Collapse
|
85
|
BRCA testing in a genomic diagnostics referral center during the COVID-19 pandemic. Mol Biol Rep 2020; 47:4857-4860. [PMID: 32388698 PMCID: PMC7210797 DOI: 10.1007/s11033-020-05479-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 04/28/2020] [Indexed: 12/22/2022]
Abstract
The first person-to-person transmission of the 2019-novel coronavirus in Italy on 21 February 2020 led to an infection chain that represents one of the largest known COVID-19 outbreaks outside Asia. Hospitals have been forced to reorganized their units in response to prepare for an unforeseen healthcare emergency. In this context, our laboratory (Molecular and Genomic Diagnostics Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS) re-modulated its priorities by temporarily interrupting most of the molecular tests guaranteeing only those considered “urgent” and not postponable. In particular, this paper details changes regarding the execution of germline BRCA (gBRCA) testing in our laboratory. A substantial reduction in gBRCA testing (about 60%) compared to the first 2 months of the current year was registered, but the requests have not been reset. The requesting physicians were mainly gynaecologists and oncologists. These evidences further emphasize the new era of gBRCA testing in the management of cancer patients and confirms definitively the integration of gBRCA testing/Next Generation Sequencing (NGS) into clinical oncology. Finally, a re-organization of gBRCA testing in our Unit, mainly related to delayed and reduced arrival of tests was necessary, ensuring, however, a high-quality standard and reliability, mandatory for gBRCA testing in a clinical setting.
Collapse
|
86
|
Arpalahti L, Haglund C, Holmberg CI. Proteostasis Dysregulation in Pancreatic Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1233:101-115. [PMID: 32274754 DOI: 10.1007/978-3-030-38266-7_4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
The most common form of pancreatic cancer, pancreatic ductal adenocarcinoma (PDAC), has a dismal 5-year survival rate of less than 5%. Radical surgical resection, in combination with adjuvant chemotherapy, provides the best option for long-term patient survival. However, only approximately 20% of patients are resectable at the time of diagnosis, due to locally advanced or metastatic disease. There is an urgent need for the identification of new, specific, and more sensitive biomarkers for diagnosis, prognosis, and prediction to improve the treatment options for pancreatic cancer patients. Dysregulation of proteostasis is linked to many pathophysiological conditions, including various types of cancer. In this review, we report on findings relating to the main cellular protein degradation systems, the ubiquitin-proteasome system (UPS) and autophagy, in pancreatic cancer. The expression of several components of the proteolytic network, including E3 ubiquitin-ligases and deubiquitinating enzymes, are dysregulated in PDAC, which accounts for approximately 90% of all pancreatic malignancies. In the future, a deeper understanding of the emerging role of proteostasis in pancreatic cancer has the potential to provide clinically relevant biomarkers and new strategies for combinatorial therapeutic options to better help treat the patients.
Collapse
Affiliation(s)
- Leena Arpalahti
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland
| | - Caj Haglund
- Research Programs Unit, Translational Cancer Medicine Program, University of Helsinki, Helsinki, Finland
- Department of Surgery, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
| | - Carina I Holmberg
- Medicum, Department of Biochemistry and Developmental Biology, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
87
|
Morani AC, Hanafy AK, Ramani NS, Katabathina VS, Yedururi S, Dasyam AK, Prasad SR. Hereditary and Sporadic Pancreatic Ductal Adenocarcinoma: Current Update on Genetics and Imaging. Radiol Imaging Cancer 2020; 2:e190020. [PMID: 33778702 DOI: 10.1148/rycan.2020190020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 08/08/2019] [Accepted: 08/22/2019] [Indexed: 12/12/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a genetically heterogeneous, biologically aggressive malignancy with a uniformly poor prognosis. While most pancreatic cancers arise sporadically, a small subset of PDACs develop in patients with hereditary and familial predisposition. Detailed studies of the rare hereditary syndromes have led to identification of specific genetic abnormalities that contribute to malignancy. For example, germline mutations involving BRCA1, BRCA2, PRSS1, and mismatch repair genes predispose patients to PDAC. While patients with Lynch syndrome develop a rare "medullary" variant of adenocarcinoma, intraductal papillary mucinous tumors are observed in patients with McCune-Albright syndrome. It is now well established that PDACs originate via a multistep progression from microscopic and macroscopic precursors due to cumulative genetic abnormalities. Improved knowledge of tumor genetics and oncologic pathways has contributed to a better understanding of tumor biology with attendant implications on diagnosis, management, and prognosis. In this article, the genetic landscape of PDAC and its precursors will be described, the hereditary syndromes that predispose to PDAC will be reviewed, and the current role of imaging in screening and staging assessment, as well as the potential role of molecular tumor-targeted imaging for evaluation of patients with PDAC and its precursors, will be discussed. Keywords: Abdomen/GI, Genetic Defects, Oncology, Pancreas Supplemental material is available for this article. © RSNA, 2020.
