51
|
Schmutzhard J, Glueckert R, Pritz C, Blumer MJF, Bitsche M, Lackner P, Fille M, Riechelmann H, Harkamp M, Sitthisak T, Schrott-Fischer A. Sepsis otopathy: experimental sepsis leads to significant hearing impairment due to apoptosis and glutamate excitotoxicity in murine cochlea. Dis Model Mech 2013; 6:745-54. [PMID: 23471916 PMCID: PMC3634657 DOI: 10.1242/dmm.011205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hearing loss is frequent in intensive care patients and can be due to several causes. However, sepsis has not been examined as a possible cause. The aim of this study is to assess the influence of experimental sepsis on hearing thresholds and to evaluate pathological changes in the cochlea. The cecal ligation puncture technique was used to induce sepsis in 18 mice. Results were compared with those from 13 sham-operated and 13 untreated control mice. The hearing thresholds of the animals were evaluated with auditory evoked brainstem responses prior to the induction of sepsis and again at the peak of the disease. Immediately after the second measurement, the mice were sacrificed and the inner ears harvested and prepared for further evaluation. The cochleae were examined with light microscopy, electron microscopy and immunohistochemistry for Bax, cleaved caspase-3 and Bcl-2. The mice with sepsis showed a significant hearing loss but not the control groups. Induction of apoptosis could be shown in the supporting cells of the organ of Corti. Furthermore, excitotoxicity could be shown at the basal pole of the inner hair cells. In this murine model, sepsis leads to significant hearing impairment. The physiological alteration could be linked to apoptosis in the supporting cells of the organ of Corti and to a disturbance of the synapses of the inner hair cells.
Collapse
Affiliation(s)
- Joachim Schmutzhard
- Department of Otorhinolaryngology, Innsbruck Medical University, Anichstrasse 35, 6020 Innsbruck, Austria.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Cheng G, Kong RH, Zhang LM, Zhang JN. Mitochondria in traumatic brain injury and mitochondrial-targeted multipotential therapeutic strategies. Br J Pharmacol 2013; 167:699-719. [PMID: 23003569 DOI: 10.1111/j.1476-5381.2012.02025.x] [Citation(s) in RCA: 256] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem throughout the world. It is a complicated pathological process that consists of primary insults and a secondary insult characterized by a set of biochemical cascades. The imbalance between a higher energy demand for repair of cell damage and decreased energy production led by mitochondrial dysfunction aggravates cell damage. At the cellular level, the main cause of the secondary deleterious cascades is cell damage that is centred in the mitochondria. Excitotoxicity, Ca(2+) overload, reactive oxygen species (ROS), Bcl-2 family, caspases and apoptosis inducing factor (AIF) are the main participants in mitochondria-centred cell damage following TBI. Some preclinical and clinical results of mitochondria-targeted therapy show promise. Mitochondria- targeted multipotential therapeutic strategies offer new hope for the successful treatment of TBI and other acute brain injuries.
Collapse
Affiliation(s)
- Gang Cheng
- Neurosurgical Department, PLA Navy General Hospital, Beijing, China
| | | | | | | |
Collapse
|
53
|
Wang K, Lin B. Pathophysiological Significance of Hepatic Apoptosis. ISRN HEPATOLOGY 2012; 2013:740149. [PMID: 27335822 PMCID: PMC4890876 DOI: 10.1155/2013/740149] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/13/2012] [Indexed: 12/19/2022]
Abstract
Apoptosis is a classical pathological feature in liver diseases caused by various etiological factors such as drugs, viruses, alcohol, and cholestasis. Hepatic apoptosis and its deleterious effects exacerbate liver function as well as involvement in fibrosis/cirrhosis and carcinogenesis. An imbalance between apoptotic and antiapoptotic capabilities is a prominent characteristic of liver injury. The regulation of apoptosis and antiapoptosis can be a pivotal step in the treatment of liver diseases.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Surgery and Pediatrics, University of Illinois College of Medicine at Peoria, Peoria, IL 61605, USA
| | - Bingliang Lin
- Department of Infectious Diseases, Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| |
Collapse
|
54
|
Schaue D, Kachikwu EL, McBride WH. Cytokines in radiobiological responses: a review. Radiat Res 2012; 178:505-23. [PMID: 23106210 DOI: 10.1667/rr3031.1] [Citation(s) in RCA: 282] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cytokines function in many roles that are highly relevant to radiation research. This review focuses on how cytokines are structurally organized, how they are induced by radiation, and how they orchestrate mesenchymal, epithelial and immune cell interactions in irradiated tissues. Pro-inflammatory cytokines are the major components of immediate early gene programs and as such can be rapidly activated after tissue irradiation. They converge with the effects of ionizing radiation in that both generate free radicals including reactive oxygen and nitrogen species (ROS/RNS). "Self" molecules secreted or released from cells after irradiation feed the same paradigm by signaling for ROS and cytokine production. As a result, multilayered feedback control circuits can be generated that perpetuate the radiation tissue damage response. The pro-inflammatory phase persists until such times as perceived challenges to host integrity are eliminated. Antioxidant, anti-inflammatory cytokines then act to restore homeostasis. The balance between pro-inflammatory and anti-inflammatory forces may shift to and fro for a long time after radiation exposure, creating waves as the host tries to deal with persisting pathogenesis. Individual cytokines function within socially interconnected groups to direct these integrated cellular responses. They hunt in packs and form complex cytokine networks that are nested within each other so as to form mutually reinforcing or antagonistic forces. This yin-yang balance appears to have redox as a fulcrum. Because of their social organization, cytokines appear to have a considerable degree of redundancy and it follows that an elevated level of a specific cytokine in a disease situation or after irradiation does not necessarily implicate it causally in pathogenesis. In spite of this, "driver" cytokines are emerging in pathogenic situations that can clearly be targeted for therapeutic benefit, including in radiation settings. Cytokines can greatly affect intrinsic cellular radiosensitivity, the incidence and type of radiation tissue complications, bystander effects, genomic instability and cancer. Minor and not so minor, polymorphisms in cytokine genes give considerable diversity within populations and are relevant to causation of disease. Therapeutic intervention is made difficult by such complexity; but the potential prize is great.
Collapse
Affiliation(s)
- Dörthe Schaue
- David Geffen School Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714, USA.
| | | | | |
Collapse
|
55
|
Caspase-3 mediates in part hippocampal apoptosis in sepsis. Mol Neurobiol 2012; 47:394-8. [PMID: 23054679 DOI: 10.1007/s12035-012-8354-x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 09/19/2012] [Indexed: 10/27/2022]
Abstract
The brain is one of the first organs affected during sepsis development resulting in apoptosis for a short-term and cognitive impairment for a long-term. Despite its importance, the mechanisms of brain dysfunction during sepsis are not fully elucidated. Thus, we here, in an animal model of sepsis, evaluated apoptosis in the dentate gyrus cell layer of the hippocampus to document the involvement of caspase-3 in the pathogenesis of neuronal apoptosis. Wistar rats sham-operated or submitted to the cecal ligation and perforation (CLP) procedure were killed at 12, 24, 48 h, and 10 days after surgery for the determination of caspase-3 and apoptosis rate. In a separate cohort of animals, a caspase-3-specific inhibitor was administered and animals were killed at 12 h after sepsis. An increase in the number of apoptotic cells 12, 24, and 48 h by histopathological evaluations and an increase of caspase-3 apoptotic cells 12 and 24 h after sepsis induction were observed. The caspase-3 inhibitor decreases the number of apoptotic cells by histopathological evaluations but not by immunohistochemistry evaluations. Caspase-3 is involved in part in apoptosis in the dentate gyrus cell layer of the hippocampus in septic rats submitted by CLP.
Collapse
|
56
|
Affiliation(s)
- Cristina E Carnovale
- Instituto de Fisiología Experimental-CONICET, Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Suipacha 570-2000 Rosario, Argentina.
| | | |
Collapse
|
57
|
Chanthaphavong RS, Loughran PA, Lee TYS, Scott MJ, Billiar TR. A role for cGMP in inducible nitric-oxide synthase (iNOS)-induced tumor necrosis factor (TNF) α-converting enzyme (TACE/ADAM17) activation, translocation, and TNF receptor 1 (TNFR1) shedding in hepatocytes. J Biol Chem 2012; 287:35887-98. [PMID: 22898814 DOI: 10.1074/jbc.m112.365171] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
We and others have previously shown that the inducible nitric-oxide synthase (iNOS) and nitric oxide (NO) are hepatoprotective in a number of circumstances, including endotoxemia. In vitro, hepatocytes are protected from tumor necrosis factor (TNF) α-induced apoptosis via cGMP-dependent and cGMP-independent mechanisms. We have shown that the cGMP-dependent protective mechanisms involve the inhibition of death-inducing signaling complex formation. We show here that LPS-induced iNOS expression leads to rapid TNF receptor shedding from the surface of hepatocytes via NO/cGMP/protein kinase G-dependent activation and surface translocation of TNFα-converting enzyme (TACE/ADAM17). The activation of TACE is associated with the up-regulation of iRhom2 as well as the interaction and phosphorylation of TACE and iRhom2, which are also NO/cGMP/protein kinase G-dependent. These findings suggest that one mechanism of iNOS/NO-mediated protection of hepatocytes involves the rapid shedding of TNF receptor 1 to limit TNFα signaling.
