51
|
Lu J, Guan S, Zhao Y, Yu Y, Wang Y, Shi Y, Mao X, Yang KL, Sun W, Xu X, Yi JS, Yang T, Yang J, Nuchtern JG. Novel MDM2 inhibitor SAR405838 (MI-773) induces p53-mediated apoptosis in neuroblastoma. Oncotarget 2018; 7:82757-82769. [PMID: 27764791 PMCID: PMC5347730 DOI: 10.18632/oncotarget.12634] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 09/25/2016] [Indexed: 12/23/2022] Open
Abstract
Neuroblastoma (NB), which accounts for about 15% of cancer-related mortality in children, is the most common childhood extracranial malignant tumor. In NB, somatic mutations of the tumor suppressor, p53, are exceedingly rare. Unlike in adult tumors, the majority of p53 downstream functions are still intact in NB cells with wild-type p53. Thus, restoring p53 function by blocking its interaction with p53 suppressors such as MDM2 is a viable therapeutic strategy for NB treatment. Herein, we show that MDM2 inhibitor SAR405838 is a potent therapeutic drug for NB. SAR405838 caused significantly decreased cell viability of p53 wild-type NB cells and induced p53-mediated apoptosis, as well as augmenting the cytotoxic effects of doxorubicin (Dox). In an in vivo orthotopic NB mouse model, SAR405838 induced apoptosis in NB tumor cells. In summary, our data strongly suggest that MDM2-specific inhibitors like SAR405838 may serve not only as a stand-alone therapy, but also as an effective adjunct to current chemotherapeutic regimens for treating NB with an intact MDM2-p53 axis.
Collapse
Affiliation(s)
- Jiaxiong Lu
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shan Guan
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yanling Zhao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yang Yu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Yongfeng Wang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yonghua Shi
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.,Department of Pathology, Basic Medicine College of Xinjiang Medical University, Urumqi, Xinjiang 830011, China
| | - Xinfang Mao
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, China
| | - Kristine L Yang
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Wenjing Sun
- Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| | - Xin Xu
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Joanna S Yi
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Tianshu Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China
| | - Jianhua Yang
- Department of Ophthalmology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, China.,Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jed G Nuchtern
- Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA.,Division of Pediatric Surgery, Michael E. DeBakey Department of Pediatric Surgery, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas 77030, USA
| |
Collapse
|
52
|
MYCN drives glutaminolysis in neuroblastoma and confers sensitivity to an ROS augmenting agent. Cell Death Dis 2018; 9:220. [PMID: 29445162 PMCID: PMC5833827 DOI: 10.1038/s41419-018-0295-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Revised: 01/01/2018] [Accepted: 01/04/2018] [Indexed: 12/25/2022]
Abstract
Heightened aerobic glycolysis and glutaminolysis are characteristic metabolic phenotypes in cancer cells. Neuroblastoma (NBL), a devastating pediatric cancer, is featured by frequent genomic amplification of MYCN, a member of the Myc oncogene family that is primarily expressed in the early stage of embryonic development and required for neural crest development. Here we report that an enriched glutaminolysis gene signature is associated with MYCN amplification in children with NBL. The partial knockdown of MYCN suppresses glutaminolysis in NBL cells. Conversely, forced overexpression of MYCN in neural crest progenitor cells enhances glutaminolysis. Importantly, glutaminolysis induces oxidative stress by producing reactive oxygen species (ROS), rendering NBL cells sensitive to ROS augmentation. Through a small-scale metabolic-modulator screening, we have found that dimethyl fumarate (DMF), a Food and Drug Administration-approved drug for multiple sclerosis, suppresses NBL cell proliferation in vitro and tumor growth in vivo. DMF suppresses NBL cell proliferation through inducing ROS and subsequently suppressing MYCN expression, which is rescued by an ROS scavenger. Our findings suggest that the metabolic modulation and ROS augmentation could be used as novel strategies in treating NBL and other MYC-driven cancers.
Collapse
|
53
|
Yang P, Chen W, Li X, Eilers G, He Q, Liu L, Wu Y, Wu Y, Yu W, Fletcher JA, Ou WB. Downregulation of cyclin D1 sensitizes cancer cells to MDM2 antagonist Nutlin-3. Oncotarget 2018; 7:32652-63. [PMID: 27129163 PMCID: PMC5078041 DOI: 10.18632/oncotarget.8999] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Accepted: 03/31/2016] [Indexed: 12/14/2022] Open
Abstract
The MDM2-p53 pathway has a prominent oncogenic function in the pathogenesis of various cancers. Nutlin-3, a small-molecule antagonist of MDM2-p53 interaction, inhibits proliferation in cancer cells with wild-type p53. Herein, we evaluate the expression of MDM2, both the full length and a splicing variant MDM2-A, and the sensitivity of Nutlin-3 in different cancer cell lines. Included are seven cell lines with wild-type p53 (four mesothelioma, one breast cancer, one chondrosarcoma, and one leiomyosarcoma), two liposarcoma cell lines harboring MDM2 amplification and wild-type p53, and one mesothelioma cell line harboring a p53 point mutation. Nutlin-3 treatment increased expression of cyclin D1, MDM2, and p53 in cell lines with wild-type p53. Additive effects were observed in cells containing wild-type p53 through coordinated attack on MDM2-p53 binding and cyclin D1 by lentivirual shRNA knockdown or small molecule inhibition, as demonstrated by immunoblots and cell viability analyses. Further results demonstrate that MDM2 binds to cyclin D1, and that an increase in cyclin D1 expression after Nutlin-3 treatment is correlated with expression and ubiquitin E3-ligase activity of MDM2. MDM2 and p53 knockdown experiments demonstrated inhibition of cyclin D1 by MDM2 but not p53. These results indicate that combination inhibition of cyclin D1 and MDM2-p53 binding warrants clinical evaluation as a novel therapeutic strategy in cancer cells harboring wild-type p53.
Collapse
Affiliation(s)
- Peipei Yang
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Weicai Chen
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Xuhui Li
- Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China
| | - Grant Eilers
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Quan He
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Lili Liu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yeqing Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Yuehong Wu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Wei Yu
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China
| | - Jonathan A Fletcher
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Wen-Bin Ou
- Zhejiang Provincial Key Laboratory of Silkworm Bioreactor and Biomedicine, College of Life Sciences, Zhejiang Sci-Tech University, Hangzhou, China.,Zhejiang Provincial Key Laboratory of Applied Enzymology, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, Zhejiang, China.,Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
54
|
Abstract
Neuroblastoma (NB) is the most common solid childhood tumor outside the brain and causes 15% of childhood cancer-related mortality. The main drivers of NB formation are neural crest cell-derived sympathoadrenal cells that undergo abnormal genetic arrangements. Moreover, NB is a complex disease that has high heterogeneity and is therefore difficult to target for successful therapy. Thus, a better understanding of NB development helps to improve treatment and increase the survival rate. One of the major causes of sporadic NB is known to be MYCN amplification and mutations in ALK (anaplastic lymphoma kinase) are responsible for familial NB. Many other genetic abnormalities can be found; however, they are not considered as driver mutations, rather they support tumor aggressiveness. Tumor cell elimination via cell death is widely accepted as a successful technique. Therefore, in this review, we provide a thorough overview of how different modes of cell death and treatment strategies, such as immunotherapy or spontaneous regression, are or can be applied for NB elimination. In addition, several currently used and innovative approaches and their suitability for clinical testing and usage will be discussed. Moreover, significant attention will be given to combined therapies that show more effective results with fewer side effects than drugs targeting only one specific protein or pathway.
Collapse
|
55
|
Doxorubicin-provoked increase of mitotic activity and concomitant drain of G0-pool in therapy-resistant BE(2)-C neuroblastoma. PLoS One 2018; 13:e0190970. [PMID: 29342186 PMCID: PMC5771584 DOI: 10.1371/journal.pone.0190970] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 12/22/2017] [Indexed: 01/08/2023] Open
Abstract
In this study chemotherapy response in neuroblastoma (NB) was assessed for the first time in a transplantation model comprising non-malignant human embryonic microenvironment of pluripotent stem cell teratoma (PSCT) derived from diploid bona fide hESC. Two NB cell lines with known high-risk phenotypes; the multi-resistant BE(2)-C and the drug sensitive IMR-32, were transplanted to the PSCT model and the tumour growth was exposed to single or repeated treatments with doxorubicin, and thereafter evaluated for cell death, apoptosis, and proliferation. Dose dependent cytotoxic effects were observed, this way corroborating the experimental platform for this type of analysis. Notably, analysis of doxorubicin-resilient BE(2)-C growth in the PSCT model revealed an unexpected 1,5-fold increase in Ki67-index (p<0.05), indicating that non-cycling (G0) cells entered the cell cycle following the doxorubicin exposure. Support for this notion was obtained also in vitro. A pharmacologically relevant dose (1μM) resulted in a marked accumulation of Ki67 positive BE(2)-C cells (p<0.0001), as well as a >3-fold increase in active cell cycle (i.e. cells positive staining for PH3 together with incorporation of EdU) (p<0.01). Considering the clinical challenge for treating high-risk NB, the discovery of a therapy-provoked growth-stimulating effect in the multi-resistant and p53-mutated BE(2)-C cell line, but not in the drug-sensitive p53wt IMR-32 cell line, warrants further studies concerning generality and clinical significance of this new observation.
Collapse
|
56
|
Reversible LSD1 inhibition with HCI-2509 induces the p53 gene expression signature and disrupts the MYCN signature in high-risk neuroblastoma cells. Oncotarget 2018. [PMID: 29515779 PMCID: PMC5839410 DOI: 10.18632/oncotarget.24035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Lysine-Specific Demethylase 1 (LSD1) over-expression correlates with poorly differentiated neuroblastoma and predicts poor outcome despite multimodal therapy. We have studied the efficacy of reversible and specific LSD1 inhibition with HCI-2509 in neuroblastoma cell lines and particularly the effect of HCI-2509 on the transcriptomic profile in MYCN amplified NGP cells. Cell survival assays show that HCI-2509 is cytotoxic to poorly differentiated neuroblastoma cell lines in low micromole or lower doses. Transcriptional profiling of NGP cells treated with HCI-2509 shows a significant effect on p53, cell cycle, MYCN and hypoxia pathway gene sets. HCI-2509 results in increased histone methyl marks and p53 levels along with cell cycle arrest in the G2/M phase and inhibition of colony formation of NGP cells. Our findings indicate that LSD1 inhibition with HCI-2509 has a multi-target effect in neuroblastoma cell lines, mediated in part via p53. MYCN-amplified neuroblastoma cells have a targeted benefit as HCI-2509 downregulates the MYCN upregulated gene set.