Collapse
Affiliation(s)
- Ajaykumar C Morani
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Abdelrahman K Hanafy
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Nisha S Ramani
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Venkata S Katabathina
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Sireesha Yedururi
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Anil K Dasyam
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| | - Srinivasa R Prasad
- Departments of Diagnostic Radiology (A.C.M., A.K.H., S.Y., S.R.P.) and Pathology (N.S.R.), The University of Texas MD Anderson Cancer Center, 1400 Pressler St, Unit 1473, Houston, TX 77030-4009; Department of Radiology, University of Texas at San Antonio, San Antonio, Tex (V.S.K.); and Department of Radiology, University of Pittsburgh Medical Center, Pittsburgh, Pa (A.K.D.)
| |
Collapse
|
88
|
Zhu H, Wei M, Xu J, Hua J, Liang C, Meng Q, Zhang Y, Liu J, Zhang B, Yu X, Shi S. PARP inhibitors in pancreatic cancer: molecular mechanisms and clinical applications. Mol Cancer 2020; 19:49. [PMID: 32122376 PMCID: PMC7053129 DOI: 10.1186/s12943-020-01167-9] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 02/17/2020] [Indexed: 12/13/2022] Open
Abstract
Pancreatic cancer is a highly lethal disease with a poor prognosis, and existing therapies offer only limited effectiveness. Mutation gene sequencing has shown several gene associations that may account for its carcinogenesis, revealing a promising research direction. Poly (ADP-ribose) polymerase (PARP) inhibitors target tumor cells with a homologous recombination repair (HRR) deficiency based on the concept of synthetic lethality. The most prominent target gene is BRCA, in which mutations were first identified in breast cancer and ovarian cancer. PARP inhibitors can trap the PARP-1 protein at a single-stranded break/DNA lesion and disrupt its catalytic cycle, ultimately leading to replication fork progression and consequent double-strand breaks. For tumor cells with BRCA mutations, HRR loss would result in cell death. Pancreatic cancer has also been reported to have a strong relationship with BRCA gene mutations, which indicates that pancreatic cancer patients may benefit from PARP inhibitors. Several clinical trials are being conducted and have begun to yield results. For example, the POLO (Pancreatic Cancer Olaparib Ongoing) trial has demonstrated that the median progression-free survival was observably longer in the olaparib group than in the placebo group. However, PARP inhibitor resistance has partially precluded their use in clinical applications, and the major mechanism underlying this resistance is the restoration of HRR. Therefore, determining how to use PARP inhibitors in more clinical applications and how to avoid adverse effects, as well as prognosis and treatment response biomarkers, require additional research. This review elaborates on future prospects for the application of PARP inhibitors in pancreatic cancer.
Collapse
Affiliation(s)
- Heng Zhu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Miaoyan Wei
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jie Hua
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Chen Liang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Qingcai Meng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Yiyin Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Pancreatic Cancer Institute, Fudan University; Shanghai Pancreatic Cancer Institute, Dong'An Road, Shanghai, 200032, Xuhui District, China.
