51
|
Madsen JA, Farutin V, Carbeau T, Wudyka S, Yin Y, Smith S, Anderson J, Capila I. Toward the complete characterization of host cell proteins in biotherapeutics via affinity depletions, LC-MS/MS, and multivariate analysis. MAbs 2015; 7:1128-37. [PMID: 26291024 DOI: 10.1080/19420862.2015.1082017] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
Host cell protein (HCP) impurities are generated by the host organism during the production of therapeutic recombinant proteins, and are difficult to remove completely. Though commonly present in small quantities, if levels are not controlled, HCPs can potentially reduce drug efficacy and cause adverse patient reactions. A high resolution approach for thorough HCP characterization of therapeutic monoclonal antibodies is presented herein. In this method, antibody samples are first depleted via affinity enrichment (e.g., Protein A, Protein L) using milligram quantities of material. The HCP-containing flow-through is then enzymatically digested, analyzed using nano-UPLC-MS/MS, and proteins are identified through database searching. Nearly 700 HCPs were identified from samples with very low total HCP levels (< 1 ppm to ∼ 10 ppm) using this method. Quantitation of individual HCPs was performed using normalized spectral counting as the number of peptide spectrum matches (PSMs) per protein is proportional to protein abundance. Multivariate analysis tools were utilized to assess similarities between HCP profiles by: 1) quantifying overlaps between HCP identities; and 2) comparing correlations between individual protein abundances as calculated by spectral counts. Clustering analysis using these measures of dissimilarity between HCP profiles enabled high resolution differentiation of commercial grade monoclonal antibody samples generated from different cell lines, cell culture, and purification processes.
Collapse
Affiliation(s)
| | | | | | | | - Yan Yin
- a Momenta Pharmaceuticals ; Cambridge , MA USA
| | | | | | | |
Collapse
|
52
|
Miller SE, Mathiasen S, Bright NA, Pierre F, Kelly BT, Kladt N, Schauss A, Merrifield CJ, Stamou D, Höning S, Owen DJ. CALM regulates clathrin-coated vesicle size and maturation by directly sensing and driving membrane curvature. Dev Cell 2015; 33:163-75. [PMID: 25898166 PMCID: PMC4406947 DOI: 10.1016/j.devcel.2015.03.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 01/23/2015] [Accepted: 03/01/2015] [Indexed: 02/06/2023]
Abstract
The size of endocytic clathrin-coated vesicles (CCVs) is remarkably uniform, suggesting that it is optimized to achieve the appropriate levels of cargo and lipid internalization. The three most abundant proteins in mammalian endocytic CCVs are clathrin and the two cargo-selecting, clathrin adaptors, CALM and AP2. Here we demonstrate that depletion of CALM causes a substantial increase in the ratio of “open” clathrin-coated pits (CCPs) to “necked”/“closed” CCVs and a doubling of CCP/CCV diameter, whereas AP2 depletion has opposite effects. Depletion of either adaptor, however, significantly inhibits endocytosis of transferrin and epidermal growth factor. The phenotypic effects of CALM depletion can be rescued by re-expression of wild-type CALM, but not with CALM that lacks a functional N-terminal, membrane-inserting, curvature-sensing/driving amphipathic helix, the existence and properties of which are demonstrated. CALM is thus a major factor in controlling CCV size and maturation and hence in determining the rates of endocytic cargo uptake. CALM loss increases size and frequency of early endocytic clathrin-coated structures Depletion of CALM slows endocytic clathrin-coated pit maturation and endocytic rate CALM possesses an N-terminal, membrane-curvature-sensing/driving amphipathic helix Clathrin-coated pit maturation is regulated by CALM’s N-terminal amphipathic helix
Collapse
Affiliation(s)
- Sharon E Miller
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| | - Signe Mathiasen
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Nicholas A Bright
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Fabienne Pierre
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR3082 CNRS - Bat 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Bernard T Kelly
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK
| | - Nikolay Kladt
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Astrid Schauss
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christien J Merrifield
- Laboratoire d'Enzymologie et Biochimie Structurales, UPR3082 CNRS - Bat 34, Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Dimitrios Stamou
- Bionanotechnology and Nanomedicine Laboratory, Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100 Copenhagen, Denmark
| | - Stefan Höning
- Institute of Biochemistry I and Center for Molecular Medicine Cologne, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - David J Owen
- Cambridge Institute for Medical Research and Department of Clinical Biochemistry, University of Cambridge, Cambridge Biomedical Campus, Wellcome Trust/MRC Building, Hills Road, Cambridge CB2 0XY, UK.
| |
Collapse
|
53
|
Busch DJ, Houser JR, Hayden CC, Sherman MB, Lafer EM, Stachowiak JC. Intrinsically disordered proteins drive membrane curvature. Nat Commun 2015. [PMID: 26204806 PMCID: PMC4515776 DOI: 10.1038/ncomms8875] [Citation(s) in RCA: 184] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Assembly of highly curved membrane structures is essential to cellular physiology. The prevailing view has been that proteins with curvature-promoting structural motifs, such as wedge-like amphipathic helices and crescent-shaped BAR domains, are required for bending membranes. Here we report that intrinsically disordered domains of the endocytic adaptor proteins, Epsin1 and AP180 are highly potent drivers of membrane curvature. This result is unexpected since intrinsically disordered domains lack a well-defined three-dimensional structure. However, in vitro measurements of membrane curvature and protein diffusivity demonstrate that the large hydrodynamic radii of these domains generate steric pressure that drives membrane bending. When disordered adaptor domains are expressed as transmembrane cargo in mammalian cells, they are excluded from clathrin-coated pits. We propose that a balance of steric pressure on the two surfaces of the membrane drives this exclusion. These results provide quantitative evidence for the influence of steric pressure on the content and assembly of curved cellular membrane structures. Proteins that bend membranes often contain curvature-promoting structural motifs such as wedges or crescent-shaped domains. Busch et al. report that intrinsically disordered domains can also drive membrane curvature and provide evidence that steric pressure driven by protein crowding mediates this effect.
Collapse
Affiliation(s)
- David J Busch
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA
| | - Justin R Houser
- Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA
| | - Carl C Hayden
- 1] Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA [2] Sandia National Laboratories, 7011 East Avenue, Livermore, California 94550, USA
| | - Michael B Sherman
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, 1.224 Medical Research Building, Galveston, Texas 77555, USA
| | - Eileen M Lafer
- Department of Biochemistry and Center for Biomedical Neuroscience, The University of Texas Health Science Center at San Antonio, UTHSCSA Biochemistry 415B, 7703 Floyd Curl Drive, San Antonio, Texas 78229, USA
| | - Jeanne C Stachowiak
- 1] Department of Biomedical Engineering, The University of Texas at Austin, 107 W Dean Keeton, Austin, Texas 78712, USA [2] Institute for Cellular and Molecular Biology, The University of Texas at Austin, 107 W Dean, Keeton,Texas 78712, USA
| |
Collapse
|
54
|
Ross E, Ata R, Thavarajah T, Medvedev S, Bowden P, Marshall JG, Antonescu CN. AMP-Activated Protein Kinase Regulates the Cell Surface Proteome and Integrin Membrane Traffic. PLoS One 2015; 10:e0128013. [PMID: 26010094 PMCID: PMC4444004 DOI: 10.1371/journal.pone.0128013] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 04/21/2015] [Indexed: 12/11/2022] Open
Abstract
The cell surface proteome controls numerous cellular functions including cell migration and adhesion, intercellular communication and nutrient uptake. Cell surface proteins are controlled by acute changes in protein abundance at the plasma membrane through regulation of endocytosis and recycling (endomembrane traffic). Many cellular signals regulate endomembrane traffic, including metabolic signaling; however, the extent to which the cell surface proteome is controlled by acute regulation of endomembrane traffic under various conditions remains incompletely understood. AMP-activated protein kinase (AMPK) is a key metabolic sensor that is activated upon reduced cellular energy availability. AMPK activation alters the endomembrane traffic of a few specific proteins, as part of an adaptive response to increase energy intake and reduce energy expenditure. How increased AMPK activity during energy stress may globally regulate the cell surface proteome is not well understood. To study how AMPK may regulate the cell surface proteome, we used cell-impermeable biotinylation to selectively purify cell surface proteins under various conditions. Using ESI-MS/MS, we found that acute (90 min) treatment with the AMPK activator A-769662 elicits broad control of the cell surface abundance of diverse proteins. In particular, A-769662 treatment depleted from the cell surface proteins with functions in cell migration and adhesion. To complement our mass spectrometry results, we used other methods to show that A-769662 treatment results in impaired cell migration. Further, A-769662 treatment reduced the cell surface abundance of β1-integrin, a key cell migration protein, and AMPK gene silencing prevented this effect. While the control of the cell surface abundance of various proteins by A-769662 treatment was broad, it was also selective, as this treatment did not change the cell surface abundance of the transferrin receptor. Hence, the cell surface proteome is subject to acute regulation by treatment with A-769662, at least some of which is mediated by the metabolic sensor AMPK.