Collapse
|
57
|
Hsu CL, Chang HY, Chang JY, Hsu WM, Huang HC, Juan HF. Unveiling MYCN regulatory networks in neuroblastoma via integrative analysis of heterogeneous genomics data. Oncotarget 2017; 7:36293-36310. [PMID: 27167114 PMCID: PMC5095001 DOI: 10.18632/oncotarget.9202] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Accepted: 04/19/2016] [Indexed: 12/31/2022] Open
Abstract
MYCN, an oncogenic transcription factor of the Myc family, is a major driver of neuroblastoma tumorigenesis. Due to the difficulty in drugging MYCN directly, revealing the molecules in MYCN regulatory networks will help to identify effective therapeutic targets for neuroblastoma therapy. Here we perform ChIP-sequencing and small RNA-sequencing of neuroblastoma cells to determine the MYCN-binding sites and MYCN-associated microRNAs, and integrate various types of genomic data to construct MYCN regulatory networks. The overall analysis indicated that MYCN-regulated genes were involved in a wide range of biological processes and could be used as signatures to identify poor-prognosis MYCN-non-amplified patients. Analysis of the MYCN binding sites showed that MYCN principally served as an activator. Using a computational approach, we identified 32 MYCN co-regulators, and some of these findings are supported by previous studies. Moreover, we investigated the interplay between MYCN transcriptional and microRNA post-transcriptional regulations and identified several microRNAs, such as miR-124-3p and miR-93-5p, which may significantly contribute to neuroblastoma pathogenesis. We also found MYCN and its regulated microRNAs acted together to repress the tumor suppressor genes. This work provides a comprehensive view of MYCN regulations for exploring therapeutic targets in neuroblastoma, as well as insights into the mechanism of neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Chia-Lang Hsu
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Hsin-Yi Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Jen-Yun Chang
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| | - Wen-Ming Hsu
- Department of Surgery, National Taiwan University Hospital, Taipei 100, Taiwan
| | - Hsuan-Cheng Huang
- Institute of Biomedical Informatics, Center for Systems and Synthetic Biology, National Yang-Ming University, Taipei 112, Taiwan
| | - Hsueh-Fen Juan
- Department of Life Science, Institute of Molecular and Cellular Biology, Graduate Institute of Biomedical Electronics and Bioinformatics, National Taiwan University, Taipei 106, Taiwan
| |
Collapse
|
58
|
Arnhold V, Schmelz K, Proba J, Winkler A, Wünschel J, Toedling J, Deubzer HE, Künkele A, Eggert A, Schulte JH, Hundsdoerfer P. Reactivating TP53 signaling by the novel MDM2 inhibitor DS-3032b as a therapeutic option for high-risk neuroblastoma. Oncotarget 2017; 9:2304-2319. [PMID: 29416773 PMCID: PMC5788641 DOI: 10.18632/oncotarget.23409] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Fewer than 50% of patients with high-risk neuroblastoma survive five years after diagnosis with current treatment protocols. Molecular targeted therapies are expected to improve survival. Although MDM2 has been validated as a promising target in preclinical models, no MDM2 inhibitors have yet entered clinical trials for neuroblastoma patients. Toxic side effects, poor bioavailability and low efficacy of the available MDM2 inhibitors that have entered phase I/II trials drive the development of novel MDM2 inhibitors with an improved risk-benefit profile. We investigated the effect of the novel MDM2 small molecular inhibitor, DS-3032b, on viability, proliferation, senescence, migration, cell cycle arrest and apoptosis in a panel of six neuroblastoma cell lines with different TP53 and MYCN genetic backgrounds, and assessed efficacy in a murine subcutaneous model for high-risk neuroblastoma. Re-analysis of existing expression data from 476 primary neuroblastomas showed that high-level MDM2 expression correlated with poor patient survival. DS-3032b treatment enhanced TP53 target gene expression and induced G1 cell cycle arrest, senescence and apoptosis. CRISPR-mediated MDM2 knockout in neuroblastoma cells mimicked DS-3032b treatment. TP53 signaling was selectively activated by DS-3032b in neuroblastoma cells with wildtype TP53, regardless of the presence of MYCN amplification, but was significantly reduced by TP53 mutations or expression of a dominant-negative TP53 mutant. Oral DS-3032b administration inhibited xenograft tumor growth and prolonged mouse survival. Our in vitro and in vivo data demonstrate that DS-3032b reactivates TP53 signaling even in the presence of MYCN amplification in neuroblastoma cells, to reduce proliferative capacity and cause cytotoxicity.
Collapse
Affiliation(s)
- Viktor Arnhold
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, Berlin, Germany
| | - Karin Schmelz
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany
| | - Jutta Proba
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany
| | - Annika Winkler
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany
| | - Jasmin Wünschel
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany
| | - Joern Toedling
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany
| | - Hedwig E Deubzer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, Berlin, Germany.,Neuroblastoma Research Group, Experimental and Clinical Research Center (ECRC), Berlin, Germany
| | - Annette Künkele
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, Berlin, Germany
| | - Angelika Eggert
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes H Schulte
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, Berlin, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Patrick Hundsdoerfer
- Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Department of Pediatric Hematology/Oncology/Stem Cell Transplantation, Berlin, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch 2, Berlin, Germany
| |
Collapse
|
59
|
Bakas NA, Schultz CR, Yco LP, Roberts CC, Chang CEA, Bachmann AS, Pirrung MC. Immunoproteasome inhibition and bioactivity of thiasyrbactins. Bioorg Med Chem 2017; 26:401-412. [PMID: 29269255 DOI: 10.1016/j.bmc.2017.11.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 11/21/2017] [Accepted: 11/29/2017] [Indexed: 12/12/2022]
Abstract
A family of macrodilactam natural products, the syrbactins, are known proteasome inhibitors. A small group of syrbactin analogs was prepared with a sulfur-for-carbon substitution to enhance synthetic accessibility and facilitate modulation of their solubility. Two of these compounds surprisingly proved to be inhibitors of the trypsin-like catalytic site, including of the immunoproteasome. Their bound and free conformations suggest special properties of the thiasyrbactin ring are responsible for this unusual preference, which may be exploited to develop drug-like immunoproteasome inhibitors. These compounds show greater selectivity than earlier compounds used to infer phenotypes of immunoproteasome inhibition, like ONX-0914.
Collapse
Affiliation(s)
- Nicole A Bakas
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Chad R Schultz
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | - Lisette P Yco
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA
| | | | - Chia-En A Chang
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - André S Bachmann
- Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, MI 49503, USA.
| | - Michael C Pirrung
- Department of Chemistry, University of California, Riverside, CA 92521, USA; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
60
|
WITHDRAWN: Bioinformatic analysis of the roles of CDK2 in neuroblastoma. Clin Neurol Neurosurg 2017. [DOI: 10.1016/j.clineuro.2017.10.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
61
|
Brandetti E, Veneziani I, Melaiu O, Pezzolo A, Castellano A, Boldrini R, Ferretti E, Fruci D, Moretta L, Pistoia V, Locatelli F, Cifaldi L. MYCN is an immunosuppressive oncogene dampening the expression of ligands for NK-cell-activating receptors in human high-risk neuroblastoma. Oncoimmunology 2017; 6:e1316439. [PMID: 28680748 PMCID: PMC5486189 DOI: 10.1080/2162402x.2017.1316439] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Revised: 03/15/2017] [Accepted: 03/31/2017] [Indexed: 11/16/2022] Open
Abstract
Neuroblastoma (NB) is the most common extracranial solid tumor occurring in childhood. Amplification of the MYCN oncogene is associated with poor prognosis. Downregulation on NB cells of ligands recognized by Natural Killer (NK) cell-activating receptors, involved in tumor cell recognition and lysis, may contribute to tumor progression and relapse. Here, we demonstrate that in human NB cell lines MYCN expression inversely correlates with that of ligands recognized by NKG2D and DNAM1 activating receptors in human NB cell lines. In the MYCN-inducible Tet-21/N cell line, downregulation of MYCN resulted in enhanced expression of the activating ligands MICA, ULBPs and PVR, which rendered tumor cells more susceptible to recognition and lysis mediated by NK cells. Conversely, a MYCN non-amplified NB cell line transfected with MYCN showed an opposite behavior compared with control cells. Consistent with these findings, an inverse correlation was detected between the expression of MYCN and that of ligands for NK-cell-activating receptors in 12 NB patient specimens both at mRNA and protein levels. Taken together, these results provide the first demonstration that MYCN acts as an immunosuppressive oncogene in NB cells that negatively regulates the expression of ligands for NKG2D and DNAM-1 NK-cell-activating receptors. Our study provides a clue to exploit MYCN expression levels as a biomarker to predict the efficacy of NK-cell-based immunotherapy in NB patients.
Collapse
Affiliation(s)
- Elisa Brandetti
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,School of Medicine, Programme in Immunology and Advanced Biotechnology, "Tor Vergata" University of Rome, Rome, Italy
| | - Irene Veneziani
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Molecular Medicine, PhD Programme in Immunological, Heamatological and Rheumatological Sciences, "Sapienza" University of Rome, Rome, Italy
| | - Ombretta Melaiu
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Aurora Castellano
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Renata Boldrini
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Elisa Ferretti
- Laboratory of Oncology Giannina Gaslini Institute, Genoa, Italy
| | - Doriana Fruci
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Vito Pistoia
- Immunology Research Area, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Pediatrics, University of Pavia, Pavia, Italy
| | - Loredana Cifaldi
- Department of Pediatric Hematology and Oncology, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| |
Collapse
|
62
|
|
63
|
The MYCN Protein in Health and Disease. Genes (Basel) 2017; 8:genes8040113. [PMID: 28358317 PMCID: PMC5406860 DOI: 10.3390/genes8040113] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 03/23/2017] [Accepted: 03/27/2017] [Indexed: 12/22/2022] Open
Abstract
MYCN is a member of the MYC family of proto-oncogenes. It encodes a transcription factor, MYCN, involved in the control of fundamental processes during embryonal development. The MYCN protein is situated downstream of several signaling pathways promoting cell growth, proliferation and metabolism of progenitor cells in different developing organs and tissues. Conversely, deregulated MYCN signaling supports the development of several different tumors, mainly with a childhood onset, including neuroblastoma, medulloblastoma, rhabdomyosarcoma and Wilms’ tumor, but it is also associated with some cancers occurring during adulthood such as prostate and lung cancer. In neuroblastoma, MYCN-amplification is the most consistent genetic aberration associated with poor prognosis and treatment failure. Targeting MYCN has been proposed as a therapeutic strategy for the treatment of these tumors and great efforts have allowed the development of direct and indirect MYCN inhibitors with potential clinical use.
Collapse
|
64
|
Mastropasqua F, Marzano F, Valletti A, Aiello I, Di Tullio G, Morgano A, Liuni S, Ranieri E, Guerrini L, Gasparre G, Sbisà E, Pesole G, Moschetta A, Caratozzolo MF, Tullo A. TRIM8 restores p53 tumour suppressor function by blunting N-MYC activity in chemo-resistant tumours. Mol Cancer 2017; 16:67. [PMID: 28327152 PMCID: PMC5359838 DOI: 10.1186/s12943-017-0634-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/06/2017] [Indexed: 12/22/2022] Open
Abstract
Background TRIM8 plays a key role in controlling the p53 molecular switch that sustains the transcriptional activation of cell cycle arrest genes and response to chemotherapeutic drugs. The mechanisms that regulate TRIM8, especially in cancers like clear cell Renal Cell Carcinoma (ccRCC) and colorectal cancer (CRC) where it is low expressed, are still unknown. However, recent studies suggest the potential involvement of some microRNAs belonging to miR-17-92 and its paralogous clusters, which could include TRIM8 in a more complex pathway. Methods We used RCC and CRC cell models for in-vitro experiments, and ccRCC patients and xenograft transplanted mice for in vivo assessments. To measure microRNAs levels we performed RT-qPCR, while steady-states of TRIM8, p53, p21 and N-MYC were quantified at protein level by Western Blotting as well as at transcript level by RT-qPCR. Luciferase reporter assays were performed to assess the interaction between TRIM8 and specific miRNAs, and the potential effects of this interaction on TRIM8 expression. Moreover, we treated our cell models with conventional chemotherapeutic drugs or tyrosine kinase inhibitors, and measured their response in terms of cell proliferation by MTT and colony suppression assays. Results We showed that TRIM8 is a target of miR-17-5p and miR-106b-5p, whose expression is promoted by N-MYC, and that alterations of their levels affect cell proliferation, acting on the TRIM8 transcripts stability, as confirmed in ccRCC patients and cell lines. In addition, reducing the levels of miR-17-5p/miR-106b-5p, we increased the chemo-sensitivity of RCC/CRC-derived cells to anti-tumour drugs used in the clinic. Intriguingly, this occurs, on one hand, by recovering the p53 tumour suppressor activity in a TRIM8-dependent fashion and, on the other hand, by promoting the transcription of miR-34a that turns off the oncogenic action of N-MYC. This ultimately leads to cell proliferation reduction or block, observed also in colon cancer xenografts overexpressing TRIM8. Conclusions In this paper we provided evidence that TRIM8 and its regulators miR-17-5p and miR-106b-5 participate to a feedback loop controlling cell proliferation through the reciprocal modulation of p53, miR-34a and N-MYC. Our experiments pointed out that this axis is pivotal in defining drug responsiveness of cancers such ccRCC and CRC. Electronic supplementary material The online version of this article (doi:10.1186/s12943-017-0634-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Italia Aiello
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy
| | | | | | - Sabino Liuni
- Institute of Biomedical Technologies ITB, CNR, Bari, Italy
| | - Elena Ranieri
- Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
| | - Luisa Guerrini
- Department of Biosciences, University of Milano, Milano, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | | | - Graziano Pesole
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari "A. Moro", Bari, Italy.,Institute of Biomembranes and Bioenergetics IBBE, CNR, Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine, University of Bari "Aldo Moro", Bari, Italy
| | | | - Apollonia Tullo
- Institute of Biomembranes and Bioenergetics IBBE, CNR, Bari, Italy.
