51
|
Mesaros C, Arora JS, Wholer A, Vachani A, Blair IA. 8-Oxo-2'-deoxyguanosine as a biomarker of tobacco-smoking-induced oxidative stress. Free Radic Biol Med 2012; 53:610-7. [PMID: 22613262 PMCID: PMC4283839 DOI: 10.1016/j.freeradbiomed.2012.04.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2011] [Revised: 04/02/2012] [Accepted: 04/06/2012] [Indexed: 11/19/2022]
Abstract
7,8-Dihydro-8-oxo-2'-deoxyguanosine (8-oxo-dGuo) is a useful biomarker of oxidative stress. However, its analysis can be challenging because 8-oxo-dGuo must be quantified in the presence of dGuo, without artifactual conversion to 8-oxo-dGuo. Urine is the ideal biological fluid for population studies, because it can be obtained noninvasively and it is less likely that artifactual oxidation of dGuo can occur because of the relatively low amounts that are present compared with hydrolyzed DNA. Stable isotope dilution liquid chromatography-selected reaction monitoring/mass spectrometry (LC-SRM/MS) with 8-oxo-[(15)N(5)]dGuo as internal standard provided the highest possible specificity for 8-oxo-dGuo analysis. Furthermore, artifact formation was determined by addition of [(13)C(10)(15)N(5)]dGuo and monitoring of its conversion to 8-oxo-[(13)C(10)(15)N(5)]dGuo during the analytical procedure. 8-Oxo-dGuo concentrations were normalized for interindividual differences in urine flow by analysis of creatinine using stable isotope dilution LC-SRM/MS. A significant increase in urinary 8-oxo-dGuo was observed in tobacco smokers compared with nonsmokers either using simple urinary concentrations or after normalization for creatinine excretion. The mean levels of 8-oxo-dGuo were 1.65ng/ml and the levels normalized to creatinine were 1.72μg/g creatinine. Therefore, stable isotope dilution LC-SRM/MS analysis of urinary 8-oxo-dGuo complements urinary isoprostane (isoP) analysis for assessing tobacco-smoking-induced oxidative stress. This method will be particularly useful for studies that employ polyunsaturated fatty acids, in which a reduction in arachidonic acid precursor could confound isoP measurements.
Collapse
Affiliation(s)
- Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Jasbir S. Arora
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Ashley Wholer
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Anil Vachani
- Division of Pulmonary Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
| | - Ian A. Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6160, USA
- Corresponding author: Ian A. Blair, Center for Cancer Pharmacology, University of Pennsylvania School of Medicine, 856 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160. Tel: 215-573-9885. Fax: 215-573-9889.
| |
Collapse
|
52
|
Zhang L, Huang M, Blair IA, Penning TM. Detoxication of benzo[a]pyrene-7,8-dione by sulfotransferases (SULTs) in human lung cells. J Biol Chem 2012; 287:29909-20. [PMID: 22782890 DOI: 10.1074/jbc.m112.386052] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Human aldo-keto reductases catalyze the metabolic activation of proximate carcinogenic PAH trans-dihydrodiols to yield electrophilic and redox-active o-quinones. Benzo[a]pyrene-7,8-dione a representative PAH o-quinone is reduced back to the corresponding catechol to generate a futile redox-cycle. We investigated whether sulfonation of PAH catechols by human sulfotransferases (SULT) could intercept the catechol in human lung cells. RT-PCR identified SULT1A1, -1A3, and -1E1 as the isozymes expressed in four human lung cell lines. The corresponding recombinant SULTs were examined for their substrate specificity. Benzo[a]pyrene-7,8-dione was reduced to benzo[a]pyrene-7,8-catechol by dithiothreitol under anaerobic conditions and then further sulfonated by the SULTs in the presence of 3'-[(35)S]phosphoadenosine 5'-phosphosulfate as the sulfonate group donor. The human SULTs catalyzed the sulfonation of benzo[a]pyrene-7,8-catechol and generated two isomeric benzo[a]pyrene-7,8-catechol O-monosulfate products that were identified by reversed phase HPLC and by LC-MS/MS. The various SULT isoforms produced the two isomers in different proportions. Two-dimensional (1)H and (13)C NMR assigned the two regioisomers of benzo[a]pyrene-7,8-catechol monosulfate as 8-hydroxy-benzo[a]pyrene-7-O-sulfate (M1) and 7-hydroxy-benzo[a]pyrene-8-O-sulfate (M2), respectively. The kinetic profiles of three SULTs were different. SULT1A1 gave the highest catalytic efficiency (k(cat)/K(m)) and yielded a single isomeric product corresponding to M1. By contrast, SULT1E1 showed distinct substrate inhibition and formed both M1 and M2. Based on expression levels, catalytic efficiency, and the fact that the lung cells only produce M1, it is concluded that the major isoform that can intercept benzo[a]pyrene-7,8-catechol is SULT1A1.
Collapse
Affiliation(s)
- Li Zhang
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104-6084, USA
| | | | | | | |
Collapse
|
53
|
Internal exposure to carcinogenic polycyclic aromatic hydrocarbons and DNA damage: a null result in brief. Arch Toxicol 2012; 86:1317-21. [DOI: 10.1007/s00204-012-0882-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 05/29/2012] [Indexed: 02/01/2023]
|
54
|
Huang M, Liu X, Basu SS, Zhang L, Kushman ME, Harvey RG, Blair IA, Penning TM. Metabolism and distribution of benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) in human lung cells by liquid chromatography tandem mass spectrometry: detection of an adenine B[a]P-7,8-dione adduct. Chem Res Toxicol 2012; 25:993-1003. [PMID: 22480306 DOI: 10.1021/tx200463s] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) is produced in human lung cells by the oxidation of (±)-B[a]P-7,8-trans-dihydrodiol, which is catalyzed by aldo-keto reductases (AKRs). However, information relevant to the cell-based metabolism of B[a]P-7,8-dione is lacking. We studied the metabolic fate of 2 μM 1,3-[(3)H(2)]-B[a]P-7,8-dione in human lung adenocarcinoma A549 cells, human bronchoalveolar H358 cells, and immortalized human bronchial epithelial HBEC-KT cells. In these three cell lines, 1,3-[(3)H(2)]-B[a]P-7,8-dione was rapidly consumed, and radioactivity was distributed between the organic and aqueous phase of ethyl acetate-extracted media, as well as in the cell lysate pellets. After acidification of the media, several metabolites of 1,3-[(3)H(2)]-B[a]P-7,8-dione were detected in the organic phase of the media by high performance liquid chromatography-ultraviolet-radioactivity monitoring (HPLC-UV-RAM). The structures of B[a]P-7,8-dione metabolites varied in the cell lines and were identified as B[a]P-7,8-dione conjugates with glutathione (GSH) and N-acetyl-l-cysteine (NAC), 8-O-monomethylated-catechol, catechol monosulfate, and monoglucuronide, and monohydroxylated-B[a]P-7,8-dione by liquid chromatography-tandem mass spectrometry (LC-MS/MS). We also obtained evidence for the first time for the formation of an adenine adduct of B[a]P-7,8-dione. Among these metabolites, the identity of the GSH-B[a]P-7,8-dione and the NAC-B[a]P-7,8-dione was further validated by comparison to authentic synthesized standards. The pathways of B[a]P-7,8-dione metabolism in the three human lung cell lines are formation of GSH and NAC conjugates, reduction to the catechol followed by phase II conjugation reactions leading to its detoxification, monohydroxylation, as well as formation of the adenine adduct.