Collapse
Affiliation(s)
- R Savanh Chanthaphavong
- Department of Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
58
|
Chakravarti R, Stuehr DJ. Thioredoxin-1 regulates cellular heme insertion by controlling S-nitrosation of glyceraldehyde-3-phosphate dehydrogenase. J Biol Chem 2012; 287:16179-86. [PMID: 22457359 DOI: 10.1074/jbc.m112.342758] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
NO generated by inducible NOS (iNOS) causes buildup of S-nitrosated GAPDH (SNO-GAPDH) in cells, which then inhibits further iNOS maturation by limiting the heme insertion step (Chakravarti, R., Aulak, K. S., Fox, P. L., and Stuehr, D. J. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 18004-18009). We investigated what regulates this process utilizing a slow-release NO donor (NOC-18) and studying changes in cellular SNO-GAPDH levels during and after NO exposure. Culturing macrophage-like cells with NOC-18 during cytokine activation caused buildup of heme-free (apo) iNOS and SNO-GAPDH. Upon NOC-18 removal, the cells quickly recovered their heme insertion capacity in association with rapid SNO-GAPDH denitrosation, implying that these processes are linked. We then altered cell expression of thioredoxin-1 (Trx1) or S-nitrosoglutathione reductase, both of which can function as a protein denitrosylase. Trx1 knockdown increased SNO-GAPDH levels in cells, made heme insertion hypersensitive to NO, and increased the recovery time, whereas Trx1 overexpression greatly diminished SNO-GAPDH buildup and protected heme insertion from NO inhibition. In contrast, knockdown of S-nitrosoglutathione reductase expression had little effect on these parameters. Experiments utilizing C152S GAPDH confirmed that the NO effects are all linked to S-nitrosation of GAPDH at Cys-152. We conclude (i) that NO inhibition of heme insertion and its recovery can be rapid and dynamic processes and are inversely linked to the S-nitrosation of GAPDH and (ii) that the NO sensitivity of heme insertion can vary depending on the Trx1 expression level due to Trx1 acting as an SNO-GAPDH denitrosylase. Together, our results identify a new way that cells regulate heme protein maturation during inflammation.
Collapse
Affiliation(s)
- Ritu Chakravarti
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | |
Collapse
|
59
|
Oba S, Suzuki E, Nishimatsu H, Kumano S, Hosoda C, Homma Y, Hirata Y. Renoprotective effect of erythropoietin in ischemia/reperfusion injury: possible roles of the Akt/endothelial nitric oxide synthase-dependent pathway. Int J Urol 2011; 19:248-55. [PMID: 22126194 DOI: 10.1111/j.1442-2042.2011.02920.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVES It has been reported that erythropoietin protects the kidneys from ischemia/reperfusion injury. In the present study, we examined the role of Akt and endothelial nitric oxide synthase in the protective effect of erythropoietin on ischemia/reperfusion injury of the kidney. METHODS Erythropoietin was injected in the peritoneal space of ICR mice after ischemia/reperfusion injury and its effect was assessed by measuring blood urea nitrogen and creatinine, and by histological analysis. Phosphorylation of Akt and endothelial nitric oxide synthase was examined by western blot analysis. Endothelial nitric oxide synthase gene null mice were also used to examine the role of endothelial nitric oxide synthase in the renoprotective effect of erythropoietin. RESULTS Erythropoietin administration significantly inhibited the increase in blood urea nitrogen and creatinine after ischemia/reperfusion injury compared with control mice. Accordingly, erythropoietin administration significantly ameliorated the histological damages, including apoptotic cell death. Erythropoietin significantly stimulated phosphorylation of Akt and endothelial nitric oxide synthase in the kidneys. When endothelial nitric oxide synthase gene null mice were subjected to ischemia/reperfusion injury, erythropoietin did not significantly suppress the increase in blood urea nitrogen or creatinine. CONCLUSIONS Erythropoietin seems to activate the Akt/endothelial nitric oxide synthase-dependent pathway in the kidneys. This pathway might be implicated in the renoprotective effect of erythropoietin in the ischemia/reperfusion injury model.
Collapse
Affiliation(s)
- Shigeyoshi Oba
- Department of Internal MedicineUniversity of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
60
|
Chateauvieux S, Grigorakaki C, Morceau F, Dicato M, Diederich M. Erythropoietin, erythropoiesis and beyond. Biochem Pharmacol 2011; 82:1291-303. [DOI: 10.1016/j.bcp.2011.06.045] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Revised: 06/28/2011] [Accepted: 06/29/2011] [Indexed: 12/21/2022]
|
61
|
Biliverdin inhibits Toll-like receptor-4 (TLR4) expression through nitric oxide-dependent nuclear translocation of biliverdin reductase. Proc Natl Acad Sci U S A 2011; 108:18849-54. [PMID: 22042868 DOI: 10.1073/pnas.1108571108] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The cellular response to an inflammatory stressor requires a proinflammatory cellular activation followed by a controlled resolution of the response to restore homeostasis. We hypothesized that biliverdin reductase (BVR) by binding biliverdin (BV) quells the cellular response to endotoxin-induced inflammation through phosphorylation of endothelial nitric oxide synthase (eNOS). The generated NO, in turn, nitrosylates BVR, leading to nuclear translocation where BVR binds to the Toll-like receptor-4 (TLR4) promoter at the Ap-1 sites to block transcription. We show in macrophages that BV-induced eNOS phosphorylation (Ser-1177) and NO production are mediated in part by Ca(2+)/calmodulin-dependent kinase kinase. Furthermore, we show that BVR is S-nitrosylated on one of three cysteines and that this posttranslational modification is required for BVR-mediated signaling. BV-induced nuclear translocation of BVR and inhibition of TLR4 expression is lost in macrophages derived from Enos(-/-) mice. In vivo in mice, BV provides protection from acute liver damage and is dependent on the availability of NO. Collectively, we elucidate a mechanism for BVR in regulating the inflammatory response to endotoxin that requires eNOS-derived NO and TLR4 signaling in macrophages.
Collapse
|
62
|
Lee HS, Kim CK. Cathepsin B is activated as an executive protease in fetal rat alveolar type II cells exposed to hyperoxia. Exp Mol Med 2011; 43:223-9. [PMID: 21415591 DOI: 10.3858/emm.2011.43.4.027] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Alveolar type II cells are main target of hyperoxia-induced lung injury. The authors investigated whether lysosomal protease, cathepsin B (CB), is activated in fetal alveolar type II cells in the transitional period from the canalicular to saccular stages during 65%-hyperoxia and whether CB is related to fetal alveolar type II cell (FATIIC) death secondary to hyperoxia. FATIICs were isolated from embryonic day 19 rats and exposed to 65%-oxygen for 24 h and 36 h. The cells exposed to room air were used as controls. Cell cytotoxicity was assessed by lactate dehydrogenase-release and flow cytometry, and apoptosis was analyzed by TUNEL assay and flow cytometry. CB activity was assessed by colorimetric assay, qRT-PCR and western blots. 65%-hyperoxia induced FATIIC death via necrosis and apoptosis. Interestingly, caspase-3 activities were not enhanced in FATIICs during 65%-hyperoxia, whereas CB activities were greatly increased during 65%-hyperoxia in a time-dependent manner, and similar findings were observed with qRT-PCR and western blots. In addition, the preincubation of CB inhibitor prior to 65%-hyperoxia reduced FATIIC death significantly. Our studies suggest that CB activation secondary to hyperoxia might have a relevant role in executing the cell death program in FATIICs during the acute stage of 65%-hyperoxia.
Collapse
Affiliation(s)
- Hyeon-Soo Lee
- Department of Pediatrics, Kangwon National University Hospital, Kangwon Naitonal University School of Medicine, Chuncheon, Korea.
| | | |
Collapse
|
63
|
Wang K, Brems JJ, Gamelli RL, Holterman AX. iNOS/NO signaling regulates apoptosis induced by glycochenodeoxycholate in hepatocytes. Cell Signal 2011; 23:1677-85. [DOI: 10.1016/j.cellsig.2011.06.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2011] [Accepted: 06/06/2011] [Indexed: 10/18/2022]
|
64
|
Shahani N, Sawa A. Protein S-nitrosylation: role for nitric oxide signaling in neuronal death. Biochim Biophys Acta Gen Subj 2011; 1820:736-42. [PMID: 21803124 DOI: 10.1016/j.bbagen.2011.07.010] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 06/21/2011] [Accepted: 07/13/2011] [Indexed: 12/15/2022]
Abstract
BACKGROUND One of the signaling mechanisms mediated by nitric oxide (NO) is through S-nitrosylation, the reversible redox-based modification of cysteine residues, on target proteins that regulate a myriad of physiological and pathophysiological processes. In particular, an increasing number of studies have identified important roles for S-nitrosylation in regulating cell death. SCOPE OF REVIEW The present review focuses on different targets and functional consequences associated with nitric oxide and protein S-nitrosylation during neuronal cell death. MAJOR CONCLUSIONS S-Nitrosylation exhibits double-edged effects dependent on the levels, spatiotemporal distribution, and origins of NO in the brain: in general Snitrosylation resulting from the basal low level of NO in cells exerts anti-cell death effects, whereas S-nitrosylation elicited by induced NO upon stressed conditions is implicated in pro-cell death effects. GENERAL SIGNIFICANCE Dysregulated protein S-nitrosylation is implicated in the pathogenesis of several diseases including degenerative diseases of the central nervous system (CNS). Elucidating specific targets of S-nitrosylation as well as their regulatory mechanisms may aid in the development of therapeutic intervention in a wide range of brain diseases.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Psychiatry, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA.
