51
|
IJspeert JEG, Medema JP, Dekker E. Colorectal neoplasia pathways: state of the art. Gastrointest Endosc Clin N Am 2015; 25:169-82. [PMID: 25839680 DOI: 10.1016/j.giec.2014.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Colorectal cancer (CRC) is a heterogeneous disease and each CRC possesses a unique molecular tumor profile. The main pathways of oncogenesis are the chromosomal instability, microsatellite instability and serrated neoplasia pathway. Sessile serrated adenomas/polyps (SSA/Ps) may be the precursor lesions of CRC arising via the serrated neoplasia pathway. This has led to a paradigm shift because all SSA/Ps should be detected and resected during colonoscopy. The ability to accurately detect and resect only those polyps with a malignant potential could result in safer and cost-effective practice. Optimization of the endoscopic classification systems is however needed to implement targeted prevention methods.
Collapse
Affiliation(s)
- Joep Evert Godfried IJspeert
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Room C2-231, Amsterdam 1105 AZ The Netherlands
| | - Jan Paul Medema
- Laboratory for Experimental Oncology and Radiobiology, Center for Experimental Molecular Medicine, Academic Medical Center (AMC), Meibergdreef 9, Room G2-131, Amsterdam 1105 AZ, The Netherlands
| | - Evelien Dekker
- Department of Gastroenterology and Hepatology, Academic Medical Center, Meibergdreef 9, Room C2-115, Amsterdam 1105 AZ, The Netherlands.
| |
Collapse
|
52
|
Li KL, Kang J, Zhang P, Li LI, Wang YB, Chen HY, He Y. Efficacy of recombinant adenoviral human p53 gene in the treatment of lung cancer-mediated pleural effusion. Oncol Lett 2015; 9:2193-2198. [PMID: 26137039 DOI: 10.3892/ol.2015.3054] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 02/26/2015] [Indexed: 02/06/2023] Open
Abstract
Pleural effusion induced by lung cancer exerts a negative impact on quality of life and prognosis. The aim of the present study was to evaluate the value of the recombinant adenoviral human p53 gene (rAd-p53) in the local treatment of lung cancer and its synergistic effect with chemotherapy. The present study retrospectively recruited 210 patients with lung cancer-mediated pleural effusion who had adopted a treatment strategy of platinum chemotherapy. Pleurodesis was performed via the injection of cisplatin or rAd-p53. Long-term follow-up was conducted to investigate the therapeutic effects of cisplatin and rAd-p53 administration on pleural effusion and other relevant clinical indicators. The short-term effect of pleurodesis was as follows: The efficacy rate of rAd-p53 therapy was significantly higher compared with cisplatin therapy (71.26 vs. 54.47%), and the efficacy of treatment with ≥2×1012 viral particles of rAd-p53 for pleurodesis was significantly greater than treatment with 40 mg cisplatin (P<0.05). Furthermore, efficacy analysis performed 6 and 12 months after pleurodesis indicated that the efficacy rate of rAd-p53 was significantly greater than that of cisplatin (P<0.05). A comparison of median progression-free survival (PFS) time identified a significant difference (P<0.05) between rAd-p53 and cisplatin therapy (3.3 vs. 2.7 months); however, a comparison of median overall survival time identified no significant difference (P>0.05) between rAd-p53 and cisplatin therapy (9.6 vs. 8.7 months). In addition, Cox regression analysis indicated that PFS was not affected by clinical indicators such as age, gender, prognostic staging and smoking status; however, PFS was affected by pathological subtype (adenocarcinoma or squamous carcinoma) in the rAd-p53 group. rAd-p53 administration for pleurodesis exerts long-term therapeutic effects on the local treatment of lung cancer. Thus, a combination of rAd-p53 and chemotherapy may exert a synergistic effect and reverse multidrug resistance.
Collapse
Affiliation(s)
- Kun-Lin Li
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Jun Kang
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Peng Zhang
- College of Interpreting and Translation, Sichuan International Studies University, Shapingba, Chongqing 400031, P.R. China
| | - L I Li
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Yu-Bo Wang
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Heng-Yi Chen
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| | - Yong He
- Department of Respiration, Daping Hospital, Third Military Medical University, Yuzhong, Chongqing 400042, P.R. China
| |
Collapse
|
53
|
Li Y, Li B, Li CJ, Li LJ. Key points of basic theories and clinical practice in rAd-p53 ( Gendicine ™) gene therapy for solid malignant tumors. Expert Opin Biol Ther 2014; 15:437-54. [PMID: 25496374 DOI: 10.1517/14712598.2015.990882] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Wild-type p53 gene is an essential cancer suppressor gene which plays an important role in carcinogenesis and malignant progressions. The p53 gene family participates in almost all the key procedures of cancer biology, such as programmed cell death, angiogenesis, metabolism and epithelial-mesenchymal transition. The mutation or functional defects of the p53 gene family are detected in most of the solid malignant tumors, and the restoration of the p53 gene by adenovirus-mediated gene therapy becomes a promising treatment for cancer patients now. AREAS COVERED In the present review, the potential therapeutic effects of recombinant adenovirus p53 rAd-p53 ( Gendicine ™) were reviewed to explore the biological mechanism underlying the adenovirus-mediated p53 gene therapy. Then, the key points of the drug administration were discussed, including the routes of administration, dosage calculation and treatment cycles, based on findings of the preclinical and clinical trials in order to establish a standard treatment for the p53 gene therapy. EXPERT OPINION As an important part of the combined therapy for the cancer patients, the adenovirus-mediated p53 gene therapy was blossomed to be a promising treatment strategy. A new evaluation criteria and guideline for the gene therapy is urgently needed for the further clinical practice.
Collapse
Affiliation(s)
- Yi Li
- Sichuan University, West China Hospital of Stomatology, State Key Laboratory of Oral Disease , Chengdu, 610041 , China
| | | | | | | |
Collapse
|
54
|
Abstract
Abnormalities in the TP53 gene and overexpression of MDM2, a transcriptional target and negative regulator of p53, are commonly observed in cancers. The MDM2-p53 feedback loop plays an important role in tumor progression and thus, increased understanding of the pathway has the potential to improve clinical outcomes for cancer patients. Hepatocellular carcinoma (HCC) has emerged as one of the most commonly diagnosed forms of human cancer; yet, the current treatment for HCC is less effective than those used against other cancers. We review the current studies of the MDM2-p53 pathway in cancer with a focus on HCC and specifically discuss the impact of p53 mutations along with other alterations of the MDM2-p53 feedback loop in HCC. We also discuss the potential diagnostic and prognostic applications of p53 and MDM2 in malignant tumors as well as therapeutic avenues that are being developed to target the MDM2-p53 pathway.
Collapse
Affiliation(s)
- Xuan Meng
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China
| | - Derek A Franklin
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jiahong Dong
- Hospital and Institute of Hepatobiliary Surgery, Chinese PLA General Hospital, Beijing, China. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China.
| | - Yanping Zhang
- Department of Radiation Oncology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina. Laboratory of Biological Cancer Therapy, Xuzhou Medical College, Xuzhou, China. Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.
| |
Collapse
|
55
|
Siegl C, Prusty BK, Karunakaran K, Wischhusen J, Rudel T. Tumor suppressor p53 alters host cell metabolism to limit Chlamydia trachomatis infection. Cell Rep 2014; 9:918-29. [PMID: 25437549 DOI: 10.1016/j.celrep.2014.10.004] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 07/21/2014] [Accepted: 09/30/2014] [Indexed: 11/30/2022] Open
Abstract
Obligate intracellular bacteria depend entirely on nutrients from the host cell for their reproduction. Here, we show that obligate intracellular Chlamydia downregulate the central tumor suppressor p53 in human cells. This reduction of p53 levels is mediated by the PI3K-Akt signaling pathway, activation of HDM2, and subsequent proteasomal degradation of p53. The stabilization of p53 in human cells severely impaired chlamydial development and caused the loss of infectious particle formation. DNA-damage-induced p53 interfered with chlamydial development through downregulation of the pentose phosphate pathway (PPP). Increased expression of the PPP key enzyme glucose-6-phosphate dehydrogenase rescued the inhibition of chlamydial growth induced by DNA damage or stabilized p53. Thus, downregulation of p53 is a key event in the chlamydial life cycle that reprograms the host cell to create a metabolic environment supportive of chlamydial growth.
Collapse
Affiliation(s)
- Christine Siegl
- Department of Microbiology, University of Würzburg Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Bhupesh K Prusty
- Department of Microbiology, University of Würzburg Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Karthika Karunakaran
- Department of Microbiology, University of Würzburg Biocenter, Am Hubland, 97074 Würzburg, Germany
| | - Jörg Wischhusen
- Frauenklinik, University Clinic Würzburg, Josef-Schneider-Str. 4, 97080 Würzburg, Germany
| | - Thomas Rudel
- Department of Microbiology, University of Würzburg Biocenter, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
56
|
Gene expression pattern of insect fat body cells from in vitro challenge to cell line establishment. In Vitro Cell Dev Biol Anim 2014; 50:952-72. [DOI: 10.1007/s11626-014-9798-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 07/07/2014] [Indexed: 12/11/2022]
|
57
|
Binder PS, Mutch DG. Update on Prognostic Markers for Endometrial Cancer. WOMENS HEALTH 2014; 10:277-88. [DOI: 10.2217/whe.14.13] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Endometrial cancer is the most common gynecologic cancer in the USA and the second most common worldwide after cervical cancer. While common symptomatology of endometrial cancer leads to early diagnosis and favorable 5-year survival in most cases, there is a subset of cancers that have a poorer prognosis. The clinical and pathologic prognostic factors for endometrial cancer are well known and instrumental in determining the need for adjuvant therapy. Recently, research has been focused on the identification of molecular changes leading to different histologic subtypes to improve classification of endometrial cancer. The identification of novel mutations and molecular profiles should enhance our ability to personalize adjuvant treatment with genome-guided targeted therapy.