Collapse
Affiliation(s)
- Meng Huang
- Center of Excellence in Environmental Toxicology and Center for Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, United States
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Abstract
Cancer is a disease of aging, and so with the increasing age of the US population, the incidence of cancer is also increasing. Furthermore the global burden of cancer continues to increase largely because of aging and growth of the world population together with increasing smoking rates in economically developing countries. Tumor formation is critically dependent upon two processes--initiation and progression. The initiation step is mediated by DNA damage, which causes activating mutations in proto-oncogenes and inactivation of tumor suppressor genes in many cancers. This is then thought to facilitate tumor progression and metastasis. Cyclooxygenase-2 (COX-2) is upregulated at an early stage in tumorigenesis and has been implicated as an important mediator of proliferation through the increased formation of bioactive arachidonic acid (AA) metabolites such as prostaglandin E(2). Significantly, we have found that COX-2-mediated AA metabolism also results in the formation of heptanone-etheno (Hε)-DNA adducts. Furthermore, we showed that the Hε-DNA adducts arose from the reaction of DNA with the lipid hydroperoxide-derived bifunctional electrophile, 4-oxo-2(E)-nonenal (ONE). Similarly, 5-lipoxoygenase-mediated AA metabolism also results in the formation of ONE-derived DNA adducts. The resulting Hε-DNA adducts are highly mutagenic in mammalian cell lines suggesting that these pathways could be (in part) responsible for the somatic mutations observed in tumorigenesis. As approximately 80% of cancers arise from somatic mutations, this provides an additional link between the upregulation of COX-2 and tumorigenesis.
Collapse
Affiliation(s)
- N Speed
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania Perelman School of Medicine, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, PA 19104-6160, USA
| | | |
Collapse
|
56
|
Niziolek-Kierecka M, Dreij K, Lundstedt S, Stenius U. γH2AX, pChk1, and Wip1 as Potential Markers of Persistent DNA Damage Derived from Dibenzo[a,l]pyrene and PAH-Containing Extracts from Contaminated Soils. Chem Res Toxicol 2012; 25:862-72. [DOI: 10.1021/tx200436n] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
| | - Kristian Dreij
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, S-171 77 Stockholm, Sweden
| |
Collapse
|
57
|
Ghosh R, Guha D, Bhowmik S. UV Released Factors Induce Antioxidant Defense in A375 Cells. Photochem Photobiol 2012; 88:708-16. [DOI: 10.1111/j.1751-1097.2012.01105.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
58
|
Gelhaus SL, Gilad O, Hwang WT, Penning TM, Blair IA. Multidrug resistance protein (MRP) 4 attenuates benzo[a]pyrene-mediated DNA-adduct formation in human bronchoalveolar H358 cells. Toxicol Lett 2011; 209:58-66. [PMID: 22155354 DOI: 10.1016/j.toxlet.2011.11.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2011] [Revised: 11/19/2011] [Accepted: 11/21/2011] [Indexed: 02/06/2023]
Abstract
Multi-drug resistance protein (MRP) 4, an ATP-binding cassette (ABC) transporter, has broad substrate specificity. It facilitates the transport of bile salt conjugates, conjugated steroids, nucleoside analogs, eicosanoids, and cardiovascular drugs. Recent studies in liver carcinoma cells and hepatocytes showed that MRP4 expression is regulated by the aryl hydrocarbon receptor (AhR) and nuclear factor E2-related factor 2 (Nrf2). The AhR has particular importance in the lung and is most commonly associated with the up-regulation of cytochrome P-450 (CYP)-mediated metabolism of benzo[a]pyrene (B[a]P) to reactive intermediates. Treatment of H358, human bronchoalveolar, cells with 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) or (-)-benzo[a]pyrene-7,8-dihydro-7,8-diol (B[a]P-7,8-dihydrodiol), the proximate carcinogen of B[a]P, revealed that MRP4 expression was increased compared to control. This suggested that MRP4 expression might contribute to the paradoxical decrease in (+)-7,8-dihydroxy-9,10-epoxy-7,8,9,10-tetrahydrobenzo[a]pyrene-2'-deoxyguanosine ((+)-anti-trans-B[a]PDE-dGuo) DNA-adducts observed in TCDD-treated H358 cells. We have now found that decreased MRP4 expression induced by a short hairpin RNA (shRNA), or chemical inhibition with probenecid, increased (+)-anti-trans-B[a]PDE-dGuo formation in cells treated with (-)-B[a]P-7,8-dihydrodiol, but not the ultimate carcinogen (+)-anti-trans-B[a]PDE. Thus, up-regulation of MRP4 increased cellular efflux of (-)-B[a]P-7,8-dihydrodiol, which attenuated DNA-adduct formation. This is the first report identifying a specific MRP efflux transporter that decreases DNA damage arising from an environmental carcinogen.
Collapse
Affiliation(s)
- Stacy L Gelhaus
- Center for Cancer Pharmacology, 421 Curie Boulevard, BRB II/III Room 841, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | | | | | | | | |
Collapse
|
59
|
Abedin Z, Sen S, Field J. Aldo-keto reductases protect lung adenocarcinoma cells from the acute toxicity of B[a]P-7,8-trans-dihydrodiol. Chem Res Toxicol 2011; 25:113-21. [PMID: 22053912 DOI: 10.1021/tx200272v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Tobacco smoke exposure stimulates the expression of genes that are likely to be involved in the metabolism of its combustion products such as polycyclic aromatic hydrocarbons (PAH). Four of the smoke induced genes are aldo-keto reductases (AKR), enzymes that metabolically activate PAH to PAH o-quinones. Alternatively, PAHs are metabolized to (±)-anti-diol epoxides, such as (±)-anti-benzo[a]pyrene diol epoxide ((±)-anti-BPDE)), by the combined action of P4501A1/1B1 and epoxide hydrolase. (±)-anti-BPDE forms DNA adducts directly, while PAH o-quinones cause DNA damage by oxidative stress through a futile redox cycle. To address the role of AKRs in PAH cytotoxicity, we compared the cytotoxicity of PAH metabolites and the effects of overexpressing AKR1A1 in lung cells. (±)-anti-BPDE and B[a]P-7,8-trans-dihydrodiol, an intermediate in (±)-anti-BPDE metabolism, are toxic to A549 cells at concentrations with an IC(50) of ∼2 μM. In contrast, the PAH o-quinone B[a]P-7,8-dione was about 10-fold less toxic to A549 cells with an IC(50) > 20 μM. Similar differences in cytoxicity were observed with two other PAH o-quinones (benz[a]anthracene-3,4-dione and 7,12-dimethylbenz[a]anthracene-3,4-dione) compared with their respective diol-epoxide counterparts (BA-3,4-diol-1,2-epoxide and DMBA-3,4-diol-1,2-epoxide). In addition, both anti-BPDE and B[a]P-7,8-trans-dihydrodiol induced p53 expression ∼6 h post-treatment at concentrations as low as 1 μM consistent with extensive DNA damage. B[a]P-7,8-dione treatment did not induce p53 but generated reactive oxygen species (ROS) in A549 cells and induced the expression of oxidative response genes in H358 cells. We also observed that overexpression of AKR1A1 in H358 cells, which otherwise have low levels of AKR expression, protected cells 2-10-fold from the toxic effects of B[a]P-7,8-trans-dihydrodiol. These data suggest that overexpression of AKRs may protect lung cancer cells from the acute toxic effects of PAH.