| | | |
Collapse
|
65
|
Eum HA, Vallabhaneni R, Wang Y, Loughran PA, Stolz DB, Billiar TR. Characterization of DISC formation and TNFR1 translocation to mitochondria in TNF-α-treated hepatocytes. THE AMERICAN JOURNAL OF PATHOLOGY 2011; 179:1221-9. [PMID: 21741934 DOI: 10.1016/j.ajpath.2011.05.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Revised: 05/10/2011] [Accepted: 05/17/2011] [Indexed: 11/18/2022]
Abstract
Tumor necrosis factor receptor 1 (TNFR1) activation in hepatocytes can trigger apoptotic or inflammatory signaling. The factors that determine which signaling pathway dominates are not clear and are thought to relate to the efficiency of death-inducing signaling complex (DISC) formation. However, the steps involved in DISC formation in hepatocytes are poorly understood. In characterizing DISC formation within cultured hepatocytes, we demonstrated that TNF-α exposure leads to the rapid formation of a DISC involving TNF-α, the TNFR-associated death domain adaptor molecule (TRADD), the Fas-associated death domain adaptor molecule (FADD), caspase-8, TNFR-associated factor 2 (TRAF2), and receptor-interacting protein (RIP). The inclusion of the sensitizing agent actinomycin D both accelerated and amplified the appearance of the DISC. Notably, TNFR1 along with some DISC components also appeared within mitochondria within 30 minutes. Whereas TNFR1 consistently co-localized with the TRADD, FADD, the caspase-8, and TRAF2 in the cytosolic fraction, TNFR1 in the mitochondria was associated only with caspase-8 after TNF-α exposure. Similar observations were made in vivo using TNF-α with D-galactosamine. Actinomycin D alone also enhanced the appearance of DISC components in both cytosol and the mitochondria. Thus the DISC that includes TNFR1 forms in the cytosol of hepatocytes under both survival and pro-apoptotic conditions. The observations also suggest that TNF-α-mediated signaling includes the translocation of TNFR1 to mitochondria.
Collapse
Affiliation(s)
- Hyun-Ae Eum
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
66
|
Wang K, Brems JJ, Gamelli RL, Holterman AX. C/EBPα and C/EBPβ binding proteins modulate hepatocyte apoptosis through iNOS signaling pathway. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1395-403. [PMID: 21539866 DOI: 10.1016/j.bbamcr.2011.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 04/06/2011] [Accepted: 04/11/2011] [Indexed: 01/05/2023]
Abstract
Inducible nitric oxide synthase (iNOS) and nitric oxide (NO) involve many pathophysiologic conditions. The expression of iNOS is regulated at multiple stages. Presently, the regulatory details of iNOS signaling are still unclear. This study aimed to investigate the regulatory role of C/EBPα and C/EBPβ in iNOS signaling pathway. By employing the techniques such as EMSA, ChIP assay, site-directed mutagenesis, and siRNA silencing, the relationship between iNOS and C/EBPα/C/EBPβ in rat hepatocytes was clarified. iNOS promoter was the direct transcriptional targets of the C/EBPα, C/EBPβ, and NF-κB binding proteins. There was the interactive influence between NF-κB and C/EBPα/C/EBPβ. The expression of iNOS was modulated by C/EBPα/C/EBPβ transcription factors. Moreover, the iNOS expression mediated glycochenodeoxycholate (GCDC)-induced apoptosis in hepatocytes. C/EBPα/C/EBPβ binding proteins could affect the GCDC-induced apoptosis through iNOS cascade. These findings indicate that C/EBPα and C/EBPβ regulate the iNOS expression, which may further modify cell responses such as apoptosis and cell survival.
Collapse
Affiliation(s)
- Kewei Wang
- Departments of Pediatrics and Surgery/Section of Pediatric Surgery, Rush University Medical Center, Chicago, IL 60612, USA.
| | | | | | | |
Collapse
|
67
|
Abstract
Alcoholic liver disease (ALD) remains a major cause of morbidity and mortality worldwide. For example, the Veterans Administration Cooperative Studies reported that patients with cirrhosis and superimposed alcoholic hepatitis had a 4-year mortality of >60%. The poor prognosis of ALD implies that preventing disease progression would be more effective than treating end-stage liver disease. An obvious avenue of prevention would be to remove the damaging agent; however, the infamously high rate of recidivism in alcoholics makes maintaining abstinence a difficult treatment goal to prevent ALD. Indeed, although the progression of ALD is well-characterized, there is no universally accepted therapy available to halt or reverse this process in humans. With better understanding of the mechanism(s) and risk factors that mediate the initiation and progression of ALD, rational targeted therapy can be developed to treat or prevent ALD. The purpose of this review is to summarize the established and proposed mechanisms by which chronic alcohol abuse damages the liver and to highlight key signaling events known or hypothesized to mediate these effects.
Collapse
Affiliation(s)
- Juliane I Beier
- Department of Pharmacology and Toxicology, University of Louisville Health Sciences Center, Louisville, KY 40292, USA.
| | | |
Collapse
|
68
|
Eum HA, Billiar TR. TNF/TNF receptor 1-mediated apoptosis in hepatocytes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 691:617-24. [PMID: 21153368 DOI: 10.1007/978-1-4419-6612-4_65] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Hyun-Ae Eum
- Department of Surgery, F-1200 PUH, University of Pittsburgh, 200 Lothrop Street, Pittsburgh, PA 15217, USA
| | | |
Collapse
|
69
|
Hong SY, Borchert GL, Maciag AE, Nandurdikar RS, Saavedra JE, Keefer LK, Phang JM, Chakrapani H. The Nitric Oxide Prodrug V-PROLI/NO Inhibits Cellular Uptake of Proline. ACS Med Chem Lett 2010; 1:386-389. [PMID: 21212855 PMCID: PMC3013513 DOI: 10.1021/ml1000905] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Accepted: 07/19/2010] [Indexed: 12/26/2022] Open
Abstract
V-PYRRO/NO is a well studied nitric oxide (NO) prodrug which has been shown to protect human liver cells from arsenic, acetaminophen, and other toxic assaults in vivo. Its proline-based analogue, V-PROLI/NO, was designed to be a more biocompatible form that decomposes to the naturally occurring metabolites of proline, NO, and glycolaldehyde. Like V-PYRRO/NO, this cytochrome P450-activated prodrug was previously assumed to passively diffuse through the cellular membrane. Using (14)C-labeled proline in a competition assay, we show that V-PROLI/NO is transported through proline transporters into multiple cell lines. A fluorescent NO-sensitive dye (DAF-FM diacetate) and nitrite excretion indicated elevated intracellular NO release after metabolism over V-PYRRO/NO. These results also allowed us to predict and design a more permeable analogue, V-SARCO/NO. We report a proline transporter-based strategy for the selective transport of NO prodrugs that may have enhanced efficacy and aid in development of further NO prodrugs with increased permeability.
Collapse
Affiliation(s)
- Sam Y. Hong
- Chemistry Section, Laboratory of Comparative Carcinogenesis
| | | | | | | | | | | | | | - Harinath Chakrapani
- Department of Chemistry, Indian Institute of Science Education and Research, Pune 411 008, Maharashtra, India
| |
Collapse
|
70
|
Nageshwar Rao B, Satish Rao BS. Antagonistic effects of Zingerone, a phenolic alkanone against radiation-induced cytotoxicity, genotoxicity, apoptosis and oxidative stress in Chinese hamster lung fibroblast cells growing in vitro. Mutagenesis 2010; 25:577-87. [DOI: 10.1093/mutage/geq043] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
71
|
Rodríguez-Ortigosa CM, Banales JM, Olivas I, Uriarte I, Marín JJG, Corrales FJ, Medina JF, Prieto J. Biliary secretion of S-nitrosoglutathione is involved in the hypercholeresis induced by ursodeoxycholic acid in the normal rat. Hepatology 2010; 52:667-677. [PMID: 20683964 DOI: 10.1002/hep.23709] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
UNLABELLED Ursodeoxycholic acid (UDCA) induces bicarbonate-rich hypercholeresis by incompletely defined mechanisms that involve the stimulation of adenosine triphosphate (ATP) release from cholangiocytes. As nitric oxide (NO) at a low concentration can stimulate a variety of secretory processes, we investigated whether this mediator could be implicated in the choleretic response to UDCA. Our in vivo experiments with the in situ perfused rat liver model in anesthetized rats, showed that UDCA infusion increased the biliary secretion of NO derivatives, hepatic inducible NO synthase expression, and NO synthase activity in liver tissue. UDCA also stimulated NO release by isolated rat hepatocytes. In contrast to UDCA, cholic acid was a poor inducer of NO secretion, and tauroursodeoxycholic acid showed no effect on NO secretion. Upon UDCA administration, NO was found in bile as low-molecular-weight nitrosothiols, of which S-nitrosoglutathione (GSNO) was the predominant species. UDCA-stimulated biliary NO secretion was abolished by the inhibition of inducible NO synthase with N(omega)-nitro-L-arginine methyl ester in isolated perfused livers and also in rats whose livers were depleted of glutathione with buthionine sulfoximine. Moreover, the biliary secretion of NO species was significantly diminished in UDCA-infused transport mutant [ATP-binding cassette C2 (ABCC2)/multidrug resistance-associated protein 2 (Mrp2)-deficient] rats, and this finding was consistent with the involvement of the glutathione carrier ABCC2/Mrp2 in the canalicular transport of GSNO. It was particularly noteworthy that in cultured normal rat cholangiocytes, GSNO activated protein kinase B, protected against apoptosis, and enhanced UDCA-induced ATP release to the medium; this effect was blocked by phosphoinositide 3-kinase inhibition. Finally, retrograde GSNO infusion into the common bile duct increased bile flow and biliary bicarbonate secretion. CONCLUSION UDCA induces biliary secretion of GSNO, which contributes to stimulating ductal secretion.