| |
Collapse
|
89
|
Earl J, Galindo-Pumariño C, Encinas J, Barreto E, Castillo ME, Pachón V, Ferreiro R, Rodríguez-Garrote M, González-Martínez S, Ramon Y Cajal T, Diaz LR, Chirivella-Gonzalez I, Rodriguez M, de Castro EM, García-Seisdedos D, Muñoz G, Rosa JMR, Marquez M, Malats N, Carrato A. A comprehensive analysis of candidate genes in familial pancreatic cancer families reveals a high frequency of potentially pathogenic germline variants. EBioMedicine 2020; 53:102675. [PMID: 32113160 PMCID: PMC7100610 DOI: 10.1016/j.ebiom.2020.102675] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/29/2020] [Accepted: 01/29/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The 5-year survival rate of patients with pancreatic ductal adenocarcinoma (PDAC) is around 5% due to the fact that the majority of patients present with advanced disease that is treatment resistant. Familial pancreatic cancer (FPC) is a rare disorder that is defined as a family with at least two affected first degree relatives, with an estimated incidence of 4%-10%. The genetic basis is unknown in the majority of families although around 10%-13% of families carry germline mutations in known genes associated with hereditary cancer and pancreatitis syndromes. METHODS Panel sequencing was performed of 35 genes associated with hereditary cancer in 43 PDAC cases from families with an apparent hereditary pancreatic cancer syndrome. FINDINGS Pathogenic variants were identified in 19% (5/26) of PDAC cases from pure FPC families in the genes MLH1, CDKN2A, POLQ and FANCM. Low frequency potentially pathogenic VUS were also identified in 35% (9/26) of PDAC cases from FPC families in the genes FANCC, MLH1, PMS2, CFTR, APC and MUTYH. Furthermore, an important proportion of PDAC cases harboured more than one pathogenic, likely pathogenic or potentially pathogenic VUS, highlighting the multigene phenotype of FPC. INTERPRETATION The genetic basis of familial or hereditary pancreatic cancer can be explained in 21% of families by previously described hereditary cancer genes. Low frequency variants in other DNA repair genes are also present in 35% of families which may contribute to the risk of pancreatic cancer development. FUNDING This study was funded by the Instituto de Salud Carlos III (Plan Estatal de I + D + i 2013-2016): ISCIII (PI09/02221, PI12/01635, PI15/02101 and PI18/1034) and co-financed by the European Development Regional Fund ''A way to achieve Europe'' (ERDF), the Biomedical Research Network in Cancer: CIBERONC (CB16/12/00446), Red Temática de investigación cooperativa en cáncer: RTICC (RD12/0036/0073) and La Asociación Española contra el Cáncer: AECC (Grupos Coordinados Estables 2016).
Collapse
Affiliation(s)
- Julie Earl
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Cristina Galindo-Pumariño
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Jessica Encinas
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Emma Barreto
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Maria E Castillo
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Vanessa Pachón
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Reyes Ferreiro
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Mercedes Rodríguez-Garrote
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Silvia González-Martínez
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain
| | - Teresa Ramon Y Cajal
- Medical Oncology Department, Santa Creu i Sant Pau Hospital, Mas Casanovas, 90, 08041 Barcelona, Spain.
| | - Luis Robles Diaz
- Familial and Hereditary Cancer Unit. Medical Oncology Department, 12 de Octubre Hospital, Av. Cordoba, s/n, 28041 Madrid, Spain.
| | - Isabel Chirivella-Gonzalez
- Genetic Counselling Unit, Valencia University Hospital Clinic, Av. de Blasco Ibáñez, 17, 46010 Valencia, Spain.
| | - Montse Rodriguez
- A Coruña Biomedical Research Institute, Hospital Teresa Herrera, Xubias de Arriba, 84, 15006 A Coruña, Spain.
| | - Eva Martínez de Castro
- Medical Oncology Department, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Spain.
| | - David García-Seisdedos
- Translational Genomics Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Gloria Muñoz
- Translational Genomics Core Facility, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Juan Manuel Rosa Rosa
- Pathology Department, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Mirari Marquez
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain
| | - Nuría Malats
- Genetic and Molecular Epidemiology Group, Spanish National Cancer Research Centre (CNIO), Madrid, Spain; Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| | - Alfredo Carrato
- Molecular Epidemiology and Predictive Tumor Markers Group, Medical Oncology Research Laboratory, Ramón y Cajal Health Research Institute (IRYCIS), Carretera Colmenar Km 9100, 28034 Madrid, Spain; Biomedical Research Network in Cancer (CIBERONC), C/Monforte de Lemos 3-5, Pabellón 11, 28029 Madrid, Spain.