Collapse
Affiliation(s)
- Eden Ross
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Rehman Ata
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Thanusi Thavarajah
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Sergei Medvedev
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Peter Bowden
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - John G Marshall
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology, Ryerson University, 350 Victoria Street, Toronto, Ontario, M5B 2K3, Canada
| |
Collapse
|
55
|
McAdams RM, McPherson RJ, Beyer RP, Bammler TK, Farin FM, Juul SE. Dose-dependent effects of morphine exposure on mRNA and microRNA (miR) expression in hippocampus of stressed neonatal mice. PLoS One 2015; 10:e0123047. [PMID: 25844808 PMCID: PMC4386824 DOI: 10.1371/journal.pone.0123047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 02/18/2015] [Indexed: 12/02/2022] Open
Abstract
Morphine is used to sedate critically ill infants to treat painful or stressful conditions associated with intensive care. Whether neonatal morphine exposure affects microRNA (miR) expression and thereby alters mRNA regulation is unknown. We tested the hypothesis that repeated morphine treatment in stress-exposed neonatal mice alters hippocampal mRNA and miR expression. C57BL/6 male mice were treated from postnatal day (P) 5 to P9 with morphine sulfate at 2 or 5 mg/kg ip twice daily and then exposed to stress consisting of hypoxia (100% N2 1 min and 100% O2 5 min) followed by 2h maternal separation. Control mice were untreated and dam-reared. mRNA and miR expression profiling was performed on hippocampal tissues at P9. Overall, 2 and 5 mg/kg morphine treatment altered expression of a total of 150 transcripts (>1.5 fold change, P<0.05) from which 100 unique mRNAs were recognized (21 genes were up- and 79 genes were down-regulated), and 5 mg/kg morphine affected 63 mRNAs exclusively. The most upregulated mRNAs were fidgetin, arginine vasopressin, and resistin-like alpha, and the most down-regulated were defensin beta 11, aquaporin 1, calmodulin-like 4, chloride intracellular channel 6, and claudin 2. Gene Set Enrichment Analysis revealed that morphine treatment affected pathways related to cell cycle, membrane function, signaling, metabolism, cell death, transcriptional regulation, and immune response. Morphine decreased expression of miR-204-5p, miR-455-3p, miR-448-5p, and miR-574-3p. Nine morphine-responsive mRNAs that are involved in neurodevelopment, neurotransmission, and inflammation are predicted targets of the aforementioned differentially expressed miRs. These data establish that morphine produces dose-dependent changes in both hippocampal mRNA and miR expression in stressed neonatal mice. If permanent, morphine–mediated neuroepigenetic effects may affect long-term hippocampal function, and this provides a mechanism for the neonatal morphine-related impairment of adult learning.
Collapse
Affiliation(s)
- Ryan M. McAdams
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
- * E-mail:
| | - Ronald J. McPherson
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
| | - Richard P. Beyer
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Theo K. Bammler
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Frederico M. Farin
- Dept of Environmental & Occupational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - Sandra E. Juul
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
56
|
Au CE, Hermo L, Byrne E, Smirle J, Fazel A, Simon PHG, Kearney RE, Cameron PH, Smith CE, Vali H, Fernandez-Rodriguez J, Ma K, Nilsson T, Bergeron JJM. Expression, sorting, and segregation of Golgi proteins during germ cell differentiation in the testis. Mol Biol Cell 2015; 26:4015-32. [PMID: 25808494 PMCID: PMC4710233 DOI: 10.1091/mbc.e14-12-1632] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/19/2015] [Indexed: 12/14/2022] Open
Abstract
A total of 1318 proteins characterized in the male germ cell Golgi apparatus reveal a new germ cell–specific Golgi marker and a new pan-Golgi marker for all cells. The localization of these and other Golgi proteins reveals differential expression linked to mitosis, meiosis, acrosome formation, and postacrosome Golgi migration and destination in the late spermatid. The molecular basis of changes in structure, cellular location, and function of the Golgi apparatus during male germ cell differentiation is unknown. To deduce cognate Golgi proteins, we isolated germ cell Golgi fractions, and 1318 proteins were characterized, with 20 localized in situ. The most abundant protein, GL54D of unknown function, is characterized as a germ cell–specific Golgi-localized type II integral membrane glycoprotein. TM9SF3, also of unknown function, was revealed to be a universal Golgi marker for both somatic and germ cells. During acrosome formation, several Golgi proteins (GBF1, GPP34, GRASP55) localize to both the acrosome and Golgi, while GL54D, TM9SF3, and the Golgi trafficking protein TMED7/p27 are segregated from the acrosome. After acrosome formation, GL54D, TM9SF3, TMED4/p25, and TMED7/p27 continue to mark Golgi identity as it migrates away from the acrosome, while the others (GBF1, GPP34, GRASP55) remain in the acrosome and are progressively lost in later steps of differentiation. Cytoplasmic HSP70.2 and the endoplasmic reticulum luminal protein-folding enzyme PDILT are also Golgi recruited but only during acrosome formation. This resource identifies abundant Golgi proteins that are expressed differentially during mitosis, meiosis, and postacrosome Golgi migration, including the last step of differentiation.
Collapse
Affiliation(s)
- Catherine E Au
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Louis Hermo
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Elliot Byrne
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Jeffrey Smirle
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Ali Fazel
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Paul H G Simon
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Robert E Kearney
- Department of Biomedical Engineering Department, McGill University, Montreal, QC H3A 2B4, Canada
| | - Pamela H Cameron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Charles E Smith
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Hojatollah Vali
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada
| | - Julia Fernandez-Rodriguez
- Centre for Cellular Imaging, Sahlgrenska Academy, University of Gothenburg, 405 30 Gothenburg, Sweden
| | - Kewei Ma
- Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - Tommy Nilsson
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| | - John J M Bergeron
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC H3A 0C7, Canada Division of Endocrinology and Metabolism, McGill University Health Centre Research Institute, Montreal, QC H3A 1A1, Canada
| |
Collapse
|
57
|
Kononenko N, Haucke V. Molecular Mechanisms of Presynaptic Membrane Retrieval and Synaptic Vesicle Reformation. Neuron 2015; 85:484-96. [DOI: 10.1016/j.neuron.2014.12.016] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
58
|
Borner GHH, Fielding AB. Isolation of clathrin-coated vesicles from tissue culture cells. Cold Spring Harb Protoc 2014; 2014:1136-1138. [PMID: 25368317 DOI: 10.1101/pdb.top074435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The study of clathrin-coated vesicles (CCVs) isolated from various organs has revealed the identities and important features of many of the factors involved in membrane trafficking. The development of isolation methods using cultured cell lines has made it possible to manipulate the source material before isolation to ask important questions about the roles of these factors and the pathways in which they are involved. We discuss here the advantages and limitations of the use of cultured cell lines for the isolation of CCVs.
Collapse
Affiliation(s)
- Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Plank Institute of Biochemistry, 82152 Martinsried, Germany
| | - Andrew B Fielding
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
59
|
Ramirez DMO, Kavalali ET. The role of non-canonical SNAREs in synaptic vesicle recycling. CELLULAR LOGISTICS 2014; 2:20-27. [PMID: 22645707 PMCID: PMC3355972 DOI: 10.4161/cl.20114] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
An increasing number of studies suggest that distinct pools of synaptic vesicles drive specific forms of neurotransmission. Interspersed with these functional studies are analyses of the synaptic vesicle proteome which have consistently detected the presence of so-called “non-canonical” SNAREs that typically function in fusion and trafficking of other subcellular structures within the neuron. The recent identification of certain non-canonical vesicular SNAREs driving spontaneous (e.g., VAMP7 and vti1a) or evoked asynchronous (e.g., VAMP4) release integrates and corroborates existing data from functional and proteomic studies and implies that at least some complement of non-canonical SNAREs resident on synaptic vesicles function in neurotransmission. Here, we discuss the specific roles in neurotransmission of proteins homologous to each member of the classical neuronal SNARE complex consisting of synaptobrevin2, syntaxin-1 and SNAP-25.
Collapse
|
60
|
Borner GHH, Hein MY, Hirst J, Edgar JR, Mann M, Robinson MS. Fractionation profiling: a fast and versatile approach for mapping vesicle proteomes and protein-protein interactions. Mol Biol Cell 2014; 25:3178-94. [PMID: 25165137 PMCID: PMC4196868 DOI: 10.1091/mbc.e14-07-1198] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 08/06/2014] [Accepted: 08/07/2014] [Indexed: 01/06/2023] Open
Abstract
We developed "fractionation profiling," a method for rapid proteomic analysis of membrane vesicles and protein particles. The approach combines quantitative proteomics with subcellular fractionation to generate signature protein abundance distribution profiles. Functionally associated groups of proteins are revealed through cluster analysis. To validate the method, we first profiled >3500 proteins from HeLa cells and identified known clathrin-coated vesicle proteins with >90% accuracy. We then profiled >2400 proteins from Drosophila S2 cells, and we report the first comprehensive insect clathrin-coated vesicle proteome. Of importance, the cluster analysis extends to all profiled proteins and thus identifies a diverse range of known and novel cytosolic and membrane-associated protein complexes. We show that it also allows the detailed compositional characterization of complexes, including the delineation of subcomplexes and subunit stoichiometry. Our predictions are presented in an interactive database. Fractionation profiling is a universal method for defining the clathrin-coated vesicle proteome and may be adapted for the analysis of other types of vesicles and particles. In addition, it provides a versatile tool for the rapid generation of large-scale protein interaction maps.