Collapse
|
72
|
Diesen DL, Kuo PC. Nitric oxide and redox regulation in the liver: Part I. General considerations and redox biology in hepatitis. J Surg Res 2010; 162:95-109. [PMID: 20444470 PMCID: PMC2885581 DOI: 10.1016/j.jss.2009.09.019] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 09/01/2009] [Accepted: 09/04/2009] [Indexed: 12/16/2022]
Abstract
Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are created in normal hepatocytes and are critical for normal physiologic processes, including oxidative respiration, growth, regeneration, apoptosis, and microsomal defense. When the levels of oxidation products exceed the capacity of normal antioxidant systems, oxidative stress occurs. This type of stress, in the form of ROS and RNS, can be damaging to all liver cells, including hepatocytes, Kupffer cells, stellate cells, and endothelial cells, through induction of inflammation, ischemia, fibrosis, necrosis, apoptosis, or through malignant transformation by damaging lipids, proteins, and/or DNA. In Part I of this review, we will discuss basic redox biology in the liver, including a review of ROS, RNS, and antioxidants, with a focus on nitric oxide as a common source of RNS. We will then review the evidence for oxidative stress as a mechanism of liver injury in hepatitis (alcoholic, viral, nonalcoholic). In Part II of this review, we will review oxidative stress in common pathophysiologic conditions, including ischemia/reperfusion injury, fibrosis, hepatocellular carcinoma, iron overload, Wilson's disease, sepsis, and acetaminophen overdose. Finally, biomarkers, proteomic, and antioxidant therapies will be discussed as areas for future therapeutic interventions.
Collapse
Affiliation(s)
- Diana L Diesen
- Department of Surgery, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
73
|
Abstract
The body senses "danger" from "damaged self" molecules through members of the same receptor superfamily it uses for microbial "non-self", triggering canonical signaling pathways that lead to the generation of acute inflammatory responses. For this reason, the biology of normal tissue responses to moderate and clinically relevant doses of radiation is inextricably connected to innate immunity. The complex sequence of inflammatory events that ensues causes further cell and tissue damage to eliminate potential invaders but also leads to cytoprotective responses that limit the spread of damage and to wound healing through tissue regeneration or replacement. These sequential processes are orchestrated through multiple feedback control mechanisms involving cyclical production of free radicals and cytokines that are common to both radiation and immune signaling. This requires a concerted effort by resident tissue and inflammatory cell types, with macrophages apparently leading the way. The initial response to moderate doses of radiation therefore feeds into a pro-inflammatory paradigm whose eventual outcome is critically dependent upon the properties of the immune cells that are involved in tissue damage, regeneration and repair and that are in part under genetic influence. Importantly, these canonical pathways provide targets for interventions aimed at modifying normal tissue radiation responses. In this review, we examine areas of intersection between innate immunity and normal tissue radiobiology.
Collapse
Affiliation(s)
- Dörthe Schaue
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714
| | - William H. McBride
- Division of Molecular and Cellular Oncology, Department of Radiation Oncology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, California 90095-1714
| |
Collapse
|
74
|
Circu ML, Aw TY. Reactive oxygen species, cellular redox systems, and apoptosis. Free Radic Biol Med 2010; 48:749-62. [PMID: 20045723 PMCID: PMC2823977 DOI: 10.1016/j.freeradbiomed.2009.12.022] [Citation(s) in RCA: 2438] [Impact Index Per Article: 162.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Revised: 12/21/2009] [Accepted: 12/27/2009] [Indexed: 02/07/2023]
Abstract
Reactive oxygen species (ROS) are products of normal metabolism and xenobiotic exposure, and depending on their concentration, ROS can be beneficial or harmful to cells and tissues. At physiological low levels, ROS function as "redox messengers" in intracellular signaling and regulation, whereas excess ROS induce oxidative modification of cellular macromolecules, inhibit protein function, and promote cell death. Additionally, various redox systems, such as the glutathione, thioredoxin, and pyridine nucleotide redox couples, participate in cell signaling and modulation of cell function, including apoptotic cell death. Cell apoptosis is initiated by extracellular and intracellular signals via two main pathways, the death receptor- and the mitochondria-mediated pathways. Various pathologies can result from oxidative stress-induced apoptotic signaling that is consequent to ROS increases and/or antioxidant decreases, disruption of intracellular redox homeostasis, and irreversible oxidative modifications of lipid, protein, or DNA. In this review, we focus on several key aspects of ROS and redox mechanisms in apoptotic signaling and highlight the gaps in knowledge and potential avenues for further investigation. A full understanding of the redox control of apoptotic initiation and execution could underpin the development of therapeutic interventions targeted at oxidative stress-associated disorders.
Collapse
Affiliation(s)
- Magdalena L Circu
- Department of Molecular & Cellular Physiology, Louisiana University Health Sciences Center, Shreveport, LA 71130, USA
| | | |
Collapse
|
75
|
Nitric oxide and thioredoxin type 1 modulate the activity of caspase 8 in HepG2 cells. Biochem Biophys Res Commun 2009; 391:1127-30. [PMID: 20005201 DOI: 10.1016/j.bbrc.2009.12.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2009] [Accepted: 12/08/2009] [Indexed: 11/24/2022]
Abstract
Herein, we report that nitric oxide (NO) and the thioredoxin/thioredoxin reductase system affect the activity of caspase 8 in HepG2 cells. Exposure of cells to NO resulted in inhibition of caspase 8, while a subsequent incubation of the cells in NO-free medium resulted in spontaneous reactivation of the protease. The latter process was inhibited in thioredoxin reductase-deficient HepG2 cells, in which, however, lipoic acid markedly reactivated caspase 8. The data obtained suggest that extrinsic apoptosis can be subjected to redox regulation before induction of proteolytic damage by caspase 3.
Collapse
|
76
|
Role of ischemic preconditioning in liver surgery and hepatic transplantation. J Gastrointest Surg 2009; 13:2074-83. [PMID: 19404711 DOI: 10.1007/s11605-009-0878-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2009] [Accepted: 03/24/2009] [Indexed: 02/06/2023]
Abstract
INTRODUCTION The purpose of this review is to summarize intraoperative surgical strategies available to decrease ischemia-reperfusion injury associated with liver resection and liver transplantation. MATERIAL AND METHOD We conducted a critical review of the literature evaluating the potential applications of hepatic ischemic preconditioning (IPC) for hepatic resection surgery and liver transplantation. In addition, we provide a basic bench-to-bedside summary of the liver physiology and cell signaling mechanisms that account for the protective effects seen with hepatic IPC.
Collapse
|
77
|
Radosavljević T, Mladenović D, Vucević D. [The role of oxidative stress in alcoholic liver injury]. MEDICINSKI PREGLED 2009; 62:547-553. [PMID: 20491381 DOI: 10.2298/mpns0912547r] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Oxidative stress plays an important role in pathogenesis of alcoholic liver injury. The main source of free oxygen species is cytochrome P450-dependent monooxygenase, which can be induced by ethanol. ROLE OF CYTOCHROME P4502E1 IN ETHANOL-INDUCED OXIDATIVE STRESS: Reactive oxygen species produced by this enzyme are more important in intracellular oxidative damage compared to species derived from activated phagocytes. Free radicals lead to lipid peroxidation, enzymatic inactivation and protein oxidation. ROLE OF MITOCHONDRIA IN ALCOHOL-INDUCED OXIDATIVE STRESS. Production of mitochondrial reactive oxygen species is increased, and glutathione content is decreased in chronically ethanol-fed animals. Oxidative stress in mitochondria leads to mitochondrial DNA damage and has a dual effect on apoptosis. ROLE OF KUPFFER CELLS IN ALCOHOL-INDUCED LIVER INJURY: Chronic ethanol consumption is associated with increased release of endotoxin from gut lumen into portal circulation. Endotoxin activates Kupffer cells, which then release proinflammatory cytokines and oxidants. ROLE OF NEUTROPHILS IN ALCOHOL-INDUCED LIVER INJURY: Alcoholic liver injury leads to the accumulation of neutrophils, which release reactive oxygen species and lysosomal enzymes and contribute to hepatocyte damage and necrosis. ROLE OF NITRIC OXIDE IN ALCOHOL-INDUCED OXIDATIVE STRESS: High amounts of nitric oxide contribute to the oxidative damage, mainly by generating peroxynitrites. ROLE OF ANTIOXIDANTS IN ETHANOL-INDUCED OXIDATIVE STRESS: Chronic ethanol consumption is associated with reduced liver glutathione and alpha-tocopherol level and with reduced superoxide dismutase, catalase and glutathione peroxidase activity. CONCLUSION Oxidative stress in alcoholic liver disease is a consequence of increased production of oxidants and decreased antioxidant defense in the liver.