Collapse
Affiliation(s)
- Zahidur Abedin
- Department of Pharmacology, Centers for Excellence in Environmental Toxicology and Cancer Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, United States
| | | | | |
Collapse
|
60
|
Lu D, Harvey RG, Blair IA, Penning TM. Quantitation of benzo[a]pyrene metabolic profiles in human bronchoalveolar (H358) cells by stable isotope dilution liquid chromatography-atmospheric pressure chemical ionization mass spectrometry. Chem Res Toxicol 2011; 24:1905-14. [PMID: 21962213 DOI: 10.1021/tx2002614] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental pollutants and are carcinogenic in multiple organs and species. Benzo[a]pyrene (B[a]P) is a representative PAH and has been studied extensively for its carcinogenicity and toxicity. B[a]P itself is chemically inert and requires metabolic activation to exhibit its toxicity and carcinogenicity. Three major metabolic pathways have been well documented. The signature metabolites generated from the radical cation (peroxidase or monooxygenase mediated) pathway are B[a]P-1,6-dione and B[a]P-3,6-dione, the signature metabolite generated from the diol-epoxide (P450 mediated) pathway is B[a]P-r-7,t-8,t-9,c-10-tetrahydrotetrol (B[a]P-tetrol-1), and the signature metabolite generated from the o-quinone (aldo-keto reductase mediated) pathway is B[a]P-7,8-dione. The contributions of these different metabolic pathways to cancer initiation and the exploitation of this information for cancer prevention are still under debate. With the availability of a library of [(13)C(4)]-labeled B[a]P metabolite internal standards, we developed a sensitive stable isotope dilution atmospheric pressure chemical ionization tandem mass spectrometry method to address this issue by quantitating B[a]P metabolites from each metabolic pathway in human lung cells. This analytical method represents a 500-fold increased sensitivity compared with that of a method using HPLC-radiometric detection. The limit of quantitation (LOQ) was determined to be 6 fmol on column for 3-hydroxybenzo[a]pyrene (3-OH-B[a]P), the generally accepted biomarker for B[a]P exposure. This high level of sensitivity and robustness of the method was demonstrated in a study of B[a]P metabolic profiles in human bronchoalveolar H358 cells induced or uninduced with the AhR ligand, 2,3,7,8-tetrachlorodibenzodioxin (TCDD). All the signature metabolites were detected and successfully quantitated. Our results suggest that all three metabolic pathways contribute equally in the overall metabolism of B[a]P in H358 cells with or without TCDD induction. The sensitivity of the method should permit the identification of cell-type differences in B[a]P activation and detoxication and could also be used for biomonitoring human exposure to PAH.
Collapse
Affiliation(s)
- Ding Lu
- Center of Excellence in Environmental Toxicology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | |
Collapse
|
61
|
Michel C, Vincent-Hubert F. Detection of 8-oxodG in Dreissena polymorpha gill cells exposed to model contaminants. Mutat Res 2011; 741:1-6. [PMID: 22009068 DOI: 10.1016/j.mrgentox.2011.10.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 07/01/2011] [Accepted: 08/16/2011] [Indexed: 11/17/2022]
Abstract
Genotoxic end-points are routinely measured in various sentinel organisms in aquatic environments in order to monitor the impact of water pollution on organisms. As a first step towards the evaluation of oxidative DNA damage (8-oxodG) in organisms exposed to chemical water pollution, we have optimized the association between the comet assay and the hOGG1 enzyme for use on zebra mussel (Dreissena polymorpha) gill cells by in vitro exposure to H₂O₂. Firstly, we observed that in vitro exposure of D. polymorpha gill cells to benzo[a]pyrene (B[a]P, 98.4nM) induced an increase of the Olive Tail Moment (OTM) in both the comet-hOGG1 and comet-Fpg assays, indicating that B[a]P causes oxidative DNA damage. By contrast, methylmethane sulfonate (MMS, 33μM) only induced an increase of the Fpg-sensitive sites, indicating that MMS caused alkylating DNA damage and confirming that hOGG1 does not detect alkylating damage. Thus, the hOGG1 enzyme seems to be more specific towards oxidative DNA damage, such as 8-oxodG than Fpg. Secondly, as was observed in vitro, the in vivo exposure of D. polymorpha to B[a]P (24.6 and 98.4nM) increased oxidative DNA damage in gill cells, whereas only Fpg-sensitive sites were detected in mussels exposed to MMS (240μM). These results show that the comet-hOGG1 assay detects oxidative DNA lesions induced in vitro by H₂O₂ and in vivo with BaP. The comet-hOGG1 assay will be used to detect oxidative DNA lesions (8-oxodG) in mussels exposed in situ.
Collapse
Affiliation(s)
- Cécile Michel
- CEMAGREF, Unité de Recherches Hydrosystèmes et Bioprocédés, 1 rue Pierre-Gilles de Gennes, CS 10030, 92761 Antony Cedex, France.
| | | |
Collapse
|
62
|
Shultz CA, Quinn AM, Park JH, Harvey RG, Bolton JL, Maser E, Penning TM. Specificity of human aldo-keto reductases, NAD(P)H:quinone oxidoreductase, and carbonyl reductases to redox-cycle polycyclic aromatic hydrocarbon diones and 4-hydroxyequilenin-o-quinone. Chem Res Toxicol 2011; 24:2153-66. [PMID: 21910479 DOI: 10.1021/tx200294c] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are suspect human lung carcinogens and can be metabolically activated to remote quinones, for example, benzo[a]pyrene-1,6-dione (B[a]P-1,6-dione) and B[a]P-3,6-dione by the action of either P450 monooxygenase or peroxidases, and to non-K region o-quinones, for example B[a]P-7,8-dione, by the action of aldo keto reductases (AKRs). B[a]P-7,8-dione also structurally resembles 4-hydroxyequilenin o-quinone. These three classes of quinones can redox cycle, generate reactive oxygen species (ROS), and produce the mutagenic lesion 8-oxo-dGuo and may contribute to PAH- and estrogen-induced carcinogenesis. We compared the ability of a complete panel of human recombinant AKRs to catalyze the reduction of PAH o-quinones in the phenanthrene, chrysene, pyrene, and anthracene series. The specific activities for NADPH-dependent quinone reduction were often 100-1000 times greater than the ability of the same AKR isoform to oxidize the cognate PAH-trans-dihydrodiol. However, the AKR with the highest quinone reductase activity for a particular PAH o-quinone was not always identical to the AKR isoform with the highest dihydrodiol dehydrogenase activity for the respective PAH-trans-dihydrodiol. Discrete AKRs also catalyzed the reduction of B[a]P-1,6-dione, B[a]P-3,6-dione, and 4-hydroxyequilenin o-quinone. Concurrent measurements of oxygen consumption, superoxide anion, and hydrogen peroxide formation established that ROS were produced as a result of the redox cycling. When compared with human recombinant NAD(P)H:quinone oxidoreductase (NQO1) and carbonyl reductases (CBR1 and CBR3), NQO1 was a superior catalyst of these reactions followed by AKRs and last CBR1 and CBR3. In A549 cells, two-electron reduction of PAH o-quinones causes intracellular ROS formation. ROS formation was unaffected by the addition of dicumarol, suggesting that NQO1 is not responsible for the two-electron reduction observed and does not offer protection against ROS formation from PAH o-quinones.
Collapse
Affiliation(s)
- Carol A Shultz
- Department of Biochemistry and Biophysics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
DeMarini DM, Hanley NM, Warren SH, Adams LD, King LC. Association between mutation spectra and stable and unstable DNA adduct profiles in Salmonella for benzo[a]pyrene and dibenzo[a,l]pyrene. Mutat Res 2011; 714:17-25. [PMID: 21689667 DOI: 10.1016/j.mrfmmm.2011.06.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 06/01/2011] [Accepted: 06/02/2011] [Indexed: 05/30/2023]
Abstract
Benzo[a]pyrene (BP) and dibenzo[a,l]pyrene (DBP) are two polycyclic aromatic hydrocarbons (PAHs) that exhibit distinctly different mutagenicity and carcinogenicity profiles. Although some studies show that these PAHs produce unstable DNA adducts, conflicting data and arguments have been presented regarding the relative roles of these unstable adducts versus stable adducts, as well as oxidative damage, in the mutagenesis and tumor-mutation spectra of these PAHs. However, no study has determined the mutation spectra along with the stable and unstable DNA adducts in the same system with both PAHs. Thus, we determined the mutagenic potencies and mutation spectra of BP and DBP in strains TA98, TA100 and TA104 of Salmonella, and we also measured the levels of abasic sites (aldehydic-site assay) and characterized the stable DNA adducts ((32)P-postlabeling/HPLC) induced by these PAHs in TA104. Our results for the mutation spectra and site specificity of stable adducts were consistent with those from other systems, showing that DBP was more mutagenic than BP in TA98 and TA100. The mutation spectra of DBP and BP were significantly different in TA98 and TA104, with 24% of the mutations induced by BP in TA98 being complex frameshifts, whereas DBP produced hardly any of these mutations. In TA104, BP produced primarily GC to TA transversions, whereas DBP produced primarily AT to TA transversions. The majority (96%) of stable adducts induced by BP were at guanine, whereas the majority (80%) induced by DBP were at adenine. Although BP induced abasic sites, DBP did not. Most importantly, the proportion of mutations induced by DBP at adenine and guanine paralleled the proportion of stable DNA adducts induced by DBP at adenine and guanine; however, this was not the case for BP. Our results leave open a possible role for unstable DNA adducts in the mutational specificity of BP but not for DBP.