Collapse
Affiliation(s)
- Georg H H Borner
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Jennifer Hirst
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - James R Edgar
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Margaret S Robinson
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge CB2 0XY, United Kingdom
| |
Collapse
|
61
|
Caterino M, Aspesi A, Pavesi E, Imperlini E, Pagnozzi D, Ingenito L, Santoro C, Dianzani I, Ruoppolo M. Analysis of the interactome of ribosomal protein S19 mutants. Proteomics 2014; 14:2286-96. [DOI: 10.1002/pmic.201300513] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 06/16/2014] [Accepted: 07/24/2014] [Indexed: 02/03/2023]
Affiliation(s)
| | - Anna Aspesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Elisa Pavesi
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | | | | | | | - Claudio Santoro
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Irma Dianzani
- Department of Health Sciences; Università del Piemonte Orientale; Novara Italy
| | - Margherita Ruoppolo
- CEINGE Biotecnologie Avanzate scarl; Napoli Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche; Universita’ di Napoli “Federico II”; Napoli Italy
| |
Collapse
|
62
|
Abstract
Genetic and pathological studies link α-synuclein to the etiology of Parkinson's disease (PD), but the normal function of this presynaptic protein remains unknown. α-Synuclein, an acidic lipid binding protein, shares high sequence identity with β- and γ-synuclein. Previous studies have implicated synucleins in synaptic vesicle (SV) trafficking, although the precise site of synuclein action continues to be unclear. Here we show, using optical imaging, electron microscopy, and slice electrophysiology, that synucleins are required for the fast kinetics of SV endocytosis. Slowed endocytosis observed in synuclein null cultures can be rescued by individually expressing mouse α-, β-, or γ-synuclein, indicating they are functionally redundant. Through comparisons to dynamin knock-out synapses and biochemical experiments, we suggest that synucleins act at early steps of SV endocytosis. Our results categorize α-synuclein with other familial PD genes known to regulate SV endocytosis, implicating this pathway in PD.
Collapse
|
63
|
Nández R, Balkin DM, Messa M, Liang L, Paradise S, Czapla H, Hein MY, Duncan JS, Mann M, De Camilli P. A role of OCRL in clathrin-coated pit dynamics and uncoating revealed by studies of Lowe syndrome cells. eLife 2014; 3:e02975. [PMID: 25107275 PMCID: PMC4358339 DOI: 10.7554/elife.02975] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/07/2014] [Indexed: 12/15/2022] Open
Abstract
Mutations in the inositol 5-phosphatase OCRL cause Lowe syndrome and Dent's disease. Although OCRL, a direct clathrin interactor, is recruited to late-stage clathrin-coated pits, clinical manifestations have been primarily attributed to intracellular sorting defects. Here we show that OCRL loss in Lowe syndrome patient fibroblasts impacts clathrin-mediated endocytosis and results in an endocytic defect. These cells exhibit an accumulation of clathrin-coated vesicles and an increase in U-shaped clathrin-coated pits, which may result from sequestration of coat components on uncoated vesicles. Endocytic vesicles that fail to lose their coat nucleate the majority of the numerous actin comets present in patient cells. SNX9, an adaptor that couples late-stage endocytic coated pits to actin polymerization and which we found to bind OCRL directly, remains associated with such vesicles. These results indicate that OCRL acts as an uncoating factor and that defects in clathrin-mediated endocytosis likely contribute to pathology in patients with OCRL mutations. DOI:http://dx.doi.org/10.7554/eLife.02975.001 Oculo-Cerebro-Renal syndrome of Lowe (Lowe syndrome) is a rare genetic disorder that can cause cataracts, mental disabilities and kidney dysfunction. It is caused by mutations in the gene encoding OCRL, a protein that modifies a membrane lipid and that is found on membranes transporting molecules (cargo) into cells by a process known as endocytosis. During endocytosis, the cell outer membrane is deformed into a pit that engulfs the cargo to be taken up by the cell. The pit then pinches off from the outer membrane to form a vesicle—a bubble-like compartment—inside the cell that transports the cargo to its destination. In one type of endocytosis, this process is mediated by a basket-like coat primarily made up from the protein clathrin that assembles at the membrane patch to be internalized. After the vesicle is released from the cell membrane, the clathrin coat is broken apart and its components are shed and recycled for use by new budding endocytic vesicles. The OCRL protein had previously been observed associated to newly forming clathrin-coated vesicles, but the significance of this was not known. Now, Nández et al. have used a range of imaging and analytical techniques to further investigate the properties of OCRL, taking advantage of cells from patients with Lowe syndrome. These cells lack OCRL, and so allow the effect of OCRL's absence on cell function to be deduced. OCRL destroys the membrane lipid that helps to connect the clathrin coat to the membrane, and Nández et al. show that without OCRL the newly formed vesicle moves into the cell but fails to efficiently shed its clathrin coat. Thus, a large fraction of clathrin coat components remain trapped on the vesicles, reducing the amount of such components available to help new pits develop into vesicles. As a consequence, the cell has difficulty internalizing molecules. Collectively, the findings of Nández et al. outline that OCRL plays a role in the regulation of endocytosis in addition to its previously reported actions in the control of intracellular membrane traffic. The results also help to explain some of the symptoms seen in Lowe syndrome patients. DOI:http://dx.doi.org/10.7554/eLife.02975.002
Collapse
Affiliation(s)
- Ramiro Nández
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Daniel M Balkin
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Mirko Messa
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Liang Liang
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Summer Paradise
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Heather Czapla
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| | - Marco Y Hein
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - James S Duncan
- Department of Diagnostic Radiology, Yale University School of Medicine, New Haven, United States
| | - Matthias Mann
- Department of Proteomics and Signal Transduction, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Pietro De Camilli
- Department of Cell Biology, Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, United States
| |
Collapse
|
64
|
Abstract
Extracellular molecular cues guide migrating growth cones along specific routes during development of axon tracts. Such processes rely on asymmetric elevation of cytosolic Ca(2+) concentrations across the growth cone that mediates its attractive or repulsive turning toward or away from the side with Ca(2+) elevation, respectively. Downstream of these Ca(2+) signals, localized activation of membrane trafficking steers the growth cone bidirectionally, with endocytosis driving repulsion and exocytosis causing attraction. However, it remains unclear how Ca(2+) can differentially regulate these opposite membrane-trafficking events. Here, we show that growth cone turning depends on localized imbalance between exocytosis and endocytosis and identify Ca(2+)-dependent signaling pathways mediating such imbalance. In embryonic chicken dorsal root ganglion neurons, repulsive Ca(2+) signals promote clathrin-mediated endocytosis through a 90 kDa splice variant of phosphatidylinositol-4-phosphate 5-kinase type-1γ (PIPKIγ90). In contrast, attractive Ca(2+) signals facilitate exocytosis but suppress endocytosis via Ca(2+)/calmodulin-dependent protein kinase II (CaMKII) and cyclin-dependent kinase 5 (Cdk5) that can inactivate PIPKIγ90. Blocking CaMKII or Cdk5 leads to balanced activation of both exocytosis and endocytosis that causes straight growth cone migration even in the presence of guidance signals, whereas experimentally perturbing the balance restores the growth cone's turning response. Remarkably, the direction of this resumed turning depends on relative activities of exocytosis and endocytosis, but not on the type of guidance signals. Our results suggest that navigating growth cones can be redirected by shifting the imbalance between exocytosis and endocytosis, highlighting the importance of membrane-trafficking imbalance for axon guidance and, possibly, for polarized cell migration in general.
Collapse
|
65
|
Kirchhausen T, Owen D, Harrison SC. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb Perspect Biol 2014; 6:a016725. [PMID: 24789820 DOI: 10.1101/cshperspect.a016725] [Citation(s) in RCA: 333] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Clathrin is a molecular scaffold for vesicular uptake of cargo at the plasma membrane, where its assembly into cage-like lattices underlies the clathrin-coated pits of classical endocytosis. This review describes the structures of clathrin, major cargo adaptors, and other proteins that participate in forming a clathrin-coated pit, loading its contents, pinching off the membrane as a lattice-enclosed vesicle, and recycling the components. It integrates as much of the structural information as possible at the time of writing into a sketch of the principal steps in coated-pit and coated-vesicle formation.
Collapse
Affiliation(s)
- Tom Kirchhausen
- Department of Cell Biology, Harvard Medical School/PCMM, Boston, Massachusetts 02115
| | | | | |
Collapse
|
66
|
Barth J, Volknandt W. Proteomic investigations of the synaptic vesicle interactome. Expert Rev Proteomics 2014; 8:211-20. [DOI: 10.1586/epr.11.7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
67
|
Tribl F, Meyer HE, Marcus K. Analysis of organelles within the nervous system: impact on brain and organelle functions. Expert Rev Proteomics 2014; 5:333-51. [DOI: 10.1586/14789450.5.2.333] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
68
|
Wu L, Han DK. Overcoming the dynamic range problem in mass spectrometry-based shotgun proteomics. Expert Rev Proteomics 2014; 3:611-9. [PMID: 17181475 DOI: 10.1586/14789450.3.6.611] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Protein profiling using mass spectrometry technology has emerged as a powerful method for analyzing large-scale protein-expression patterns in cells and tissues. However, a number of challenges are present in proteomics research, one of the greatest being the high degree of protein complexity and huge dynamic range of proteins expressed in the complex biological mixtures, which exceeds six orders of magnitude in cells and ten orders of magnitude in body fluids. Since many important signaling proteins have low expression levels, methods to detect the low-abundance proteins in a complex sample are required. This review will focus on the fundamental fractionation and mass spectrometry techniques currently used for large-scale shotgun proteomics research.