Collapse
|
78
|
Brodsky M, Hirsh S, Albeck M, Sredni B. Resolution of inflammation-related apoptotic processes by the synthetic tellurium compound, AS101 following liver injury. J Hepatol 2009; 51:491-503. [PMID: 19595469 DOI: 10.1016/j.jhep.2009.04.024] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 03/16/2009] [Accepted: 04/02/2009] [Indexed: 12/04/2022]
Abstract
BACKGROUND/AIMS Fulminant hepatic failure is a dangerous condition, which occurs when large parts of the liver become damaged beyond repair, and the liver is no longer able to function. This syndrome is induced by inflammatory processes, resulting in acute liver failure. Recently, the organotellurium compound, trichloro(dioxoethylene-O,O(')) tellurate (AS101), has been found by our group to be able to directly inhibit caspases, due to its Te(IV)-thiol chemistry. The aim of this study was to examine the potential of AS101 as an anti-inflammatory and anti-apoptotic compound in vitro and in vivo following liver injury. METHODS Propionibacterium acnes-primed LPS-induced liver injury was performed in Balb/c mice. ALT/AST, cytokines, caspase-1,-3 and-8 activities, and liver histology were assessed. RESULTS AS101 inhibited TNFalpha or anti-FAS-induced apoptotic processes in hepatocytes in vitro. A P. acnes+LPS in vivo liver injury model revealed lower serum ALT and AST and reduced necrosis and apoptosis in AS101-treated mice. IL-18 and IL-1beta reduced levels in AS101-treated mice were associated with caspase-1 activity inhibition. Our findings suggest IL-6, IL-17 and pSTAT3 as additional novel players in the pathogenicity of FHF. Inhibition of caspase-3, and-8 activities by AS101 treatment contributed to decreased hepatocyte death, resulting in increased survival. CONCLUSIONS We suggest that due to its interaction with key-target cysteine residues, AS101 mediates anti-inflammatory and anti-apoptotic effects in this FHF model, which may serve as a potent treatment for mitigation of hepatic damage.
Collapse
Affiliation(s)
- Miri Brodsky
- C.A.I.R. Institute, The Safdiè AIDS and Immunology Research Center, The Mina & Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | | | | | | |
Collapse
|
79
|
Hong SY, Nandurdikar RS, Keefer LK, Saavedra JE, Chakrapani H. An improved synthesis of V-PROLI/NO, a cytochrome P450-activated nitric oxide prodrug. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.05.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
80
|
Giovanardi RO, Rhoden EL, Cerski CT, Salvador M, Kalil AN. Pharmacological Preconditioning Using Intraportal Infusion of L-Arginine Protects Against Hepatic Ischemia Reperfusion Injury. J Surg Res 2009; 155:244-53. [DOI: 10.1016/j.jss.2008.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2008] [Revised: 06/06/2008] [Accepted: 07/02/2008] [Indexed: 02/08/2023]
|
81
|
Hong SY, Saavedra JE, Keefer LK, Chakrapani H. Improved synthesis of V-PYRRO/NO, a liver-selective nitric oxide prodrug, and analogues. Tetrahedron Lett 2009. [DOI: 10.1016/j.tetlet.2009.02.103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
82
|
Calafell R, Boada J, Santidrian AF, Gil J, Roig T, Perales JC, Bermudez J. Fructose 1,6-bisphosphate reduced TNF-alpha-induced apoptosis in galactosamine sensitized rat hepatocytes through activation of nitric oxide and cGMP production. Eur J Pharmacol 2009; 610:128-33. [PMID: 19324037 DOI: 10.1016/j.ejphar.2009.03.044] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2009] [Revised: 03/03/2009] [Accepted: 03/15/2009] [Indexed: 10/21/2022]
Abstract
Fructose 1,6-P2 (F1,6BP) protects rat liver against experimental hepatitis induced by galactosamine (GalN) by means of two parallel effects: prevention of inflammation, and reduction of hepatocyte sensitization to tumour necrosis factor-alpha (TNF-alpha). In a previous paper we reported the underlying mechanism involved in the prevention of inflammation. In the present study, we examined the intracellular mechanisms involved in the F1,6BP inhibition of the apoptosis induced by TNF-alpha in parenchyma cells of GalN-sensitized rat liver. We hypothesized that the increased nitric oxide (NO) production in livers of F1,6BP-treated rats mediates the antiapoptotic effect. This hypothesis was evaluated in cultured primary rat hepatocytes challenged by GalN plus tumour necrosis factor-alpha (GalN+TNF-alpha), to reproduce in vitro the injury associated with experimental hepatitis. Our results show a reduction in apoptosis concomitant with an increase in NO production and with a reduction in oxidative stress. In such conditions, guanylyl cyclase is activated and the increase in cGMP reduces the TNF-alpha-induced apoptosis in hepatocytes. These results provide new insights in the protective mechanism activated by F1,6BP and confirm its interest as a hepatoprotective agent.
Collapse
Affiliation(s)
- Roser Calafell
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
83
|
Wu D, Xu C, Cederbaum A. Role of nitric oxide and nuclear factor-kappaB in the CYP2E1 potentiation of tumor necrosis factor alpha hepatotoxicity in mice. Free Radic Biol Med 2009; 46:480-91. [PMID: 19063961 DOI: 10.1016/j.freeradbiomed.2008.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Revised: 09/18/2008] [Accepted: 11/02/2008] [Indexed: 01/01/2023]
Abstract
Induction of CYP2E1 by pyrazole (PY) potentiated the hepatotoxicity induced by TNFalpha in mice. We evaluated the role of nitrosative and oxidative stress and the NF-kappaB activation pathway in this liver injury. The iNOS inhibitor N-(3-aminomethyl)benzylacetamindine (1400W) or the antioxidant N-acetyl-l-cysteine (NAC) prevented this liver injury. TNFalpha plus PY treatment triggered radical stress in the liver with increased lipid peroxidation and decreased glutathione and caused mitochondrial damage as reflected by elevated membrane swelling and cytochrome c release. The radical stress and mitochondrial damage were prevented by 1400W and NAC. TNFalpha plus PY treatment elevated 3-nitrotyrosine adduct formation and induced NOS2 in the liver; 1400W and NAC blocked these changes. A lower extent of liver injury and oxidative stress was found in NOS2(-/-) mice treated with TNFalpha plus PY compared with wild-type controls. Neither 1400W nor NAC modified CYP2E1 activity or protein. Activation of JNK and p38MAPK was weaker in TNFalpha plus PY-treated NOS2(-/-) mice and 1400W and NAC blocked the activation of JNK and p38MAPK in wild-type mice. IKKalpha/beta protein levels were decreased by TNFalpha plus PY treatment, whereas IkappaBalpha and IkappaBbeta protein levels were elevated compared with saline, PY, or TNFalpha alone. NF-kappaB DNA binding activity was increased by TNFalpha alone but lowered by TNFalpha plus PY. All these changes were blocked by 1400W and NAC. NF-kappaB activation products such as Bcl-2, Bcl-X(L), cFLIP(S), cFLIP(L), and Mn-SOD were reduced by TNFalpha plus PY and restored by 1400W or NAC. We conclude that TNFalpha plus CYP2E1 induces oxidative/nitrosative stress, which plays a role in the activation of JNK or p38MAPK and mitochondrial damage. These effects combine with the blunting of the NF-kappaB activation pathways and the synthesis of protective factors to cause liver injury.
Collapse
Affiliation(s)
- Defeng Wu
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
84
|
Abstract
Nitric oxide (NO) is an important signaling molecule that plays a key role in various physiological and pathological processes. One of the well-established mechanisms by which NO regulates the function of various target proteins is through S-nitrosylation. NO readily reacts with thiol (SH) groups in the cysteine residues of target proteins to form nitrosothiol (S-NO) groups. This posttranslational modification of proteins can positively or negatively regulate various signaling pathways including apoptosis. Likewise, S-nitrosylation of various apoptosis-regulatory proteins has been demonstrated to modify the apoptotic response to various stimuli. We have shown that NO nitrosylates important antiapoptotic proteins, such as Bcl-2 and FLIP, and prevents their downregulation via the ubiquitin-proteasomal degradation pathway. To detect protein S-nitrosylation, we isolated the protein by immunoprecipitation and analyzed cysteine nitrosylation by Western blotting or spectrofluorometry.