Collapse
Affiliation(s)
- David M DeMarini
- U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | |
Collapse
|
64
|
Oncogene-induced Nrf2 transcription promotes ROS detoxification and tumorigenesis. Nature 2011; 475:106-9. [PMID: 21734707 PMCID: PMC3404470 DOI: 10.1038/nature10189] [Citation(s) in RCA: 1758] [Impact Index Per Article: 125.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2010] [Accepted: 05/12/2011] [Indexed: 12/19/2022]
Abstract
Reactive oxygen species (ROS) are mutagenic and may thereby promote cancer1. Normally, ROS levels are tightly controlled by an inducible antioxidant program that responds to cellular stressors and is predominantly regulated by the transcription factor Nrf2 and its repressor protein Keap12-5. In contrast to the acute physiological regulation of Nrf2, in neoplasia there is evidence for increased basal activation of Nrf2. Indeed, somatic mutations that disrupt the Nrf2-Keap1 interaction to stabilize Nrf2 and increase the constitutive transcription of Nrf2 target genes were recently identified, suggesting that enhanced ROS detoxification and additional Nrf2 functions may in fact be pro-tumorigenic6. Here, we investigated ROS metabolism in primary murine cells following the expression of endogenous oncogenic alleles of K-Ras, B-Raf and Myc, and find that ROS are actively suppressed by these oncogenes. K-RasG12D, B-RafV619E and MycERT2 each increased the transcription of Nrf2 to stably elevate the basal Nrf2 antioxidant program and thereby lower intracellular ROS and confer a more reduced intracellular environment. Oncogene-directed increased expression of Nrf2 is a novel mechanism for the activation of the Nrf2 antioxidant program, and is evident in primary cells and tissues of mice expressing K-RasG12D and B-RafV619E, and in human pancreatic cancer. Furthermore, genetic targeting of the Nrf2 pathway impairs K-RasG12D-induced proliferation and tumorigenesis in vivo. Thus, the Nrf2 antioxidant and cellular detoxification program represents a previously unappreciated mediator of oncogenesis.
Collapse
|
65
|
Zhang L, Jin Y, Chen M, Huang M, Harvey RG, Blair IA, Penning TM. Detoxication of structurally diverse polycyclic aromatic hydrocarbon (PAH) o-quinones by human recombinant catechol-O-methyltransferase (COMT) via O-methylation of PAH catechols. J Biol Chem 2011; 286:25644-54. [PMID: 21622560 DOI: 10.1074/jbc.m111.240739] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAH) are environmental and tobacco carcinogens. Metabolic activation of intermediate PAH trans-dihydrodiols by aldo-keto reductases (AKRs) leads to the formation of electrophilic and redox-active o-quinones. We investigated whether O-methylation by human recombinant soluble catechol-O-methyltransferase (S-COMT) is a feasible detoxication step for a panel of structurally diverse PAH-catechols produced during the redox-cycling process. Classes of PAH non-K-region o-quinones (bay region, methylated bay region, and fjord region o-quinones) produced by AKRs were employed in the studies. PAH o-quinones were reduced to the corresponding catechols by dithiothreitol under anaerobic conditions and then further O-methylated by human S-COMT in the presence of S-[³H]adenosyl-l-methionine as a methyl group donor. The formation of the O-methylated catechols was detected by HPLC-UV coupled with in-line radiometric detection, and unlabeled products were also characterized by LC-MS/MS. Human S-COMT was able to catalyze O-methylation of all of the PAH-catechols and generated two isomeric metabolites in different proportions. LC-MS/MS showed that each isomer was a mono-O-methylated metabolite. ¹H NMR was used to assign the predominant positional isomer of benzo[a]pyrene-7,8-catechol as the O-8-monomethylated catechol. The catalytic efficiency (k(cat)/K(m)) varied among different classes of PAH-catechols by 500-fold. The ability of S-COMT to produce two isomeric products from PAH-catechols was rationalized using the crystal structure of the enzyme. We provide evidence that O-8-monomethylated benzo[a]pyrene-7,8-catechol is formed in three different human lung cell lines. It is concluded that human S-COMT may play a critical role in the detoxication of PAH o-quinones generated by AKRs.
Collapse
Affiliation(s)
- Li Zhang
- Centers of Excellence in Environmental Toxicology and Cancer Pharmacology, Department of Pharmacology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | | | | | | | | | | | | |
Collapse
|
66
|
Agyeman AS, Chaerkady R, Shaw PG, Davidson NE, Visvanathan K, Pandey A, Kensler TW. Transcriptomic and proteomic profiling of KEAP1 disrupted and sulforaphane-treated human breast epithelial cells reveals common expression profiles. Breast Cancer Res Treat 2011; 132:175-87. [PMID: 21597922 DOI: 10.1007/s10549-011-1536-9] [Citation(s) in RCA: 204] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2011] [Accepted: 04/17/2011] [Indexed: 12/11/2022]
Abstract
Sulforaphane (SFN), an isothiocyanate found in cruciferous vegetables, is a potent inhibitor of experimental mammary carcinogenesis and may be an effective, safe chemopreventive agent for use in humans. SFN acts in part on the Keap1/Nrf2 pathway to regulate a battery of cytoprotective genes. In this study, transcriptomic and proteomic changes in the estrogen receptor negative, non-tumorigenic human breast epithelial MCF10A cell line were analyzed following SFN treatment or KEAP1 knockdown with siRNA using microarray and stable isotopic labeling with amino acids in culture (SILAC), respectively. Changes in selected transcripts and proteins were confirmed by PCR and Western blot in MCF10A and MCF12A cells. There was strong correlation between the transcriptomic and proteomic responses in both the SFN treatment (R = 0.679, P < 0.05) and KEAP1 knockdown (R = 0.853, P < 0.05) experiments. Common pathways for SFN treatment and KEAP1 knockdown were xenobiotic metabolism and antioxidants, glutathione metabolism, carbohydrate metabolism, and NADH/NADPH regeneration. Moreover, these pathways were most prominent in both the transcriptomic and the proteomic analyses. The aldo-keto reductase family members, AKR1B10, AKR1C1, AKR1C2 and AKR1C3, as well as NQO1 and ALDH3A1, were highly upregulated at both the transcriptomic and the proteomic levels. Collectively, these studies served to identify potential biomarkers that can be used in clinical trials to investigate the initial pharmacodynamic action of SFN in the breast.