| |
Collapse
|
65
|
Wang B, Jiang H, Wang L, Chen X, Wu K, Zhang S, Ma S, Xia B. Increased MIR31HG lncRNA expression increases gefitinib resistance in non-small cell lung cancer cell lines through the EGFR/PI3K/AKT signaling pathway. Oncol Lett 2017; 13:3494-3500. [PMID: 28529576 PMCID: PMC5431660 DOI: 10.3892/ol.2017.5878] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 10/11/2016] [Indexed: 02/06/2023] Open
Abstract
The aim of the present study was to gain insight into the molecular mechanism of gefitinib resistance in non-small cell lung cancer (NSCLC), and demonstrate whether long noncoding RNA (lncRNA) expression signatures differ between gefitinib-sensitive PC9 and gefitinib-resistant PC9 (PC9-R) cell lines. PC9 and PC9-R cells were treated with gefitinib and, after 48 h, proliferation and apoptosis were analyzed using a Cell Counting Kit-8 (CCK-8) assay and flow cytometry. Microarray expression profiling of lncRNAs was undertaken in both PC9 and PC9-R cells, and the expression profiles were verified by reverse transcription quantitative-polymerase chain reaction. The EGFR/PI3K/AKT signaling pathway and mitochondrial apoptosis protein expression levels were assessed by western blot analysis. The PC9 cell line treated with gefitinib had a more significant effect on cell viability and apoptosis than the PC9-R cell line (P<0.05). Expression of various lncRNAs differed significantly between the two cell lines, and MIR31HG expression in particular was significantly higher in PC9-R cells. As expected, MIR31HG lncRNA knockdown sensitized PC9-R cells to gefitinib, and further experiments revealed that turning off the EGFR/PI3K/AKT signaling pathway activated expression of p53 in PC9-R cells transfected with si-MIR31HG. Furthermore, PC9-R cells transfected with si-MIR31HG induced cell apoptosis through the mitochondrial apoptosis pathway, and arrested the cell cycle in the G0/G1 phase. The results of the current study suggest that MIR31HG lncRNA levels in PC9-R cells are higher than in PC9 cells. Furthermore, overexpression of MIR31HG lncRNAs may contribute to gefitinib resistance in PC9-R cells through the EGFR/PI3K/AKT pathway, which impacts on cell proliferation, apoptosis and the cell cycle. MIR31HG lncRNA may therefore be a novel candidate biomarker for future therapeutic strategies involving EGFR-TKIs.
Collapse
Affiliation(s)
- Bing Wang
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Hong Jiang
- Department of Thoracic Surgery, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Limin Wang
- Department of Respiration, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Xueqin Chen
- Department of Medical Oncology, Hangzhou First People's Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Kan Wu
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Shirong Zhang
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Shenglin Ma
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| | - Bing Xia
- Department of Radiation Oncology, Hangzhou First People's Hospital, Hangzhou Cancer Hospital, Hangzhou, Zhejiang 310002, P.R. China
| |
Collapse
|
66
|
Suryavanshi S, Raina P, Deshpande R, Kaul-Ghanekar R. Nardostachys jatamansi Root Extract Modulates the Growth of IMR-32 and SK-N-MC Neuroblastoma Cell Lines Through MYCN Mediated Regulation of MDM2 and p53. Pharmacogn Mag 2017; 13:21-24. [PMID: 28216878 PMCID: PMC5307909 DOI: 10.4103/0973-1296.197645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Aim: The present study evaluated the effect of ethanolic extract of Nardostachys jatamansi roots (NJet) on MYCN mediated regulation of expression of MDM2 and p53 proteins in neuroblastoma cell lines, IMR-32 and SK-N-MC. Materials and Methods: The effect of NJet on cell viability was determined by MTT; and on growth kinetics was evaluated by trypan blue dye exclusion method and soft agar assay. The expression of p53, MDM2 and MYCN proteins in response to NJet treatment was evaluated by immunoblotting. Results: NJet decreased the viability of neuroblastoma cells without affecting the viability of non-cancerous, HEK-293 cells. It altered the growth kinetics of the cancer cells in a dose-dependent manner. NJet down regulated the expression of MYCN and MDM2 proteins with a simultaneous increase in the expression of tumor suppressor protein p53. Conclusions: The present data demonstrated that NJet regulated the growth of IMR-32 and SK-N-MC through reduction in MYCN expression that lead to down regulation of MDM2 protein and increase in p53 expression. These preliminary results warrant further in depth studies to explore the therapeutic potential of Nardostachys jatamansi in the management of neuroblastoma. SUMMARY NJet reduced the viability of human neuroblastoma cell lines without affecting the viability of non-cancerous, HEK-293 cells. NJet regulated the growth kinetics of the cancer cells. NJet decreased the expression of MYCN and MDM2 proteins and simultaneously increased the expression of tumor suppressor protein p53.
Abbreviation used: NJet: Ethanolic extract of Nardostachys jatamansi MTT: 3-(4, 5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide HPTLC: High performance thin layer chromatography
Collapse
Affiliation(s)
- Snehal Suryavanshi
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| | - Prerna Raina
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| | - Rashmi Deshpande
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| | - Ruchika Kaul-Ghanekar
- Interactive Research School for Health Affairs (IRSHA), Bharati Vidyapeeth University, Katraj-Dhankawadi, Pune, Maharashtra, India
| |
Collapse
|
67
|
Wang X, Liu D, He D, Suo S, Xia X, He X, Han JDJ, Zheng P. Transcriptome analyses of rhesus monkey preimplantation embryos reveal a reduced capacity for DNA double-strand break repair in primate oocytes and early embryos. Genome Res 2017; 27:567-579. [PMID: 28223401 PMCID: PMC5378175 DOI: 10.1101/gr.198044.115] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 02/10/2017] [Indexed: 12/31/2022]
Abstract
Preimplantation embryogenesis encompasses several critical events including genome reprogramming, zygotic genome activation (ZGA), and cell-fate commitment. The molecular basis of these processes remains obscure in primates in which there is a high rate of embryo wastage. Thus, understanding the factors involved in genome reprogramming and ZGA might help reproductive success during this susceptible period of early development and generate induced pluripotent stem cells with greater efficiency. Moreover, explaining the molecular basis responsible for embryo wastage in primates will greatly expand our knowledge of species evolution. By using RNA-seq in single and pooled oocytes and embryos, we defined the transcriptome throughout preimplantation development in rhesus monkey. In comparison to archival human and mouse data, we found that the transcriptome dynamics of monkey oocytes and embryos were very similar to those of human but very different from those of mouse. We identified several classes of maternal and zygotic genes, whose expression peaks were highly correlated with the time frames of genome reprogramming, ZGA, and cell-fate commitment, respectively. Importantly, comparison of the ZGA-related network modules among the three species revealed less robust surveillance of genomic instability in primate oocytes and embryos than in rodents, particularly in the pathways of DNA damage signaling and homology-directed DNA double-strand break repair. This study highlights the utility of monkey models to better understand the molecular basis for genome reprogramming, ZGA, and genomic stability surveillance in human early embryogenesis and may provide insights for improved homologous recombination-mediated gene editing in monkey.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Denghui Liu
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Dajian He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,University of Chinese Academy of Sciences, Beijing, 100049, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan 650204, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China
| | - Shengbao Suo
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xian Xia
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiechao He
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Jing-Dong J Han
- Key Laboratory of Computational Biology, CAS Center for Excellence in Molecular Cell Science, Collaborative Innovation Center for Genetics and Developmental Biology, Chinese Academy of Sciences-Max Planck Partner Institute for Computational Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Yunnan Key Laboratory of Animal Reproduction, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, China.,Primate Research Center, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| |
Collapse
|
68
|
Sasai K, Treekitkarnmongkol W, Kai K, Katayama H, Sen S. Functional Significance of Aurora Kinases-p53 Protein Family Interactions in Cancer. Front Oncol 2016; 6:247. [PMID: 27933271 PMCID: PMC5122578 DOI: 10.3389/fonc.2016.00247] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 11/07/2016] [Indexed: 12/20/2022] Open
Abstract
Aurora kinases play critical roles in regulating spindle assembly, chromosome segregation, and cytokinesis to ensure faithful segregation of chromosomes during mitotic cell division cycle. Molecular and cell biological studies have revealed that Aurora kinases, at physiological levels, orchestrate complex sequential cellular processes at distinct subcellular locations through functional interactions with its various substrates. Aberrant expression of Aurora kinases, on the other hand, cause defects in mitotic spindle assembly, checkpoint response activation, and chromosome segregation leading to chromosomal instability. Elevated expression of Aurora kinases correlating with chromosomal instability is frequently detected in human cancers. Recent genomic profiling of about 3000 human cancer tissue specimens to identify various oncogenic signatures in The Cancer Genome Atlas project has reported that recurrent amplification and overexpression of Aurora kinase-A characterize distinct subsets of human tumors across multiple cancer types. Besides the well-characterized canonical pathway interactions of Aurora kinases in regulating assembly of the mitotic apparatus and chromosome segregation, growing evidence also supports the notion that deregulated expression of Aurora kinases in non-canonical pathways drive transformation and genomic instability by antagonizing tumor suppressor and exacerbating oncogenic signaling through direct interactions with critical proteins. Aberrant expression of the Aurora kinases–p53 protein family signaling axes appears to be critical in the abrogation of p53 protein family mediated tumor suppressor pathways frequently deregulated during oncogenic transformation process. Recent findings reveal the existence of feedback regulatory loops in mRNA expression and protein stability of these protein families and their consequences on downstream effectors involved in diverse physiological functions, such as mitotic progression, checkpoint response pathways, as well as self-renewal and pluripotency in embryonic stem cells. While these investigations have focused on the functional consequences of Aurora kinase protein family interactions with wild-type p53 family proteins, those involving Aurora kinases and mutant p53 remain to be elucidated. This article presents a comprehensive review of studies on Aurora kinases–p53 protein family interactions along with a prospective view on the possible functional consequences of Aurora kinase–mutant p53 signaling pathways in tumor cells. Additionally, we also discuss therapeutic implications of these findings in Aurora kinases overexpressing subsets of human tumors.
Collapse
Affiliation(s)
- Kaori Sasai
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Warapen Treekitkarnmongkol
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Kazuharu Kai
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| | - Hiroshi Katayama
- Department of Molecular Oncology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences , Okayama , Japan
| | - Subrata Sen
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center , Houston, TX , USA
| |
Collapse
|
69
|
Bogen D, Wei JS, Azorsa DO, Ormanoglu P, Buehler E, Guha R, Keller JM, Mathews Griner LA, Ferrer M, Song YK, Liao H, Mendoza A, Gryder BE, Sindri S, He J, Wen X, Zhang S, Shern JF, Yohe ME, Taschner-Mandl S, Shohet JM, Thomas CJ, Martin SE, Ambros PF, Khan J. Aurora B kinase is a potent and selective target in MYCN-driven neuroblastoma. Oncotarget 2016; 6:35247-62. [PMID: 26497213 PMCID: PMC4742102 DOI: 10.18632/oncotarget.6208] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Accepted: 09/30/2015] [Indexed: 01/11/2023] Open
Abstract
Despite advances in multimodal treatment, neuroblastoma (NB) is often fatal for children with high-risk disease and many survivors need to cope with long-term side effects from high-dose chemotherapy and radiation. To identify new therapeutic targets, we performed an siRNA screen of the druggable genome combined with a small molecule screen of 465 compounds targeting 39 different mechanisms of actions in four NB cell lines. We identified 58 genes as targets, including AURKB, in at least one cell line. In the drug screen, aurora kinase inhibitors (nine molecules) and in particular the AURKB-selective compound, barasertib, were the most discriminatory with regard to sensitivity for MYCN-amplified cell lines. In an expanded panel of ten NB cell lines, those with MYCN-amplification and wild-type TP53 were the most sensitive to low nanomolar concentrations of barasertib. Inhibition of the AURKB kinase activity resulted in decreased phosphorylation of the known target, histone H3, and upregulation of TP53 in MYCN-amplified, TP53 wild-type cells. However, both wild-type and TP53 mutant MYCN-amplified cell lines arrested in G2/M phase upon AURKB inhibition. Additionally, barasertib induced endoreduplication and apoptosis. Treatment of MYCN-amplified/TP53 wild-type neuroblastoma xenografts resulted in profound growth inhibition and tumor regression. Therefore, aurora B kinase inhibition is highly effective in aggressive neuroblastoma and warrants further investigation in clinical trials.