| |
Collapse
|
90
|
Matsubayashi H, Takaori K, Morizane C, Kiyozumi Y. Familial Pancreatic Cancer and Surveillance of High-Risk Individuals. Gut Liver 2020; 13:498-505. [PMID: 30917631 PMCID: PMC6743804 DOI: 10.5009/gnl18449] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/13/2018] [Indexed: 12/15/2022] Open
Abstract
Family history of pancreatic cancer (PC) is a risk factor for PC development, and the risk level correlates with the number of affected families. A case of PC with ≥1 PC cases in the first-degree relative is broadly defined as familial pancreatic cancer (FPC) and accounts for 5% to 10% of total PC cases. FPC possesses several epidemiological, genetic and clinicopathological aspects that are distinct from those of conventional PCs. In Western countries, FPC registries have been established since the 1990s, and high-risk individuals are screened to detect early PCs. For the pharmacotherapy of FPC, especially in cases with germline pathogenic BRCA mutations, regimens using platinum and poly (ADP-ribose) polymerase inhibitor have recently been studied for their effectiveness. To date, the concept of FPC has prevailed in Western countries, and it has begun to infiltrate into Eastern countries. As the genetic background and environmental conditions vary in association with ethnicity and living area, we need to establish our own FPC registries and accumulate data in Asian countries.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Divisions of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan.,Divisions of Endoscopy, Shizuoka Cancer Center, Shizuoka, Japan
| | - Kyoichi Takaori
- Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Chigusa Morizane
- Division of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Yoshimi Kiyozumi
- Divisions of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka, Japan
| |
Collapse
|
91
|
Park D, Shakya R, Koivisto C, Pitarresi JR, Szabolcs M, Kladney R, Hadjis A, Mace TA, Ludwig T. Murine models for familial pancreatic cancer: Histopathology, latency and drug sensitivity among cancers of Palb2, Brca1 and Brca2 mutant mouse strains. PLoS One 2019; 14:e0226714. [PMID: 31877165 PMCID: PMC6932818 DOI: 10.1371/journal.pone.0226714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Alterations of the PALB2 tumor suppressor gene have been identified in familial breast, ovarian and pancreatic cancer cases. PALB2 cooperates with BRCA1/2 proteins through physical interaction in initiation of homologous recombination, in maintenance of genome integrity following DNA double-strand breaks. To determine if the role of PALB2 as a linker between BRCA1 and BRCA2 is critical for BRCA1/2-mediated tumor suppression, we generated Palb2 mouse pancreatic cancer models and compared tumor latencies, phenotypes and drug responses with previously generated Brca1/2 pancreatic cancer models. For development of Palb2 pancreatic cancer, we crossed conditional Palb2 null mouse with mice carrying the KrasG12D; p53R270H; Pdx1-Cre (KPC) constructs, and these animals were observed for pancreatic tumor development. Individual deletion of Palb2, Brca1 or Brca2 genes in pancreas per se using Pdx1-Cre was insufficient to cause tumors, but it reduced pancreata size. Concurrent expression of mutant KrasG12D and p53R270H, with tumor suppressor inactivated strains in Palb2-KPC, Brca1-KPC or Brca2-KPC, accelerated pancreatic ductal adenocarcinoma (PDAC) development. Moreover, most Brca1-KPC and some Palb2-KPC animals developed mucinous cystic neoplasms with PDAC, while Brca2-KPC and KPC animals did not. 26% of Palb2-KPC mice developed MCNs in pancreata, which resemble closely the Brca1 deficient tumors. However, the remaining 74% of Palb2-KPC animals developed PDACs without any cysts like Brca2 deficient tumors. In addition, the number of ADM lesions and immune cells infiltrations (CD3+ and F/480+) were significantly increased in Brca1-KPC tumors, but not in Brca2-KPC tumors. Interestingly, the level of ADM lesions and infiltration of CD3+ or F/480+ cells in Palb2-KPC tumors were intermediate between Brca1-KPC and Brca2-KPC tumors. As expected, disruption of Palb2 and Brca1/2 sensitized tumor cells to DNA damaging agents in vitro and in vivo. Altogether, Palb2-KPC PDAC exhibited features observed in both Brca1-KPC and Brca2-KPC tumors, which could be due to its role, as a linker between Brca1 and Brca2.