Collapse
|
85
|
Yang GY, Taboada S, Liao J. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 2009; 512:119-156. [PMID: 19347276 DOI: 10.1007/978-1-60327-530-9_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) is a free radical that is involved in the inflammatory process and carcinogenesis. There are four nitric oxide synthase enzymes involved in NO production: induced nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), neural NO synthase (nNOS), and mitochondrial NOS. iNOS is an inducible and key enzyme in the inflamed tissue. Recent literatures indicate that NO as well as iNOS and eNOS can modulate cancer-related events including nitro-oxidative stress, apoptosis, cell cycle, angio-genesis, invasion, and metastasis. This chapter focuses on linking NO/iNOS/eNOS to inflammation and carcinogenesis from experimental evidence to potential targets on cancer prevention and treatment.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
86
|
Floyd RA, Kopke RD, Choi CH, Foster SB, Doblas S, Towner RA. Nitrones as therapeutics. Free Radic Biol Med 2008; 45:1361-74. [PMID: 18793715 PMCID: PMC2796547 DOI: 10.1016/j.freeradbiomed.2008.08.017] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2008] [Revised: 08/08/2008] [Accepted: 08/08/2008] [Indexed: 01/20/2023]
Abstract
Nitrones have the general chemical formula X-CH=NO-Y. They were first used to trap free radicals in chemical systems and then subsequently in biochemical systems. More recently several nitrones, including alpha-phenyl-tert-butylnitrone (PBN), have been shown to have potent biological activity in many experimental animal models. Many diseases of aging, including stroke, cancer development, Parkinson disease, and Alzheimer disease, are known to have enhanced levels of free radicals and oxidative stress. Some derivatives of PBN are significantly more potent than PBN and have undergone extensive commercial development for stroke. Recent research has shown that PBN-related nitrones also have anti-cancer activity in several experimental cancer models and have potential as therapeutics in some cancers. Also, in recent observations nitrones have been shown to act synergistically in combination with antioxidants in the prevention of acute acoustic-noise-induced hearing loss. The mechanistic basis of the potent biological activity of PBN-related nitrones is not known. Even though PBN-related nitrones do decrease oxidative stress and oxidative damage, their potent biological anti-inflammatory activity and their ability to alter cellular signaling processes cannot readily be explained by conventional notions of free radical trapping biochemistry. This review is focused on our studies and others in which the use of selected nitrones as novel therapeutics has been evaluated in experimental models in the context of free radical biochemical and cellular processes considered important in pathologic conditions and age-related diseases.
Collapse
Affiliation(s)
- Robert A Floyd
- Experimental Therapeutics Research Program, Advanced Magnetic Resonance Center, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA.
| | | | | | | | | | | |
Collapse
|
87
|
Ayala A, Wesche-Soldato DE, Perl M, Lomas-Neira JL, Swan R, Chung CS. Blockade of apoptosis as a rational therapeutic strategy for the treatment of sepsis. NOVARTIS FOUNDATION SYMPOSIUM 2008; 280:37-49; discussion 49-52, 160-4. [PMID: 17380787 PMCID: PMC1838573 DOI: 10.1002/9780470059593.ch4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Over time it has become clear that, much like other organ systems, the function and responsiveness of the immune system is impaired during the course of sepsis and that this is a precipitous event in the decline of the critically ill patient/animal. One hypothesis put forward to explain the development of septic immune dysfunction is that it is a pathological result of increased immune cell apoptosis. Alternatively, it has been proposed that the clearance of increased numbers of apoptotic cells may actively drive immune suppression through the cells that handle them. Here we review the data from studies involving septic animals and patients, which indicate that loss of immune cells, as well as non-immune cells, in some cases, is a result of dysregulated apoptosis. Subsequently, we will consider the cell death pathways, i.e. 'extrinsic' and/or 'intrinsic', which are activated and what cell populations may orchestrate this dysfunctional apoptotic process, immune and/or non-immune. Finally, we will discuss potentially novel therapeutic targets, such as caspases, death receptor family members (e.g. tumour necrosis factor, Fas) and pro-/anti apoptotic Bcl-family members, and approaches such as caspase inhibitors, the use of fusion proteins, peptidomimetics and siRNA, which might be considered for the treatment of the septic patient.
Collapse
Affiliation(s)
- Alfred Ayala
- Shock-Trauma Research Laboratory, Division of Surgical Research, Department of Surgery, Rhode Island Hospital / Brown University School of Medicine, Providence, RI 02903, USA
| | | | | | | | | | | |
Collapse
|
88
|
Holownia A, Jablonski J, Skiepko A, Mroz R, Sitko E, Braszko JJ. Ruthenium red protects HepG2 cells overexpressing CYP2E1 against acetaminophen cytotoxicity. Naunyn Schmiedebergs Arch Pharmacol 2008; 379:27-35. [DOI: 10.1007/s00210-008-0343-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 07/29/2008] [Indexed: 01/17/2023]
|
89
|
Kim HS, Loughran PA, Billiar TR. Carbon monoxide decreases the level of iNOS protein and active dimer in IL-1beta-stimulated hepatocytes. Nitric Oxide 2008; 18:256-65. [PMID: 18313411 PMCID: PMC2692428 DOI: 10.1016/j.niox.2008.02.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2007] [Revised: 01/11/2008] [Accepted: 02/06/2008] [Indexed: 11/21/2022]
Abstract
There is evidence that NO can regulate CO production, however less is known about CO regulation of NO synthesis. Our studies were undertaken to define how CO regulates iNOS in cultured hepatocytes. CO (250ppm) exposure resulted in a significant decrease in iNOS protein, nitrite production, level of active iNOS dimer and cytosolic iNOS activity in cells stimulated with cytokines (IL-1beta) or transfected with the human iNOS gene. However, IL-1beta-stimulated iNOS mRNA expression was unaffected by CO. These effects of CO on iNOS protein levels were inhibited when CO was scavenged using hemoglobin. HO-1 induction with an adenoviral vector carrying HO-1 showed a decrease in total iNOS protein, nitrite production, and iNOS dimer level from cells stimulated by IL-1beta. iNOS protein level was significantly higher in lung endothelial cells isolated from HO-1 knockout mice compared to wild type cultures stimulated with cytokines mixture. CO was found to increase p38 phosphorylation and p38 inhibition using SB203580 increased iNOS protein levels in response to IL-1beta. Interestingly, proteasome inhibitors (MG132 and Lactacystin) and an autophagy inhibitor (3-methyladenine) reversed CO influence iNOS levels. Our results imply that CO exposure decreases NO production by suppressing dimer formation and increasing iNOS degradation through a process involving p38 activation.
Collapse
|
90
|
Leon L, Jeannin JF, Bettaieb A. Post-translational modifications induced by nitric oxide (NO): implication in cancer cells apoptosis. Nitric Oxide 2008; 19:77-83. [PMID: 18474258 DOI: 10.1016/j.niox.2008.04.014] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2008] [Revised: 04/16/2008] [Accepted: 04/16/2008] [Indexed: 11/28/2022]
Abstract
Post-translational modifications of proteins can regulate the balance between survival and cell death signals. It is increasingly recognized that nitric oxide (NO) and reactive oxygen species (ROS)-induced post-translational modifications could play a role in cell death. This review provides an introduction of current knowledge of NO proteins modifications promoting or inhibiting cell death with special attention in cancer cells.
Collapse
Affiliation(s)
- Lissbeth Leon
- EPHE, Laboratoire d'immunologie et immunothérapie des cancers, Inserm U866, Dijon, F-21000, France.
| | | | | |
Collapse
|
91
|
|
92
|
Rabkin SW, Klassen SS. Palmitate-induced NO production has a dual action to reduce cell death through NO and accentuate cell death through peroxynitrite formation. Prostaglandins Leukot Essent Fatty Acids 2008; 78:147-55. [PMID: 18191557 DOI: 10.1016/j.plefa.2007.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2007] [Accepted: 09/23/2007] [Indexed: 10/22/2022]
Abstract
The objective of this study was to determine the role of palmitate-induced stimulation of nitric oxide synthase (NOS) on palmitate-induced cell death, specifically distinguishing the effects of the subtype NOS2 from NOS3, defining the effect of NO on mitochondria death pathways, and determining whether palmitate induces peroxynitrite formation which may impact cardiomyocyte cell survival. Cardiomyocytes from embryonic chick hearts were treated with palmitate 300-500 microM. Cell death was assessed by the 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay. The ability of palmitate to induce NO production and its consequences were tested by using the NOS inhibitor 7-nitroindazole (7-N) and the peroxynitrite scavenger (5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrinato iron (III) chloride) (FeTPPS). The effect of palmitate on the mitochondria was assessed by Western blotting for cytochrome c release into the cytosol, and assessment of mitochondrial transmembrane potential (DeltaPsi(m)) by 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide staining and immunocytochemistry. The NOS inhibitor 7-N, which is selective for NOS2 and not for NOS3, significantly (p<0.05) increased palmitate-induced cell death. In contrast, 7-N did not alter cell death produced by the combination of potassium cyanide and deoxyglucose, which, respectively, inhibit glycolysis and oxidative phosphorylation. The mitochondrial actions of palmitate, specifically palmitate-induced translocation of mitochondrial cytochrome c to cytosol and loss of mitochondrial transmembrane potential, were not altered by pretreatment with 7-N. FeTPPS, which isomerizes peroxynitrite to nitrate and thereby reduces the toxic effects of peroxynitrite, produced a significant reduction in palmitate-induced cell death. In summary, these data suggest that palmitate stimulates NO production, which has a dual action to protect against cell death or to induce cell death. Palmitate-induced cell death is mediated, in part, through NO generation, which leads to peroxynitrite formation. The protective effect of NO is operative through stimulation of NOS2 but not NOS3. The actions of NO on palmitate-induced cell death are independent of mitochondrial cell death pathways.