Collapse
Affiliation(s)
- Dominik Bogen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.,Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David O Azorsa
- Clinical Translational Research Division, Translational Genomics Research Institute (TGen), Scottsdale, AZ, USA
| | - Pinar Ormanoglu
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Eugen Buehler
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Rajarshi Guha
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Jonathan M Keller
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Lesley A Mathews Griner
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Young K Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Hongling Liao
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Arnulfo Mendoza
- Tumor and Metastasis Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Berkley E Gryder
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sivasish Sindri
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Jianbin He
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Shile Zhang
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - John F Shern
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Marielle E Yohe
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sabine Taschner-Mandl
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Jason M Shohet
- Texas Children's Cancer Center and Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Scott E Martin
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Peter F Ambros
- Children's Cancer Research Institute, St. Anna Kinderkrebsforschung, Vienna, Austria
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
70
|
Sipos F, Firneisz G, Műzes G. Therapeutic aspects of c-MYC signaling in inflammatory and cancerous colonic diseases. World J Gastroenterol 2016; 22:7938-7950. [PMID: 27672289 PMCID: PMC5028808 DOI: 10.3748/wjg.v22.i35.7938] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 08/04/2016] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Colonic inflammation is required to heal infections, wounds, and maintain tissue homeostasis. As the seventh hallmark of cancer, however, it may affect all phases of tumor development, including tumor initiation, promotion, invasion and metastatic dissemination, and also evasion immune surveillance. Inflammation acts as a cellular stressor and may trigger DNA damage or genetic instability, and, further, chronic inflammation can provoke genetic mutations and epigenetic mechanisms that promote malignant cell transformation. Both sporadical and colitis-associated colorectal carcinogenesis are multi-step, complex processes arising from the uncontrolled proliferation and spreading of malignantly transformed cell clones with the obvious ability to evade the host's protective immunity. In cells upon DNA damage several proto-oncogenes, including c-MYC are activated in parelell with the inactivation of tumor suppressor genes. The target genes of the c-MYC protein participate in different cellular functions, including cell cycle, survival, protein synthesis, cell adhesion, and micro-RNA expression. The transcriptional program regulated by c-MYC is context dependent, therefore the final cellular response to elevated c-MYC levels may range from increased proliferation to augmented apoptosis. Considering physiological intestinal homeostasis, c-MYC displays a fundamental role in the regulation of cell proliferation and crypt cell number. However, c-MYC gene is frequently deregulated in inflammation, and overexpressed in both sporadic and colitis-associated colon adenocarcinomas. Recent results demonstrated that endogenous c-MYC is essential for efficient induction of p53-dependent apoptosis following DNA damage, but c-MYC function is also involved in and regulated by autophagy-related mechanisms, while its expression is affected by DNA-methylation, or histone acetylation. Molecules directly targeting c-MYC, or agents acting on other genes involved in the c-MYC pathway could be selected for combined regiments. However, due to its context-dependent cellular function, it is clinically essential to consider which cytotoxic drugs are used in combination with c-MYC targeted agents in various tissues. Increasing our knowledge about MYC-dependent pathways might provide direction to novel anti-inflammatory and colorectal cancer therapies.
Collapse
|
71
|
Carter DR, Murray J, Cheung BB, Gamble L, Koach J, Tsang J, Sutton S, Kalla H, Syed S, Gifford AJ, Issaeva N, Biktasova A, Atmadibrata B, Sun Y, Sokolowski N, Ling D, Kim PY, Webber H, Clark A, Ruhle M, Liu B, Oberthuer A, Fischer M, Byrne J, Saletta F, Thwe LM, Purmal A, Haderski G, Burkhart C, Speleman F, De Preter K, Beckers A, Ziegler DS, Liu T, Gurova KV, Gudkov AV, Norris MD, Haber M, Marshall GM. Therapeutic targeting of the MYC signal by inhibition of histone chaperone FACT in neuroblastoma. Sci Transl Med 2016; 7:312ra176. [PMID: 26537256 DOI: 10.1126/scitranslmed.aab1803] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Amplification of the MYCN oncogene predicts treatment resistance in childhood neuroblastoma. We used a MYC target gene signature that predicts poor neuroblastoma prognosis to identify the histone chaperone FACT (facilitates chromatin transcription) as a crucial mediator of the MYC signal and a therapeutic target in the disease. FACT and MYCN expression created a forward feedback loop in neuroblastoma cells that was essential for maintaining mutual high expression. FACT inhibition by the small-molecule curaxin compound CBL0137 markedly reduced tumor initiation and progression in vivo. CBL0137 exhibited strong synergy with standard chemotherapy by blocking repair of DNA damage caused by genotoxic drugs, thus creating a synthetic lethal environment in MYCN-amplified neuroblastoma cells and suggesting a treatment strategy for MYCN-driven neuroblastoma.
Collapse
Affiliation(s)
- Daniel R Carter
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia
| | - Jayne Murray
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Belamy B Cheung
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia
| | - Laura Gamble
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Jessica Koach
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Joanna Tsang
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Selina Sutton
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Heyam Kalla
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Sarah Syed
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Andrew J Gifford
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. Department of Anatomical Pathology (SEALS), Prince of Wales Hospital, Randwick, New South Wales 2031, Australia
| | - Natalia Issaeva
- Department of Surgery, Otolaryngology, and Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| | - Asel Biktasova
- Department of Surgery, Otolaryngology, and Yale Cancer Center, Yale University, New Haven, CT 06511, USA
| | - Bernard Atmadibrata
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Yuting Sun
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Nicolas Sokolowski
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Dora Ling
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Patrick Y Kim
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Hannah Webber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Ashleigh Clark
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Michelle Ruhle
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - Bing Liu
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia
| | - André Oberthuer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, 50931 Cologne, Germany. Department of Neonatology and Pediatric Intensive Care Medicine, Children's Hospital, University of Cologne, 50931 Cologne, Germany
| | - Matthias Fischer
- Department of Pediatric Oncology and Hematology, Children's Hospital, University of Cologne, 50931 Cologne, Germany. Max Planck Institute for Metabolism Research, 50931 Cologne, Germany
| | - Jennifer Byrne
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia. University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Federica Saletta
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | - Le Myo Thwe
- Children's Cancer Research Unit, Kids Research Institute, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia. University of Sydney Discipline of Paediatrics and Child Health, The Children's Hospital at Westmead, Locked Bag 4001, Westmead, New South Wales 2145, Australia
| | | | | | | | - Frank Speleman
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Katleen De Preter
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Anneleen Beckers
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - David S Ziegler
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. School of Women's and Children's Health, UNSW Australia, Randwick, New South Wales 2031, Australia. Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales 2031, Australia
| | - Tao Liu
- Center for Medical Genetics (CMGG), Ghent University, Medical Research Building (MRB1), De Pintelaan 185, 9000 Ghent, Belgium
| | - Katerina V Gurova
- Incuron, LLC, Buffalo, NY 14203, USA. Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Andrei V Gudkov
- Incuron, LLC, Buffalo, NY 14203, USA. Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Murray D Norris
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. University of New South Wales Centre for Childhood Cancer Research, Randwick, New South Wales 2031, Australia
| | - Michelle Haber
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia.
| | - Glenn M Marshall
- Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick, New South Wales 2031, Australia. Kids Cancer Centre, Sydney Children's Hospital, Randwick, New South Wales 2031, Australia.
| |
Collapse
|
72
|
Chen L, Rousseau RF, Middleton SA, Nichols GL, Newell DR, Lunec J, Tweddle DA. Pre-clinical evaluation of the MDM2-p53 antagonist RG7388 alone and in combination with chemotherapy in neuroblastoma. Oncotarget 2016; 6:10207-21. [PMID: 25844600 PMCID: PMC4496350 DOI: 10.18632/oncotarget.3504] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 02/17/2015] [Indexed: 12/20/2022] Open
Abstract
Neuroblastoma is a predominantly p53 wild-type (wt) tumour and MDM2-p53 antagonists offer a novel therapeutic strategy for neuroblastoma patients. RG7388 (Roche) is currently undergoing early phase clinical evaluation in adults. This study assessed the efficacy of RG7388 as a single-agent and in combination with chemotherapies currently used to treat neuroblastoma in a panel of neuroblastoma cell lines. RG7388 GI50 concentrations were determined in 21 p53-wt and mutant neuroblastoma cell lines of varying MYCN, MDM2 and p14ARF status, together with MYCN-regulatable Tet21N cells. The primary determinant of response was the presence of wt p53, and overall there was a >200-fold difference in RG7388 GI50 concentrations for p53-wt versus mutant cell lines. Tet21N MYCN+ cells were significantly more sensitive to RG7388 compared with MYCN− cells. Using median-effect analysis in 5 p53-wt neuroblastoma cell lines, selected combinations of RG7388 with cisplatin, doxorubicin, topotecan, temozolomide and busulfan were synergistic. Furthermore, combination treatments led to increased apoptosis, as evident by higher caspase-3/7 activity compared to either agent alone. These data show that RG7388 is highly potent against p53-wt neuroblastoma cells, and strongly supports its further evaluation as a novel therapy for patients with high-risk neuroblastoma and wt p53 to potentially improve survival and/or reduce toxicity.
Collapse
Affiliation(s)
- Lindi Chen
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | | | | | | | - David R Newell
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - John Lunec
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| | - Deborah A Tweddle
- Newcastle Cancer Centre, Northern Institute for Cancer Research, Newcastle University, Newcastle, United Kingdom
| |
Collapse
|
73
|
Zhang S, Wei JS, Li SQ, Badgett TC, Song YK, Agarwal S, Coarfa C, Tolman C, Hurd L, Liao H, He J, Wen X, Liu Z, Thiele CJ, Westermann F, Asgharzadeh S, Seeger RC, Maris JM, Guidry Auvil JM, Smith MA, Kolaczyk ED, Shohet J, Khan J. MYCN controls an alternative RNA splicing program in high-risk metastatic neuroblastoma. Cancer Lett 2016; 371:214-24. [PMID: 26683771 PMCID: PMC4738031 DOI: 10.1016/j.canlet.2015.11.045] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/29/2015] [Accepted: 11/30/2015] [Indexed: 12/20/2022]
Abstract
The molecular mechanisms underlying the aggressive behavior of MYCN driven neuroblastoma (NBL) is under intense investigation; however, little is known about the impact of this family of transcription factors on the splicing program. Here we used high-throughput RNA sequencing to systematically study the expression of RNA isoforms in stage 4 MYCN-amplified NBL, an aggressive subtype of metastatic NBL. We show that MYCN-amplified NBL tumors display a distinct gene splicing pattern affecting multiple cancer hallmark functions. Six splicing factors displayed unique differential expression patterns in MYCN-amplified tumors and cell lines, and the binding motifs for some of these splicing factors are significantly enriched in differentially-spliced genes. Direct binding of MYCN to promoter regions of the splicing factors PTBP1 and HNRNPA1 detected by ChIP-seq demonstrates that MYCN controls the splicing pattern by direct regulation of the expression of these key splicing factors. Furthermore, high expression of PTBP1 and HNRNPA1 was significantly associated with poor overall survival of stage4 NBL patients (p ≤ 0.05). Knocking down PTBP1, HNRNPA1 and their downstream target PKM2, an isoform of pro-tumor-growth, result in repressed growth of NBL cells. Therefore, our study reveals a novel role of MYCN in controlling global splicing program through regulation of splicing factors in addition to its well-known role in the transcription program. These findings suggest a therapeutically potential to target the key splicing factors or gene isoforms in high-risk NBL with MYCN-amplification.