Collapse
Affiliation(s)
- Pratibha S Binder
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Washington University School of Medicine in St Louis, MO, USA
| | - David G Mutch
- Division of Gynecologic Oncology, Department of Obstetrics & Gynecology, Washington University School of Medicine in St Louis, MO, USA
| |
Collapse
|
58
|
Demir L, Ekinci N, Erten C, Somali I, Can A, Dirican A, Cokmert S, Bayoglu V, Akyol M, Kucukzeybek Y, Alacacioglu A, Tarhan MO. The impact of cell proliferation markers and p53 mutation status on prognosis of non-metastatic colon cancer. J Surg Oncol 2014; 109:665-75. [DOI: 10.1002/jso.23563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Accepted: 12/21/2013] [Indexed: 01/31/2023]
Affiliation(s)
- Lutfiye Demir
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
- Department of Basic Oncology; Institute of Oncology; Dokuz Eylul University Medical Faculty; Izmir Turkey
| | - Nese Ekinci
- Department of Pathology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Cigdem Erten
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Isil Somali
- Department of Medical Oncology; Institute of Oncology; Dokuz Eylul University Medical Faculty; Izmir Turkey
| | - Alper Can
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Ahmet Dirican
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Suna Cokmert
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Vedat Bayoglu
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Murat Akyol
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Yuksel Kucukzeybek
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Ahmet Alacacioglu
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
| | - Mustafa Oktay Tarhan
- Department of Medical Oncology; Ataturk Training and Resarch Hospital; Katip Celebi University; Izmir Turkey
- Department of Preventive Oncology; Institute of Oncology; Dokuz Eylul University Medical Faculty; Izmir Turkey
| |
Collapse
|
59
|
Semczuk A, Ignatov A, Obrzut B, Reventos J, Rechberger T. Role of p53 Pathway Alterations in Uterine Carcinosarcomas (Malignant Mixed Müllerian Tumors). Oncology 2014; 87:193-204. [DOI: 10.1159/000363574] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 05/07/2014] [Indexed: 01/10/2023]
|
60
|
Uversky AV, Xue B, Peng Z, Kurgan L, Uversky VN. On the intrinsic disorder status of the major players in programmed cell death pathways. F1000Res 2013; 2:190. [PMID: 24358900 PMCID: PMC3829196 DOI: 10.12688/f1000research.2-190.v1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/05/2013] [Indexed: 12/19/2022] Open
Abstract
Earlier computational and bioinformatics analysis of several large protein datasets across 28 species showed that proteins involved in regulation and execution of programmed cell death (PCD) possess substantial amounts of intrinsic disorder. Based on the comprehensive analysis of these datasets by a wide array of modern bioinformatics tools it was concluded that disordered regions of PCD-related proteins are involved in a multitude of biological functions and interactions with various partners, possess numerous posttranslational modification sites, and have specific evolutionary patterns (Peng
et al. 2013). This study extends our previous work by providing information on the intrinsic disorder status of some of the major players of the three major PCD pathways: apoptosis, autophagy, and necroptosis. We also present a detailed description of the disorder status and interactomes of selected proteins that are involved in the p53-mediated apoptotic signaling pathways.
Collapse
Affiliation(s)
- Alexey V Uversky
- Center for Data Analytics and Biomedical Informatics, Department of Computer and Information Sciences, College of Science and Technology, Temple University, Philadelphia, PA, 19122, USA
| | - Bin Xue
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, 33612, USA
| | - Zhenling Peng
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Lukasz Kurgan
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, Canada
| | - Vladimir N Uversky
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL, 33612, USA ; Byrd Alzheimer's Research Institute, College of Medicine, University of South Florida, Tampa, FL, 33612, USA ; Institute for Biological Instrumentation, Russian Academy of Sciences, 142290 Pushchino, Russian Federation
| |
Collapse
|
61
|
Huang Y, Ding L, Li Z, Dai M, Zhao X, Li W, Du Q, Xu X, Tong D. Transmissible gastroenteritis virus infection induces cell apoptosis via activation of p53 signalling. J Gen Virol 2013; 94:1807-1817. [DOI: 10.1099/vir.0.051557-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Transmissible gastroenteritis virus (TGEV) infection induced apoptosis in several cell lines in vitro. Our previous studies demonstrated that TGEV could activate FasL- and mitochondria-mediated pathways to induce apoptosis in PK-15 cells. In this study, we investigated the regulation of p53 and p38 mitogen-activated protein kinases (MAPK) signalling pathways in the interaction of TGEV with host cells. We observed that TGEV infection decreased p300/CBP, downregulated MDM2 and promoted p53 phosphorylation at serines 15, 20 and 46, resulting in accumulation and activation of p53 in PK-15 cells. TGEV infection induced the transient activation of p38 MAPK in the early phase of inoculation and constant activation in the later phase of infection. However, UV-irradiated TGEV did not promote the activation of p53 and p38 MAPK in the later phase, whereas it only triggered the transient activation of p38 MAPK in the early phase. Blocking of p53 activation significantly inhibited the occurrence of apoptosis through suppressing the TGEV-induced FasL expression, Bcl-2 reduction, Bax and cytochrome c redistribution, while inhibition of p38 activity moderately blocked apoptosis induction and partly attenuated the accumulation and activation of p53. However, inhibition of p38 and p53 activity had no significant effects on viral gene transcription at 12 and 24 h post-infection. Taken together, these results demonstrated that TGEV infection promoted the activation of p38 MAPK and p53 signalling, and p53 signalling might play a dominant role in the regulation of cell apoptosis. These findings provide new insights into the function of p53 and p38 MAPK in the interaction of TGEV with host cells.
Collapse
Affiliation(s)
- Yong Huang
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Li Ding
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Zhaocai Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Meiling Dai
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xiaomin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Wei Li
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Qian Du
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Xingang Xu
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Dewen Tong
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
62
|
Liu Y, Xing R, Zhang X, Dong W, Zhang J, Yan Z, Li W, Cui J, Lu Y. miR-375 targets the p53 gene to regulate cellular response to ionizing radiation and etoposide in gastric cancer cells. DNA Repair (Amst) 2013; 12:741-50. [PMID: 23835407 DOI: 10.1016/j.dnarep.2013.06.002] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 05/31/2013] [Accepted: 06/03/2013] [Indexed: 02/03/2023]
Abstract
MicroRNAs (miRNAs) offer a new approach for molecular classification and individual therapy of human cancer due to their regulation of oncogenic pathways. In a previous report, elevated miR-375 was found in recurring gastric cancer, and it was predicted that miR-375 may be a regulator of p53 gene. However, its biological role and mechanism of actions remain unknown. In this study, we characterized the expression level of miR-375 in gastric cancer cell lines--BGC823, MGC803, SGC7901, AGS, N87, MKN45--using RT-PCR. We found that exogenous expression of miR-375 promoted the growth of AGS cells in both liquid and soft agar media. In agreement with the previous report, overexpression of miR-375 in AGS cells reduced the p53 protein expression level. A luciferase assay demonstrated that miR-375 down-regulated p53 expression through an interaction with the 3' UTR region of p53. In addition, the expression of miR-375 desensitizes cells to ionizing radiation and etoposide. Flow cytometry analyses showed that miR-375 abrogated the cell cycle arrest and apoptosis after DNA damage. These results demonstrate that miR-375 targets p53 to regulate the response to ionizing radiation and etoposide treatment.
Collapse
Affiliation(s)
- Yixuan Liu
- Laboratory of Molecular Oncology, Key Laboratory of Carcinogenesis and Translational Research Ministry of Education, Peking University Cancer Hospital & Institute, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
63
|
He W, Qi B, Zhou Q, Lu C, Huang Q, Xian L, Chen M. Key genes and pathways in thyroid cancer based on gene set enrichment analysis. Oncol Rep 2013; 30:1391-7. [PMID: 23784086 DOI: 10.3892/or.2013.2557] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Accepted: 05/15/2013] [Indexed: 11/06/2022] Open
Abstract
The incidence of thyroid cancer and its associated morbidity has shown the most rapid increase among all cancers since 1982, but the mechanisms involved in thyroid cancer, particularly significant key genes induced in thyroid cancer, remain undefined. In many studies, gene probes have been used to search for key genes involved in causing and facilitating thyroid cancer. As a result, many possible virulence genes and pathways have been identified. However, these studies lack a case contrast for selecting the most possible virulence genes and pathways, as well as conclusive results with which to clarify the mechanisms of cancer development. In the present study, we used gene set enrichment and meta-analysis to select key genes and pathways. Based on gene set enrichment, we identified 5 downregulated and 4 upregulated mixed pathways in 6 tissue datasets. Based on the meta-analysis, there were 17 common pathways in the tissue datasets. One pathway, the p53 signaling pathway, which includes 13 genes, was identified by both the gene set enrichment analysis and meta-analysis. Genes are important elements that form key pathways. These pathways can induce the development of thyroid cancer later in life. The key pathways and genes identified in the present study can be used in the next stage of research, which will involve gene elimination and other methods of experimentation.