Collapse
Affiliation(s)
- Dongju Park
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Reena Shakya
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Christopher Koivisto
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Jason R Pitarresi
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Matthias Szabolcs
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, and Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, United States of America
| | - Raleigh Kladney
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Ashley Hadjis
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| | - Thomas A Mace
- Department of Internal Medicine, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas Ludwig
- Department of Cancer Biology and Genetics, The Ohio State University Comprehensive Cancer Center, Columbus, Ohio, United States of America
| |
Collapse
|
92
|
Gaujoux S, Pasmant E, Silve C, Mehsen-Cetre N, Coriat R, Rouquette A, Douset B, Prat F, Leroy K. McCune Albright syndrome is a genetic predisposition to intraductal papillary and mucinous neoplasms of the pancreas associated pancreatic cancer in relation with GNAS somatic mutation - a case report. Medicine (Baltimore) 2019; 98:e18102. [PMID: 31852070 PMCID: PMC6922479 DOI: 10.1097/md.0000000000018102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
RATIONALE Intraductal papillary and mucinous neoplasms of the pancreas (IPMN) are preneoplastic lesions diagnosed with an increasing incidence. Recently, several groups have described, in up to 70% of IPMN, activating mutations of the G-protein alpha stimulatory sub-unit (Gsα subunit) gene (GNAS). GNAS-activating somatic, post-zygotic, mutations are also associated with McCune-Albright syndrome (MCAS) characterized by fibrous dysplasia, precocious puberty, and café-au-lait spots. PATIENT CONCERNS We herein report a patient with McCune Albright Syndrome that presented with malignant IPMN and underwent pancreatic resection. DIAGNOSES AND INTERVENTIONS Leucocyte and duodenum juice DNA analysis, endoscopically collected from secretin-stimulated pancreatic juice revealed the same (GNAS) activating mutation also found in the invasive pancreatic colloid adenocarcinoma arising from intestinal subtype IPMN. OUTCOMES Thirty months after surgery, the patient was alive with recurrence (bone only metastasis). LESSONS In this observation, we show that MCAS should be view as a new genetic predisposition to IPMN associated pancreatic cancer, and consequently a targeted screening in this high-risk population might be proposed.
Collapse
MESH Headings
- Adenocarcinoma, Mucinous/diagnosis
- Adenocarcinoma, Mucinous/etiology
- Adenocarcinoma, Mucinous/genetics
- Biopsy, Needle
- Carcinoma, Pancreatic Ductal/diagnosis
- Carcinoma, Pancreatic Ductal/etiology
- Carcinoma, Pancreatic Ductal/genetics
- Chromogranins/genetics
- Chromogranins/metabolism
- DNA Mutational Analysis
- DNA, Neoplasm/genetics
- Endosonography
- Female
- Fibrous Dysplasia, Polyostotic/complications
- Fibrous Dysplasia, Polyostotic/diagnosis
- Fibrous Dysplasia, Polyostotic/genetics
- GTP-Binding Protein alpha Subunits, Gs/genetics
- GTP-Binding Protein alpha Subunits, Gs/metabolism
- Genetic Predisposition to Disease
- Humans
- Middle Aged
- Mutation
- Pancreatic Neoplasms/diagnosis
- Pancreatic Neoplasms/etiology
- Pancreatic Neoplasms/genetics
- Tomography, X-Ray Computed
Collapse
Affiliation(s)
- Sébastien Gaujoux
- Department of Digestive, Hepato-biliary and Pancreatic Surgery, Cochin Hospital, APHP
- Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité
- INSERM Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut Cochin
| | - Eric Pasmant
- Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin
- EA7331, Université Paris Descartes
| | - Caroline Silve
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin
- INSERM U1169, Hôpital Bicêtre
- Centre de Référence des Maladies Rares du Métabolisme du Calcium et du Phosphore / Filière OSCAR
| | | | - Romain Coriat
- Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité
- Department of Gastroenterology, Cochin Hospital, APHP
| | | | - Bertrand Douset
- Department of Digestive, Hepato-biliary and Pancreatic Surgery, Cochin Hospital, APHP
- Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité
- INSERM Unité 1016, Centre National de la Recherche Scientifique Unité Mixte de Recherche 8104, Institut Cochin
| | - Frédéric Prat
- Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité
- Department of Gastroenterology, Cochin Hospital, APHP
| | - Karen Leroy
- Faculté de Médecine Paris Descartes, Université Paris Descartes, Sorbonne Paris Cité
- Service de Génétique et Biologie Moléculaires, Hôpital Cochin
| |
Collapse
|
93
|
Paternoster S, Falasca M. The intricate relationship between diabetes, obesity and pancreatic cancer. Biochim Biophys Acta Rev Cancer 2019; 1873:188326. [PMID: 31707038 DOI: 10.1016/j.bbcan.2019.188326] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/28/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023]
Abstract
Pancreatic cancer is one of the leading determinants of global cancer mortality, and its incidence is predicted to increase, to become in 2030 the second most common cause of cancer-related death. Obesity and diabetes are recognized risk factors for the development of pancreatic cancer. In the last few decades an epidemic of diabetes and obesity has been spreading worldwide, forewarning an increase in incidence of pancreatic cancer. This review considers the most recent literature, covering the multiple molecular axis linking these three pathologies, aiming to draw a more comprehensive view of pancreatic cancer for a better theragnostic stratification of the population.