Collapse
Affiliation(s)
- Shile Zhang
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA; Program in Bioinformatics, Boston University, Boston, MA 02218, USA
| | - Jun S Wei
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Samuel Q Li
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Tom C Badgett
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA; Pediatric Hematology and Oncology, Kentucky Children's Hospital, Lexington, KY 40536, USA
| | - Young K Song
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Saurabh Agarwal
- Texas Children's Cancer Center, Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Cristian Coarfa
- Texas Children's Cancer Center, Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Catherine Tolman
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Laura Hurd
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Hongling Liao
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Jianbin He
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Xinyu Wen
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Zhihui Liu
- Cell & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Carol J Thiele
- Cell & Molecular Biology Section, Pediatric Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA
| | - Frank Westermann
- Neuroblastoma Genomics, B030, German Cancer Research Center, Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Shahab Asgharzadeh
- Division of Hematology/Oncology, The Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Robert C Seeger
- Division of Hematology/Oncology, The Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Saban Research Institute, The Children's Hospital Los Angeles, Los Angeles, CA 90027, USA; Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - John M Maris
- Center for Childhood Cancer Research, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Division of Oncology, the Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA; Abramson Family Cancer Research Institute, Philadelphia, PA 19104, USA
| | | | - Malcolm A Smith
- Clinical Investigation Branch, National Cancer Institute, Rockville, MD 20850, USA
| | - Eric D Kolaczyk
- Program in Bioinformatics, Boston University, Boston, MA 02218, USA; Department of Mathematics & Statistics, Boston University, Boston, MA 02218, USA
| | - Jason Shohet
- Texas Children's Cancer Center, Center for Cell and Gene Therapy, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Javed Khan
- Oncogenomics Section, Genetics Branch, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
74
|
Bachmann AS, Opoku-Ansah J, Ibarra-Rivera TR, Yco LP, Ambadi S, Roberts CC, Chang CEA, Pirrung MC. Syrbactin Structural Analog TIR-199 Blocks Proteasome Activity and Induces Tumor Cell Death. J Biol Chem 2016; 291:8350-62. [PMID: 26907687 DOI: 10.1074/jbc.m115.710053] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Indexed: 01/19/2023] Open
Abstract
Multiple myeloma is an aggressive hematopoietic cancer of plasma cells. The recent emergence of three effective FDA-approved proteasome-inhibiting drugs, bortezomib (Velcade®), carfilzomib (Kyprolis®), and ixazomib (Ninlaro®), confirms that proteasome inhibitors are therapeutically useful against neoplastic disease, in particular refractory multiple myeloma and mantle cell lymphoma. This study describes the synthesis, computational affinity assessment, and preclinical evaluation of TIR-199, a natural product-derived syrbactin structural analog. Molecular modeling and simulation suggested that TIR-199 covalently binds each of the three catalytic subunits (β1, β2, and β5) and revealed key interaction sites. In vitro and cell culture-based proteasome activity measurements confirmed that TIR-199 inhibits the proteasome in a dose-dependent manner and induces tumor cell death in multiple myeloma and neuroblastoma cells as well as other cancer types in the NCI-60 cell panel. It is particularly effective against kidney tumor cell lines, with >250-fold higher anti-tumor activities than observed with the natural product syringolin A. In vivo studies in mice revealed a maximum tolerated dose of TIR-199 at 25 mg/kg. The anti-tumor activity of TIR-199 was confirmed in hollow fiber assays in mice. Adverse drug reaction screens in a kidney panel revealed no off-targets of concern. This is the first study to examine the efficacy of a syrbactin in animals. Taken together, the results suggest that TIR-199 is a potent new proteasome inhibitor with promise for further development into a clinical drug for the treatment of multiple myeloma and other forms of cancer.
Collapse
Affiliation(s)
- André S Bachmann
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, the Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii, Hilo, Hawaii 96720, the Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii 96822,
| | - John Opoku-Ansah
- the Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii, Hilo, Hawaii 96720
| | | | - Lisette P Yco
- From the Department of Pediatrics and Human Development, College of Human Medicine, Michigan State University, Grand Rapids, Michigan 49503, the Department of Pharmaceutical Sciences, Daniel K. Inouye College of Pharmacy, University of Hawaii, Hilo, Hawaii 96720, the Department of Molecular Biosciences and Bioengineering, College of Tropical Agriculture and Human Resources, University of Hawaii at Manoa, Honolulu, Hawaii 96822
| | - Sudhakar Ambadi
- the Department of Chemistry, University of California, Riverside, California 92521, and
| | - Christopher C Roberts
- the Department of Chemistry, University of California, Riverside, California 92521, and
| | - Chia-En A Chang
- the Department of Chemistry, University of California, Riverside, California 92521, and
| | - Michael C Pirrung
- the Department of Chemistry, University of California, Riverside, California 92521, and the Department of Pharmaceutical Sciences, University of California, Irvine, California 92697
| |
Collapse
|
75
|
Ham J, Costa C, Sano R, Lochmann TL, Sennott EM, Patel NU, Dastur A, Gomez-Caraballo M, Krytska K, Hata AN, Floros KV, Hughes MT, Jakubik CT, Heisey DAR, Ferrell JT, Bristol ML, March RJ, Yates C, Hicks MA, Nakajima W, Gowda M, Windle BE, Dozmorov MG, Garnett MJ, McDermott U, Harada H, Taylor SM, Morgan IM, Benes CH, Engelman JA, Mossé YP, Faber AC. Exploitation of the Apoptosis-Primed State of MYCN-Amplified Neuroblastoma to Develop a Potent and Specific Targeted Therapy Combination. Cancer Cell 2016; 29:159-72. [PMID: 26859456 PMCID: PMC4749542 DOI: 10.1016/j.ccell.2016.01.002] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 11/14/2015] [Accepted: 01/07/2016] [Indexed: 01/30/2023]
Abstract
Fewer than half of children with high-risk neuroblastoma survive. Many of these tumors harbor high-level amplification of MYCN, which correlates with poor disease outcome. Using data from our large drug screen we predicted, and subsequently demonstrated, that MYCN-amplified neuroblastomas are sensitive to the BCL-2 inhibitor ABT-199. This sensitivity occurs in part through low anti-apoptotic BCL-xL expression, high pro-apoptotic NOXA expression, and paradoxical, MYCN-driven upregulation of NOXA. Screening for enhancers of ABT-199 sensitivity in MYCN-amplified neuroblastomas, we demonstrate that the Aurora Kinase A inhibitor MLN8237 combines with ABT-199 to induce widespread apoptosis. In diverse models of MYCN-amplified neuroblastoma, including a patient-derived xenograft model, this combination uniformly induced tumor shrinkage, and in multiple instances led to complete tumor regression.
Collapse
Affiliation(s)
- Jungoh Ham
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Carlotta Costa
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Renata Sano
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Timothy L Lochmann
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Erin M Sennott
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Neha U Patel
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Anahita Dastur
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Maria Gomez-Caraballo
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kateryna Krytska
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Aaron N Hata
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Konstantinos V Floros
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark T Hughes
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Charles T Jakubik
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Daniel A R Heisey
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Justin T Ferrell
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Molly L Bristol
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Ryan J March
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Craig Yates
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mark A Hicks
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Wataru Nakajima
- Department of Molecular Oncology, Institute for Advanced Medical Sciences, Nippon Medical School, Kawasaki 211-8533, Japan
| | - Madhu Gowda
- Department of Pediatrics, Children's Hospital of Richmond, VCU, Richmond, VA 23298, USA
| | - Brad E Windle
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Mikhail G Dozmorov
- Department of Biostatistics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Mathew J Garnett
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Ultan McDermott
- Cancer Genome Project, The Wellcome Trust Sanger Institute, Hinxton CB10 1SA, UK
| | - Hisashi Harada
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Shirley M Taylor
- Department of Microbiology and Immunology, Massey Cancer Center, Richmond, VA 23298, USA
| | - Iain M Morgan
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Jeffrey A Engelman
- Massachusetts General Hospital Cancer Center, Boston, MA 02129, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Yael P Mossé
- Division of Oncology and Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Anthony C Faber
- Philips Institute for Oral Health Research, VCU School of Dentistry and Massey Cancer Center, Virginia Commonwealth University, Perkinson Building, Richmond, VA 23298, USA.
| |
Collapse
|
76
|
Stafman LL, Beierle EA. Cell Proliferation in Neuroblastoma. Cancers (Basel) 2016; 8:E13. [PMID: 26771642 PMCID: PMC4728460 DOI: 10.3390/cancers8010013] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/05/2016] [Accepted: 01/08/2016] [Indexed: 12/19/2022] Open
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, continues to carry a dismal prognosis for children diagnosed with advanced stage or relapsed disease. This review focuses upon factors responsible for cell proliferation in neuroblastoma including transcription factors, kinases, and regulators of the cell cycle. Novel therapeutic strategies directed toward these targets in neuroblastoma are discussed.
Collapse
Affiliation(s)
- Laura L Stafman
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| | - Elizabeth A Beierle
- Department of Surgery, Division of Pediatric Surgery, University of Alabama, Birmingham, AL 35233, USA.
| |
Collapse
|
77
|
Nicolai S, Pieraccioli M, Peschiaroli A, Melino G, Raschellà G. Neuroblastoma: oncogenic mechanisms and therapeutic exploitation of necroptosis. Cell Death Dis 2015; 6:e2010. [PMID: 26633716 PMCID: PMC4720889 DOI: 10.1038/cddis.2015.354] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 10/17/2015] [Accepted: 10/19/2015] [Indexed: 12/20/2022]
Abstract
Neuroblastoma (NB) is the most common extracranial childhood tumor classified in five stages (1, 2, 3, 4 and 4S), two of which (3 and 4) identify chemotherapy-resistant, highly aggressive disease. High-risk NB frequently displays MYCN amplification, mutations in ALK and ATRX, and genomic rearrangements in TERT genes. These NB subtypes are also characterized by reduced susceptibility to programmed cell death induced by chemotherapeutic drugs. The latter feature is a major cause of failure in the treatment of advanced NB patients. Thus, proper reactivation of apoptosis or of other types of programmed cell death pathways in response to treatment is relevant for the clinical management of aggressive forms of NB. In this short review, we will discuss the most relevant genomic rearrangements that define high-risk NB and the role that destabilization of p53 and p73 can have in NB aggressiveness. In addition, we will propose a strategy to stabilize p53 and p73 by using specific inhibitors of their ubiquitin-dependent degradation. Finally, we will introduce necroptosis as an alternative strategy to kill NB cells and increase tumor immunogenicity.
Collapse
Affiliation(s)
- S Nicolai
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - M Pieraccioli
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - A Peschiaroli
- Institute of Cell Biology and Neurobiology (IBCN), CNR, Via E. Ramarini 32, Rome 00015, Italy
| | - G Melino
- Department of Experimental Medicine and Surgery, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy.,Medical Research Council, Toxicology Unit, Hodgkin Building, Leicester University, Lancaster Road, PO Box 138, Leicester LE1 9HN, UK
| | - G Raschellà
- ENEA Research Center Casaccia, Laboratory of Biosafety and Risk Assessment, Via Anguillarese, 301, Rome 00123, Italy
| |
Collapse
|
78
|
Sun Y, Bell JL, Carter D, Gherardi S, Poulos RC, Milazzo G, Wong JW, Al-Awar R, Tee AE, Liu PY, Liu B, Atmadibrata B, Wong M, Trahair T, Zhao Q, Shohet JM, Haupt Y, Schulte JH, Brown PJ, Arrowsmith CH, Vedadi M, MacKenzie KL, Hüttelmaier S, Perini G, Marshall GM, Braithwaite A, Liu T. WDR5 Supports an N-Myc Transcriptional Complex That Drives a Protumorigenic Gene Expression Signature in Neuroblastoma. Cancer Res 2015; 75:5143-54. [DOI: 10.1158/0008-5472.can-15-0423] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 09/25/2015] [Indexed: 11/16/2022]
|
79
|
Jin Y, Wang H, Han W, Lu J, Chu P, Han S, Ni X, Ning B, Yu D, Guo Y. Single nucleotide polymorphism rs11669203 in TGFBR3L is associated with the risk of neuroblastoma in a Chinese population. Tumour Biol 2015; 37:3739-47. [PMID: 26468016 DOI: 10.1007/s13277-015-4192-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Accepted: 10/01/2015] [Indexed: 12/31/2022] Open
Abstract
With a primary mortality, neuroblastoma (NB) is the most common extracranial solid tumor in childhood. Amplification of the MYCN (v-myc avian myelocytomatosis viral oncogene neuroblastoma derived homolog) oncogene is observed in 20-30 % of NB cases, a feature which also characterizes a highly aggressive subtype of the disease. However, the systematic study of association between single nucleotide polymorphisms (SNPs) in MYCN-regulated genes and the risk of NB has not been investigated. In the current study, we scanned a set of 16 SNPs located within known or predicted MYCN binding sites in a cohort of 247 patients of Chinese origin with neuroblastic family tumors, including neuroblastoma (NB), ganglioneuroma (GN), and ganglioneuroblastoma (GNB), and in 290 cancer-free controls to determine whether any of the tested SNPs are associated with neuroblastic family tumors. We found that the rs11669203 G>C polymorphism, located in TGFBR3L promoter, is significantly associated with the risk of NB. Further, we found that this association is site specific to adrenal NB compared to non-adrenal NB. In addition, transcriptome analysis indicated that increased expression of TGFBR3L is strongly correlated with poor survival. The SNP rs11669203 located at the MYCN binding site of TGFBR3L is significantly associated with elevated risk of NB, and abnormal MYCN-regulated TGFBR3L expression may contribute to NB oncogenesis.