Collapse
Affiliation(s)
- Wenwu He
- Department of Cardiothoracic Surgery, First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi, P.R. China
| | | | | | | | | | | | | |
Collapse
|
64
|
Uversky VN. A decade and a half of protein intrinsic disorder: biology still waits for physics. Protein Sci 2013; 22:693-724. [PMID: 23553817 PMCID: PMC3690711 DOI: 10.1002/pro.2261] [Citation(s) in RCA: 373] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Revised: 03/23/2013] [Accepted: 03/25/2013] [Indexed: 12/28/2022]
Abstract
The abundant existence of proteins and regions that possess specific functions without being uniquely folded into unique 3D structures has become accepted by a significant number of protein scientists. Sequences of these intrinsically disordered proteins (IDPs) and IDP regions (IDPRs) are characterized by a number of specific features, such as low overall hydrophobicity and high net charge which makes these proteins predictable. IDPs/IDPRs possess large hydrodynamic volumes, low contents of ordered secondary structure, and are characterized by high structural heterogeneity. They are very flexible, but some may undergo disorder to order transitions in the presence of natural ligands. The degree of these structural rearrangements varies over a very wide range. IDPs/IDPRs are tightly controlled under the normal conditions and have numerous specific functions that complement functions of ordered proteins and domains. When lacking proper control, they have multiple roles in pathogenesis of various human diseases. Gaining structural and functional information about these proteins is a challenge, since they do not typically "freeze" while their "pictures are taken." However, despite or perhaps because of the experimental challenges, these fuzzy objects with fuzzy structures and fuzzy functions are among the most interesting targets for modern protein research. This review briefly summarizes some of the recent advances in this exciting field and considers some of the basic lessons learned from the analysis of physics, chemistry, and biology of IDPs.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, Florida 33612, USA.
| |
Collapse
|
65
|
Kinpara S, Kijiyama M, Takamori A, Hasegawa A, Sasada A, Masuda T, Tanaka Y, Utsunomiya A, Kannagi M. Interferon-α (IFN-α) suppresses HTLV-1 gene expression and cell cycling, while IFN-α combined with zidovudine induces p53 signaling and apoptosis in HTLV-1-infected cells. Retrovirology 2013; 10:52. [PMID: 23688327 PMCID: PMC3698133 DOI: 10.1186/1742-4690-10-52] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Accepted: 05/09/2013] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Human T-cell leukemia virus type-1 (HTLV-1) is the causative retrovirus of adult T-cell leukemia/lymphoma (ATL) and HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP). HTLV-1 gene expression is maintained at low levels in vivo by unknown mechanisms. A combination therapy of interferon-α (IFN-α) and zidovudin (AZT) shows therapeutic effects in ATL patients, although its mechanism is also obscure. We previously found that viral gene expression in IL-2-dependent HTLV-1-infected T-cells (ILTs) derived from ATL patients was markedly suppressed by stromal cells through a type I IFN response. Here, we investigated the effects of IFN-α with or without AZT on viral gene expression and cell growth in ILTs. RESULTS ILTs expressed variable but lower amounts of HTLV-1 Tax protein than HTLV-1-transformed HUT102 cells. Following the addition of IFN-α, the amounts of HTLV-1 p19 in the supernatants of these cells decreased in three days, while HTLV-1 gene expression decreased only in ILTs but not HUT102 cells. IFN-α also suppressed the spontaneous HTLV-1 induction in primary ATL cells cultured for 24 h. A time course study using ILTs revealed that the levels of intracellular Tax proteins decreased in the first 24 h after addition of IFN-α, before the reduction in HTLV-1 mRNA levels. The initial decreases of Tax protein following IFN-α treatment were observed in 6 of 7 ILT lines tested, although the reduction rates varied among ILT lines. An RNA-dependent protein kinase (PKR)-inhibitor reversed IFN-mediated suppression of Tax in ILTs. IFN-α also induced cell cycle arrest at the G0/G1 phase and suppressed NF-κB activities in these cells. AZT alone did not affect HTLV-1 gene expression, cell viability or NF-κB activities. AZT combined with IFN-α markedly induced cell apoptosis associated with phosphorylation of p53 and induction of p53-responsive genes in ILTs. CONCLUSIONS IFN-α suppressed HTLV-1 gene expression at least through a PKR-mediated mechanism, and also induced cell cycle arrest in ILTs. In combination with AZT, IFN-α further induced p53 signaling and cell apoptosis in these cells. These findings suggest that HTLV-1-infected cells at an IL-2-dependent stage retain susceptibility to type I IFN-mediated regulation of viral expression, and partly explain how AZT/IFN-α produces therapeutic effects in ATL.
Collapse
Affiliation(s)
- Shuichi Kinpara
- Department of Immunotherapeutics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Uversky VN. The most important thing is the tail: multitudinous functionalities of intrinsically disordered protein termini. FEBS Lett 2013; 587:1891-901. [PMID: 23665034 DOI: 10.1016/j.febslet.2013.04.042] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 04/24/2013] [Accepted: 04/29/2013] [Indexed: 01/29/2023]
Abstract
Many functional proteins do not have well-folded structures in their substantial parts, representing hybrids that possess both ordered and disordered regions. Disorder is unevenly distributed within these hybrid proteins and is typically more common at protein termini. Disordered tails are engaged in a wide range of functions, some of which are unique for termini and cannot be found in other disordered parts of a protein. This review covers some of the key functions of disordered protein termini and emphasizes that these tails are not simple flexible protrusions but are evolved to serve.
Collapse
Affiliation(s)
- Vladimir N Uversky
- Department of Molecular Medicine, USF Health Byrd Alzheimer's Research Institute, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA.
| |
Collapse
|
67
|
Signaling cross-talk in the resistance to HER family receptor targeted therapy. Oncogene 2013; 33:1073-81. [PMID: 23542173 DOI: 10.1038/onc.2013.74] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Revised: 02/12/2013] [Accepted: 02/12/2013] [Indexed: 12/11/2022]
Abstract
Epidermal growth factor receptor (EGFR) and human EGFR 2 (HER2) have an important role in the initiation and progression of various types of cancer. Inhibitors targeting these receptor tyrosine kinases are some of the most successful targeted anticancer drugs widely used for cancer treatment; however, cancer cells have mechanisms of intrinsic and acquired drug resistance that pose as major obstacles in drug efficacy. Extensive studies from both clinical and laboratory research have identified several molecular mechanisms underlying resistance. Among them is the role of signaling cross-talk between the EGFR/HER2 and other signaling pathways. In this review, we focus particularly on this signaling cross-talk at the receptor, mediator and effector levels, and further discuss alternative approaches to overcome resistance. In addition to well-recognized signaling cross-talk involved in the resistance, we also introduce the cross-talk between EGFR/HER2-mediated pathways and pathways triggered by other types of receptors, including those of the Notch, Wnt and TNFR/IKK/NF-κB pathways, and discuss the potential role of targeting this cross-talk to sensitize cells to EGFR/HER2 inhibitors.
Collapse
|
68
|
Hu YC, Hsieh BS, Cheng HL, Huang LW, Huang TC, Huang IY, Chang KL. Osteoblasts survive the arsenic trioxide treatment by activation of ATM-mediated pathway. Biochem Pharmacol 2013; 85:1018-26. [PMID: 23337567 DOI: 10.1016/j.bcp.2013.01.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Revised: 01/09/2013] [Accepted: 01/11/2013] [Indexed: 12/26/2022]
Abstract
Arsenic trioxide (ATO) is widely used in tumor treatment, but excessive arsenic exposure can have adverse effects. We recently found that, in primary osteoblasts, ATO produces oxidative stress and causes DNA tailing, but does not induce apoptosis. We further examined the signaling pathway by which osteoblasts survive ATO treatment, and found that they were arrested at G2/M phase of the cell cycle at 30h and overrode the G2/M boundary at 48h. After treatment for 30h, there was increased Cdc2 phosphorylation and expression of Wee1, a Cdc2 kinase, and expression of the cell cycle inhibitor, p21(waf1/cip1), which interacts with Cdc2. Furthermore, levels of the phosphatase Cdc25C, which activates Cdc2, were decreased, while the ratio of its phosphorylated/inactivated form to the total amount was increased. Moreover, phosphorylation/activation of the checkpoint kinases Chk1, Chk2 and p53 levels were increased, as were levels of activated ATM and γ-H2AX. The cell viability was decreased as an ATM inhibitor was added. Additionally, these effects of ATO on γ-H2AX, Chk1, Chk2, p53, and p21(waf1/cip1) were reduced by an ATM inhibitor. These findings suggest that G2/M phase arrest of osteoblasts is mediated by Chk1/Chk2 activation via an ATM-dependent pathway by which osteoblasts survive.
Collapse
Affiliation(s)
- Yu-Chen Hu
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan.
| | | | | | | | | | | | | |
Collapse
|
69
|
Budden T, Bowden NA. The role of altered nucleotide excision repair and UVB-induced DNA damage in melanomagenesis. Int J Mol Sci 2013; 14:1132-51. [PMID: 23303275 PMCID: PMC3565312 DOI: 10.3390/ijms14011132] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/29/2012] [Accepted: 12/26/2012] [Indexed: 01/12/2023] Open
Abstract
UVB radiation is the most mutagenic component of the UV spectrum that reaches the earth's surface and causes the development of DNA damage in the form of cyclobutane pyrimidine dimers and 6-4 photoproducts. UV radiation usually results in cellular death, but if left unchecked, it can affect DNA integrity, cell and tissue homeostasis and cause mutations in oncogenes and tumour-suppressor genes. These mutations, if unrepaired, can lead to abnormal cell growth, increasing the risk of cancer development. Epidemiological data strongly associates UV exposure as a major factor in melanoma development, but the exact biological mechanisms involved in this process are yet to be fully elucidated. The nucleotide excision repair (NER) pathway is responsible for the repair of UV-induced lesions. Patients with the genetic disorder Xeroderma Pigmentosum have a mutation in one of eight NER genes associated with the XP complementation groups XP-A to XP-G and XP variant (XP-V). XP is characterized by diminished repair capacity, as well as a 1000-fold increase in the incidence of skin cancers, including melanoma. This has suggested a significant role for NER in melanoma development as a result of UVB exposure. This review discusses the current research surrounding UVB radiation and NER capacity and how further investigation of NER could elucidate the role of NER in avoiding UV-induced cellular death resulting in melanomagenesis.