Collapse
Affiliation(s)
- Silvano Paternoster
- Metabolic Signalling Group, School Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia.
| | - Marco Falasca
- Metabolic Signalling Group, School Pharmacy and Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University, Bentley 6102, Perth, Western Australia, Australia.
| |
Collapse
|
94
|
Leof ER, Zhu X, Rabe KG, McCormick JB, Petersen GM, Radecki Breitkopf C. Pancreatic cancer and melanoma related perceptions and behaviors following disclosure of CDKN2A variant status as a research result. Genet Med 2019; 21:2468-2477. [PMID: 30992552 PMCID: PMC6800778 DOI: 10.1038/s41436-019-0517-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 04/03/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE This study examined whether participants who learned research results related to a germline CDKN2A variant known to be associated with increased risk of pancreatic cancer and malignant melanoma would pursue confirmatory testing and cancer screening, share the genetic information with health care providers and family, and change risk perceptions. METHODS Participants were pancreas research registry enrollees whose biological sample was tested in a research laboratory for the variant. In total, 133 individuals were invited to learn a genetic research result and participate in a study about the disclosure process. Perceived cancer risk, screening intentions, and behaviors were assessed predisclosure, immediately postdisclosure, and six months postdisclosure. RESULTS Eighty individuals agreed to participate and 63 completed the study. Immediately postdisclosure, carriers reported greater intentions to undergo pancreatic cancer and melanoma screening (p values ≤0.024). Seventy-three percent of carriers (47.5% noncarriers) intended to seek confirmatory testing within six months and 20% (2.5% noncarriers) followed through. All participants shared results with ≥1 family member. More carriers shared results with their health care provider than noncarriers (p = 0.028). CONCLUSION Recipients of cancer genetic research results may not follow through with recommended behaviors (confirmatory testing, screening), despite stated intentions. The research result disclosure motivated follow-up behaviors among carriers more than noncarriers.
Collapse
Affiliation(s)
- Emma R Leof
- Infectious Disease Epidemiology, Prevention and Control Division, Minnesota Department of Health, Saint Paul, MN, USA
| | - Xuan Zhu
- Department of Health Sciences Research, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Kari G Rabe
- Department of Health Sciences Research, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Jennifer B McCormick
- Department of Humanities, College of Medicine, Pennsylvania State University, Hershey, PA, USA
| | - Gloria M Petersen
- Department of Health Sciences Research, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA
| | - Carmen Radecki Breitkopf
- Department of Health Sciences Research, Mayo Clinic College of Medicine and Science, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
95
|
Matsubayashi H, Kiyozumi Y, Ishiwatari H, Uesaka K, Kikuyama M, Ono H. Surveillance of Individuals with a Family History of Pancreatic Cancer and Inherited Cancer Syndromes: A Strategy for Detecting Early Pancreatic Cancers. Diagnostics (Basel) 2019; 9:E169. [PMID: 31683730 PMCID: PMC6963266 DOI: 10.3390/diagnostics9040169] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 10/29/2019] [Accepted: 10/30/2019] [Indexed: 12/13/2022] Open
Abstract
A family history of pancreatic cancer (PC) is a risk factor of PC, and risk levels increase as affected families grow in number and/or develop PC at younger ages. Familial pancreatic cancer (FPC) is defined as a client having at least two PC cases in a first degree relatives. In the narrow sense, FPC does not include some inherited cancer syndromes that are known to increase the risks of PC, such as Peutz-Jeghers syndrome (PJS), hereditary pancreatitis (HP), hereditary breast ovarian cancer syndrome (HBOC), and so on. FPC accounts for 5%-10% of total PC diagnoses and is marked by several features in genetic, epidemiological, and clinicopathological findings that are similar to or distinct from conventional PC. Recent advances in genetic medicine have led to an increased ability to identify germline variants of cancer-associated genes. To date, high-risk individuals (HRIs) in many developed countries, including FPC kindreds and inherited cancer syndromes, are screened clinically to detect and treat early-stage PC. This article highlights the concept of FPC and the most recent data on its detection.