Collapse
Affiliation(s)
- Abena S Agyeman
- Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | | | | | | | | | | | | |
Collapse
|
67
|
Gao M, Li Y, Long J, Shah W, Fu L, Lai B, Wang Y. Induction of oxidative stress and DNA damage in cervix in acute treatment with benzo[a]pyrene. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2011; 719:52-9. [DOI: 10.1016/j.mrgentox.2010.11.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 10/24/2010] [Accepted: 11/23/2010] [Indexed: 12/12/2022]
|
68
|
Danielsen PH, Møller P, Jensen KA, Sharma AK, Wallin H, Bossi R, Autrup H, Mølhave L, Ravanat JL, Briedé JJ, de Kok TM, Loft S. Oxidative stress, DNA damage, and inflammation induced by ambient air and wood smoke particulate matter in human A549 and THP-1 cell lines. Chem Res Toxicol 2011; 24:168-84. [PMID: 21235221 DOI: 10.1021/tx100407m] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Combustion of biomass and wood for residential heating and/or cooking contributes substantially to both ambient air and indoor levels of particulate matter (PM). Toxicological characterization of ambient air PM, especially related to traffic, is well advanced, whereas the toxicology of wood smoke PM (WSPM) is poorly assessed. We assessed a wide spectrum of toxicity end points in human A549 lung epithelial and THP-1 monocytic cell lines comparing WSPM from high or low oxygen combustion and ambient PM collected in a village with many operating wood stoves and from a rural background area. In both cell types, all extensively characterized PM samples (1.25-100 μg/mL) induced dose-dependent formation of reactive oxygen species and DNA damage in terms of strand breaks and formamidopyrimidine DNA glycosylase sites assessed by the comet assay with WSPM being most potent. The WSPM contained more polycyclic aromatic hydrocarbons (PAH), less soluble metals, and expectedly also had a smaller particle size than PM collected from ambient air. All four types of PM combined increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine dose-dependently in A549 cells, whereas there was no change in the levels of etheno-adducts or bulky DNA adducts. Furthermore, mRNA expression of the proinflammatory genes monocyte chemoattractant protein-1, interleukin-8, and tumor necrosis factor-α as well as the oxidative stress gene heme oxygenase-1 was upregulated in the THP-1 cells especially by WSPM and ambient PM sampled from the wood stove area. Expression of oxoguanine glycosylase 1, lymphocyte function-associated antigen-1, and interleukin-6 did not change. We conclude that WSPM has small particle size, high level of PAH, low level of water-soluble metals, and produces high levels of free radicals, DNA damage as well as inflammatory and oxidative stress response gene expression in cultured human cells.
Collapse
Affiliation(s)
- Pernille Høgh Danielsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Denmark
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Hang B. Formation and repair of tobacco carcinogen-derived bulky DNA adducts. J Nucleic Acids 2010; 2010:709521. [PMID: 21234336 PMCID: PMC3017938 DOI: 10.4061/2010/709521] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2010] [Revised: 07/16/2010] [Accepted: 09/17/2010] [Indexed: 01/08/2023] Open
Abstract
DNA adducts play a central role in chemical carcinogenesis. The analysis of formation and repair of smoking-related DNA adducts remains particularly challenging as both smokers and nonsmokers exposed to smoke are repetitively under attack from complex mixtures of carcinogens such as polycyclic aromatic hydrocarbons and N-nitrosamines. The bulky DNA adducts, which usually have complex structure, are particularly important because of their biological relevance. Several known cellular DNA repair pathways have been known to operate in human cells on specific types of bulky DNA adducts, for example, nucleotide excision repair, base excision repair, and direct reversal involving O6-alkylguanine DNA alkyltransferase or AlkB homologs. Understanding the mechanisms of adduct formation and repair processes is critical for the assessment of cancer risk resulting from exposure to cigarette smoke, and ultimately for developing strategies of cancer prevention. This paper highlights the recent progress made in the areas concerning formation and repair of bulky DNA adducts in the context of tobacco carcinogen-associated genotoxic and carcinogenic effects.
Collapse
Affiliation(s)
- Bo Hang
- Life Sciences Division, Department of Cancer and DNA Damage Responses, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| |
Collapse
|
70
|
Danielsen PH, Loft S, Jacobsen NR, Jensen KA, Autrup H, Ravanat JL, Wallin H, Møller P. Oxidative stress, inflammation, and DNA damage in rats after intratracheal instillation or oral exposure to ambient air and wood smoke particulate matter. Toxicol Sci 2010; 118:574-85. [PMID: 20864625 DOI: 10.1093/toxsci/kfq290] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Wood combustion is a significant source of ambient particulate matter (PM) in many regions of the world. Exposure occurs through inhalation or ingestion after deposition of wood smoke particulate matter (WSPM) on crops and food. We investigated effects of ambient PM and WSPM by intragastric or intratracheal exposure in terms of oxidative stress, inflammation, genotoxicity, and DNA repair after 24 h in liver and lung tissue of rats. Rats were exposed to WSPM from high or low oxygen combustion and ambient PM collected in areas with and without many operating wood stoves or carbon black (CB) at the dose of 0.64 mg/kg body weight. The levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine, 1,N(6)-etheno-2'-deoxyadenosine, and 1-N(2)-etheno-2'-deoxyguanosine (εdG) were significantly increased with 23% (95% confidence interval [CI]: 0.1-45%), 54% (95% CI:18-90%), and 73% (95% CI: 31-134%) in the liver of rats exposed orally to CB, respectively. Rats orally exposed to PM from the wood stove area and low oxygen combustion WSPM (LOWS) had 35% (95% CI: 0.1-71%) and 45% (95% CI: 10-82%) increased levels of εdG in the liver, respectively. No significant differences were observed for bulky DNA adducts. Increased gene expression of proinflammatory cytokines, heme oxygenase-1, and oxoguanine DNA glycosylase 1 was observed in the liver following intragastric exposure and in the lung following instillation in particular of LOWS. Exposure to LOWS also increased the proportion of neutrophils in BAL fluid. These results indicate that WSPM and CB exert the strongest effect in terms of oxidative stress-induced response, inflammation, and genotoxicity in the organ closest to the port of entry.
Collapse
Affiliation(s)
- Pernille Høgh Danielsen
- Section of Environmental Health, Department of Public Health, University of Copenhagen, DK-1014 Copenhagen, Denmark
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Dreij K, Rhrissorrakrai K, Gunsalus KC, Geacintov NE, Scicchitano DA. Benzo[a]pyrene diol epoxide stimulates an inflammatory response in normal human lung fibroblasts through a p53 and JNK mediated pathway. Carcinogenesis 2010; 31:1149-57. [PMID: 20382639 DOI: 10.1093/carcin/bgq073] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cellular responses to carcinogens are typically studied in transformed cell lines, which do not reflect the physiological status of normal tissues. To address this question, we have characterized the transcriptional program and cellular responses of human lung WI-38 fibroblasts upon exposure to the ultimate carcinogen benzo[a]pyrene diol epoxide (BPDE). In contrast to observations in cell lines, we find that BPDE treatment induces a strong inflammatory response in these normal fibroblasts. Whole-genome microarrays show induction of numerous inflammatory factors, including genes that encode interleukins (ILs), growth factors and enzymes related to prostaglandin synthesis and signaling. Real-time reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay (ELISA) revealed a time- and dose-dependent-induced expression and production of cyclooxygenase 2, prostglandin E2 and IL1B, IL6 and IL8. In parallel, cell cycle progression and DNA repair processes were repressed, but DNA damage signaling was increased via p53-Ser15 phosphorylation and induced expression levels of GADD45A, CDKN1A, BTG2 and SESN1. Network analysis suggested that activator protein 1 transcription factors may link the cell cycle response and DNA damage signaling with the inflammatory stress-response in these cells. We confirmed this hypothesis by showing that p53-dependent signaling through c-jun N-terminal kinase (JNK) led to increased cJun-Ser63 phosphorylation and that inhibition of JNK-mediated cJun activation using p53- or JNK-specific inhibitors significantly reduced IL gene expression and subsequent production of IL8. This is the first demonstration that a strong inflammatory response is triggered in normal fibroblasts by BPDE and that this occurs through coordinated regulation with other cellular processes.