Collapse
Affiliation(s)
- Yaqiong Jin
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Huanmin Wang
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Wei Han
- Department of Surgical Oncology, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Jie Lu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Shujing Han
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Xin Ni
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China
- Department of Head and Neck Surgery, Beijing Children's Hospital, Capital Medical University, Beijing, China
| | - Baitang Ning
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, USA
| | - Dianke Yu
- National Center for Toxicological Research, US Food and Drug Administration, Jefferson, USA.
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
80
|
Rangarajan N, Fox Z, Singh A, Kulkarni P, Rangarajan G. Disorder, oscillatory dynamics and state switching: the role of c-Myc. J Theor Biol 2015; 386:105-14. [PMID: 26408335 DOI: 10.1016/j.jtbi.2015.09.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 12/15/2022]
Abstract
In this paper, using the intrinsically disordered oncoprotein Myc as an example, we present a mathematical model to help explain how protein oscillatory dynamics can influence state switching. Earlier studies have demonstrated that, while Myc overexpression can facilitate state switching and transform a normal cell into a cancer phenotype, its downregulation can reverse state-switching. A fundamental aspect of the model is that a Myc threshold determines cell fate in cells expressing p53. We demonstrate that a non-cooperative positive feedback loop coupled with Myc sequestration at multiple binding sites can generate bistable Myc levels. Normal quiescent cells with Myc levels below the threshold can respond to mitogenic signals to activate the cyclin/cdk oscillator for limited cell divisions but the p53/Mdm2 oscillator remains nonfunctional. In response to stress, the p53/Mdm2 oscillator is activated in pulses that are critical to DNA repair. But if stress causes Myc levels to cross the threshold, Myc inactivates the p53/Mdm2 oscillator, abrogates p53 pulses, and pushes the cyclin/cdk oscillator into overdrive sustaining unchecked proliferation seen in cancer. However, if Myc is downregulated, the cyclin/cdk oscillator is inactivated and the p53/Mdm2 oscillator is reset and the cancer phenotype is reversed.
Collapse
Affiliation(s)
| | - Zach Fox
- Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Abhyudai Singh
- Biomedical Engineering, University of Delaware, Newark, DE, USA; Electrical and Computer Engineering, University of Delaware, Newark, DE, USA
| | - Prakash Kulkarni
- Department of Urology and Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Govindan Rangarajan
- Department of Mathematics, Indian Institute of Science, Bangalore, India; Centre for Neuroscience, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
81
|
Gillory LA, Stewart JE, Megison ML, Waters AM, Beierle EA. Focal adhesion kinase and p53 synergistically decrease neuroblastoma cell survival. J Surg Res 2015; 196:339-49. [PMID: 25862488 PMCID: PMC4442704 DOI: 10.1016/j.jss.2015.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/10/2015] [Accepted: 03/11/2015] [Indexed: 01/21/2023]
Abstract
Neuroblastoma is the most common extracranial solid tumor of childhood and is responsible for over 15% of pediatric cancer deaths. Focal adhesion kinase (FAK) is a nonreceptor tyrosine kinase that is important in many facets of neuroblastoma tumor development and progression. The p53 oncogene, although wild type in most neuroblastomas, lacks significant function as a tumor suppressor in these tumors. Recent reports have found that FAK and p53 interact in some tumor types. We have hypothesized FAK and p53 coordinately control each other's expression and also interact in neuroblastoma. In the present study, we showed that not only do FAK and p53 interact but each one controls the expression of the other. In addition, we also examined the effects of FAK inhibition combined with p53 activation in neuroblastoma and showed that these two, in combination, had a synergistic effect on neuroblastoma cell survival. The findings from this present study help to further our understanding of the regulation of neuroblastoma tumorigenesis and may provide novel therapeutic strategies and targets for neuroblastoma and other pediatric solid tumors.
Collapse
Affiliation(s)
- Lauren A Gillory
- Department of Surgery, University of Alabama, Birmingham, Alabama
| | - Jerry E Stewart
- Department of Surgery, University of Alabama, Birmingham, Alabama
| | | | - Alicia M Waters
- Department of Surgery, University of Alabama, Birmingham, Alabama
| | | |
Collapse
|
82
|
Ye F, Tang C, Shi W, Qian J, Xiao S, Gu M, Dang Y, Liu J, Chen Y, Shi R, Zhang G. A MDM2-dependent positive-feedback loop is involved in inhibition of miR-375 and miR-106b induced by Helicobacter pylori lipopolysaccharide. Int J Cancer 2015; 136:2120-2131. [PMID: 25307786 DOI: 10.1002/ijc.29268] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Accepted: 09/17/2014] [Indexed: 01/01/2023]
Abstract
Dysregulation of microRNAs (miRNAs) has been linked to virulence factors of Helicobacter pylori and shown to contribute to the progression of gastric cancer. However, the mechanisms of these processes remain poorly understood. The aim of this study was to investigate the mechanisms by which lipopolysaccharide (LPS), a virulence factor of H. pylori, regulates miR-375 and miR-106b expression in gastric epithelial cells. The results show that LPS from H. pylori 26695 downregulated the expression of miR-375 and miR-106b in gastric epithelial cells, and low levels of Dicer were also observed. Downregulation of miR-375 was found to increase expression of MDM2 with SP1 activation. Overexpression of MDM2 inhibited Dicer by repressing p63 to create a positive-feedback loop involving SP1/MDM2/p63/Dicer that leads to inhibition of miR-375 and miR-106b expression. In addition, we demonstrated that JAK1 and STAT3 were downstream target genes of miR-106b. H. pylori LPS also enhanced the tyrosine phosphorylation of JAK1, JAK2 and STAT3. Together, these results provide insight into the regulatory mechanisms of MDM2 on H. pylori LPS-induced specific miRNAs, and furthermore, suggest that gastric epithelial cells treated with H. pylori LPS may be susceptible to JAK/STAT3 signal pathway activation via inhibition of miR-375 and miR-106b.
Collapse
Affiliation(s)
- Feng Ye
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Selmi A, de Saint-Jean M, Jallas AC, Garin E, Hogarty MD, Bénard J, Puisieux A, Marabelle A, Valsesia-Wittmann S. TWIST1 is a direct transcriptional target of MYCN and MYC in neuroblastoma. Cancer Lett 2014; 357:412-418. [PMID: 25475555 DOI: 10.1016/j.canlet.2014.11.056] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/20/2014] [Accepted: 11/25/2014] [Indexed: 10/24/2022]
Abstract
In neuroblastoma, MYCN amplification is associated with a worse prognosis and is a criterion used in the clinic to provide intensive treatments to children even with localized disease. In correlation with MYCN amplification, upregulation of TWIST1, a transcription factor playing a crucial role in inhibition of apoptosis and differentiation, was previously reported. Clinical data set analysis of MYCN, MYC and TWIST1 expression permits us to confirm that TWIST1 expression is upregulated in MYCN amplified neuroblastoma but also in a subset of neuroblastoma harboring high expression of MYCN or MYC without gene amplification. In silico analyses reveal the presence of several MYC regulatory motifs (E-Boxes and INR) within the TWIST1 promoter. Using gel shift assay and reporter activity assays, we demonstrate that both N-Myc and c-Myc proteins can bind and activate the TWIST1 promoter. Therefore, we propose TWIST1 as a direct MYC transcriptional target.
Collapse
Affiliation(s)
- Abdelkader Selmi
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France
| | - Maud de Saint-Jean
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France
| | - Anne-Catherine Jallas
- Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Elisabeth Garin
- Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Michael D Hogarty
- Division of Oncology, The Children's Hospital of Philadelphia, Philadelphia, PA 19104-4318, USA
| | - Jean Bénard
- CNRS UMR8126 Institut Gustave Roussy, Université Paris XI, Villejuif F-94805, France
| | - Alain Puisieux
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France
| | - Aurélien Marabelle
- Université Lyon 1, F-69000 Lyon, France; INSERM UMR-S1052, CNRS UMR5286, Centre de Recherche en Cancérologie de Lyon, F-69008 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France
| | - Sandrine Valsesia-Wittmann
- Université Lyon 1, F-69000 Lyon, France; Centre Léon Bérard, F-69008 Lyon, France; Pôle des Sciences Cliniques, Lyon, F-69008, France.
| |
Collapse
|
84
|
Thor T, Künkele A, Pajtler KW, Wefers AK, Stephan H, Mestdagh P, Heukamp L, Hartmann W, Vandesompele J, Sadowski N, Becker L, Garrett L, Hölter SM, Horsch M, Calzada-Wack J, Klein-Rodewald T, Racz I, Zimmer A, Beckers J, Neff F, Klopstock T, De Antonellis P, Zollo M, Wurst W, Fuchs H, Gailus-Durner V, Schüller U, de Angelis MH, Eggert A, Schramm A, Schulte JH. MiR-34a deficiency accelerates medulloblastoma formation in vivo. Int J Cancer 2014; 136:2293-303. [PMID: 25348795 DOI: 10.1002/ijc.29294] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Accepted: 08/13/2014] [Indexed: 01/07/2023]
Abstract
Previous studies have evaluated the role of miRNAs in cancer initiation and progression. MiR-34a was found to be downregulated in several tumors, including medulloblastomas. Here we employed targeted transgenesis to analyze the function of miR-34a in vivo. We generated mice with a constitutive deletion of the miR-34a gene. These mice were devoid of mir-34a expression in all analyzed tissues, but were viable and fertile. A comprehensive standardized phenotypic analysis including more than 300 single parameters revealed no apparent phenotype. Analysis of miR-34a expression in human medulloblastomas and medulloblastoma cell lines revealed significantly lower levels than in normal human cerebellum. Re-expression of miR-34a in human medulloblastoma cells reduced cell viability and proliferation, induced apoptosis and downregulated the miR-34a target genes, MYCN and SIRT1. Activation of the Shh pathway by targeting SmoA1 transgene overexpression causes medulloblastoma in mice, which is dependent on the presence and upregulation of Mycn. Analysis of miR-34a in medulloblastomas derived from ND2:SmoA1(tg) mice revealed significant suppression of miR-34a compared to normal cerebellum. Tumor incidence was significantly increased and tumor formation was significantly accelerated in mice transgenic for SmoA1 and lacking miR-34a. Interestingly, Mycn and Sirt1 were strongly expressed in medulloblastomas derived from these mice. We here demonstrate that miR-34a is dispensable for normal development, but that its loss accelerates medulloblastomagenesis. Strategies aiming to re-express miR-34a in tumors could, therefore, represent an efficient therapeutic option.
Collapse
Affiliation(s)
- Theresa Thor
- Department of Pediatric Oncology and Hematology, University Children's Hospital Essen, Hufelandstr. 55 45147, Essen, Germany; German Cancer Consortium (DKTK), Heidelberg, Germany; German Cancer Research Center (DKFZ), D-69120, Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Chipumuro E, Marco E, Christensen CL, Kwiatkowski N, Zhang T, Hatheway CM, Abraham BJ, Sharma B, Yeung C, Altabef A, Perez-Atayde A, Wong KK, Yuan GC, Gray NS, Young RA, George RE. CDK7 inhibition suppresses super-enhancer-linked oncogenic transcription in MYCN-driven cancer. Cell 2014; 159:1126-1139. [PMID: 25416950 DOI: 10.1016/j.cell.2014.10.024] [Citation(s) in RCA: 477] [Impact Index Per Article: 43.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/18/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023]
Abstract
The MYC oncoproteins are thought to stimulate tumor cell growth and proliferation through amplification of gene transcription, a mechanism that has thwarted most efforts to inhibit MYC function as potential cancer therapy. Using a covalent inhibitor of cyclin-dependent kinase 7 (CDK7) to disrupt the transcription of amplified MYCN in neuroblastoma cells, we demonstrate downregulation of the oncoprotein with consequent massive suppression of MYCN-driven global transcriptional amplification. This response translated to significant tumor regression in a mouse model of high-risk neuroblastoma, without the introduction of systemic toxicity. The striking treatment selectivity of MYCN-overexpressing cells correlated with preferential downregulation of super-enhancer-associated genes, including MYCN and other known oncogenic drivers in neuroblastoma. These results indicate that CDK7 inhibition, by selectively targeting the mechanisms that promote global transcriptional amplification in tumor cells, may be useful therapy for cancers that are driven by MYC family oncoproteins.