Collapse
Affiliation(s)
- Timothy Budden
- Centre for Information Based Medicine, Hunter Medical Research Institute, and School of Biomedical Sciences & Pharmacy, Faculty of Health, University of Newcastle, Newcastle, NSW 2289, Australia.
| | | |
Collapse
|
70
|
Wu L, Wang Z, Zong S, Chen H, Wang C, Xu S, Cui Y. Simultaneous evaluation of p53 and p21 expression level for early cancer diagnosis using SERS technique. Analyst 2013; 138:3450-6. [DOI: 10.1039/c3an00181d] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
71
|
Liu L, Chen X, Xie S, Zhang C, Qiu Z, Zhu F. Variant 1 of KIAA0101, overexpressed in hepatocellular carcinoma, prevents doxorubicin-induced apoptosis by inhibiting p53 activation. Hepatology 2012; 56:1760-1769. [PMID: 22576474 DOI: 10.1002/hep.25834] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2012] [Accepted: 05/03/2012] [Indexed: 12/21/2022]
Abstract
UNLABELLED KIAA0101 overexpression was detected in numerous malignant solid tumors and involved in tumor progression; however, the correlation between KIAA0101 expression level and human hepatocellular carcinoma (HCC) was controversial. Our data revealed abnormal expression of the KIAA0101 transcript variant 1 (KIAA0101 tv1) at both messenger RNA and protein levels in HCC tissues and cell lines assessed by semiquantitative reverse-transcription polymerase chain reaction (RT-PCR), virtual northern blot, western blot, and immunohistochemical analysis, especially in stage 3-4 HCCs. NIH3T3 cells transfected with KIAA0101 tv1 induced colony formation in vitro and tumor xenorafts in vivo, implying the oncogenic potential of KIAA0101 tv1. Semiquantitative RT-PCR, real-time quantitative RT-PCR, and western blot analysis demonstrated that doxorubicin (Adriamycin, ADR) treatment down-regulated expression of the KIAA0101 tv1, whereas it increased the acetylation of the p53 protein. Additionally, KIAA0101 tv1 prevented cells from apoptosis caused by ADR through suppressing the acetylation of p53 at Lys382. Immunoprecipitation analysis and mammalian two-hybrid assay indicated that KIAA0101 tv1 bound to the transactivation region (1-42 amino acids) of p53 and strongly inhibits its transcriptional activity. Taken together, our data suggest that KIAA0101 tv1 played an important role in the late stage of metastatic HCC and prevented apoptosis after chemotherapeutic drug treatment through inhibiting the transcriptional activity of the p53 gene. CONCLUSION KIAA0101 tv1 may function as a regulator, promoting cell survival in HCC through regulating the function of p53. Suppression of the KIAA0101 tv1 function is likely to be a promising strategy to develop novel cancer therapeutic drugs.
Collapse
MESH Headings
- Acetylation/drug effects
- Animals
- Antibiotics, Antineoplastic/pharmacology
- Apoptosis/drug effects
- Apoptosis/genetics
- Carcinoma, Hepatocellular/genetics
- Carcinoma, Hepatocellular/metabolism
- Carcinoma, Hepatocellular/pathology
- Carrier Proteins/drug effects
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Cell Transformation, Neoplastic/genetics
- DNA-Binding Proteins
- Doxorubicin/pharmacology
- Drug Resistance, Neoplasm/genetics
- Gene Expression Regulation, Neoplastic
- Genes, p53/genetics
- Hep G2 Cells
- Humans
- Liver Neoplasms/genetics
- Liver Neoplasms/metabolism
- Liver Neoplasms/pathology
- Mice
- Mice, Nude
- NIH 3T3 Cells
- Neoplasm Transplantation
- RNA, Messenger/metabolism
- Transcriptional Activation
- Transfection
- Tumor Suppressor Protein p53/genetics
- Tumor Suppressor Protein p53/metabolism
- Up-Regulation
Collapse
Affiliation(s)
- Lijuan Liu
- Department of Medical Microbiology, Wuhan University, Wuhan, People's Republic of China
| | | | | | | | | | | |
Collapse
|
72
|
Gilheeney SW, Kieran MW. Differences in molecular genetics between pediatric and adult malignant astrocytomas: age matters. Future Oncol 2012; 8:549-58. [PMID: 22646770 DOI: 10.2217/fon.12.51] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
The microscope - the classical tool for the investigation of cells and tissues - remains the basis for the classification of tumors throughout the body. Nowhere has this been more true than in the grading of astrocytomas. In spite of the fact that our parents warned us not to judge a book by its cover, we have continued to assume that adult and pediatric malignant gliomas that look the same, will have the same mutations, and thus respond to the same therapy. Rapid advances in molecular biology have permitted us the opportunity to go inside the cell and characterize the genetic events that underlie the true molecular heterogeneity of adult and pediatric brain tumors. In this paper, we will discuss some of the important clinical differences between pediatric and adult gliomas, with a focus on the molecular analysis of these different age groups.
Collapse
Affiliation(s)
- Stephen W Gilheeney
- Pediatric Neuro-Oncology, Dana-Farber Children's Hospital Cancer Center, Boston, MA, USA.
| | | |
Collapse
|
73
|
Staneva I, Huang Y, Liu Z, Wallin S. Binding of two intrinsically disordered peptides to a multi-specific protein: a combined Monte Carlo and molecular dynamics study. PLoS Comput Biol 2012; 8:e1002682. [PMID: 23028280 PMCID: PMC3441455 DOI: 10.1371/journal.pcbi.1002682] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2012] [Accepted: 07/20/2012] [Indexed: 11/27/2022] Open
Abstract
The unique ability of intrinsically disordered proteins (IDPs) to fold upon binding to partner molecules makes them functionally well-suited for cellular communication networks. For example, the folding-binding of different IDP sequences onto the same surface of an ordered protein provides a mechanism for signaling in a many-to-one manner. Here, we study the molecular details of this signaling mechanism by applying both Molecular Dynamics and Monte Carlo methods to S100B, a calcium-modulated homodimeric protein, and two of its IDP targets, p53 and TRTK-12. Despite adopting somewhat different conformations in complex with S100B and showing no apparent sequence similarity, the two IDP targets associate in virtually the same manner. As free chains, both target sequences remain flexible and sample their respective bound, natively -helical states to a small extent. Association occurs through an intermediate state in the periphery of the S100B binding pocket, stabilized by nonnative interactions which are either hydrophobic or electrostatic in nature. Our results highlight the importance of overall physical properties of IDP segments, such as net charge or presence of strongly hydrophobic amino acids, for molecular recognition via coupled folding-binding. A substantial fraction of our proteins are believed to be partly or completely disordered, meaning that they contain regions that lack a stable folded structure under typical physiological conditions. This is a feature which plays a key role in their functions. For example, it allows them to have many structurally different binding partners which in turn permits the construction of the intricate signaling and regulatory networks necessary to sustain complex biological organisms such as ourselves. Whereas measuring the binding strengths of associations involving disordered proteins is routine, the binding process itself is today still not fully understood. We use two different computational models to study the interactions of a folded protein, S100B, which can bind various disordered peptides. In particular, we compare two peptides whose structures are known when in complex with S100B. Our results suggest that, although the peptides assume different structures in the bound state, there are similarities in how they associate with S100B. The possibility to computationally model the interplay between proteins is an important complement to experiments, by identifying crucial steps in the binding process. This is essential to understand, e.g., how single mutations sometimes lead to serious diseases.
Collapse
Affiliation(s)
- Iskra Staneva
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics group, Lund University, Lund, Sweden
| | - Yongqi Huang
- College of Chemistry and Molecular Engineering, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Zhirong Liu
- College of Chemistry and Molecular Engineering, and Center for Quantitative Biology, Peking University, Beijing, China
| | - Stefan Wallin
- Department of Astronomy and Theoretical Physics, Computational Biology and Biological Physics group, Lund University, Lund, Sweden
- * E-mail:
| |
Collapse
|
74
|
Arioz DT, Tosun M, Polat C, Saylan A, Yilmazer M. The effects of ischaemic preconditioning on ovarian apoptosis and p53 expression during laparoscopy. J OBSTET GYNAECOL 2012; 32:467-71. [DOI: 10.3109/01443615.2012.663015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
75
|
Kindrachuk J, Arsenault R, Kusalik A, Kindrachuk KN, Trost B, Napper S, Jahrling PB, Blaney JE. Systems kinomics demonstrates Congo Basin monkeypox virus infection selectively modulates host cell signaling responses as compared to West African monkeypox virus. Mol Cell Proteomics 2012; 11:M111.015701. [PMID: 22205724 PMCID: PMC3433897 DOI: 10.1074/mcp.m111.015701] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2011] [Revised: 12/19/2011] [Indexed: 01/04/2023] Open
Abstract
Monkeypox virus (MPXV) is comprised of two clades: Congo Basin MPXV, with an associated case fatality rate of 10%, and Western African MPXV, which is associated with less severe infection and minimal lethality. We thus postulated that Congo Basin and West African MPXV would differentially modulate host cell responses and, as many host responses are regulated through phosphorylation independent of transcription or translation, we employed systems kinomics with peptide arrays to investigate these functional host responses. Using this approach we have demonstrated that Congo Basin MPXV infection selectively down-regulates host responses as compared with West African MPXV, including growth factor- and apoptosis-related responses. These results were confirmed using fluorescence-activated cell sorting analysis demonstrating that West African MPXV infection resulted in a significant increase in apoptosis in human monocytes as compared with Congo Basin MPXV. Further, differentially phosphorylated kinases were identified through comparison of our MPXV data sets and validated as potential targets for pharmacological inhibition of Congo Basin MPXV infection, including increased Akt S473 phosphorylation and decreased p53 S15 phosphorylation. Inhibition of Akt S473 phosphorylation resulted in a significant decrease in Congo Basin MPXV virus yield (261-fold) but did not affect West African MPXV. In addition, treatment with staurosporine, an apoptosis activator resulted in a 49-fold greater decrease in Congo Basin MPXV yields as compared with West African MPXV. Thus, using a systems kinomics approach, our investigation demonstrates that West African and Congo Basin MPXV differentially modulate host cell responses and has identified potential host targets of therapeutic interest.