Collapse
Affiliation(s)
- Kristian Dreij
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA
| | | | | | | | | |
Collapse
|
72
|
Nesnow S, Nelson G, Padgett WT, George MH, Moore T, King LC, Adams LD, Ross JA. Lack of contribution of covalent benzo[a]pyrene-7,8-quinone-DNA adducts in benzo[a]pyrene-induced mouse lung tumorigenesis. Chem Biol Interact 2010; 186:157-65. [PMID: 20346927 DOI: 10.1016/j.cbi.2010.03.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2010] [Revised: 03/16/2010] [Accepted: 03/18/2010] [Indexed: 10/19/2022]
Abstract
Benzo[a]pyrene (B[a]P) is a potent human and rodent lung carcinogen. This activity has been ascribed in part to the formation of anti-trans-7,8-dihydroxy-7,8-dihydroB[a]P-9,10-epoxide (BPDE)-DNA adducts. Other carcinogenic mechanisms have been proposed: (1) the induction of apurinic sites from radical cation processes, and (2) the metabolic formation of B[a]P-7,8-quinone (BPQ) that can form covalent DNA adducts or reactive oxygen species which can damage DNA. The studies presented here sought to examine the role of stable BPQ-DNA adducts in B[a]P-induced mouse lung tumorigenesis. Male strain A/J mice were injected intraperitoneally once with BPQ or trans-7,8-dihydroxy-7,8-dihydroB[a]P (BP-7,8-diol) at 30, 10, 3, or 0mg/kg. Lungs and livers were harvested after 24h, the DNA extracted and subjected to (32)P-postlabeling analysis. Additional groups of mice were dosed once with BPQ or BP-7,8-diol each at 30 mg/kg and tissues harvested 48 and 72 h later, or with B[a]P (50mg/kg, a tumorigenic dose) and tissues harvested 72 h later. No BPQ or any other DNA adducts were observed in lung or liver tissues 24, 48, or 72 h after the treatment with 30 mg/kg BPQ. BP-7,8-diol gave BPDE-DNA adducts at all time points in both tissues and B[a]P treatment gave BPDE-DNA adducts in the lung. In each case, no BPQ-DNA adducts were detected. Mouse body weights significantly decreased over time after BPQ or BP-7,8-diol treatments suggesting that systemic toxicity was induced by both agents. Model studies with BPQ and N-acetylcysteine suggested that BPQ is rapidly inactivated by sulfhydryl-containing compounds and not available for DNA adduction. We conclude that under these treatment conditions BPQ does not form stable covalent DNA adducts in the lungs or livers of strain A/J mice, suggesting that stable BPQ-covalent adducts are not a part of the complex of mechanisms involved in B[a]P-induced mouse lung tumorigenesis.
Collapse
Affiliation(s)
- Stephen Nesnow
- National Health and Environmental Effects Research Laboratory, US Environmental Protection Agency, Research Triangle Park, NC 27711, USA.
| | | | | | | | | | | | | | | |
Collapse
|
73
|
Møller P, Jacobsen NR, Folkmann JK, Danielsen PH, Mikkelsen L, Hemmingsen JG, Vesterdal LK, Forchhammer L, Wallin H, Loft S. Role of oxidative damage in toxicity of particulates. Free Radic Res 2010; 44:1-46. [PMID: 19886744 DOI: 10.3109/10715760903300691] [Citation(s) in RCA: 283] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Particulates are small particles of solid or liquid suspended in liquid or air. In vitro studies show that particles generate reactive oxygen species, deplete endogenous antioxidants, alter mitochondrial function and produce oxidative damage to lipids and DNA. Surface area, reactivity and chemical composition play important roles in the oxidative potential of particulates. Studies in animal models indicate that particles from combustion processes (generated by combustion of wood or diesel oil), silicate, titanium dioxide and nanoparticles (C60 fullerenes and carbon nanotubes) produce elevated levels of lipid peroxidation products and oxidatively damaged DNA. Biomonitoring studies in humans have shown associations between exposure to air pollution and wood smoke particulates and oxidative damage to DNA, deoxynucleotides and lipids measured in leukocytes, plasma, urine and/or exhaled breath. The results indicate that oxidative stress and elevated levels of oxidatively altered biomolecules are important intermediate endpoints that may be useful markers in hazard characterization of particulates.
Collapse
Affiliation(s)
- Peter Møller
- Department of Public Health, Section of Environment Health, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Boyle JO, Gümüş ZH, Kacker A, Choksi VL, Bocker JM, Zhou XK, Yantiss RK, Hughes DB, Du B, Judson BL, Subbaramaiah K, Dannenberg AJ. Effects of cigarette smoke on the human oral mucosal transcriptome. Cancer Prev Res (Phila) 2010; 3:266-78. [PMID: 20179299 PMCID: PMC2833216 DOI: 10.1158/1940-6207.capr-09-0192] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Use of tobacco is responsible for approximately 30% of all cancer-related deaths in the United States, including cancers of the upper aerodigestive tract. In the current study, 40 current and 40 age- and gender-matched never smokers underwent buccal biopsies to evaluate the effects of smoking on the transcriptome. Microarray analyses were carried out using Affymetrix HGU133 Plus 2 arrays. Smoking altered the expression of numerous genes: 32 genes showed increased expression and 9 genes showed reduced expression in the oral mucosa of smokers versus never smokers. Increases were found in genes involved in xenobiotic metabolism, oxidant stress, eicosanoid synthesis, nicotine signaling, and cell adhesion. Increased numbers of Langerhans cells were found in the oral mucosa of smokers. Interestingly, smoking caused greater induction of aldo-keto reductases, enzymes linked to polycyclic aromatic hydrocarbon-induced genotoxicity, in the oral mucosa of women than men. Striking similarities in expression changes were found in oral compared with the bronchial mucosa. The observed changes in gene expression were compared with known chemical signatures using the Connectivity Map database and suggested that geldanamycin, a heat shock protein 90 inhibitor, might be an antimimetic of tobacco smoke. Consistent with this prediction, geldanamycin caused dose-dependent suppression of tobacco smoke extract-mediated induction of CYP1A1 and CYP1B1 in vitro. Collectively, these results provide new insights into the carcinogenic effects of tobacco smoke, support the potential use of oral epithelium as a surrogate tissue in future lung cancer chemoprevention trials, and illustrate the potential of computational biology to identify chemopreventive agents.
Collapse
Affiliation(s)
- Jay O. Boyle
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Zeynep H. Gümüş
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY
- HRH Prince Alwaleed Bin Talal Bin Abdulaziz Alsaud Institute for Computational Biomedicine, Weill Medical College of Cornell University, New York, NY
| | - Ashutosh Kacker
- Department of Otorhinolaryngology, Weill Medical College of Cornell University, New York, NY
| | - Vishal L. Choksi
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Jennifer M. Bocker
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Xi Kathy Zhou
- Department of Public Health, Weill Medical College of Cornell University, New York, NY
| | - Rhonda K. Yantiss
- Department of Pathology and Laboratory Medicine, Weill Medical College of Cornell University, New York, NY
| | - Duncan B. Hughes
- Department of Surgery, Weill Medical College of Cornell University, New York, NY
| | - Baoheng Du
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - Benjamin L. Judson
- Department of Surgery (Head and Neck Service), Memorial Sloan-Kettering Cancer Center, New York, NY
| | - Kotha Subbaramaiah
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| | - Andrew J. Dannenberg
- Department of Medicine, Weill Medical College of Cornell University, New York, NY
| |
Collapse
|
75
|
Wu A, Duan Y, Xu D, Penning TM, Harvey RG. Regiospecific oxidation of polycyclic aromatic phenols to quinones by hypervalent iodine reagents. Tetrahedron 2010; 66:2111-2118. [PMID: 24014894 DOI: 10.1016/j.tet.2009.12.022] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hypervalent iodine reagents o-iodoxybenzoic acid (IBX) and bis(trifluoro-acetoxy)iodobenzene (BTI) are shown to be general reagents for regio-controlled oxidation of polycyclic aromatic phenols (PAPs) to specific isomers (ortho, para, or remote) of polycyclic aromatic quinones (PAQs). The oxidations of a series of PAPs with IBX take place under mild conditions to furnish the corresponding ortho-PAQs. In contrast, oxidations of the same series of PAPs with BTI exhibit variable regiospecificity, affording para-PAQs where structurally feasible and ortho-PAQs or remote PAQ isomers in other cases. The structures of the specific PAQ isomers formed are predictable on the basis of the inherent regioselectivities of the hypervalent iodine reagents in combination with the structural requirements of the phenol precursors. IBX and BTI are recommended as the preferred reagents for regio-controlled oxidation of PAPs to PAQs.