Collapse
Affiliation(s)
- Simon W Rabkin
- University of British Columbia, 9th Floor, 2775 Laurel Street, Vancouver, BC, Canada V5Z 1M9.
| | | |
Collapse
|
93
|
Remote ischemic preconditioning: a novel protective method from ischemia reperfusion injury--a review. J Surg Res 2008; 150:304-30. [PMID: 19040966 DOI: 10.1016/j.jss.2007.12.747] [Citation(s) in RCA: 271] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2007] [Revised: 10/25/2007] [Accepted: 12/06/2007] [Indexed: 12/15/2022]
Abstract
BACKGROUND Restoration of blood supply to an organ after a critical period of ischemia results in parenchymal injury and dysfunction of the organ referred to as reperfusion injury. Ischemia reperfusion injury is often seen in organ transplants, major organ resections and in shock. Ischemic preconditioning (IPC) is an adaptational response of briefly ischemic tissues which serves to protect against subsequent prolonged ischemic insults and reperfusion injury. Ischemic preconditioning can be mechanical or pharmacological. Direct mechanical preconditioning in which the target organ is exposed to brief ischemia prior to prolonged ischemia has the benefit of reducing ischemia-reperfusion injury (IRI) but its main disadvantage is trauma to major vessels and stress to the target organ. Remote (inter organ) preconditioning is a recent observation in which brief ischemia of one organ has been shown to confer protection on distant organs without direct stress to the organ. AIM To discuss the evidence for remote IPC (RIPC), underlying mechanisms and possible clinical applications of RIPC. METHODS OF SEARCH: A Pubmed search with the keywords "ischemic preconditioning," "remote preconditioning," "remote ischemic preconditioning," and "ischemia reperfusion" was done. All articles on remote preconditioning up to September 2006 have been reviewed. Relevant reference articles from within these have been selected for further discussion. RESULTS Experimental studies have demonstrated that the heart, liver, lung, intestine, brain, kidney and limbs are capable of producing remote preconditioning when subjected to brief IR. Remote intra-organ preconditioning was first described in the heart where brief ischemia in one territory led to protection in other areas. Translation of RIPC to clinical application has been demonstrated by the use of brief forearm ischemia in preconditioning the heart prior to coronary bypass and in reducing endothelial dysfunction of the contra lateral limb. Recently protection of the heart has been demonstrated by remote hind limb preconditioning in children who underwent surgery on cardiopulmonary bypass for congenital heart disease. The RIPC stimulus presumably induces release of biochemical messengers which act either by the bloodstream or by the neurogenic pathway resulting in reduced oxidative stress and preservation of mitochondrial function. Studies have demonstrated endothelial NO, Free radicals, Kinases, Opioids, Catecholamines and K(ATP) channels as the candidate mechanism in remote preconditioning. Experiments have shown suppression of proinflammatory genes, expression of antioxidant genes and modulation of gene expression by RIPC as a novel method of IRI injury prevention. CONCLUSION There is strong evidence to support RIPC. The underlying mechanisms and pathways need further clarification. The effective use of RIPC needs to be investigated in clinical settings.
Collapse
|
94
|
Santucci L, Mencarelli A, Renga B, Ceccobelli D, Pasut G, Veronese FM, Distrutti E, Fiorucci S. Cardiac safety and antitumoral activity of a new nitric oxide derivative of pegylated epirubicin in mice. Anticancer Drugs 2007; 18:1081-91. [PMID: 17704659 DOI: 10.1097/cad.0b013e3281db8322] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The use of epirubicin is limited by the risk of a dilatory congestive heart failure that develops as a consequence of induction of a mitochondrial-dependent cardiomyocyte apoptosis. In a previous in-vitro study, we have provided evidence that a new formulation of pegylated epirubicin- bearing moieties that release nitric oxide, named BP-747, exerted a potent antitumoral activity against a colon cancer cell line, which was completely devoid of cytotoxic activity against cardiomyocytes. The aim of this study was to investigate the antitumoral and cardiotoxic profile of BP-747 in Caco-2 and SKOV-2 tumor-bearing mice. Epirubicin-induced cardiomyopathy was detected by clinical (survival, weight loss), anatomical (heart weight loss) and biochemical evaluations (measurement of serum troponin and creatine phosphokinase levels). The antitumoral activity was investigated by the measurement of tumor diameters and weight. In comparison with free epirubicin and pegylated epirubicin, BP-747 showed more potent antineoplastic effects, as demonstrated by the 95% reduction of tumor volume. Moreover, while administration of epirubicin and pegylated epirubicin resulted in the development of a severe anthracycline cardiomyopathy, BP-747-treated mice were virtually devoid of clinical and biochemical signs of cardiotoxicity. The present data provide evidence that addition of a nitric oxide-releasing moiety to pegylated epirubicin confers a new and unique cytotoxic profile to the drug.
Collapse
Affiliation(s)
- Luca Santucci
- Struttura Complessa di Gastroenterologia, Azienda Ospedaliera di Perugia, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Franco R, Schoneveld OJ, Pappa A, Panayiotidis MI. The central role of glutathione in the pathophysiology of human diseases. Arch Physiol Biochem 2007; 113:234-58. [PMID: 18158646 DOI: 10.1080/13813450701661198] [Citation(s) in RCA: 373] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Reduced glutathione (L-gamma-glutamyl-L-cysteinyl-glycine, GSH) is the prevalent low-molecular-weight thiol in mammalian cells. It is formed in a two-step enzymatic process including, first, the formation of gamma-glutamylcysteine from glutamate and cysteine, by the activity of the gamma-glutamylcysteine synthetase; and second, the formation of GSH by the activity of GSH synthetase which uses gamma-glutamylcysteine and glycine as substrates. While its synthesis and metabolism occur intracellularly, its catabolism occurs extracellularly by a series of enzymatic and plasma membrane transport steps. Glutathione metabolism and transport participates in many cellular reactions including: antioxidant defense of the cell, drug detoxification and cell signaling (involved in the regulation of gene expression, apoptosis and cell proliferation). Alterations in its concentration have also been demonstrated to be a common feature of many pathological conditions including diabetes, cancer, AIDS, neurodegenerative and liver diseases. Additionally, GSH catabolism has been recently reported to modulate redox-sensitive components of signal transduction cascades. In this manuscript, we review the current state of knowledge on the role of GSH in the pathogenesis of human diseases with the aim to underscore its relevance in translational research for future therapeutic treatment design.
Collapse
Affiliation(s)
- R Franco
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, 111 T.W. Alexander Drive, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
96
|
Banerjee AG, Gopalakrishnan VK, Vishwanatha JK. Inhibition of nitric oxide-induced apoptosis by nicotine in oral epithelial cells. Mol Cell Biochem 2007; 305:113-21. [PMID: 17636461 DOI: 10.1007/s11010-007-9534-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Accepted: 06/11/2007] [Indexed: 10/23/2022]
Abstract
Development of oral cancer is clearly linked to the usage of smokeless tobacco. The molecular mechanisms involved in this process are however not well understood. Toward this goal, we investigated the effect of smokeless tobacco exposure on apoptosis of oral epithelial cells. Exposure of oral epithelial cells to smokeless tobacco extract (STE) induces apoptosis in a dose-dependent manner, until a threshold level of nicotine is achieved upon which apoptosis is inhibited. 1 mM of nicotine is able to inhibit apoptosis significantly induced by STE in these oral cells. Exposure of cells to nicotine alone has no effect on apoptosis, but nicotine inhibits apoptosis induced by other agents present in STE. In this study we show that, the anti-apoptotic action of nicotine is specifically associated with down-regulation of nitric oxide (NO) production. Using specific inducers of NO, we have demonstrated that inhibition of apoptosis by nicotine is through down-regulation of NO production. Further, we observed that nicotine clearly acts as a sink of NO radicals, shown using peroxynitrite generator (SIN-1) in conjunction or absence of radical scavengers. Nicotine thus causes most damage in transformed epithelial cells as depicted by accumulation of nitrotyrosine in a 3-NT ELISA assay. Inhibition of apoptosis is a hallmark in tumor progression and propels development of cancer. It may further result in functional loss of apoptotic effector mechanisms in the transformed cells. Thus, our data clearly indicates that inhibition of NO-induced apoptosis by nicotine may lead to tobacco-induced oral carcinogenesis, and implies careful development of modalities in tobacco cessation programs.
Collapse
Affiliation(s)
- Abhijit G Banerjee
- Department of Oral Biology, Dental Diagnostic and Surgical Sciences, University of Manitoba, Health Science Center Campus, Winnipeg, MB, Canada, R3E0W2.