Collapse
Affiliation(s)
- Jason Kindrachuk
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Uversky VN. Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discov 2012; 7:475-88. [PMID: 22559227 DOI: 10.1517/17460441.2012.686489] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION There is a natural abundance of intrinsically disordered proteins or intrinsically disordered protein regions (IDPs or IDPRs), that is, biologically active proteins/regions without stable structure. Their wide functional repertoire; the ability to participate in multiple interactions; the capability to fold at binding in a template-dependent manner and their common involvement in the pathogenesis of numerous human diseases suggest that these proteins should be seriously considered as novel drug targets. AREAS COVERED This article describes the major classes of ordered proteins traditionally used as drug targets and introduces the molecular mechanisms of drugs targeting ordered proteins. Furthermore, it illustrates basic ways of rational drug design for these proteins, and shows why these approaches cannot be directly used for intrinsic disorder-based drug design. Some of the new approaches utilized for finding drugs targeting IDPs/IDPRs are introduced. EXPERT OPINION There is a continuing progress in the design of small molecules for IDPs/IDPRs and several small molecules are found that specifically inhibit the disorder-based interaction of IDPs with their numerous partners. It is expected that the initial studies will be extended and novel intrinsic disorder-based drug design approaches will be developed. Furthermore, putative new targets will be identified, and a better understanding of the molecular mechanisms underlying modulation of promiscuous IDP binding will be achieved.
Collapse
Affiliation(s)
- Vladimir N Uversky
- University of South Florida, Byrd Alzheimer's Research Institute, College of Medicine, Department of Molecular Medicine, 12901 Bruce B. Downs Blvd, MDC07, Tampa, FL 33612, USA.
| |
Collapse
|
77
|
Belt EJT, Brosens RPM, Delis-van Diemen PM, Bril H, Tijssen M, van Essen DF, Heymans MW, Beliën JAM, Stockmann HBAC, Meijer S, Meijer GA. Cell cycle proteins predict recurrence in stage II and III colon cancer. Ann Surg Oncol 2012; 19 Suppl 3:S682-92. [PMID: 22311118 DOI: 10.1245/s10434-012-2216-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2011] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the prognostic value of multiple cell cycle-associated proteins in a large series of stage II and III colon cancers. METHODS From formalin-fixed, paraffin-embedded tumor samples of 386 patients with stage II and III colon cancer, DNA was isolated and tissue microarrays were constructed. Tissue microarray slides were immunohistochemically stained for p21, p27, p53, epidermal growth factor receptor, Her2/Neu, β-catenin, cyclin D1, Ki-67, thymidylate synthase, and Aurora kinase A (AURKA). Polymerase chain reaction-based microsatellite instability analysis was performed to allow for stratification of protein expression by microsatellite instability status. RESULTS Overall, low p21, high p53, low cyclin D1, and high AURKA expression were significantly associated with recurrence (P = 0.01, P < 0.01, P = 0.04, and P < 0.01, respectively). In stage II patients who did not receive adjuvant chemotherapy (n = 190), significantly more recurrences were observed in case of low-p21 and high-p53-expressing tumors (P < 0.01 and P = 0.03, respectively). In stage III patients who did not receive chemotherapy, high p53 expression was associated with recurrence (P = 0.02), and in patients who received chemotherapy, high AURKA expression was associated with relapse (P < 0.01). In patients with microsatellite stable tumors, high levels of p53 and AURKA were associated with recurrence (P = 0.01 and P < 0.01, respectively). Multivariate analysis showed p21 (odds ratio 1.6, 95% confidence interval 0.9-2.8) and AURKA (odds ratio 2.7, 95% confidence interval 1.3-5.6) to be independently associated with disease recurrence. CONCLUSIONS p21, p53, cyclin D1, and AURKA could possibly be used as prognostic markers to identify colon cancer patients with high risk of disease recurrence.
Collapse
Affiliation(s)
- Eric J Th Belt
- Department of Surgery, VU University Medical Centre, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Kinaci MK, Erkasap N, Kucuk A, Koken T, Tosun M. Effects of quercetin on apoptosis, NF-κB and NOS gene expression in renal ischemia/reperfusion injury. Exp Ther Med 2011; 3:249-254. [PMID: 22969877 DOI: 10.3892/etm.2011.382] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/03/2011] [Indexed: 12/23/2022] Open
Abstract
The aim of this study was to investigate the effects of quercetin on nitric oxide synthase (NOS), nuclear factor-κB (NF-κB) and apoptosis in renal ischemia/reperfusion (I/R) injury in rats. A total of 42 Sprague-Dawley rats were divided into three groups. The control, I/R and I/R+quercetin (I/R+Q) groups were treated with quercetin (50 mg/kg intraperitoneal) 1 h prior to the induction of ischemia. Tissue malondialdehyde (MDA) and glutathione (GSH) levels were determined by high-performance liquid chromatography (HPLC). p53, endothelial NOS (eNOS) and NF-κB expression were assessed immunohistochemically, and apoptosis assesment was performed using terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) assay. The mRNA levels of inducible NOS (iNOS) in renal tissue were determined by real-time polymerase chain reaction (RT-PCR). MDA levels were significantly decreased in the quercetin group compared to the I/R group. However, GSH levels were significantly increased with quercetin treatment in the I/R group. Histological results, the number of apoptotic and p53-positive cells, NF-κB and eNOS expression levels were significantly decreased in the quercetin treatment group compared to the I/R group. iNOS gene expression increased in the I/R group, but no significant difference was found between the I/R and quercetin treatment groups. Therefore, quercetin not only has antioxidant and anti-apoptotic activities, but also has an inhibitory effect on eNOS and NF-κB for renal tissue protection during I/R injury in rats. Therefore, quercetin may be a promising renoprotective therapeutic agent.
Collapse
Affiliation(s)
- M Kenan Kinaci
- Department of Physiology, Eskisehir Osmangazi University Medical Faculty, Eskisehir
| | | | | | | | | |
Collapse
|
79
|
Abdelmoula-Souissi S, Mabrouk I, Gargouri A, Mokdad-Gargouri R. Expression of the human tumor suppressor p53 induces cell death in Pichia pastoris. FEMS Yeast Res 2011; 12:2-8. [DOI: 10.1111/j.1567-1364.2011.00758.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2011] [Revised: 07/26/2011] [Accepted: 09/15/2011] [Indexed: 11/30/2022] Open
Affiliation(s)
- Salma Abdelmoula-Souissi
- Laboratoire de Valorisation de la Biomasse et Production de Protéines chez les Eucaryotes; Centre de Biotechnologie de Sfax; University of Sfax; Sfax; Tunisia
| | - Imed Mabrouk
- Laboratoire de Valorisation de la Biomasse et Production de Protéines chez les Eucaryotes; Centre de Biotechnologie de Sfax; University of Sfax; Sfax; Tunisia
| | - Ali Gargouri
- Laboratoire de Valorisation de la Biomasse et Production de Protéines chez les Eucaryotes; Centre de Biotechnologie de Sfax; University of Sfax; Sfax; Tunisia
| | - Raja Mokdad-Gargouri
- Laboratoire de Valorisation de la Biomasse et Production de Protéines chez les Eucaryotes; Centre de Biotechnologie de Sfax; University of Sfax; Sfax; Tunisia
| |
Collapse
|
80
|
Fouad D, Ataya FS, Muntane J. Expression of p53 during apoptosis induced by D-galactosamine and the protective role of PGE1 in cultured rat hepatocytes. Pak J Biol Sci 2011; 14:976-983. [PMID: 22514887 DOI: 10.3923/pjbs.2011.976.983] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
p53 is a critical player in the prevention of tumor development. It can contribute directly to DNA repair and inhibition of angiogenesis and subsequently to the induction of apoptosis. The regulation of p53 expression is mediated by the transcription factor NF-kappaB. This includes regulation of p53 protein stability, control of its subcellular localization and conformational changes that allow activation of the DNA binding activity of p53. Rat hepatocytes were isolated from male Wistar rats following collagenase perfusion of liver. We examined the change in the expression level of p53 by western blotting in hepatocytes and its effect on apoptosis as a response of treatment with D-galactosamine, prostaglandin E1 and/or the Proteosome Inhibitor (PSI). A kinetic study of the extracellular lactate dehydrogenase activity, NF-kappaB activation, induced nitric oxide synthase expression and nitric oxide production was carried out in hepatocytes. The addition of prostaglandin E1 to control and D-galactosamine-treated hepatocytes increased p53 expression in the cytoplasm during 24 h. While the addition of PSI in the absence of prostaglandin E1 decreased p53 expression at 5 mM D-galactosamine. This inhibition is reversed in the presence of prostaglandin E1 at 5 and 40 mM D-galactosamine. The protective action of prostaglandin E1 against the apoptotic effect of D-galactosamine is mediated by NF-kappaB activation, induced nitric oxide synthase and p53 expression.
Collapse
Affiliation(s)
- D Fouad
- Department of Zoology, College of Science, Center for Scientific and Medical Female Colleges, King Sand University, P.O. Box 22452-11459, Riyadh, Saudi Arabia
| | | | | |
Collapse
|
81
|
Asai T, Liu Y, Bae N, Nimer SD. The p53 tumor suppressor protein regulates hematopoietic stem cell fate. J Cell Physiol 2011; 226:2215-21. [PMID: 21660944 DOI: 10.1002/jcp.22561] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The p53 tumor suppressor protein is a key transcription factor that regulates several signaling pathways involved in the cell's response to stress. Through stress-induced activation, p53 accumulates and triggers the expression of target genes that protect the genetic integrity of all cells including hematopoietic stem cells (HSCs). These protective mechanisms include cell-cycle arrest, DNA repair, induction of apoptosis, or initiation of senescence. In addition to its function under stress conditions, p53 has important functions during steady-state hematopoiesis, regulating HSC quiescence and self-renewal. In addition, it appears that p53 levels affect HSC competition for the hematopoietic niche, with the less p53 activated HSCs preferentially surviving. The specific genes and precise mechanisms underlying p53's effects on normal HSCs are slowly being clarified. p53 also plays an important role in leukemia stem cell (LSC) behavior, with p53 loss affecting drug resistance and disease progression. Pharmacologic activation of p53 function could overcome the adverse impact of p53 inactivation in LSCs. Thus, understanding the p53 regulatory mechanisms active in HSCs and LSCs may promote the development of new therapeutic strategies that could eliminate the population of largely quiescent LSCs.