Collapse
Affiliation(s)
- Anhui Wu
- Ben May Department for Cancer Research, Gordon Center for Integrative Sciences, University of Chicago, 929 East 57th Street, Room W308, Chicago, IL 60637, USA
| | | | | | | | | |
Collapse
|
76
|
MacLeod AK, Kelly VP, Higgins LG, Kelleher MO, Price SA, Bigley AL, Betton GR, Hayes JD. Expression and localization of rat aldo-keto reductases and induction of the 1B13 and 1D2 isoforms by phenolic antioxidants. Drug Metab Dispos 2010; 38:341-6. [PMID: 19920056 DOI: 10.1124/dmd.109.030544] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The aldo-keto reductase (AKR) phase I drug metabolism enzyme superfamily is implicated in detoxification or bioactivation of a wide variety of carbonyl-bearing compounds. In this study, we have used antibodies raised against purified recombinant rat AKR isoforms 1A3, 1B4, 1C9, 1D2, and 7A1 to characterize the expression profile of these superfamily members in the rat and define their localization by immunohistochemistry. Western blotting showed that AKR1A3, AKR1B4, and AKR1C9 are ubiquitously expressed, whereas AKR1D2 and AKR7A1 are present in liver, adrenal gland, and kidney, with the latter also present in testis, spleen, and stomach. Immunohistochemical analysis of the kidney demonstrated the localization of AKR1A3 in proximal convoluted tubules, AKR1B4 in the loop of Henle, and AKR1C9 in the pars recta S3 segment of proximal tubules. We also report localization of AKR1B4 in the adrenal gland (parenchymal cells of the zona reticularis) and testis (Sertoli cells and late spermatids), of AKR1D2 in the liver (hepatocyte nuclei), and of AKR7A1 in the pancreatic duct and bronchiolar epithelium. Previous studies have shown that expression of AKR7A1 is induced in response to dietary administration of the phenolic antioxidants butylated hydroxyanisole and ethoxyquin. Here we identify AKR1B13 and AKR1D2 as further inducible members of the rat AKR superfamily.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Wang XJ, Hayes JD, Higgins LG, Wolf CR, Dinkova-Kostova AT. Activation of the NRF2 signaling pathway by copper-mediated redox cycling of para- and ortho-hydroquinones. CHEMISTRY & BIOLOGY 2010; 17:75-85. [PMID: 20142043 DOI: 10.1016/j.chembiol.2009.12.013] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2009] [Revised: 12/12/2009] [Accepted: 12/15/2009] [Indexed: 11/18/2022]
Abstract
Transcription factor NF-E2 p45-related factor 2 (Nrf2) mediates adaptation to oxidants and electrophiles through up-regulating genes that contain antioxidant response elements (AREs) in their promoters. Using the stably transfected human AREc32 reporter cell line, we found that copper and other transition metals enhanced induction of ARE-driven luciferase by 2-tert-butyl-1,4-hydroquinone (tBHQ) as a result of increased oxidation to 2-tert-butyl-1,4-benzoquinone (tBQ). Following exposure to tBHQ for 30 min, ARE-luciferase activity measured after 24 hr was dependent on the presence of Cu(2+). In contrast, tBQ-induced activity was Cu(2+)-independent. The metal-catalyzed oxidation of tBHQ to tBQ occured rapidly and stoichiometrically. Compounds that share para- or ortho-hydroquinone structures, such as catechol estrogens, dopamine, and l-DOPA, also induced ARE-driven luciferase in a Cu(2+)-dependent manner. Thus, the oxidation of para- and ortho-hydroquinones to quinones represents the rate-limiting step in the activation of Nrf2.
Collapse
Affiliation(s)
- Xiu Jun Wang
- Cancer Research UK Molecular Pharmacology Unit, Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, Scotland, UK
| | | | | | | | | |
Collapse
|
78
|
Hreljac I, Filipic M. Organophosphorus pesticides enhance the genotoxicity of benzo(a)pyrene by modulating its metabolism. Mutat Res 2009; 671:84-92. [PMID: 19800895 DOI: 10.1016/j.mrfmmm.2009.09.011] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 09/19/2009] [Accepted: 09/25/2009] [Indexed: 10/20/2022]
Abstract
Organophosphorus compounds (OPs) are widely used as pesticides. They act primarily as neurotoxins, but there is increasing evidence for secondary mechanisms of their toxicity. We have shown that the model OPs, methyl parathion (PT) and methyl paraoxon (PO), are genotoxic. Benzo(a)pyrene (BaP) is a widespread environmental genotoxin found in cigarette smoke, polluted air and grilled food. As people are constantly exposed to low concentrations of BaP and also to OPs, the aim of this study was to determine possible synergistic effects of PT and PO on BaP-induced genotoxicity. In the bacterial reverse mutation assay, PT and PO increased the number of BaP-induced mutations. The comet assay with human hepatoma HepG2 cells showed that BaP-induced DNA strand breaks were increased by PT but slightly decreased by PO. Using the acellular comet assay with UVC-induced DNA strand breaks, we observed a decrease in DNA migration, indicating that OPs cause cross-linking, thus interfering with comet assay results. In HepG2 cells the two OPs induced micronuclei formation at very low doses (0.01 microg/ml) and together with BaP, a more than additive increase of micronuclei was observed, confirming their co-genotoxic effect. We demonstrated for the first time that PT and PO modulate the metabolic activation of BaP. Addition of PT or PO increased aldo-keto reductase (AKR1C1/2) levels in the presence of BaP, while cytochrome 1A (CYP1A) mRNA expression and activity were decreased. Further, specific inhibition of CYP1A had no effect on BaP or OP+BaP-induced micronuclei, whereas inhibition of AKR1C dramatically decreased the number of micronuclei induced by BaP or OP+BaP. Based on these results we propose that co-genotoxicity results from OPs mediated modulation of BaP metabolism, favouring the induction of AKR1C enzymes known to catalyse the formation of DNA reactive BaP o-quinones and the production of reactive oxygen species.