Collapse
Affiliation(s)
- Linfeng Wu
- University of Connecticut, School of Medicine, Department of Cell Biology, Farmington, Connecticut, CT 06030, USA.
| | | |
Collapse
|
69
|
Alazami AM, Hijazi H, Kentab AY, Alkuraya FS. NECAP1 loss of function leads to a severe infantile epileptic encephalopathy. J Med Genet 2014; 51:224-8. [PMID: 24399846 DOI: 10.1136/jmedgenet-2013-102030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Epileptic encephalopathy is a broad clinical category that is highly heterogeneous genetically. OBJECTIVE To describe a multiplex extended consanguineous family that defines a molecularly novel subtype of early infantile epileptic encephalopathy. METHODS Autozygosity mapping and exome sequencing for the identification of the causal mutation. This was followed by expression analysis of the candidate gene. RESULTS In an extended multigenerational family with six affected individuals, a single novel disease locus was identified on chromosome 12p13.31-p13.2. Within that locus, the only deleterious novel exomic variant was a homozygous truncating mutation in NECAP1, encoding a clathrin-accessory protein. The mutation was confirmed to trigger nonsense-mediated decay. Consistent with previous reports, we show that NECAP1 is highly enriched in the central nervous system. CONCLUSIONS NECAP1 is known to regulate clathrin-mediated endocytosis in synapses. The mutation we report here links for the first time this trafficking pathway in early infantile epileptic encephalopathy.
Collapse
Affiliation(s)
- Anas M Alazami
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | | | | | | |
Collapse
|
70
|
Abstract
Many cellular membrane-bound structures exhibit distinct curvature that is driven by the physical properties of their lipid and protein constituents. Here we review how cells manipulate and control this curvature in the context of dynamic events such as vesicle-mediated membrane traffic. Lipids and cargo proteins each contribute energy barriers that must be overcome during vesicle formation. In contrast, protein coats and their associated accessory proteins drive membrane bending using a variety of interdependent physical mechanisms. We survey the energy costs and drivers involved in membrane curvature, and draw a contrast between the stochastic contributions of molecular crowding and the deterministic assembly of protein coats. These basic principles also apply to other cellular examples of membrane bending events, including important disease-related problems such as viral egress.
Collapse
|
71
|
Ritter B, Murphy S, Dokainish H, Girard M, Gudheti MV, Kozlov G, Halin M, Philie J, Jorgensen EM, Gehring K, McPherson PS. NECAP 1 regulates AP-2 interactions to control vesicle size, number, and cargo during clathrin-mediated endocytosis. PLoS Biol 2013; 11:e1001670. [PMID: 24130457 PMCID: PMC3794858 DOI: 10.1371/journal.pbio.1001670] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2013] [Accepted: 08/19/2013] [Indexed: 12/03/2022] Open
Abstract
The endocytic protein NECAP 1 cooperates with the endocytic adapter protein AP-2 to modulate interactions with accessory proteins and clathrin and to control the size, number, and cargo content of clathrin-coated vesicles. AP-2 is the core-organizing element in clathrin-mediated endocytosis. During the formation of clathrin-coated vesicles, clathrin and endocytic accessory proteins interact with AP-2 in a temporally and spatially controlled manner, yet it remains elusive as to how these interactions are regulated. Here, we demonstrate that the endocytic protein NECAP 1, which binds to the α-ear of AP-2 through a C-terminal WxxF motif, uses an N-terminal PH-like domain to compete with clathrin for access to the AP-2 β2-linker, revealing a means to allow AP-2–mediated coordination of accessory protein recruitment and clathrin polymerization at sites of vesicle formation. Knockdown and functional rescue studies demonstrate that through these interactions, NECAP 1 and AP-2 cooperate to increase the probability of clathrin-coated vesicle formation and to control the number, size, and cargo content of the vesicles. Together, our data demonstrate that NECAP 1 modulates the AP-2 interactome and reveal a new layer of organizational control within the endocytic machinery. Clathrin-mediated endocytosis is the major entry portal for cargo molecules such as nutrient and signaling receptors in eukaryotic cells. Generation of clathrin-coated vesicles involves a complex protein machinery that both deforms the membrane to generate a vesicle and selects appropriate cargo. The endocytic machinery is formed around the core endocytic adapter protein AP-2, which recruits clathrin and numerous accessory proteins to the site of vesicle formation in a temporally and spatially controlled manner. Yet it remains elusive as to how these interactions are regulated to ensure efficient vesicle formation. Here we identify the endocytic protein NECAP 1 as a modulator of AP-2 interactions. We show that NECAP 1 and AP-2 form two functionally distinct complexes. In the first, NECAP 1 binds to two sites on AP-2 in such a manner as to limit accessory protein binding to AP-2. Recruitment of clathrin to vesicle formation sites displaces NECAP 1 from one of these sites, leading to the formation of a second complex in which NECAP 1 and AP-2 cooperate for efficient accessory protein recruitment. Through these interactions, NECAP 1 fine-tunes AP-2 function and the two proteins cooperate to increase the probability that a vesicle will form and to determine the size and cargo content of the resulting vesicle.
Collapse
Affiliation(s)
- Brigitte Ritter
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail: (BR); (PSM)
| | - Sebastian Murphy
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Hatem Dokainish
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Martine Girard
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Manasa V. Gudheti
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
- Vutara, Inc., Salt Lake City, Utah, United States of America
| | - Guennadi Kozlov
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Marilene Halin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Jacynthe Philie
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Erik M. Jorgensen
- Howard Hughes Medical Institute, Department of Biology, University of Utah, Salt Lake City, Utah, United States of America
| | - Kalle Gehring
- Department of Biochemistry, Groupe de Recherche Axé sur la Structure des Protéines, McGill University, Montreal, Quebec, Canada
| | - Peter S. McPherson
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
- * E-mail: (BR); (PSM)
| |
Collapse
|
72
|
Muthukumar M, Nossal R. Micellization model for the polymerization of clathrin baskets. J Chem Phys 2013; 139:121928. [PMID: 24089740 PMCID: PMC3785534 DOI: 10.1063/1.4816634] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Accepted: 07/11/2013] [Indexed: 12/20/2022] Open
Abstract
A thermodynamic model is used to investigate the conditions under which clathrin triskelions form polyhedral baskets. The analysis, which is similar to classical methods used to study micelle formation, relates clathrin basket energetics to system parameters linked to triskelial rigidity, the natural curvature of an isolated triskelion, and interactions between triskelial legs in the assembled polyhedra. Mathematical theory predicts that a minimal ("critical") clathrin concentration, C(C), needs to be surpassed in order for basket polymerization to occur, and indicates how C(C), and the amount of polymerized material, depend on the chosen parameters. Analytical expressions are obtained to indicate how changes in the parameters affect the sizes of the polyhedra which arise when the total clathrin concentration exceeds C(C). A continuum analytic approximation then is used to produce numerical results that illustrate the derived dependences.
Collapse
Affiliation(s)
- M Muthukumar
- Polymer Science and Engineering Department, Physics Department, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | |
Collapse
|
73
|
Abstract
The defining motor characteristics of Parkinson's disease (PD) are mediated by the neurotransmitter dopamine (DA). Dopamine molecules spend most of their lifespan stored in intracellular vesicles awaiting release and very little time in the extracellular space or the cytosol. Without proper packaging of transmitter and trafficking of vesicles to the active zone, dopamine neurotransmission cannot occur. In the cytosol, dopamine is readily oxidized; excessive cytosolic dopamine oxidation may be pathogenic to nigral neurons in PD. Thus, factors that disrupt vesicular function may impair signaling and increase the vulnerability of dopamine neurons. This review outlines the many mechanisms by which disruption of vesicular function may contribute to the pathogenesis of PD. From direct inhibition of dopamine transport into vesicles by pharmacological or toxicological agents to alterations in vesicle trafficking by PD-related gene products, variations in the proper compartmentalization of dopamine can wreak havoc on a functional dopamine pathway. Findings from patient populations, imaging studies, transgenic models, and mechanistic studies will be presented to document the relationship between impaired vesicular function and vulnerability of the nigrostriatal dopamine system. Given the deleterious effects of impaired vesicular function, strategies aimed at enhancing vesicular function may be beneficial in the treatment of PD.
Collapse
Affiliation(s)
- Shawn P. Alter
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gina M. Lenzi
- Department of Biochemistry, School of Medicine, Emory University, Atlanta, GA, USA
| | - Alison I. Bernstein
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Gary W. Miller
- Department of Neurology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Pharmacology, School of Medicine, Emory University, Atlanta, GA, USA. Department of Environmental Health, Rollins School of Public Health, Claudia Nance Rollins Bldg, Room 8007, 1518 Clifton Road, NE, Atlanta, GA 30322, USA
| |
Collapse
|
74
|
Li H, Alavian KN, Lazrove E, Mehta N, Jones A, Zhang P, Licznerski P, Graham M, Uo T, Guo J, Rahner C, Duman RS, Morrison RS, Jonas EA. A Bcl-xL-Drp1 complex regulates synaptic vesicle membrane dynamics during endocytosis. Nat Cell Biol 2013; 15:773-85. [PMID: 23792689 PMCID: PMC3725990 DOI: 10.1038/ncb2791] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 05/20/2013] [Indexed: 02/06/2023]
Abstract
Following exocytosis, the rate of recovery of neurotransmitter release is determined by vesicle retrieval from the plasma membrane and by recruitment of vesicles from reserve pools within the synapse, the latter of which is dependent on mitochondrial ATP. The Bcl-2 family protein Bcl-xL, in addition to its role in cell death, regulates neurotransmitter release and recovery in part by increasing ATP availability from mitochondria. We now find, however, that, Bcl-xL directly regulates endocytotic vesicle retrieval in hippocampal neurons through protein/protein interaction with components of the clathrin complex. Our evidence suggests that, during synaptic stimulation, Bcl-xL translocates to clathrin-coated pits in a calmodulin-dependent manner and forms a complex of proteins with the GTPase Drp1, Mff and clathrin. Depletion of Drp1 produces misformed endocytotic vesicles. Mutagenesis studies suggest that formation of the Bcl-xL-Drp1 complex is necessary for the enhanced rate of vesicle endocytosis produced by Bcl-xL, thus providing a mechanism for presynaptic plasticity.