Collapse
Affiliation(s)
- Takashi Asai
- Sloan-Kettering Institute, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA
| | | | | | | |
Collapse
|
82
|
Arsenic trioxide-induced apoptosis in TM4 Sertoli cells: the potential involvement of p21 expression and p53 phosphorylation. Toxicology 2011; 285:142-51. [PMID: 21565247 DOI: 10.1016/j.tox.2011.04.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2011] [Revised: 04/23/2011] [Accepted: 04/26/2011] [Indexed: 11/22/2022]
Abstract
Arsenic is a toxic metalloid that exists ubiquitously in the environment, and exhibits carcinogenicity. Conversely, arsenic trioxide (AsTO) has successfully been employed in the treatment of acute promyelocytic leukemia (APL). It has been shown that AsTO efficiently induces apoptosis in the malignant cells of APL in vitro. Although the mechanisms underlying AsTO-induced apoptosis in certain types of cancer cells, such as APL cells, have been delineated, the mechanism underlying AsTO-induced cell death in non-cancer cells remains unknown. In the present study, we examined AsTO-provoked cytotoxicity and cell death mechanism(s) in TM4 Sertoli cells. Exposure of these cells to AsTO generates reactive oxygen species and alters mitochondrial apoptosis, inducing cell death via both caspase-dependent and caspase-independent pathways. AsTO-induced apoptosis was concomitant with the downregulation of p53, phosphorylation of p53 at serine residues, and G2/M cell cycle arrest. Particularly, the interaction of p21 with caspase-3 proteins during AsTO treatment suggested an antiapoptotic role of p21 against genotoxic stresses in TM4 Sertoli cells. However, clinically relevant concentrations of AsTO failed to induce cell death in TM4 Sertoli cells, indicating that these cells could be resistant to cancer treatment. The results presented herein may not represent the actual effect of AsTO on Sertoli cells in vivo. Thus, further studies on the exposure effects of AsTO on the morphology and function of Sertoli cells in animal experiments will provide a more precise knowledge of AsTO cytotoxicity on male reproduction.
Collapse
|
83
|
Kim SH, Dass CR. p53-targeted cancer pharmacotherapy: move towards small molecule compounds. ACTA ACUST UNITED AC 2011; 63:603-10. [PMID: 21492161 DOI: 10.1111/j.2042-7158.2010.01248.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
OBJECTIVES For the past three decades of research, p53 has been identified as one of the most targetable molecules for developing anticancer treatments. This tumour suppressor protein is involved in apoptosis, cell cycle arrest and senescence. A wide range of pharmaceutical drugs and radiotherapy treatments activate this protein and rely on p53 signalling for therapeutic outcome. Promising small molecular weight compounds, some of which are undergoing clinical trials, are discussed in this review. KEY FINDINGS The spectrum of potential therapeutic approaches trialled for p53 stretch from gene therapy to the more recent development of small molecules capable of activating wild-type p53 or reactivating mutant p53. SUMMARY Our ever-growing knowledge leads us to better understand this protein, from its structure and activities to its potential therapeutic application, firstly for cancer and then for other diseases and maybe even for reversal of ageing.
Collapse
Affiliation(s)
- Soo-Hyun Kim
- Department of Biomedical Sciences, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | | |
Collapse
|
84
|
Soliman S, Aronson WJ, Barnard RJ. Analyzing serum-stimulated prostate cancer cell lines after low-fat, high-fiber diet and exercise intervention. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:529053. [PMID: 19376839 PMCID: PMC3135793 DOI: 10.1093/ecam/nep031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Accepted: 03/27/2009] [Indexed: 12/14/2022]
Abstract
Serum from men undergoing a low-fat, high-fiber diet and exercise intervention has previously been shown to decrease growth and increase apoptosis in serum-stimulated, androgen-dependent LNCaP cells associated with a reduction in serum IGF-I. Here we sought to determine the underlying mechanisms for these anticancer effects. Again, the intervention slowed growth and increased apoptosis in LNCaP cells; responses that were eliminated when IGF-I was added back to the post-intervention samples. The p53 protein content was increased and NFκB activation reduced in the post serum-stimulated LNCaP cells. Similar results were observed when the IGF-I receptor was blocked in the pre-intervention serum. In androgen-independent PC-3 cells, growth was reduced while none of the other factors were changed by the intervention. We conclude that diet and exercise intervention might help prevent clinical PCa as well as aid in the treatment of PCa during the early stages of development.
Collapse
Affiliation(s)
- Sherry Soliman
- Department of Physiological Science, University of California, Los Angeles, CA 90095, USA
| | | | | |
Collapse
|
85
|
The TP53 gene polymorphisms and survival of sporadic breast cancer patients. Med Oncol 2011; 29:472-8. [PMID: 21365326 DOI: 10.1007/s12032-011-9875-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 02/17/2011] [Indexed: 10/18/2022]
Abstract
The TP53 gene polymorphisms, Arg72Pro and PIN3 (+16 bp), can have prognostic and predictive value in different cancers including breast cancer. The aim of the present study is to investigate a potential association between different genotypes of these polymorphisms and clinicopathological variables with survival of breast cancer patients in Croatian population. Ninety-four women with sporadic breast cancer were retrospectively analyzed. Median follow-up period was 67.9 months. The effects of basic clinical and histopathological characteristics of tumor on survival were tested by Cox's proportional hazards regression analysis. The TNM stage was associated with overall survival by Kaplan-Meier analysis, univariate, and multivariate Cox's proportional hazards regression analysis, while grade was associated with survival by Kaplan-Meier analysis and univariate Cox's proportional hazards regression analysis. Different genotypes of the Arg72Pro and PIN3 (+16 bp) polymorphisms had no significant impact on survival in breast cancer patients. However, in subgroup of patients treated with chemotherapy without anthracycline, the A2A2 genotype of the PIN3 (+16 bp) polymorphism was associated with poorer overall survival than other genotypes by Kaplan-Meier analysis (P = 0.048). The TP53 polymorphisms, Arg72Pro and PIN3 (+16 bp), had no impact on survival in unselected sporadic breast cancer patients in Croatian population. However, the results support the role of the A2A2 genotype of the PIN3 (+16 bp) polymorphism as a marker for identification of patients that may benefit from anthracycline-containing chemotherapy.
Collapse
|
86
|
|
87
|
Alwahaibi NY, Budin SB, Mohamed JH. Absence of p53 gene expression in selenium molecular prevention of chemically induced hepatocarcinogenesis in rats. Saudi J Gastroenterol 2011; 17:328-34. [PMID: 21912060 PMCID: PMC3178921 DOI: 10.4103/1319-3767.84489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND/AIM p53 pathway is thought by many researchers to be critically involved in selenium's chemoprevention or in hepatocarcinogenesis. The aim of this study was to investigate the gene expression of p53, p21 and B-cell lymphoma-2 (bcl-2) using preventive and therapeutic approaches of selenium in chemically induced hepatocarcinogenesis in rats. MATERIALS AND METHODS Rats were divided randomly into six groups: Negative control, positive control (diethyl nitrosamine +2-acetylaminofluorene), preventive group, preventive control (respective control for preventive group), therapeutic group and therapeutic control (respective control for therapeutic group). p53, p21 and bcl-2 genes on liver tissues were measured using real-time polymerase chain reaction. RESULTS The expression of p53 was only significant in the therapeutic control. The expression of bcl-2 was insignificant in all the groups. p21 expression was significant in all the groups except the preventive group. CONCLUSIONS The selenium molecular mechanism for liver cancer prevention is not through the p53 pathway. Also, the absence of p53 is not necessary for chemically induced liver cancer in rats.
Collapse
Affiliation(s)
- Nasar Y. Alwahaibi
- Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, Muscat, Oman,Address for correspondence: Dr. Nasar Alwahaibi, Department of Pathology, College of Medicine and Health Sciences, Sultan Qaboos University, P.O. Box 35, Postal Code 123, Muscat, Oman. E-mail:
| | - Siti B. Budin
- Department of Biomedical Sciences, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| | - Jamaludin. H. Mohamed
- Department of Biomedical Sciences, Faculty of Allied Health Sciences, Universiti Kebangsaan Malaysia (UKM), Jalan Raja Muda Abdul Aziz, Kuala Lumpur, Malaysia
| |
Collapse
|
88
|
Zhao Y, Zhang Y, Wang S, Hua Z, Zhang J. The clock gene Per2 is required for normal platelet formation and function. Thromb Res 2010; 127:122-30. [PMID: 21186050 DOI: 10.1016/j.thromres.2010.11.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/15/2010] [Accepted: 11/26/2010] [Indexed: 01/01/2023]
Abstract
INTRODUCTION Apoptotic cell death is a highly regulated genetic program, which has been observed in mature megakaryocytes fragmenting into platelets. The clock gene Per2, a key component of core clock oscillator, was involved in affecting both cell cycle control and apoptosis. Thus, loss of Per2 function may be considered potential influence of platelet formation and function. METHODS Per2-null mice and C57BL/6 mice were used in the study. Bleeding time, platelet count, megakaryocyte count, megakaryocyte ploidy, megakaryocyte apoptosis, rate of proplatelet formation, clot retraction, platelet aggregation and secretion were performed to evaluate thrombopoiesis and hemostasis. Quantitative RT-PCR was employed to analyze genes expression in liver, bone marrow and enriched megakaryocytes. RESULTS The Per2-null mice had nearly 50% platelet counts in peripheral blood. Per2-null platelets were compromised in their ability to aggregate and secretion, consistent with a marked reduction in the number of dense and a-granules. Megakaryocytes from Per2-null mice showed no significant variation in number but increased in ploidy. Ultrastructural examination of Per2-null megakaryocytes revealed many vacuoles in demarcation membranes and reduction in platelet granules. Megakaryocytes from Per2-null bone marrow decreased the rate of proplatelet formation and impaired apoptosis. Per2-null mice showed increased both in Tpo in livers and its receptors C-mpl in bone marrow, and the megakaryocytes from these mice decreased P53 expression, consequently increased Bcl-xl and Bcl-2 level. CONCLUSIONS The clock gene Per2 modulating the apoptosis of megakaryocytes was required for platelet formation and function.