Collapse
Affiliation(s)
- Hiroyuki Matsubayashi
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | - Yoshimi Kiyozumi
- Division of Genetic Medicine Promotion, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | | | - Katsuhiko Uesaka
- Division of Hepato-Biliary-Pancreatic Surgery, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| | - Masataka Kikuyama
- Department of Gastroenterology, Tokyo Metropolitan Cancer and Infectious Diseases Center Komagome Hospital, Tokyo 113-0021, Japan.
| | - Hiroyuki Ono
- Division of Endoscopy, Shizuoka Cancer Center, Shizuoka 411-8777, Japan.
| |
Collapse
|
96
|
Abstract
Pancreatic ductal adenocarcinoma represents the most common malignant tumor of the pancreas. Despite substantial research efforts and gradual diagnostic and therapeutic improvements, its prognosis remains dismal. In accordance with the current German, European, and US guidelines, this CME-article provides a comprehensive review of the disease. In addition, selected up-to-date aspects of epidemiology, etiopathology, genetics, and basic principles of diagnostics and therapy including potential future therapeutic options are discussed.
Collapse
|
97
|
Walker EJ, Carnevale J, Pedley C, Blanco A, Chan S, Collisson EA, Tempero MA, Ko AH. Referral frequency, attrition rate, and outcomes of germline testing in patients with pancreatic adenocarcinoma. Fam Cancer 2019; 18:241-251. [PMID: 30267352 DOI: 10.1007/s10689-018-0106-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hereditary predisposition is estimated to account for 10% of all pancreatic cancer cases. However, referral patterns and clinical workflow for germline testing in this disease differ significantly by institution, and many at-risk patients may not undergo appropriate counseling and testing. We undertook an analysis of patients diagnosed with pancreatic cancer (PDAC) who were referred to the Clinical Genetics program of a high-volume academic center over a 3-year period to assess referral frequency, evaluate the yield of germline testing in this selected patient cohort, and elucidate the reasons individuals did not undergo recommended germline testing. Medical records of patients with PDAC referred for genetic counseling between January 2015 and October 2017 were reviewed for demographic, medical/family history, and disease-specific data. If testing did not occur, reasons were documented. Genetic test results were categorized as negative, variants of unknown significance, or established pathogenic mutations. Descriptive statistics included means with standard deviations; associations were analyzed with t test and Fisher's exact test. 32% (137 of 432) of PDAC patients were referred for genetic counseling, but only 64% attended their appointment and 60% ultimately underwent germline testing. Common reasons for attrition included worsening disease severity, lack of patient follow-up, insurance concerns, and logistic/travel challenges. Pathogenic germline mutations were detected in 20% (16 of 82) of patients tested, distributed across races/ethnicities, and significantly associated with younger age and positive family history of breast cancer. PDAC patients frequently do not undergo genetic counseling/germline testing despite appropriate referrals, highlighting a need to develop streamlined processes to engage more patients in testing, especially those with high-risk features.
Collapse
Affiliation(s)
- Evan J Walker
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Julia Carnevale
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA
| | - Christina Pedley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.,Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Amie Blanco
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.,Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Salina Chan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.,Cancer Genetics and Prevention Program, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Eric A Collisson
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA
| | - Margaret A Tempero
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA.,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA
| | - Andrew H Ko
- Division of Hematology and Oncology, University of California, San Francisco, San Francisco, CA, 94143, USA. .,Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, 550 16th Street, San Francisco, CA, 94143, USA.