Collapse
Affiliation(s)
- Hongmei Li
- Department of Internal Medicine, Yale University, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Garrison AR, Radoshitzky SR, Kota KP, Pegoraro G, Ruthel G, Kuhn JH, Altamura LA, Kwilas SA, Bavari S, Haucke V, Schmaljohn CS. Crimean-Congo hemorrhagic fever virus utilizes a clathrin- and early endosome-dependent entry pathway. Virology 2013; 444:45-54. [PMID: 23791227 DOI: 10.1016/j.virol.2013.05.030] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 02/21/2013] [Accepted: 05/21/2013] [Indexed: 11/17/2022]
Abstract
The early events in Crimean-Congo hemorrhagic fever virus (CCHFV) have not been completely characterized. Earlier work indicated that CCHFV likely enters cells by clathrin-mediated endocytosis (CME). Here we provide confirmatory evidence for CME entry by showing that CCHFV infection is inhibited in cells treated with Pitstop 2, a drug that specifically and reversibly interferes with the dynamics of clathrin-coated pits. Additionally, we show that CCHFV infection is inhibited by siRNA depletion of the clathrin pit associated protein AP-2. Following CME entry, we show that CCHFV has a pH-dependent entry step, with virus inactivation occurring at pH 6.0 and below. To more precisely define the endosomal trafficking of CCHFV, we show for the first time that overexpression of the dominant negative forms of Rab5 protein but not Rab7 protein inhibits CCHFV infection. These results indicate that CCHFV likely enters cells through the early endosomal compartment.
Collapse
Affiliation(s)
- Aura R Garrison
- United States Army Medical Research Institute of Infectious Diseases, 1425 Porter Street, Fort Detrick, Maryland, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Zlatic SA, Grossniklaus EJ, Ryder PV, Salazar G, Mattheyses AL, Peden AA, Faundez V. Chemical-genetic disruption of clathrin function spares adaptor complex 3-dependent endosome vesicle biogenesis. Mol Biol Cell 2013; 24:2378-88. [PMID: 23761069 PMCID: PMC3727930 DOI: 10.1091/mbc.e12-12-0860] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Clathrin–AP-3 association is dispensable for AP-3 vesicle budding from endosomes, which suggests that AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis. A role for clathrin in AP-3–dependent vesicle biogenesis has been inferred from biochemical interactions and colocalization between this adaptor and clathrin. The functionality of these molecular associations, however, is controversial. We comprehensively explore the role of clathrin in AP-3–dependent vesicle budding, using rapid chemical-genetic perturbation of clathrin function with a clathrin light chain–FKBP chimera oligomerizable by the drug AP20187. We find that AP-3 interacts and colocalizes with endogenous and recombinant FKBP chimeric clathrin polypeptides in PC12-cell endosomes. AP-3 displays, however, a divergent behavior from AP-1, AP-2, and clathrin chains. AP-3 cofractionates with clathrin-coated vesicle fractions isolated from PC12 cells even after clathrin function is acutely inhibited by AP20187. We predicted that AP20187 would inhibit AP-3 vesicle formation from endosomes after a brefeldin A block. AP-3 vesicle formation continued, however, after brefeldin A wash-out despite impairment of clathrin function by AP20187. These findings indicate that AP-3–clathrin association is dispensable for endosomal AP-3 vesicle budding and suggest that endosomal AP-3–clathrin interactions differ from those by which AP-1 and AP-2 adaptors productively engage clathrin in vesicle biogenesis.
Collapse
|
77
|
Heymann JB, Winkler DC, Yim YI, Eisenberg E, Greene LE, Steven AC. Clathrin-coated vesicles from brain have small payloads: a cryo-electron tomographic study. J Struct Biol 2013; 184:43-51. [PMID: 23688956 DOI: 10.1016/j.jsb.2013.05.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 04/25/2013] [Accepted: 05/09/2013] [Indexed: 02/02/2023]
Abstract
Clathrin coats, which stabilize membrane curvature during endocytosis and vesicular trafficking, form highly polymorphic fullerene lattices. We used cryo-electron tomography to visualize coated particles in isolates from bovine brain. The particles range from ∼66 to ∼134nm in diameter, and only 20% of them (all ⩾80nm) contain vesicles. The remaining 80% are clathrin "baskets", presumably artifactual assembly products. Polyhedral models were built for 54 distinct coat geometries. In true coated vesicles (CVs), most vesicles are offset to one side, leaving a crescent of interstitial space between the coat and the membrane for adaptor proteins and other components. The latter densities are fewer on the membrane-proximal side, which may represent the last part of the vesicle to bud off. A small number of densities - presumably cargo proteins - are associated with the interior surface of the vesicles. The clathrin coat, adaptor proteins, and vesicle membrane contribute almost all of the mass of a CV, with most cargoes accounting for only a few percent. The assembly of a CV therefore represents a massive biosynthetic effort to internalize a relatively diminutive payload. Such a high investment may be needed to overcome the resistance of membranes to high curvature.
Collapse
Affiliation(s)
- J Bernard Heymann
- Laboratory of Structural Biology Research, National Institute of Arthritis, Musculoskeletal and Skin Diseases, Bethesda, MD 20892, United States.
| | | | | | | | | | | |
Collapse
|
78
|
Morgan JR, Jiang J, Oliphint PA, Jin S, Gimenez LE, Busch DJ, Foldes AE, Zhuo Y, Sousa R, Lafer EM. A role for an Hsp70 nucleotide exchange factor in the regulation of synaptic vesicle endocytosis. J Neurosci 2013; 33:8009-21. [PMID: 23637191 PMCID: PMC3707978 DOI: 10.1523/jneurosci.4505-12.2013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Revised: 03/20/2013] [Accepted: 03/29/2013] [Indexed: 12/28/2022] Open
Abstract
Neurotransmission requires a continuously available pool of synaptic vesicles (SVs) that can fuse with the plasma membrane and release their neurotransmitter contents upon stimulation. After fusion, SV membranes and membrane proteins are retrieved from the presynaptic plasma membrane by clathrin-mediated endocytosis. After the internalization of a clathrin-coated vesicle, the vesicle must uncoat to replenish the pool of SVs. Clathrin-coated vesicle uncoating requires ATP and is mediated by the ubiquitous molecular chaperone Hsc70. In vitro, depolymerized clathrin forms a stable complex with Hsc70*ADP. This complex can be dissociated by nucleotide exchange factors (NEFs) that release ADP from Hsc70, allowing ATP to bind and induce disruption of the clathrin:Hsc70 association. Whether NEFs generally play similar roles in vesicle trafficking in vivo and whether they play such roles in SV endocytosis in particular is unknown. To address this question, we used information from recent structural and mechanistic studies of Hsp70:NEF and Hsp70:co-chaperone interactions to design a NEF inhibitor. Using acute perturbations at giant reticulospinal synapses of the sea lamprey (Petromyzon marinus), we found that this NEF inhibitor inhibited SV endocytosis. When this inhibitor was mutated so that it could no longer bind and inhibit Hsp110 (a NEF that we find to be highly abundant in brain cytosol), its ability to inhibit SV endocytosis was eliminated. These observations indicate that the action of a NEF, most likely Hsp110, is normally required during SV trafficking to release clathrin from Hsc70 and make it available for additional rounds of endocytosis.
Collapse
Affiliation(s)
- Jennifer R. Morgan
- Eugene Bell Center for Regenerative Biology and Tissue Engineering, Marine Biological Laboratory, Woods Hole, Massachusetts 02543
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Jianwen Jiang
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78212
| | - Paul A. Oliphint
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Suping Jin
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78212
| | - Luis E. Gimenez
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78212
| | - David J. Busch
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Andrea E. Foldes
- Section of Molecular Cell and Developmental Biology, Institute for Cell and Molecular Biology, Institute for Neuroscience, University of Texas at Austin, Austin, Texas 78712, and
| | - Yue Zhuo
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78212
| | - Rui Sousa
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78212
| | - Eileen M. Lafer
- Department of Biochemistry and Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78212
| |
Collapse
|
79
|
Bell C, Desjardins M, Thibault P, Radtke K. Proteomics analysis of herpes simplex virus type 1-infected cells reveals dynamic changes of viral protein expression, ubiquitylation, and phosphorylation. J Proteome Res 2013; 12:1820-9. [PMID: 23418649 DOI: 10.1021/pr301157j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Herpesviruses are among the most complex and widespread human viruses and cause a number of diseases ranging from cold sores to genital infections and encephalitis. While the composition of viral particles has been studied, less is known about the expression of the whole viral proteome in infected cells. Here, we analyzed the proteome of the prototypical Herpes Simplex Virus type 1 (HSV1) in infected cells by mass spectrometry. Using a high sensitivity LTQ-Orbitrap, we achieved a very high level of protein coverage and identified a total of 67 structural and nonstructural viral proteins. We also identified 90 novel phosphorylation sites and 10 novel ubiquitylation sites on different viral proteins. Ubiquitylation was observed on nine HSV1 proteins. We identified phosphorylation sites on about half of the detected viral proteins; many of the highly phosphorylated ones are known to regulate gene expression. Treatment with inhibitors of DNA replication induced changes of both viral protein abundance and modifications, highlighting the interdependence of viral proteins during the life cycle. Given the importance of expression dynamics, ubiquitylation, and phosphorylation for protein function, these findings will serve as important tools for future studies on herpesvirus biology.