Collapse
Affiliation(s)
- Yue Zhao
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing, China
| | | | | | | | | |
Collapse
|
89
|
|
90
|
Yang XX, Du N, Zhou JF, Li Z, Wang M, Guo JF, Wang DY, Shu YL. Gene expression profiles comparison between 2009 pandemic and seasonal H1N1 influenza viruses in A549 cells. BIOMEDICAL AND ENVIRONMENTAL SCIENCES : BES 2010; 23:259-266. [PMID: 20934112 DOI: 10.1016/s0895-3988(10)60061-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 08/12/2010] [Indexed: 05/30/2023]
Abstract
OBJECTIVE To perform gene expression profiles comparison so that to identify and understand the potential differences in pathogenesis between the pandemic and seasonal A (H1N1) influenza viruses. METHODS A549 cells were infected with A/California/07/09 (H1N1) and A/GuangdongBaoan/51/08 (H1N1) respectively at the same MOI of 2 and collected at 2, 4, 8, and 24 h post infection (p.i.). Gene expression profiles of A549 cells were obtained using the 22 K Human Genome Oligo Array, and differentially expressed genes were analyzed at selected time points. RESULTS Microarrays results indicated that both of the viruses suppressed host immune response related pathways including cytokine production while pandemic H1N1 virus displayed weaker suppression of host immune response than seasonal H1N1 virus. Observation on similar anti-apoptotic events such as activation of apoptosis inhibitor and down-regulation of key genes of apoptosis pathways in both infections showed that activities of promoting apoptosis were different in later stage of infection. CONCLUSIONS The immuno-suppression and anti-apoptosis events of pandemic H1N1 virus were similar to those seen by seasonal H1N1 virus. The pandemic H1N1 virus had an ability to inhibit biological pathways associated with cytokine responses, NK activation and macrophage recognition.
Collapse
Affiliation(s)
- Xiao-Xing Yang
- State Key Laboratory for Molecular Virology and Genetic Engineering , National Institute for Viral Disease Control and Prevention, China CDC, 100 Yingxin Street, Xuanwu District, Beijing 100052, China
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Arya AK, El-Fert A, Devling T, Eccles RM, Aslam MA, Rubbi CP, Vlatković N, Fenwick J, Lloyd BH, Sibson DR, Jones TM, Boyd MT. Nutlin-3, the small-molecule inhibitor of MDM2, promotes senescence and radiosensitises laryngeal carcinoma cells harbouring wild-type p53. Br J Cancer 2010; 103:186-95. [PMID: 20588277 PMCID: PMC2906734 DOI: 10.1038/sj.bjc.6605739] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
BACKGROUND Primary radiotherapy (RT) is a mainstay of treatment for laryngeal squamous cell carcinoma (LSCC). Although the cure rates for early (T1) vocal cord tumours are high, RT proves ineffective in up to a third of T3 carcinomas. Moreover, RT is associated with debilitating early- and late-treatment-related toxicity, thus finding means to de-escalate therapy, while retaining/augmenting therapeutic effectiveness, is highly desirable. p53 is a key mediator of radiation responses; we therefore investigated whether Nutlin-3, a small-molecule inhibitor of MDM2 (mouse double minute 2; an essential negative regulator of p53), might radiosensitise LSCC cells. METHODS We performed clonogenic assays to measure radiosensitivity in a panel of LSCC cell lines (for which we determined p53 mutational status) in the presence and absence of Nutlin-3. RESULTS LSCC cells harbouring wild-type p53 were significantly radiosensitised by Nutlin-3 (P<0.0001; log-rank scale), and displayed increased cell cycle arrest and significantly increased senescence (P<0.001) in the absence of increased apoptosis; thus, our data suggest that senescence may mediate this increased radiosensitivity. CONCLUSION This is the first study showing Nutlin-3 as an effective radiosensitiser in LSCC cells that retain wild-type p53. The clinical application of Nutlin-3 might improve local recurrence rates or allow treatment de-escalation in these patients.
Collapse
Affiliation(s)
- A K Arya
- Division of Surgery and Oncology, School of Cancer Studies, University of Liverpool, 5th Floor. UCD Building, Daulby Street, Liverpool L69 3GA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Uversky VN, Dunker AK. Understanding protein non-folding. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1804:1231-64. [PMID: 20117254 PMCID: PMC2882790 DOI: 10.1016/j.bbapap.2010.01.017] [Citation(s) in RCA: 925] [Impact Index Per Article: 61.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2009] [Revised: 01/09/2010] [Accepted: 01/21/2010] [Indexed: 02/07/2023]
Abstract
This review describes the family of intrinsically disordered proteins, members of which fail to form rigid 3-D structures under physiological conditions, either along their entire lengths or only in localized regions. Instead, these intriguing proteins/regions exist as dynamic ensembles within which atom positions and backbone Ramachandran angles exhibit extreme temporal fluctuations without specific equilibrium values. Many of these intrinsically disordered proteins are known to carry out important biological functions which, in fact, depend on the absence of a specific 3-D structure. The existence of such proteins does not fit the prevailing structure-function paradigm, which states that a unique 3-D structure is a prerequisite to function. Thus, the protein structure-function paradigm has to be expanded to include intrinsically disordered proteins and alternative relationships among protein sequence, structure, and function. This shift in the paradigm represents a major breakthrough for biochemistry, biophysics and molecular biology, as it opens new levels of understanding with regard to the complex life of proteins. This review will try to answer the following questions: how were intrinsically disordered proteins discovered? Why don't these proteins fold? What is so special about intrinsic disorder? What are the functional advantages of disordered proteins/regions? What is the functional repertoire of these proteins? What are the relationships between intrinsically disordered proteins and human diseases?
Collapse
Affiliation(s)
- Vladimir N Uversky
- Institute for Intrinsically Disordered Protein Research, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | | |
Collapse
|
93
|
Song LP, Li YP, Wang N, Li WW, Ren J, Qiu SD, Wang QY, Yang GX. NT4(Si)-p53(N15)-antennapedia induces cell death in a human hepatocellular carcinoma cell line. World J Gastroenterol 2009; 15:5813-20. [PMID: 19998502 PMCID: PMC2791274 DOI: 10.3748/wjg.15.5813] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To construct the recombinant lentivirus expression plasmid, pLenti6/V5-NT4 p53(N15)-antennapedia (Ant), and study its effect on HepG2 cells.
METHODS: Plasmid pLenti6/V5-NT4 p53(N15)-Ant was constructed incorporating the following functional regions, including signal peptide sequence and pro-region of neurotrophin 4, N-terminal residues 12-26 of p53 and 17 amino acid drosophila carrier protein, Ant. Hepatocellular carcinoma (HepG2) cells were used for transfection. 3-[4,5-dimethyl-thiazol-2yl]-2,5 diphenyl tetrazolium bromide (MTT) assay, lactate dehydrogenase (LDH) release assay, transmission electron microscopy (TEM) and flow cytometric analysis (FCM) were employed to investigate the effects of LV-NT4(Si)-p53(N15)-Ant in vitro on HepG2 cells. In vivo experiment was also performed to investigate the inhibitory effect of LV-NT4(Si)-p53(N15)-Ant on tumor growth in nude mice.
RESULTS: LV-NT4(Si)-p53(N15)-Ant significantly suppressed the growth of HepG2 cells. MTT assay showed that the growth of HepG2 cells was mucj more significantly inhibited by LV-NT4(Si)-p53(N15)-Ant than by LV-EGFP. The inhibition rate for HepG2 cell growth in the two groups was 46.9% and 94.5%, respectively, 48 h after infection with LV-NT4(Si)-p53(N15)-Ant, and was 33.9% and 95.8%, respectively, 72 h after infection with LV-NT4(Si)-p53(N15)-Ant (P < 0.01). Light microscopy and TEM showed morphological changes in HepG2 cells infected with LV-NT4(Si)-p53(N15)-Ant, but no significant changes in HepG2 cells infected with LV-EGFP. Changes were observed in ultra-structure of HepG2 cells infected with LV-NT4(Si)-p53(N15)-Ant, with degraded membranes, resulting in necrosis. LDH release from HepG2 cells was analyzed at 24, 48, 72 and 96 h after infection with LV-NT4(Si)-p53(N15)-Ant and LV-EGFP, which showed that LDH release was significantly higher in LV-NT4(Si)-p53(N15)-Ant treatment group (682 IU/L) than in control group (45 IU/L, P < 0.01). The longer the time was after infection, the bigger the difference was in LDH release. FCM analysis showed that LV-NT4(Si)-p53(N15)-Ant could induce two different kinds of cell death: necrosis and apoptosis, with apoptosis being the minor type and necrosis being the main type, suggesting that LV-NT4(Si)-p53(N15)-Ant exerts its anticancer effect on HepG2 cells by inducing necrosis. The in vivo study showed that LV-NT4(Si)-p53(N15)-Ant significantly inhibited tumor growth with an inhibition rate of 66.14% in terms of tumor size and weight.
CONCLUSION: LV-NT4(Si)-p53(N15)-Ant is a novel recombinant lentivirus expression plasmid and can be used in gene therapy for cancer.