Collapse
Affiliation(s)
- Edmond Chipumuro
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Eugenio Marco
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard School of Public Health, Boston, MA 02115, USA
| | | | - Nicholas Kwiatkowski
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tinghu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Clark M Hatheway
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Brian J Abraham
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Bandana Sharma
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA
| | - Caleb Yeung
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA
| | - Abigail Altabef
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | | | - Kwok-Kin Wong
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Guo-Cheng Yuan
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Harvard School of Public Health, Boston, MA 02115, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard A Young
- Whitehead Institute for Biomedical Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rani E George
- Department of Pediatric Hematology/Oncology, Dana-Farber Cancer Institute and Boston Children's Hospital, Boston, MA 02215, USA; Department of Pediatrics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
86
|
Lange I, Koomoa DLT. MycN promotes TRPM7 expression and cell migration in neuroblastoma through a process that involves polyamines. FEBS Open Bio 2014; 4:966-75. [PMID: 25426416 PMCID: PMC4241534 DOI: 10.1016/j.fob.2014.10.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Revised: 10/13/2014] [Accepted: 10/24/2014] [Indexed: 12/22/2022] Open
Abstract
MycN expression correlates with TRPM7 expression in neuroblastoma (NB) tumors. Expression of the transmembrane protein TRPM7 correlates with lower overall survival in NB tumors. MycN promotes TRPM7 mRNA and protein expression and increases TRPM7 channel activity. TRPM7 regulates NB cell migration. Polyamines regulate TRPM7 expression.
Neuroblastoma is an extra-cranial solid cancer in children. MYCN gene amplification is a prognostic indicator of poor outcome in neuroblastoma. Recent studies have shown that the multiple steps involved in cell migration are dependent on the availability of intracellular calcium (Ca2+). Although significant advances have been made in understanding the role of Ca2+ during migration, little has been achieved towards understanding its impact on the progression of diseases such as cancer. Interestingly, previous studies showed that cancer cell migration is regulated by TRPM7, a calcium-permeable ion channel. The objective of the current study was to elucidate the mechanism by which MycN promotes NB cell migration and the mechanism regulating TRPM7 expression. The results showed that MycN increased TRPM7 expression, induced TRPM7 channel activity, increased intracellular Ca2+ signaling, and promoted cell migration in NB cells. The results also showed that inhibition or down-regulation of ornithine decarboxylase (ODC) inhibited TRPM7 expression, a process that was reversed by spermidine. Overall, this study provides evidence that MycN promotes TRPM7 expression and cell migration through a mechanism that involves ODC synthesis of polyamines.
Collapse
Affiliation(s)
- Ingo Lange
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| | - Dana-Lynn T Koomoa
- University of Hawaii at Hilo, The Daniel K. Inouye College of Pharmacy, Hilo, HI 96720, USA
| |
Collapse
|
87
|
Kiyonari S, Kadomatsu K. Neuroblastoma models for insights into tumorigenesis and new therapies. Expert Opin Drug Discov 2014; 10:53-62. [DOI: 10.1517/17460441.2015.974544] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
88
|
Bandino A, Geerts D, Koster J, Bachmann AS. Deoxyhypusine synthase (DHPS) inhibitor GC7 induces p21/Rb-mediated inhibition of tumor cell growth and DHPS expression correlates with poor prognosis in neuroblastoma patients. Cell Oncol (Dordr) 2014; 37:387-98. [PMID: 25315710 DOI: 10.1007/s13402-014-0201-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/22/2014] [Indexed: 11/29/2022] Open
Abstract
PURPOSE Neuroblastoma (NB) is an aggressive pediatric malignancy that typically occurs in infants and children under the age of 5 years. High-stage tumors relapse frequently even after aggressive multimodal treatment, resulting in therapy resistance and eventually in patient death. Clearly, new biologically-targeted drugs are needed that more efficiently suppress tumor growth and prevent relapse. We and others previously showed that polyamines such as spermidine play an essential role in NB tumorigenesis and that DFMO, an inhibitor of the central polyamine synthesis gene ODC, is effective in vitro and in vivo, prompting its evaluation in NB clinical trials. However, the specific molecular actions of polyamines remain poorly defined. Spermidine and deoxyhypusine synthase (DHPS) are essential components in the hypusination-driven post-translational activation of eukaryotic initiation factor 5A (eIF5A). METHODS We assessed the role of DHPS in NB and the impact of its inhibition by N(1)-guanyl-1,7-diaminoheptane (GC7) on tumor cell growth using cell proliferation assays, Western blot, immunofluorescence microscopy, and Affymetrix micro-array mRNA expression analyses in NB tumor samples. RESULTS We found that GC7 inhibits NB cell proliferation in a dose-dependent manner, through induction of the cell cycle inhibitor p21 and reduction of total and phosphorylated Rb proteins. Strikingly, high DHPS mRNA expression correlated significantly with unfavorable clinical parameters, including poor patient survival, in a cohort of 88 NB tumors (all P < 0.04). CONCLUSIONS These results suggest that spermidine and DHPS are key contributing factors in NB tumor proliferation through regulation of the p21/Rb signaling axis.
Collapse
Affiliation(s)
- Andrea Bandino
- Department of Pharmaceutical Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, 34 Rainbow Drive, Hilo, HI, 96720, USA
| | | | | | | |
Collapse
|
89
|
Liu X, Ping H, Zhang C. Rapid establishment of a HEK 293 cell line expressing FVIII-BDD using AAV site-specific integration plasmids. BMC Res Notes 2014; 7:626. [PMID: 25204455 PMCID: PMC4166473 DOI: 10.1186/1756-0500-7-626] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 09/05/2014] [Indexed: 11/14/2022] Open
Abstract
Background Stable human cell lines have gradually become the preferred system for large scale production of recombinant proteins for clinical applications because of their capacity of proper protein post-translational modification and low immunogenicity. However, human cell line development technologies are commonly based on random genome integration of protein expressing genes. It is required to screen large numbers of cell clones to identify stable high producer cell clones and the cell line development process usually takes 6 to 12 months. Adeno-associated virus type 2 (AAV2) Rep protein is known to induce rAAV DNA integration into a specific site (AAVS1) of the human chromosome 19 and integrated transgenes can stably express proteins. We take advantage of this AAV unique feature to develop a rapid protocol to clone a stable recombinant protein expression human cell line. Findings We have constructed two plasmids. One plasmid, pSVAV2, contains the AAV rep gene for the synthesis of integrase; the second plasmid, pTRP5GFPFVIII-BDD, contains B-domain-deleted factor VIII (FVIII-BDD) and GFP gene flanked by AAV ITRs. Human embryonic kidney (HEK) 293 cells were co-transfected with the two plasmids and the cells were screened by green fluorescence to establish the recombinant FVIII-BDD cell line. PCR analysis showed that the FVIII-BDD gene has been integrated into the AAVS1 site of human chromosome 19. The FVIII-BDD protein secreted into the extracellular media exhibited coagulant activity. Conclusion We developed a method of rapid establishment of human HEK 293 cell line expressing recombinant FVIII-BDD protein with AAV site-specific integration plasmids.
Collapse
Affiliation(s)
| | | | - Chun Zhang
- Suzhou Municipal Key Laboratory of Molecular Diagnostics and Therapeutics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, NO, 88 Keling Road, Suzhou New District, Suzhou 215163, P, R, China.
| |
Collapse
|
90
|
Dorstyn L, Puccini J, Nikolic A, Shalini S, Wilson CH, Norris MD, Haber M, Kumar S. An unexpected role for caspase-2 in neuroblastoma. Cell Death Dis 2014; 5:e1383. [PMID: 25144718 PMCID: PMC4454317 DOI: 10.1038/cddis.2014.342] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/11/2014] [Indexed: 12/12/2022]
Abstract
Caspase-2 has been implicated in various cellular functions, including cell death by apoptosis, oxidative stress response, maintenance of genomic stability and tumor suppression. The loss of the caspase-2 gene (Casp2) enhances oncogene-mediated tumorigenesis induced by E1A/Ras in athymic nude mice, and also in the Eμ-Myc lymphoma and MMTV/c-neu mammary tumor mouse models. To further investigate the function of caspase-2 in oncogene-mediated tumorigenesis, we extended our studies in the TH-MYCN transgenic mouse model of neuroblastoma. Surprisingly, we found that loss of caspase-2 delayed tumorigenesis in the TH-MYCN neuroblastoma model. In addition, tumors from TH-MYCN/Casp2−/− mice were predominantly thoracic paraspinal tumors and were less vascularized compared with tumors from their TH-MYCN/Casp2+/+ counterparts. We did not detect any differences in the expression of neuroblastoma-associated genes in TH-MYCN/Casp2−/− tumors, or in the activation of Ras/MAPK signaling pathway that is involved in neuroblastoma progression. Analysis of expression array data from human neuroblastoma samples showed a correlation between low caspase-2 levels and increased survival. However, caspase-2 levels correlated with clinical outcome only in the subset of MYCN-non-amplified human neuroblastoma. These observations indicate that caspase-2 is not a suppressor in MYCN-induced neuroblastoma and suggest a tissue and context-specific role for caspase-2 in tumorigenesis.
Collapse
Affiliation(s)
- L Dorstyn
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| | - J Puccini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - A Nikolic
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - S Shalini
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - C H Wilson
- Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia
| | - M D Norris
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - M Haber
- Children's Cancer Institute Australia for Medical Research, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia
| | - S Kumar
- 1] Centre for Cancer Biology, University of South Australia, Adelaide, SA 5001, Australia [2] Department of Medicine, University of Adelaide, Adelaide, SA 5005, Australia
| |
Collapse
|
91
|
P14ARF deficiency and its correlation with overexpression of p53/MDM2 in sporadic vestibular schwannomas. Eur Arch Otorhinolaryngol 2014; 272:2227-34. [PMID: 24964769 DOI: 10.1007/s00405-014-3135-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 06/03/2014] [Indexed: 10/25/2022]
Abstract
Recent studies have shed considerable light into schwannomas. To date, only merlin has been identified as a hallmark or pathogenesis of both sporadic and NF2-related schwannomas. Here, we show, by immunoblot and immunohistochemical analyses of 58 sporadic vestibular schwannomas, that upregulation of p53 was observed in 90 % of tumors examined. No p53 mutations were found in 12 % tumors analyzed. Expression of p14ARF was negative in 95 % of tumors, while overexpression of MDM2 was found in all specimens. Aberrant DNA hypermethylation of the p14ARF promoter was observed in three of seven tumors examined (43 %), associated with remarkably decreased mRNA levels. The very high degree of concordance in the aberrations of the p14ARF/MDM2/p53 pathway in this tumor may be considered to be a new player in the pathogenesis of sporadic vestibular schwannomas. Moreover, expression of p21 (waf1) was negative in all tumors, suggesting that the aberration of this pathway is associated with greater attenuation of p21-mediated signals that are critical for growth inhibition. These data are in agreement with the model in RT-4 rat schwannoma cells: i.e., overexpression of ARF was associated with accumulation of p21 expression both at protein and mRNA levels. ShRNA knock-down of p53 expression attenuated p21-mediated increase in cellular arrest in the G1-phase, suggesting that p14ARF regulates p21 protein levels through a p53-dependent pathway. Thus, this study reveals a high degree of concordance in the aberrations of the p14ARF/MDM2/p53 pathway with the development of sporadic vestibular schwannomas.