Collapse
Affiliation(s)
- Christina Bell
- Département de Chimie, ‡Proteomics and Mass Spectrometry Research Unit, Institute for Research in Immunology and Cancer, and §Département de Pathologie et Biologie Cellulaire, Université de Montréal, C.P. 6128-Succursale Centre-Ville, Montréal, Québec H3C 3J7, Canada
| | | | | | | |
Collapse
|
80
|
Jin AJ, Lafer EM, Peng JQ, Smith PD, Nossal R. Unraveling protein-protein interactions in clathrin assemblies via atomic force spectroscopy. Methods 2013; 59:316-27. [PMID: 23270814 PMCID: PMC3608793 DOI: 10.1016/j.ymeth.2012.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 12/08/2012] [Accepted: 12/14/2012] [Indexed: 01/14/2023] Open
Abstract
Atomic force microscopy (AFM), single molecule force spectroscopy (SMFS), and single particle force spectroscopy (SPFS) are used to characterize intermolecular interactions and domain structures of clathrin triskelia and clathrin-coated vesicles (CCVs). The latter are involved in receptor-mediated endocytosis (RME) and other trafficking pathways. Here, we subject individual triskelia, bovine-brain CCVs, and reconstituted clathrin-AP180 coats to AFM-SMFS and AFM-SPFS pulling experiments and apply novel analytics to extract force-extension relations from very large data sets. The spectroscopic fingerprints of these samples differ markedly, providing important new information about the mechanism of CCV uncoating. For individual triskelia, SMFS reveals a series of events associated with heavy chain alpha-helix hairpin unfolding, as well as cooperative unraveling of several hairpin domains. SPFS of clathrin assemblies exposes weaker clathrin-clathrin interactions that are indicative of inter-leg association essential for RME and intracellular trafficking. Clathrin-AP180 coats are energetically easier to unravel than the coats of CCVs, with a non-trivial dependence on force-loading rate.
Collapse
Affiliation(s)
- Albert J Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, DHHS, Bethesda, MD 20892, United States.
| | | | | | | | | |
Collapse
|
81
|
Smirle J, Au CE, Jain M, Dejgaard K, Nilsson T, Bergeron J. Cell biology of the endoplasmic reticulum and the Golgi apparatus through proteomics. Cold Spring Harb Perspect Biol 2013; 5:a015073. [PMID: 23284051 DOI: 10.1101/cshperspect.a015073] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Enriched endoplasmic reticulum (ER) and Golgi membranes subjected to mass spectrometry have uncovered over a thousand different proteins assigned to the ER and Golgi apparatus of rat liver. This, in turn, led to the uncovering of several hundred proteins of poorly understood function and, through hierarchical clustering, showed that proteins distributed in patterns suggestive of microdomains in cognate organelles. This has led to new insights with respect to their intracellular localization and function. Another outcome has been the critical testing of the cisternal maturation hypothesis showing overwhelming support for a predominant role of COPI vesicles in the transport of resident proteins of the ER and Golgi apparatus (as opposed to biosynthetic cargo). Here we will discuss new insights gained and also highlight new avenues undertaken to further explore the cell biology of the ER and the Golgi apparatus through tandem mass spectrometry.
Collapse
Affiliation(s)
- Jeffrey Smirle
- The Research Institute of the McGill University Health Centre and the Department of Medicine, McGill University, Montreal, Quebec H3A 1A1, Canada
| | | | | | | | | | | |
Collapse
|
82
|
Abstract
Synucleins are a family of presynaptic membrane binding proteins. α-Synuclein, the principal member of this family, is mutated in familial Parkinson disease. To gain insight into the molecular functions of synucleins, we performed an unbiased proteomic screen and identified synaptic protein changes in αβγ-synuclein knock-out brains. We observed increases in the levels of select membrane curvature sensing/generating proteins. One of the most prominent changes was for the N-BAR protein endophilin A1. Here we demonstrate that the levels of synucleins and endophilin A1 are reciprocally regulated and that they are functionally related. We show that all synucleins can robustly generate membrane curvature similar to endophilins. However, only monomeric but not tetrameric α-synuclein can bend membranes. Further, A30P α-synuclein, a Parkinson disease mutant that disrupts protein folding, is also deficient in this activity. This suggests that synucleins generate membrane curvature through the asymmetric insertion of their N-terminal amphipathic helix. Based on our findings, we propose to include synucleins in the class of amphipathic helix-containing proteins that sense and generate membrane curvature. These results advance our understanding of the physiological function of synucleins.
Collapse
Affiliation(s)
- Christopher H Westphal
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University, New Haven, Connecticut 06536, USA
| | | |
Collapse
|
83
|
Cancino J, Luini A. Signaling Circuits on the Golgi Complex. Traffic 2012; 14:121-34. [DOI: 10.1111/tra.12022] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2012] [Revised: 10/12/2012] [Accepted: 10/12/2012] [Indexed: 01/21/2023]
|
84
|
Cadieux-Dion M, Andermann E, Lachance-Touchette P, Ansorge O, Meloche C, Barnabé A, Kuzniecky RI, Andermann F, Faught E, Leonberg S, Damiano JA, Berkovic SF, Rouleau GA, Cossette P. Recurrent mutations inDNAJC5cause autosomal dominant Kufs disease. Clin Genet 2012; 83:571-5. [DOI: 10.1111/cge.12020] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2012] [Revised: 09/12/2012] [Accepted: 09/12/2012] [Indexed: 01/23/2023]
Affiliation(s)
- M Cadieux-Dion
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| | - E Andermann
- Montreal Neurological Institute; McGill University; Montreal; Quebec; Canada
| | | | - O Ansorge
- Department of Neuropathology; John Radcliffe Hospital; Oxford; UK
| | - C Meloche
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| | - A Barnabé
- Montreal Neurological Institute; McGill University; Montreal; Quebec; Canada
| | - RI Kuzniecky
- Department of Neurology; Langone Medical Center, New York University; New York; NY; USA
| | - F Andermann
- Montreal Neurological Institute; McGill University; Montreal; Quebec; Canada
| | - E Faught
- Emory University School of Medicine; Atlanta; GA; USA
| | - S Leonberg
- Rutgers Medical School and Cooper Hospital/University Medical Center; Camden; NJ; USA
| | - JA Damiano
- Epilepsy Research Center; University of Melbourne, Austin Health; Heidelberg; VIC; 3084; Australia
| | - SF Berkovic
- Epilepsy Research Center; University of Melbourne, Austin Health; Heidelberg; VIC; 3084; Australia
| | - GA Rouleau
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| | - P Cossette
- CHUM Research Center; University of Montreal; Montreal; Quebec; Canada
| |
Collapse
|
85
|
Kural C, Tacheva-Grigorova SK, Boulant S, Cocucci E, Baust T, Duarte D, Kirchhausen T. Dynamics of intracellular clathrin/AP1- and clathrin/AP3-containing carriers. Cell Rep 2012; 2:1111-9. [PMID: 23103167 DOI: 10.1016/j.celrep.2012.09.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 06/05/2012] [Accepted: 09/19/2012] [Indexed: 12/13/2022] Open
Abstract
Clathrin/AP1- and clathrin/AP3-coated vesicular carriers originate from endosomes and the trans-Golgi network. Here, we report the real-time visualization of these structures in living cells reliably tracked by rapid, three-dimensional imaging with the use of a spinning-disk confocal microscope. We imaged relatively sparse, diffraction-limited, fluorescent objects containing chimeric fluorescent protein (clathrin light chain, σ adaptor subunits, or dynamin2) with a spatial precision of up to ~30 nm and a temporal resolution of ~1 s. The dynamic characteristics of the intracellular clathrin/AP1 and clathrin/AP3 carriers are similar to those of endocytic clathrin/AP2 pits and vesicles; the clathrin/AP1 coats are, on average, slightly shorter-lived than their AP2 and AP3 counterparts. We confirmed that although dynamin2 is recruited as a burst to clathrin/AP2 pits immediately before their budding from the plasma membrane, we found no evidence supporting a similar association of dynamin2 with clathrin/AP1 or clathrin/AP3 carriers at any stage during their lifetime. We found no effects of chemical inhibitors of dynamin function or the K44A dominant-negative mutant of dynamin on AP1 and AP3 dynamics. This observation suggests that an alternative budding mechanism, yet to be discovered, is responsible for the scission step of clathrin/AP1 and clathrin/AP3 carriers.
Collapse
Affiliation(s)
- Comert Kural
- Department of Cell Biology, Harvard Medical School, Boston and Program in Cellular and Molecular Medicine at Boston Children's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
86
|
Nesvizhskii AI. Computational and informatics strategies for identification of specific protein interaction partners in affinity purification mass spectrometry experiments. Proteomics 2012; 12:1639-55. [PMID: 22611043 DOI: 10.1002/pmic.201100537] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Analysis of protein interaction networks and protein complexes using affinity purification and mass spectrometry (AP/MS) is among most commonly used and successful applications of proteomics technologies. One of the foremost challenges of AP/MS data is a large number of false-positive protein interactions present in unfiltered data sets. Here we review computational and informatics strategies for detecting specific protein interaction partners in AP/MS experiments, with a focus on incomplete (as opposite to genome wide) interactome mapping studies. These strategies range from standard statistical approaches, to empirical scoring schemes optimized for a particular type of data, to advanced computational frameworks. The common denominator among these methods is the use of label-free quantitative information such as spectral counts or integrated peptide intensities that can be extracted from AP/MS data. We also discuss related issues such as combining multiple biological or technical replicates, and dealing with data generated using different tagging strategies. Computational approaches for benchmarking of scoring methods are discussed, and the need for generation of reference AP/MS data sets is highlighted. Finally, we discuss the possibility of more extended modeling of experimental AP/MS data, including integration with external information such as protein interaction predictions based on functional genomics data.