| | | | | |
Collapse
|
97
|
Paschoalin T, Carmona AK, Rodrigues EG, Oliveira V, Monteiro HP, Juliano MA, Juliano L, Travassos LR. Characterization of thimet oligopeptidase and neurolysin activities in B16F10-Nex2 tumor cells and their involvement in angiogenesis and tumor growth. Mol Cancer 2007; 6:44. [PMID: 17620116 PMCID: PMC1965469 DOI: 10.1186/1476-4598-6-44] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 07/09/2007] [Indexed: 01/01/2023] Open
Abstract
Background Angiogenesis is a fundamental process that allows tumor growth by providing nutrients and oxygen to the tumor cells. Beyond the oxygen diffusion limit from a capillary blood vessel, tumor cells become apoptotic. Angiogenesis results from a balance of pro- and anti-angiogenic stimuli. Endogenous inhibitors regulate enzyme activities that promote angiogenesis. Tumor cells may express pro-angiogenic factors and hydrolytic enzymes but also kinin-degrading oligopeptidases which have been investigated. Results Angiogenesis induced by B16F10-Nex2 melanoma cells was studied in a co-culture with HUVEC on Matrigel. A stimulating effect on angiogenesis was observed in the presence of B16F10-Nex2 lysate and plasma membrane. In contrast, the B16F10-Nex2 culture supernatant inhibited angiogenesis in a dose-dependent manner. This effect was abolished by the endo-oligopeptidase inhibitor, JA-2. Thimet oligopeptidase (TOP) and neurolysin activities were then investigated in B16F10-Nex2 melanoma cells aiming at gene sequencing, enzyme distribution and activity, influence on tumor development, substrate specificity, hydrolytic products and susceptibility to inhibitors. Fluorescence resonance energy transfer (FRET) peptides as well as neurotensin and bradykinin were used as substrates. The hydrolytic activities in B16F10-Nex2 culture supernatant were totally inhibited by o-phenanthrolin, JA-2 and partially by Pro-Ile. Leupeptin, PMSF, E-64, Z-Pro-Prolinal and captopril failed to inhibit these hydrolytic activities. Genes encoding M3A enzymes in melanoma cells were cloned and sequenced being highly similar to mouse genes. A decreased proliferation of B16F10-Nex2 cells was observed in vitro with specific inhibitors of these oligopeptidases. Active rTOP but not the inactive protein inhibited melanoma cell development in vivo increasing significantly the survival of mice challenged with the tumor cells. On Matrigel, rTOP inhibited the bradykinin – induced angiogenesis. A possible regulation of the homologous tumor enzyme in the perivascular microenvironment is suggested based on the observed rTOP inhibition by an S-nitrosothiol NO donor. Conclusion Data show that melanoma cells secrete endo-oligopeptidases which have an important role in tumor proliferation in vitro and in vivo. rTOP inhibited growth of subcutaneously injected B16F10-Nex2 cells in mice. TOP from tumor cells and bradykinin in endothelial cells are two antagonist factors that may control angiogenesis essential for melanoma growth. A regulatory role of NO or S-nitrosothiols is suggested.
Collapse
MESH Headings
- Angiogenic Proteins/antagonists & inhibitors
- Angiogenic Proteins/metabolism
- Animals
- Antineoplastic Agents/metabolism
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Bradykinin/metabolism
- Cell Extracts
- Cell Line, Tumor
- Cell Membrane/enzymology
- Cell Proliferation/drug effects
- Cloning, Molecular
- Coculture Techniques
- Collagen
- Culture Media, Conditioned/metabolism
- Dipeptides/pharmacology
- Dose-Response Relationship, Drug
- Drug Combinations
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Female
- Hydrolysis
- Laminin
- Leucine/analogs & derivatives
- Leucine/pharmacology
- Melanoma, Experimental/blood supply
- Melanoma, Experimental/drug therapy
- Melanoma, Experimental/enzymology
- Melanoma, Experimental/genetics
- Melanoma, Experimental/pathology
- Metalloendopeptidases/antagonists & inhibitors
- Metalloendopeptidases/genetics
- Metalloendopeptidases/metabolism
- Mice
- Mice, Inbred C57BL
- Neovascularization, Pathologic/enzymology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/prevention & control
- Neurotensin/metabolism
- Nitric Oxide/metabolism
- Nitric Oxide Donors/pharmacology
- Oligopeptides/pharmacology
- Peptides/metabolism
- Phenanthrolines/pharmacology
- Protease Inhibitors/pharmacology
- Proteoglycans
- S-Nitroso-N-Acetylpenicillamine/pharmacology
- Substrate Specificity
Collapse
Affiliation(s)
- Thaysa Paschoalin
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Adriana K Carmona
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Elaine G Rodrigues
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
| | - Vitor Oliveira
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Hugo P Monteiro
- Department of Biochemistry, Federal University of São Paulo, São Paulo, Brazil
| | - Maria A Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz Juliano
- Department of Biophysics Federal University of São Paulo, São Paulo, Brazil
| | - Luiz R Travassos
- Department of Microbiology, Immunology and Parasitology, Experimental Oncology Unit (UNONEX), Federal University of São Paulo, São Paulo, Brazil
- UNONEX, Department of Microbiology, Immunology and Parasitology (UNIFESP), Rua Botucatu, 862, 8° andar, São Paulo, SP 04023-062, Brazil
| |
Collapse
|
98
|
Vadrot N, Legrand A, Nello E, Bringuier AF, Guillot R, Feldmann G. Inducible nitric oxide synthase (iNOS) activity could be responsible for resistance or sensitivity to IFN-gamma-induced apoptosis in several human hepatoma cell lines. J Interferon Cytokine Res 2007; 26:901-13. [PMID: 17238833 DOI: 10.1089/jir.2006.26.901] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Response to interferon-gamma (IFN-gamma)-induced apoptosis of human hepatoma cell lines (HHCLs) is variable. We analyzed this different behavior in Hep3B, Chang-liver, HepG2, and HuH7 cells. We studied (1) IFN-gamma-induced apoptosis, (2) protein expression of Stat1, (3) binding of nuclear proteins to IFN-gamma activated sequence (GAS), (4) mRNA and expression of proteins acting in apoptosis, and (5) HuH7 sensitivity after inducible nitric oxide synthase (iNOS) siRNA transfection. IFN-gamma induced apoptosis in Hep3B and Chang-liver cells only. In all HHCLs, Stat1 protein increased. Binding of proteins and transactivation activity of GAS increased much more in HuH7. In all HHCLs, caspase activity and apoptotic proteins were not implicated in resistance or sensitivity. iNOS mRNA and protein expression increased in HuH7, disappeared in Hep3B, and remained unchanged in Chang-liver and HepG2. We compared the role of iNOS in Hep3B and HuH7. The iNOS inhibitor, L-NAME, sensitized HuH7 to IFN-gamma, Hep3B/HuH7 coculture partially inhibited Hep3B apoptosis, and HuH7 transfection with iNOS siRNA induced a 50% inhibition of iNOS protein and cell apoptosis. GAS activity and overexpression of iNOS in HuH7, but not in the other HHCLs, suggest that this enzyme could play an important role in the resistance of HuH7 to IFN-gamma-induced apoptosis, perhaps by the antiapoptotic action of NO.
Collapse
Affiliation(s)
- Nathalie Vadrot
- INSERM U773, Centre de Recherche Biologique CRB3, Equipe 5, U.F.R. de Médecine Denis Diderot, site Xavier Bichat (Université Paris 7-Denis Diderot), France
| | | | | | | | | | | |
Collapse
|
99
|
Abstract
Irrespective of the morphological features of end-stage cell death (that may be apoptotic, necrotic, autophagic, or mitotic), mitochondrial membrane permeabilization (MMP) is frequently the decisive event that delimits the frontier between survival and death. Thus mitochondrial membranes constitute the battleground on which opposing signals combat to seal the cell's fate. Local players that determine the propensity to MMP include the pro- and antiapoptotic members of the Bcl-2 family, proteins from the mitochondrialpermeability transition pore complex, as well as a plethora of interacting partners including mitochondrial lipids. Intermediate metabolites, redox processes, sphingolipids, ion gradients, transcription factors, as well as kinases and phosphatases link lethal and vital signals emanating from distinct subcellular compartments to mitochondria. Thus mitochondria integrate a variety of proapoptotic signals. Once MMP has been induced, it causes the release of catabolic hydrolases and activators of such enzymes (including those of caspases) from mitochondria. These catabolic enzymes as well as the cessation of the bioenergetic and redox functions of mitochondria finally lead to cell death, meaning that mitochondria coordinate the late stage of cellular demise. Pathological cell death induced by ischemia/reperfusion, intoxication with xenobiotics, neurodegenerative diseases, or viral infection also relies on MMP as a critical event. The inhibition of MMP constitutes an important strategy for the pharmaceutical prevention of unwarranted cell death. Conversely, induction of MMP in tumor cells constitutes the goal of anticancer chemotherapy.
Collapse
Affiliation(s)
- Guido Kroemer
- Institut Gustave Roussy, Institut National de la Santé et de la Recherche Médicale Unit "Apoptosis, Cancer and Immunity," Université de Paris-Sud XI, Villejuif, France
| | | | | |
Collapse
|
100
|
Srivastava S, Chan C. Hydrogen peroxide and hydroxyl radicals mediate palmitate-induced cytotoxicity to hepatoma cells: relation to mitochondrial permeability transition. Free Radic Res 2007; 41:38-49. [PMID: 17164177 DOI: 10.1080/10715760600943900] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
We studied the toxicological responses of a human hepatoblastoma cell line (HepG2/C3A) to various free fatty acids (FFA) in order to identify the relation between reactive oxygen species (ROS) production and mitochondrial permeability transition (MPT). Exposure to the saturated FFA, palmitate, led to a time-dependent ROS production and hydrogen peroxide release as well as a loss of mitochondrial potential. The cytotoxicity of palmitate was significantly reduced by treating with scavengers of hydrogen peroxide, hydroxyl radical and the spin trap alpha-(4-pyridyl-1-oxide)-N-tert-butyl nitrone (POBN). Superoxide dismutase (SOD) mimics, nitric oxide scavenger, and inhibitor of de novo ceramide synthesis had no effect on the toxicity. MPT-inhibitor, cyclosporine, prevented the loss of mitochondrial potential but did not reduce the cytotoxicity. In contrast, inhibiting mitochondrial complexes I and III reduced the early potential loss and the cytotoxicity. These results suggest that palmitate-cytotoxicity to hepatoma cells is mediated through the production of H2O2 and *OH and independent of MPT.
Collapse
Affiliation(s)
- Shireesh Srivastava
- Department of Chemical Engineering and Materials Science, Michigan State University, East Lansing, MI 48824, USA.
| | | |
Collapse
|