Collapse
|
92
|
Phesse TJ, Myant KB, Cole AM, Ridgway RA, Pearson H, Muncan V, van den Brink GR, Vousden KH, Sears R, Vassilev LT, Clarke AR, Sansom OJ. Endogenous c-Myc is essential for p53-induced apoptosis in response to DNA damage in vivo. Cell Death Differ 2014; 21:956-66. [PMID: 24583641 PMCID: PMC4013513 DOI: 10.1038/cdd.2014.15] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 12/13/2013] [Accepted: 01/08/2014] [Indexed: 12/20/2022] Open
Abstract
Recent studies have suggested that C-MYC may be an excellent therapeutic cancer target and a number of new agents targeting C-MYC are in preclinical development. Given most therapeutic regimes would combine C-MYC inhibition with genotoxic damage, it is important to assess the importance of C-MYC function for DNA damage signalling in vivo. In this study, we have conditionally deleted the c-Myc gene in the adult murine intestine and investigated the apoptotic response of intestinal enterocytes to DNA damage. Remarkably, c-Myc deletion completely abrogated the immediate wave of apoptosis following both ionizing irradiation and cisplatin treatment, recapitulating the phenotype of p53 deficiency in the intestine. Consistent with this, c-Myc-deficient intestinal enterocytes did not upregulate p53. Mechanistically, this was linked to an upregulation of the E3 Ubiquitin ligase Mdm2, which targets p53 for degradation in c-Myc-deficient intestinal enterocytes. Further, low level overexpression of c-Myc, which does not impact on basal levels of apoptosis, elicited sustained apoptosis in response to DNA damage, suggesting c-Myc activity acts as a crucial cell survival rheostat following DNA damage. We also identify the importance of MYC during DNA damage-induced apoptosis in several other tissues, including the thymus and spleen, using systemic deletion of c-Myc throughout the adult mouse. Together, we have elucidated for the first time in vivo an essential role for endogenous c-Myc in signalling DNA damage-induced apoptosis through the control of the p53 tumour suppressor protein.
Collapse
Affiliation(s)
- T J Phesse
- School of Biosciences, University of Cardiff.CF10 3US, Cardiff, UK
- Ludwig Institute for Cancer Research, Melbourne, Australia
- The Walter and Eliza Hall Institute for Medical Research, Melbourne, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Australia
| | - K B Myant
- Beatson Institute for Cancer Research, Glasgow, UK
| | - A M Cole
- Beatson Institute for Cancer Research, Glasgow, UK
| | - R A Ridgway
- Beatson Institute for Cancer Research, Glasgow, UK
| | - H Pearson
- School of Biosciences, University of Cardiff.CF10 3US, Cardiff, UK
| | - V Muncan
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - G R van den Brink
- Department of Gastroenterology & Hepatology, Leiden University Medical Center, Leiden, The Netherlands
| | - K H Vousden
- Beatson Institute for Cancer Research, Glasgow, UK
| | - R Sears
- Department of Molecular and Medical Genetics, Oregon Health and Science University, Portland, OR, USA
| | - L T Vassilev
- Discovery Oncology, Roche Research Center, Nutley, NJ, USA
| | - A R Clarke
- School of Biosciences, University of Cardiff.CF10 3US, Cardiff, UK
| | - O J Sansom
- Beatson Institute for Cancer Research, Glasgow, UK
| |
Collapse
|
93
|
Zhang N, Ichikawa W, Faiola F, Lo SY, Liu X, Martinez E. MYC interacts with the human STAGA coactivator complex via multivalent contacts with the GCN5 and TRRAP subunits. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1839:395-405. [DOI: 10.1016/j.bbagrm.2014.03.017] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 11/24/2022]
|
94
|
Kotkamp K, Kur E, Wendik B, Polok BK, Ben-Dor S, Onichtchouk D, Driever W. Pou5f1/Oct4 promotes cell survival via direct activation of mych expression during zebrafish gastrulation. PLoS One 2014; 9:e92356. [PMID: 24643012 PMCID: PMC3958507 DOI: 10.1371/journal.pone.0092356] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/17/2014] [Indexed: 01/29/2023] Open
Abstract
Myc proteins control cell proliferation, cell cycle progression, and apoptosis, and play important roles in cancer as well in establishment of pluripotency. Here we investigated the control of myc gene expression by the Pou5f1/Oct4 pluripotency factor in the early zebrafish embryo. We analyzed the expression of all known zebrafish Myc family members, myca, mycb, mych, mycl1a, mycl1b, and mycn, by whole mount in situ hybridization during blastula and gastrula stages in wildtype and maternal plus zygotic pou5f1 mutant (MZspg) embryos, as well as by quantitative PCR and in time series microarray data. We found that the broad blastula and gastrula stage mych expression, as well as late gastrula stage mycl1b expression, both depend on Pou5f1 activity. We analyzed ChIP-Seq data and found that both Pou5f1 and Sox2 bind to mych and mycl1b control regions. The regulation of mych by Pou5f1 appears to be direct transcriptional activation, as overexpression of a Pou5f1 activator fusion protein in MZspg embryos induced strong mych expression even when translation of zygotically expressed mRNAs was suppressed. We further showed that MZspg embryos develop enhanced apoptosis already during early gastrula stages, when apoptosis was not be detected in wildtype embryos. However, Mych knockdown alone did not induce early apoptosis, suggesting potentially redundant action of several early expressed myc genes, or combination of several pathways affected in MZspg. Experimental mych overexpression in MZspg embryos did significantly, but not completely suppress the apoptosis phenotype. Similarly, p53 knockdown only partially suppressed apoptosis in MZspg gastrula embryos. However, combined knockdown of p53 and overexpression of Mych completely rescued the MZspg apoptosis phenotype. These results reveal that Mych has anti-apoptotic activity in the early zebrafish embryo, and that p53-dependent and Myc pathways are likely to act in parallel to control apoptosis at these stages.
Collapse
Affiliation(s)
- Kay Kotkamp
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Esther Kur
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Björn Wendik
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Bożena K. Polok
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Shifra Ben-Dor
- Biological Services, Weizmann Institute of Science, Rehovot, Israel
| | - Daria Onichtchouk
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
| | - Wolfgang Driever
- Developmental Biology, Institute Biology I, Faculty of Biology, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
- * E-mail:
| |
Collapse
|
95
|
Beltran H. The N-myc Oncogene: Maximizing its Targets, Regulation, and Therapeutic Potential. Mol Cancer Res 2014; 12:815-22. [PMID: 24589438 DOI: 10.1158/1541-7786.mcr-13-0536] [Citation(s) in RCA: 104] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
N-myc (MYCN), a member of the Myc family of basic-helix-loop-helix-zipper (bHLHZ) transcription factors, is a central regulator of many vital cellular processes. As such, N-myc is well recognized for its classic oncogenic activity and association with human neuroblastoma. Amplification and overexpression of N-myc has been described in other tumor types, particularly those of neural origin and neuroendocrine tumors. This review outlines N-myc's contribution to normal development and oncogenic progression. In addition, it highlights relevant transcriptional targets and mechanisms of regulation. Finally, the clinical implications of N-Myc as a biomarker and potential as a target using novel therapeutic approaches are discussed.
Collapse
Affiliation(s)
- Himisha Beltran
- Author's Affiliation: Weill Cornell Medical College, New York, New York
| |
Collapse
|
96
|
Zhao Y, Yu H, Hu W. The regulation of MDM2 oncogene and its impact on human cancers. Acta Biochim Biophys Sin (Shanghai) 2014; 46:180-9. [PMID: 24389645 DOI: 10.1093/abbs/gmt147] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Tumor suppressor p53 plays a central role in preventing tumor formation. The levels and activity of p53 is under tight regulation to ensure its proper function. Murine double minute 2 (MDM2), a p53 target gene, is an E3 ubiquitin ligase. MDM2 is a key negative regulator of p53 protein, and forms an auto-regulatory feedback loop with p53. MDM2 is an oncogene with both p53-dependent and p53-independent oncogenic activities, and often has increased expression levels in a variety of human cancers. MDM2 is highly regulated; the levels and function of MDM2 are regulated at the transcriptional, translational and post-translational levels. This review provides an overview of the regulation of MDM2. Dysregulation of MDM2 impacts significantly upon the p53 functions, and in turn the tumorigenesis. Considering the key role that MDM2 plays in human cancers, a better understanding of the regulation of MDM2 will help us to develop novel and more effective cancer therapeutic strategies to target MDM2 and activate p53 in cells.
Collapse
Affiliation(s)
- Yuhan Zhao
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ 08903, USA
| | | | | |
Collapse
|
97
|
|
98
|
Gao S, Hsieh CL, Zhou J, Shemshedini L. Zinc Finger 280B regulates sGCα1 and p53 in prostate cancer cells. PLoS One 2013; 8:e78766. [PMID: 24236047 PMCID: PMC3827277 DOI: 10.1371/journal.pone.0078766] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/23/2013] [Indexed: 11/29/2022] Open
Abstract
The Zinc Finger (ZNF) 280B protein was identified as an unexpected target of an shRNA designed for sGCα1. Further analysis showed that these two proteins are connected in another way, with 280B up-regulation of sGCα1 expression. Knock-down and over-expression experiments showed that 280B serves pro-growth and pro-survival functions in prostate cancer. Surprisingly however, these pro-cancer functions of 280B are not mediated by sGCα1, which itself has similar functions in prostate cancer, but by down-regulated p53. The p53 protein is a second target of 280B in prostate cancer, but unlike sGCα1, p53 is down-regulated by 280B. 280B induces p53 nuclear export, leading to subsequent proteasomal degradation. The protein responsible for p53 regulation by 280B is Mdm2, the E3 ubiquitin ligase that promotes p53 degradation by inducing its nuclear export. We show here that 280B up-regulates expression of Mdm2 in prostate cancer cells, and this regulation is via the Mdm2 promoter. To demonstrate an in vivo relevance to this interaction, expression studies show that 280B protein levels are up-regulated in prostate cancer and these levels correspond to reduced levels of p53. Thus, by enhancing the expression of Mdm2, the uncharacterized 280B protein provides a novel mechanism of p53 suppression in prostate cancer.
Collapse
Affiliation(s)
- Shuai Gao
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Chen-Lin Hsieh
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Jun Zhou
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
| | - Lirim Shemshedini
- Department of Biological Sciences, University of Toledo, Toledo, Ohio, United States of America
- * E-mail:
| |
Collapse
|
99
|
Hipp NI, Christner L, Wirth T, Mueller-Klieser W, Walenta S, Schröck E, Debatin KM, Beltinger C. MYCN and survivin cooperatively contribute to malignant transformation of fibroblasts. Carcinogenesis 2013; 35:479-88. [PMID: 24130166 DOI: 10.1093/carcin/bgt341] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The oncogenes MYCN and survivin (BIRC5) maintain aggressiveness of diverse cancers including sarcomas. To investigate whether these oncogenes cooperate in initial malignant transformation, we transduced them into Rat-1 fibroblasts. Indeed, survivin enhanced MYCN-driven contact-uninhibited and anchorage-independent growth in vitro. Importantly, upon subcutaneous transplantation into mice, cells overexpressing both instead of either one of the oncogenes generated tumors with shortened latency, marked anaplasia and an increased proliferation-to-apoptosis ratio resulting in accelerated growth. Mechanistically, the increased tumorigenicity was associated with an enhanced Warburg effect and a hypoxia inducible factor 1α linked vascular remodeling. This cooperation between MYCN and survivin may be important in the genesis of several cancers.
Collapse
Affiliation(s)
- Nora I Hipp
- Department of Paediatrics and Adolescent Medicine, University Medical Centre Ulm, Ulm89075, Germany
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Abstract
Neuroblastoma, the most common extracranial solid tumor of childhood, is thought to originate from undifferentiated neural crest cells. Amplification of the MYC family member, MYCN, is found in ∼25% of cases and correlates with high-risk disease and poor prognosis. Currently, amplification of MYCN remains the best-characterized genetic marker of risk in neuroblastoma. This article reviews roles for MYCN in neuroblastoma and highlights recent identification of other driver mutations. Strategies to target MYCN at the level of protein stability and transcription are also reviewed.
Collapse
Affiliation(s)
- Miller Huang
- Departments of Neurology, Pediatrics, and Neurosurgery, University of California, San Francisco, California 94158-9001
| | | |
Collapse
|