Collapse
|
87
|
Kearney R, Blondeau F, McPherson P, Bell A, Servant F, Drapeau M, de Grandpre S, Jm Bergeron J. Elimination of redundant protein identifications in high throughput proteomics. CONFERENCE PROCEEDINGS : ... ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL CONFERENCE 2012; 2005:4803-6. [PMID: 17281316 DOI: 10.1109/iembs.2005.1615546] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Tandem mass spectrometry followed by data base search is the preferred method for protein identification in high throughput proteomics. However, standard analysis methods give rise to highly redundant lists of proteins with many proteins identified by the same sets of peptides. In essence, this is a list of all proteins that might be present in the sample. Here we present an algorithm that eliminates redundancy and determines the minimum number of proteins needed to explain the peptides observed. We demonstrate that application of the algorithm results in a significantly smaller set of proteins and greatly reduces the number of "shared" peptides.
Collapse
|
88
|
Abstract
Neurons can sustain high rates of synaptic transmission without exhausting their supply of synaptic vesicles. This property relies on a highly efficient local endocytic recycling of synaptic vesicle membranes, which can be reused for hundreds, possibly thousands, of exo-endocytic cycles. Morphological, physiological, molecular, and genetic studies over the last four decades have provided insight into the membrane traffic reactions that govern this recycling and its regulation. These studies have shown that synaptic vesicle endocytosis capitalizes on fundamental and general endocytic mechanisms but also involves neuron-specific adaptations of such mechanisms. Thus, investigations of these processes have advanced not only the field of synaptic transmission but also, more generally, the field of endocytosis. This article summarizes current information on synaptic vesicle endocytosis with an emphasis on the underlying molecular mechanisms and with a special focus on clathrin-mediated endocytosis, the predominant pathway of synaptic vesicle protein internalization.
Collapse
Affiliation(s)
- Yasunori Saheki
- Department of Cell Biology, Howard Hughes Medical Institute and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale University School of Medicine, New Haven, Connecticut 06510, USA
| | | |
Collapse
|
89
|
Goyette G, Boulais J, Carruthers NJ, Landry CR, Jutras I, Duclos S, Dermine JF, Michnick SW, LaBoissière S, Lajoie G, Barreiro L, Thibault P, Desjardins M. Proteomic characterization of phagosomal membrane microdomains during phagolysosome biogenesis and evolution. Mol Cell Proteomics 2012; 11:1365-77. [PMID: 22915823 DOI: 10.1074/mcp.m112.021048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
After their formation at the cell surface, phagosomes become fully functional through a complex maturation process involving sequential interactions with various intracellular organelles. In the last decade, series of data indicated that some of the phagosome functional properties occur in specialized membrane microdomains. The molecules associated with membrane microdomains, as well as the organization of these structures during phagolysosome biogenesis are largely unknown. In this study, we combined proteomics and bioinformatics analyses to characterize the dynamic association of proteins to maturing phagosomes. Our data indicate that groups of proteins shuffle from detergent-soluble to detergent-resistant membrane microdomains during maturation, supporting a model in which the modulation of the phagosome functional properties involves an important reorganization of the phagosome proteome by the coordinated spatial segregation of proteins.
Collapse
Affiliation(s)
- Guillaume Goyette
- Département de pathologie et biologie cellulaire, Université de Montréal, and Département de pédiatrie, Centre de recherche de l'hôpital Sainte-Justine, C.P. 6128, Succ centre ville, Montréal, Québec, H3C 3J7, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Stachowiak JC, Schmid EM, Ryan CJ, Ann HS, Sasaki DY, Sherman MB, Geissler PL, Fletcher DA, Hayden CC. Membrane bending by protein-protein crowding. Nat Cell Biol 2012; 14:944-9. [PMID: 22902598 DOI: 10.1038/ncb2561] [Citation(s) in RCA: 406] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 07/12/2012] [Indexed: 02/07/2023]
Abstract
Curved membranes are an essential feature of dynamic cellular structures, including endocytic pits, filopodia protrusions and most organelles. It has been proposed that specialized proteins induce curvature by binding to membranes through two primary mechanisms: membrane scaffolding by curved proteins or complexes; and insertion of wedge-like amphipathic helices into the membrane. Recent computational studies have raised questions about the efficiency of the helix-insertion mechanism, predicting that proteins must cover nearly 100% of the membrane surface to generate high curvature, an improbable physiological situation. Thus, at present, we lack a sufficient physical explanation of how protein attachment bends membranes efficiently. On the basis of studies of epsin1 and AP180, proteins involved in clathrin-mediated endocytosis, we propose a third general mechanism for bending fluid cellular membranes: protein-protein crowding. By correlating membrane tubulation with measurements of protein densities on membrane surfaces, we demonstrate that lateral pressure generated by collisions between bound proteins drives bending. Whether proteins attach by inserting a helix or by binding lipid heads with an engineered tag, protein coverage above ~20% is sufficient to bend membranes. Consistent with this crowding mechanism, we find that even proteins unrelated to membrane curvature, such as green fluorescent protein (GFP), can bend membranes when sufficiently concentrated. These findings demonstrate a highly efficient mechanism by which the crowded protein environment on the surface of cellular membranes can contribute to membrane shape change.
Collapse
Affiliation(s)
- Jeanne C Stachowiak
- The University of Texas at Austin, Department of Biomedical Engineering, Austin, Texas 78712, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Bark SJ, Wegrzyn J, Taupenot L, Ziegler M, O'Connor DT, Ma Q, Smoot M, Ideker T, Hook V. The protein architecture of human secretory vesicles reveals differential regulation of signaling molecule secretion by protein kinases. PLoS One 2012; 7:e41134. [PMID: 22916103 PMCID: PMC3420874 DOI: 10.1371/journal.pone.0041134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 06/17/2012] [Indexed: 12/25/2022] Open
Abstract
Secretory vesicles are required for release of chemical messengers to mediate intercellular signaling among human biological systems. It is necessary to define the organization of the protein architecture of the ‘human’ dense core secretory vesicles (DCSV) to understand mechanisms for secretion of signaling molecules essential for cellular regulatory processes. This study, therefore, conducted extensive quantitative proteomics and systems biology analyses of human DCSV purified from human pheochromocytoma. Over 600 human DCSV proteins were identified with quantitative evaluation of over 300 proteins, revealing that most proteins participate in producing peptide hormones and neurotransmitters, enzymes, and the secretory machinery. Systems biology analyses provided a model of interacting DCSV proteins, generating hypotheses for differential intracellular protein kinases A and C signaling pathways. Activation of cellular PKA and PKC pathways resulted in differential secretion of neuropeptides, catecholamines, and β-amyloid of Alzheimer's disease for mediating cell-cell communication. This is the first study to define a model of the protein architecture of human DCSV for human disease and health.
Collapse
Affiliation(s)
- Steven J. Bark
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SJB) ; or (VH)
| | - Jill Wegrzyn
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laurent Taupenot
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Michael Ziegler
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Daniel T. O'Connor
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Qi Ma
- Graduate Program in Bioinformatics and Systems Biology, University of California San Diego, La Jolla, California, United States of America
| | - Michael Smoot
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Trey Ideker
- Department of Medicine, University of California San Diego, La Jolla, California, United States of America
| | - Vivian Hook
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- Departments of Neurosciences and Pharmacology, University of California San Diego, La Jolla, California, United States of America
- * E-mail: (SJB) ; or (VH)
| |
Collapse
|
92
|
Bantscheff M, Lemeer S, Savitski MM, Kuster B. Quantitative mass spectrometry in proteomics: critical review update from 2007 to the present. Anal Bioanal Chem 2012; 404:939-65. [PMID: 22772140 DOI: 10.1007/s00216-012-6203-4] [Citation(s) in RCA: 565] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 06/06/2012] [Accepted: 06/15/2012] [Indexed: 02/08/2023]
Abstract
Mass-spectrometry-based proteomics is continuing to make major contributions to the discovery of fundamental biological processes and, more recently, has also developed into an assay platform capable of measuring hundreds to thousands of proteins in any biological system. The field has progressed at an amazing rate over the past five years in terms of technology as well as the breadth and depth of applications in all areas of the life sciences. Some of the technical approaches that were at an experimental stage back then are considered the gold standard today, and the community is learning to come to grips with the volume and complexity of the data generated. The revolution in DNA/RNA sequencing technology extends the reach of proteomic research to practically any species, and the notion that mass spectrometry has the potential to eventually retire the western blot is no longer in the realm of science fiction. In this review, we focus on the major technical and conceptual developments since 2007 and illustrate these by important recent applications.