Collapse
|
94
|
Kucuk A, Kabadere S, Tosun M, Koken T, Kinaci MK, Isikli B, Erkasap N. Protective effects of doxycycline in ischemia/reperfusion injury on kidney. J Physiol Biochem 2009; 65:183-91. [PMID: 19886397 DOI: 10.1007/bf03179069] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Renal ischemia and reperfusion injury is the major cause of acute renal failure and may also be involved in the development and progression of some forms of chronic kidney disease. The aim of this study was to evaluate whether doxycycline, a member of the tetracycline family of antibiotics, protects kidney tissue or not. 36 Sprague-Dawley rats (200-250 g) were used. The animals were divided into three groups: control, ischemia/reperfusion and ischemia/reperfusion+doxycycline group. Rats were subjected to renal ischemia by clamping the left pedicle for 1 h, and then reperfused for 1 h. The ischemia/reperfusion+doxycycline group were pretreated intraperitoneally with doxycycline suspension (10 mg/kg) 2 h before the induction of ischemia. Our results indicate that malondialdehyde, matrix-metalloproteinase-2, interleukin-2, interleukin-6, interleukin-10, interleukin 1-beta and tumor necrosis factor-alpha levels were significantly higher in the ischemia/reperfusion group than those in the control group. Doxycycline administration significantly decreased these parameters. Tissue inhibitor of metalloproteinases-1 levels also increased after ischemia/reperfusion and decreased with doxycycline pretreatment, but these changes were not significantly different. Glutathione levels significantly decreased after ischemia/reperfusion injury when compared with the control group and doxycycline pretreatment significantly increased glutathione levels when compared with the ischemia/reperfusion group. Apoptotic cells and p53 positive cells were significantly decreased in doxycycline treated group. These results suggest that doxycycline reduces renal oxidative injury and facilitates repair. Doxycycline may play a role in a renoprotective therapeutic regimen.
Collapse
Affiliation(s)
- A Kucuk
- Dumlupinar University, Medical Faculty, Physiology Department, Kutahya, Turkey.
| | | | | | | | | | | | | |
Collapse
|
95
|
Chene P, Jahnke W. Oligomerization of p53 upon cooperative DNA binding: towards a structural understanding of p53 function. Angew Chem Int Ed Engl 2009; 41:1702-4. [PMID: 19750689 DOI: 10.1002/1521-3773(20020517)41:10<1702::aid-anie1702>3.0.co;2-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Patrick Chene
- Novartis Pharma AG, Lichtstrasse, 4002 Basel, Switzerland
| | | |
Collapse
|
96
|
Li Y, Li LJ, Zhang ST, Wang LJ, Zhang Z, Gao N, Zhang YY, Chen QM. In vitro and clinical studies of gene therapy with recombinant human adenovirus-p53 injection for oral leukoplakia. Clin Cancer Res 2009; 15:6724-31. [PMID: 19861457 DOI: 10.1158/1078-0432.ccr-09-1296] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Oral leukoplakia is a well-recognized precancerous lesion of squamous cell carcinoma. When accompanied with abnormal p53 expression, it suffered a higher risk of canceration. The present study was carried out to test whether the recombinant human adenovirus-p53 could introduce wild-type p53 gene to oral leukoplakia cells and induce cell cycle arrest and apoptosis. EXPERIMENTAL DESIGN We select p53(-) oral dysplastic keratinocyte POE-9n, to observe the growth inhibition, cell cycle change, apoptosis-induced effects, and elaborate the corresponding molecular mechanism of recombinant adenovirus-p53 on POE-9n cells. Meanwhile, we evaluate the feasibility, safety, and biological activity of multipoints intraepithelial injections of recombinant adenovirus-p53 in 22 patients with dysplastic oral leukoplakia. RESULTS Exogenous p53 could be successfully transduced into POE-9n cells by recombinant adenovirus-p53. The optimal infecting titer in this study was multiplicity of infection (MOI) = 100. Recombinant adenovirus-p53 could strongly inhibit cell proliferation, induce apoptosis, and arrest cell cycle in stage G(1) in POE-9n cells by inducing p21(CIP/WAF) and downregulating bcl-2 expression. In the posttreatment patients, p53 protein and p21(CIP/WAF) protein expression were significantly enhanced, yet bcl-2 protein presented low expression. Sixteen patients showed clinical response to the treatment, and 14 patients showed obvious histopathologic improvement. CONCLUSION Intraepithelial injections of recombinant human adenovirus-p53 were safe, feasible, and biologically active for patients with dysplastic oral leukoplakia.
Collapse
Affiliation(s)
- Yi Li
- State Key Laboratory of Oral Diseases, Department of Head and Neck Oncology, West China College of Stomatology, and West China Health Hospital, Sichuan University, Chengdu, PR China
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Amaral JD, Castro RE, Steer CJ, Rodrigues CMP. p53 and the regulation of hepatocyte apoptosis: implications for disease pathogenesis. Trends Mol Med 2009; 15:531-41. [PMID: 19822456 DOI: 10.1016/j.molmed.2009.09.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2009] [Revised: 09/04/2009] [Accepted: 09/04/2009] [Indexed: 01/06/2023]
Abstract
The interplay between p53 and apoptosis in diseases such as cancer, neurodegeneration, ischemia and atherosclerosis underscores the need to understand the complexity of p53 networks. Here, we highlight recent studies of p53-induced apoptosis in human diseases, with a focus on the modulation of liver cell apoptosis. In addition, recent work has provided new insights into mechanisms underlying the antiapoptotic functions of the endogenous bile acid ursodeoxycholic acid (UDCA), suggesting that the finely tuned, complex control of p53 by Mdm2 is a key step in the UDCA modulation of deregulated, p53-triggered apoptosis. The effect of targeting cell death signaling proteins has been established in preclinical models of human diseases. Finally, we review recent therapeutic strategies and clinical applications of targeted agents, with a particular emphasis on the potential use of UDCA.
Collapse
Affiliation(s)
- Joana D Amaral
- Research Institute for Medicines and Pharmaceutical Sciences, Faculty of Pharmacy, University of Lisbon, Lisbon, Portugal
| | | | | | | |
Collapse
|
98
|
Wang Y, Zhu X, Wu M, Xia N, Wang J, Zhou F. Simultaneous and Label-Free Determination of Wild-Type and Mutant p53 at a Single Surface Plasmon Resonance Chip Preimmobilized with Consensus DNA and Monoclonal Antibody. Anal Chem 2009; 81:8441-6. [DOI: 10.1021/ac9014269] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yongcan Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of China 410083, Cancer Research Institute, Central South University, Changsha, Hunan, People’s Republic of China 410013, and Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Xu Zhu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of China 410083, Cancer Research Institute, Central South University, Changsha, Hunan, People’s Republic of China 410013, and Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Minghua Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of China 410083, Cancer Research Institute, Central South University, Changsha, Hunan, People’s Republic of China 410013, and Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Ning Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of China 410083, Cancer Research Institute, Central South University, Changsha, Hunan, People’s Republic of China 410013, and Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of China 410083, Cancer Research Institute, Central South University, Changsha, Hunan, People’s Republic of China 410013, and Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| | - Feimeng Zhou
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, People’s Republic of China 410083, Cancer Research Institute, Central South University, Changsha, Hunan, People’s Republic of China 410013, and Department of Chemistry and Biochemistry, California State University, Los Angeles, Los Angeles, California 90032
| |
Collapse
|
99
|
Doucet JP, Hussain A, Al-Rasheed M, Gaidano G, Gutiérrez MI, Magrath I, Bhatia K. Differences in the Expression of Apoptotic Proteins in Burkitt's Lymphoma Cell Lines: Potential Models for Screening Apoptosis-Inducing Agents. Leuk Lymphoma 2009; 45:357-62. [PMID: 15101724 DOI: 10.1080/10428190310001595713] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Mammalian cells undergo programmed cell death by orchestrated interactions involving multiple independent pathways. At least one of them, the p53-dependent pathway is commonly compromised in Burkitt's lymphoma (BL) cell lines. Differences in the integrity of this pathway in various BL cell lines have made them useful experimental models in understanding response to standard or novel antitumor drugs vis-a-vis the p53 pathway. Non-p53-dependent loss of apoptotic regulation also contributes to the genesis and/or progression of lymphomas and it is possible that BL cell lines also represent these models. We have characterized the expression of multiple apoptotic proteins in a panel of BL cell lines and describe cell lines with loss of cIAP1, cIAP2, Bax, Bak, Bcl-Xs and p38 MAP-kinase. This data should make this panel of cell lines a useful screening system for testing novel apoptotic inducers.
Collapse
Affiliation(s)
- Jean-Pierre Doucet
- King Fahad National Centre for Children's Cancer & Research, KFSH&RC, Riyadh, Saudi Arabia
| | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
The highly controlled degradation of proteins via the ubiquitin-proteasome pathway represents a key mechanism for cell regulation and homeostasis. Ubiquitin-dependent proteolysis, carried out in large part by the E3 ubiquitin ligases, is a critical mode of post-translational modification that is important in regulation of cell cycle progression, signal transduction, gene transcription, antigen receptor signaling, immune response and cell differentiation. Recent studies demonstrate that increasing numbers of proteins with ubiquitin ligase activity are being characterized. Identification and characterization of their substrates indicate that they regulate the turnover of key cell cycle proteins (p27Kip1, p21Cip1, p57Kip2, cyclin E), tumor suppressor proteins (p53, RB), signaling kinases (Src, Zap70, PI-3 kinase), apoptosis regulators (Bcl-2, Bax, Bik) and transcription factors (Myc, NF-kappaB, E1F1), all of which have been implicated in the pathogenesis of malignant lymphoma. Studies to determine the functional role of ubiquitin ligases in the pathogenesis of malignant lymphoma represent potential areas of investigation.
Collapse
Affiliation(s)
- Megan S Lim
- Division of Anatomic Pathology, Department of Pathology, University of Utah, Salt Lake City, Utah 84132, USA.
| | | |
Collapse
|