| |
Collapse
|
98
|
Wong C, Chen F, Alirezaie N, Wang Y, Cuggia A, Borgida A, Holter S, Lenko T, Domecq C, Petersen GM, Syngal S, Brand R, Rustgi AK, Cote ML, Stoffel E, Olson SH, Roberts NJ, Akbari MR, Majewski J, Klein AP, Greenwood CMT, Gallinger S, Zogopoulos G. A region-based gene association study combined with a leave-one-out sensitivity analysis identifies SMG1 as a pancreatic cancer susceptibility gene. PLoS Genet 2019; 15:e1008344. [PMID: 31469826 PMCID: PMC6742418 DOI: 10.1371/journal.pgen.1008344] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 09/12/2019] [Accepted: 08/03/2019] [Indexed: 12/18/2022] Open
Abstract
Pancreatic adenocarcinoma (PC) is a lethal malignancy that is familial or associated with genetic syndromes in 10% of cases. Gene-based surveillance strategies for at-risk individuals may improve clinical outcomes. However, familial PC (FPC) is plagued by genetic heterogeneity and the genetic basis for the majority of FPC remains elusive, hampering the development of gene-based surveillance programs. The study was powered to identify genes with a cumulative pathogenic variant prevalence of at least 3%, which includes the most prevalent PC susceptibility gene, BRCA2. Since the majority of known PC susceptibility genes are involved in DNA repair, we focused on genes implicated in these pathways. We performed a region-based association study using the Mixed-Effects Score Test, followed by leave-one-out characterization of PC-associated gene regions and variants to identify the genes and variants driving risk associations. We evaluated 398 cases from two case series and 987 controls without a personal history of cancer. The first case series consisted of 109 patients with either FPC (n = 101) or PC at ≤50 years of age (n = 8). The second case series was composed of 289 unselected PC cases. We validated this discovery strategy by identifying known pathogenic BRCA2 variants, and also identified SMG1, encoding a serine/threonine protein kinase, to be significantly associated with PC following correction for multiple testing (p = 3.22x10-7). The SMG1 association was validated in a second independent series of 532 FPC cases and 753 controls (p<0.0062, OR = 1.88, 95%CI 1.17-3.03). We showed segregation of the c.4249A>G SMG1 variant in 3 affected relatives in a FPC kindred, and we found c.103G>A to be a recurrent SMG1 variant associating with PC in both the discovery and validation series. These results suggest that SMG1 is a novel PC susceptibility gene, and we identified specific SMG1 gene variants associated with PC risk.
Collapse
Affiliation(s)
- Cavin Wong
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Fei Chen
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Najmeh Alirezaie
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Yifan Wang
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Adeline Cuggia
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Ayelet Borgida
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Spring Holter
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Tatiana Lenko
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | - Celine Domecq
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| | | | - Gloria M. Petersen
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Sapna Syngal
- Division of Cancer Genetics and Prevention, Dana-Farber Cancer Institute, Gastroenterology Division, Brigham and Women’s Hospital, Harvard Medical Schozol, Boston, Massachusetts, United States of America
| | - Randall Brand
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Anil K. Rustgi
- Division of Gastroenterology, Departments of Medicine and Genetics, Pancreatic Cancer Translation Center of Excellence, Abramson Cancer Center, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Michele L. Cote
- Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, Michigan, United States of America
| | - Elena Stoffel
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara H. Olson
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| | - Nicholas J. Roberts
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Mohammad R. Akbari
- Women’s College Hospital Research Institute, Women's College Hospital, Toronto, Ontario, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Jacek Majewski
- McGill University and Genome Quebec Innovation Centre, Montreal, Quebec, Canada
| | - Alison P. Klein
- Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, Maryland, United States of America
- The Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Celia M. T. Greenwood
- Ludmer Centre for Neuroinformatics & Mental Health, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute, Jewish General Hospital, McGill University, Montreal, Quebec, Canada
- Gerald Bronfman Department of Oncology, and Department of Epidemiology, Biostatistics and Occupational Health, McGill University, Montreal, Quebec, Canada
| | - Steven Gallinger
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - George Zogopoulos
- The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
- The Goodman Cancer Research Centre of McGill University, Montreal, Quebec, Canada
| |
Collapse
|
99
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is lethal, and the majority of patients present with locally advanced or metastatic disease that is not amenable to cure. Thus, with surgical resection being the only curative modality, it is critical that disease is identified at an earlier stage to allow the appropriate therapy to be applied. Unfortunately, a specific biomarker for early diagnosis has not yet been identified; hence, no screening process exists. Recently, high-throughput screening and next-generation sequencing (NGS) have led to the identification of novel biomarkers for many disease processes, and work has commenced in PDAC. Genomic data generated by NGS not only have the potential to assist clinicians in early diagnosis and screening, especially in high-risk populations, but also may eventually allow the development of personalized treatment programs with targeted therapies, given the large number of gene mutations seen in PDAC. This review introduces the basic concepts of NGS and provides a comprehensive review of the current understanding of genetics in PDAC as related to discoveries made using NGS.
Collapse
|
100
|
Role of bioactive lipofishins in prevention of inflammation and colon cancer. Semin Cancer Biol 2019; 56:175-184. [DOI: 10.1016/j.semcancer.2017.11.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 11/18/2017] [Indexed: 02/07/2023]
|