Collapse
|
93
|
Dickens LS, Boyd RS, Jukes-Jones R, Hughes MA, Robinson GL, Fairall L, Schwabe JWR, Cain K, Macfarlane M. A death effector domain chain DISC model reveals a crucial role for caspase-8 chain assembly in mediating apoptotic cell death. Mol Cell 2012; 47:291-305. [PMID: 22683266 PMCID: PMC3477315 DOI: 10.1016/j.molcel.2012.05.004] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2011] [Revised: 03/24/2012] [Accepted: 05/04/2012] [Indexed: 11/17/2022]
Abstract
Formation of the death-inducing signaling complex (DISC) is a critical step in death receptor-mediated apoptosis, yet the mechanisms underlying assembly of this key multiprotein complex remain unclear. Using quantitative mass spectrometry, we have delineated the stoichiometry of the native TRAIL DISC. While current models suggest that core DISC components are present at a ratio of 1:1, our data indicate that FADD is substoichiometric relative to TRAIL-Rs or DED-only proteins; strikingly, there is up to 9-fold more caspase-8 than FADD in the DISC. Using structural modeling, we propose an alternative DISC model in which procaspase-8 molecules interact sequentially, via their DED domains, to form a caspase-activating chain. Mutating key interacting residues in procaspase-8 DED2 abrogates DED chain formation in cells and disrupts TRAIL/CD95 DISC-mediated procaspase-8 activation in a functional DISC reconstitution model. This provides direct experimental evidence for a DISC model in which DED chain assembly drives caspase-8 dimerization/activation, thereby triggering cell death.
Collapse
Affiliation(s)
- Laura S Dickens
- MRC Toxicology Unit, Hodgkin Building, P.O. Box 138, Lancaster Road, Leicester LE1 9HN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Borner GHH, Antrobus R, Hirst J, Bhumbra GS, Kozik P, Jackson LP, Sahlender DA, Robinson MS. Multivariate proteomic profiling identifies novel accessory proteins of coated vesicles. ACTA ACUST UNITED AC 2012; 197:141-60. [PMID: 22472443 PMCID: PMC3317806 DOI: 10.1083/jcb.201111049] [Citation(s) in RCA: 134] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
A multivariate proteomics approach identified numerous new clathrin-coated vesicle proteins as well as the first AP-4 accessory protein, and also revealed how auxilin depletion causes mitotic arrest through sequestration of spindle proteins in clathrin cages. Despite recent advances in mass spectrometry, proteomic characterization of transport vesicles remains challenging. Here, we describe a multivariate proteomics approach to analyzing clathrin-coated vesicles (CCVs) from HeLa cells. siRNA knockdown of coat components and different fractionation protocols were used to obtain modified coated vesicle-enriched fractions, which were compared by stable isotope labeling of amino acids in cell culture (SILAC)-based quantitative mass spectrometry. 10 datasets were combined through principal component analysis into a “profiling” cluster analysis. Overall, 136 CCV-associated proteins were predicted, including 36 new proteins. The method identified >93% of established CCV coat proteins and assigned >91% correctly to intracellular or endocytic CCVs. Furthermore, the profiling analysis extends to less well characterized types of coated vesicles, and we identify and characterize the first AP-4 accessory protein, which we have named tepsin. Finally, our data explain how sequestration of TACC3 in cytosolic clathrin cages causes the severe mitotic defects observed in auxilin-depleted cells. The profiling approach can be adapted to address related cell and systems biological questions.
Collapse
Affiliation(s)
- Georg H H Borner
- Cambridge Institute for Medical Research, Wellcome Trust/Medical Research Council Building, University of Cambridge, Cambridge CB2 0XY, England, UK.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Ernst A, Ma D, Garcia-Perez I, Tsang TM, Kluge W, Schwarz E, Guest PC, Holmes E, Sarnyai Z, Bahn S. Molecular validation of the acute phencyclidine rat model for schizophrenia: identification of translational changes in energy metabolism and neurotransmission. J Proteome Res 2012; 11:3704-14. [PMID: 22613019 DOI: 10.1021/pr300197d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Administration of the noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonist phencyclidine (PCP) to rodents is widely used as preclinical model for schizophrenia. Most studies on this model employ methods investigating behavior and brain abnormalities. However, little is known about the corresponding peripheral effects. In this study, we analyzed changes in brain and serum molecular profiles, together with alterations in behavior after acute PCP treatment of rats. Furthermore, abnormalities in peripheral protein expression of first and recent onset antipsychotic free schizophrenia patients were assessed for comparison with the preclinical model. PCP treatment induced hyperlocomotion and stereotypic behavior, which have been related to positive symptoms of schizophrenia. Multiplex immunoassay profiling of serum revealed molecular abnormalities similar to those seen in first and recent onset, antipsychotic free schizophrenia patients. Also, increased insulin levels were detected after administration of a glucose tolerance test (GTT), consistent with previous studies showing changes in insulin signaling in patients with schizophrenia. Finally, schizophrenia-relevant alterations in brain molecules were found in the hippocampus and to a lesser extent in the frontal cortex using liquid-chromatography mass spectrometry and (1)H nuclear magnetic resonance spectroscopy. In conclusion, this study identified behavioral and molecular alterations in the acute PCP rat model, which are also observed in human schizophrenia. We propose that the corresponding changes in serum in both animals and patients may have utility as surrogate markers in this model to facilitate discovery and development of novel drugs for treatment of certain pathological features of schizophrenia.
Collapse
Affiliation(s)
- Agnes Ernst
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge CB2 1QT, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP. Endocytosis and signaling: cell logistics shape the eukaryotic cell plan. Physiol Rev 2012; 92:273-366. [PMID: 22298658 DOI: 10.1152/physrev.00005.2011] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Our understanding of endocytosis has evolved remarkably in little more than a decade. This is the result not only of advances in our knowledge of its molecular and biological workings, but also of a true paradigm shift in our understanding of what really constitutes endocytosis and of its role in homeostasis. Although endocytosis was initially discovered and studied as a relatively simple process to transport molecules across the plasma membrane, it was subsequently found to be inextricably linked with almost all aspects of cellular signaling. This led to the notion that endocytosis is actually the master organizer of cellular signaling, providing the cell with understandable messages that have been resolved in space and time. In essence, endocytosis provides the communications and supply routes (the logistics) of the cell. Although this may seem revolutionary, it is still likely to be only a small part of the entire story. A wealth of new evidence is uncovering the surprisingly pervasive nature of endocytosis in essentially all aspects of cellular regulation. In addition, many newly discovered functions of endocytic proteins are not immediately interpretable within the classical view of endocytosis. A possible framework, to rationalize all this new knowledge, requires us to "upgrade" our vision of endocytosis. By combining the analysis of biochemical, biological, and evolutionary evidence, we propose herein that endocytosis constitutes one of the major enabling conditions that in the history of life permitted the development of a higher level of organization, leading to the actuation of the eukaryotic cell plan.
Collapse
Affiliation(s)
- Sara Sigismund
- IFOM, Fondazione Istituto FIRC di Oncologia Molecolare, Milan, Italy
| | | | | | | | | | | |
Collapse
|
97
|
Volknandt W, Karas M. Proteomic analysis of the presynaptic active zone. Exp Brain Res 2012; 217:449-61. [DOI: 10.1007/s00221-012-3031-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 02/04/2012] [Indexed: 02/06/2023]
|
98
|
Fletcher SJ, Poulter NS, Haining EJ, Rappoport JZ. Clathrin-mediated endocytosis regulates occludin, and not focal adhesion, distribution during epithelial wound healing. Biol Cell 2012; 104:238-56. [DOI: 10.1111/boc.201100004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2011] [Accepted: 12/14/2011] [Indexed: 01/28/2023]
|
99
|
Milosevic I, Giovedi S, Lou X, Raimondi A, Collesi C, Shen H, Paradise S, O'Toole E, Ferguson S, Cremona O, De Camilli P. Recruitment of endophilin to clathrin-coated pit necks is required for efficient vesicle uncoating after fission. Neuron 2012; 72:587-601. [PMID: 22099461 DOI: 10.1016/j.neuron.2011.08.029] [Citation(s) in RCA: 256] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2011] [Indexed: 12/01/2022]
Abstract
Endophilin is a membrane-binding protein with curvature-generating and -sensing properties that participates in clathrin-dependent endocytosis of synaptic vesicle membranes. Endophilin also binds the GTPase dynamin and the phosphoinositide phosphatase synaptojanin and is thought to coordinate constriction of coated pits with membrane fission (via dynamin) and subsequent uncoating (via synaptojanin). We show that although synaptojanin is recruited by endophilin at bud necks before fission, the knockout of all three mouse endophilins results in the accumulation of clathrin-coated vesicles, but not of clathrin-coated pits, at synapses. The absence of endophilin impairs but does not abolish synaptic transmission and results in perinatal lethality, whereas partial endophilin absence causes severe neurological defects, including epilepsy and neurodegeneration. Our data support a model in which endophilin recruitment to coated pit necks, because of its curvature-sensing properties, primes vesicle buds for subsequent uncoating after membrane fission, without being critically required for the fission reaction itself.
Collapse
Affiliation(s)
- Ira Milosevic
- Department of Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT 06519, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Mass spectrometry (MS)-based shotgun proteomics allows protein identifications even in complex biological samples. Protein abundances can then be estimated from the counts of MS/MS spectra attributable to each protein, provided that one corrects for differential MS-detectability of the contributing peptides. We describe the use of a method, APEX, which calculates Absolute Protein EXpression levels based on learned correction factors, MS/MS spectral counts, and each protein's probability of correct identification.The APEX-based calculations consist of three parts: (1) Using training data, peptide sequences and their sequence properties, a model is built that can be used to estimate MS-detectability (O (i)) for any given protein. (2) Absolute abundances of proteins measured in an MS/MS experiment are calculated with information from spectral counts, identification probabilities and the learned O (i)-values. (3) Simple statistics allow for significance analysis of differential expression in two distinct biological samples, i.e., measuring relative protein abundances. APEX-based protein abundances span more than four orders of magnitude and are applicable to mixtures of hundreds to thousands of proteins from any type of organism.
Collapse
Affiliation(s)
- Christine Vogel
- Department of Biology, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | | |
Collapse
|