Collapse
Affiliation(s)
- Irena Hreljac
- Department of Genetic Toxicology and Cancer Biology, National Institute of Biology, Vecna pot 111, Ljubljana, Slovenia
| | | |
Collapse
|
79
|
Park JH, Mangal D, Frey AJ, Harvey RG, Blair IA, Penning TM. Aryl hydrocarbon receptor facilitates DNA strand breaks and 8-oxo-2'-deoxyguanosine formation by the aldo-keto reductase product benzo[a]pyrene-7,8-dione. J Biol Chem 2009; 284:29725-34. [PMID: 19726680 DOI: 10.1074/jbc.m109.042143] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Polycyclic aromatic hydrocarbon (PAH) o-quinones produced by aldo-keto reductases are ligands for the aryl hydrocarbon receptor (AhR) (Burczynski, M. E., and Penning, T. M. (2000) Cancer Res. 60, 908-915). They induce oxidative DNA lesions (reactive oxygen species-mediated DNA strand breaks and 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxo-dGuo) formation) in human lung cells. We tested whether the AhR enhances PAH o-quinone-mediated oxidative DNA damage by translocating these ligands to the nucleus. Using the single cell gel electrophoresis (comet) assay to detect DNA strand breaks in murine hepatoma Hepa1c1c7 cells and its AhR- and aryl hydrocarbon receptor nuclear translocator-deficient variants, benzo[a]pyrene-7,8-dione (B[a]P-7,8-dione) produced fewer DNA strand breaks in AhR-deficient cells compared with aryl hydrocarbon receptor nuclear translocator-deficient and wild type Hepa1c1c7 cells. Decreased DNA strand breaks were also observed in human bronchoalveolar H358 cells in which the AhR was silenced by siRNA. The antioxidant alpha-tocopherol and the iron chelator/antioxidant desferal decreased the formation of B[a]P-7,8-dione-mediated DNA strand breaks indicating that they were reactive oxygen species-dependent. By coupling the comet assay to 8-oxoguanine glycosylase (hOGG1), which excises 8-oxo-Gua, strand breaks dependent upon this lesion were measured. hOGG1 treatment produced more DNA single strand breaks in B[a]P-7,8-dione-treated Hepa cells and H358 cells than in its absence. The levels of hOGG1-dependent DNA strand breaks mediated by B[a]P-7,8-dione were lower in AhR-deficient Hepa and AhR knockdown H358 cells. The AhR antagonist alpha-naphthoflavone also attenuated B[a]P-7,8-dione-mediated DNA strand breaks. The decrease in 8-oxo-dGuo levels in AhR-deficient Hepa cells and AhR knockdown H358 cells was validated by immunoaffinity capture stable isotope dilution ([(15)N(5)]8-oxo-dGuo) liquid chromatography-electrospray ionization/multiple reaction monitoring/mass spectrometry. We conclude that the AhR shuttles PAH o-quinone genotoxins to the nucleus and enhances oxidative DNA damage.
Collapse
Affiliation(s)
- Jong-Heum Park
- Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084, USA
| | | | | | | | | | | |
Collapse
|
80
|
Chien CW, Ho IC, Lee TC. Induction of neoplastic transformation by ectopic expression of human aldo-keto reductase 1C isoforms in NIH3T3 cells. Carcinogenesis 2009; 30:1813-20. [PMID: 19696165 DOI: 10.1093/carcin/bgp195] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have shown previously that chronic low-dose arsenic exposure induces malignant transformation of human skin keratinocyte HaCaT cells. In this study, we found that several isoforms of aldo-keto reductase 1C (AKR1C) were overexpressed in arsenic-exposed HaCaT cells. The AKR1C family of proteins are phase I drug-metabolizing enzymes involved in maintenance of steroid homeostasis, prostaglandin metabolism and metabolic activation of polycyclic aromatic hydrocarbons. To explore the oncogenic potential of AKR1C isoforms, we established mouse NIH3T3 cell lines ectopically and stably expressing human AKR1C1, AKR1C2 or AKR1C3. Our results showed that ectopic expression of human AKR1C1 and AKR1C2, but not AKR1C3, significantly enhanced foci formation. Following subcutaneous injection of these stable cell lines into nude mice, fibrosarcoma were formed from all three cell lines. However, the number and size of tumors formed by the AKR1C3-expressing cell line was fewer and smaller, respectively, than those formed by AKR1C1- and AKR1C2-expressing cells. Inhibitors of AKR1C, genistein and ursodeoxycholic acid, decreased foci formation in AKR1C1- and AKR1C2-expressing NIH3T3 cells in a dose-dependent manner, implying the association of enzymatic activity and oncogenic potential of AKR1C. The requirement of enzymatic ability for neoplastic transformation was confirmed by establishing a NIH3T3 cell line stably expressing a mutant AKR1C1 lacking enzymatic activity, which did not form foci in culture or tumors in nude mice. Our present study reveals that AKR1C enzymatic activity plays crucial roles on induction of neoplastic transformation of mouse NIH3T3 cells.
Collapse
Affiliation(s)
- Chia-Wen Chien
- Graduate Institute of Life Sciences, National Defense Medical Center, Taiwan, Republic of China
| | | | | |
Collapse
|
81
|
Mangal D, Vudathala D, Park JH, Lee SH, Penning TM, Blair IA. Analysis of 7,8-dihydro-8-oxo-2'-deoxyguanosine in cellular DNA during oxidative stress. Chem Res Toxicol 2009; 22:788-97. [PMID: 19309085 PMCID: PMC2684441 DOI: 10.1021/tx800343c] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Analysis of cellular 7,8-dihydro-8-oxo-2′-deoxyguanosine (8-oxo-dGuo) as a biomarker of oxidative DNA damage has been fraught with numerous methodological problems. This is primarily due to artifactual oxidation of dGuo that occurs during DNA isolation and hydrolysis. Therefore, it has become necessary to rely on using the comet assay, which is not necessarily specific for 8-oxo-dGuo. A highly specific and sensitive method based on immunoaffinity purification and stable isotope dilution liquid chromatography (LC)-multiple reaction monitoring (MRM)/mass spectrometry (MS) that avoids artifact formation has now been developed. Cellular DNA was isolated using cold DNAzol (a proprietary product that contains guanidine thiocyanate) instead of chaotropic- or phenol-based methodology. Chelex-treated buffers were used to prevent Fenton chemistry-mediated generation of reactive oxygen species (ROS) and artifactual oxidation of DNA bases. Deferoxamine was also added to all buffers in order to complex any residual transition metal ions remaining after Chelex treatment. The LC-MRM/MS method was used to determine that the basal 8-oxo-dGuo level in DNA from human bronchoalveolar H358 cells was 2.2 ± 0.4 8-oxo-dGuo/107 dGuo (mean ± standard deviation) or 5.5 ± 1.0 8-oxo-dGuo/108 nucleotides. Similar levels were observed in human lung adenocarcinoma A549 cells, mouse hepatoma Hepa-1c1c7 cells, and human HeLa cervical epithelial adenocarcinoma cells. These values are an order of magnitude lower than is typically reported for basal 8-oxo-dGuo levels in DNA as determined by other MS- or chromatography-based assays. H358 cells were treated with increasing concentrations of potassium bromate (KBrO3) as a positive control or with the methylating agent methyl methanesulfonate (MMS) as a negative control. A linear dose−response for 8-oxo-dGuo formation (r2 = 0.962) was obtained with increasing concentrations of KBrO3 in the range of 0.05 mM to 2.50 mM. In contrast, no 8-oxo-dGuo was observed in H358 cell DNA after treatment with MMS. At low levels of oxidative DNA damage, there was an excellent correlation between a comet assay that measured DNA single strand breaks (SSBs) after treatment with human 8-oxo-guanine glycosylase-1 (hOGG1) when compared with 8-oxo-dGuo in the DNA as measured by the stable isotope dilution LC-MRM/MS method. Availability of the new LC-MRM/MS assay made it possible to show that the benzo[a]pyrene (B[a]P)-derived quinone, B[a]P-7,8-dione, could induce 8-oxo-dGuo formation in H358 cells. This most likely occurred through redox cycling between B[a]P-7,8-dione and B[a]P-7,8-catechol with concomitant generation of DNA damaging ROS. In keeping with this concept, inhibition of catechol-O-methyl transferase (COMT)-mediated detoxification of B[a]P-7,8-catechol with Ro 410961 caused increased 8-oxo-dGuo formation in the H358 cell DNA.
Collapse
Affiliation(s)
- Dipti Mangal
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania, 854 BRB II/III, 421 Curie Boulevard, Philadelphia, Pennsylvania 19104-6160, USA
| | | | | | | | | | | |
Collapse
|
82
|
MacLeod AK, McMahon M, Plummer SM, Higgins LG, Penning TM, Igarashi K, Hayes JD. Characterization of the cancer chemopreventive NRF2-dependent gene battery in human keratinocytes: demonstration that the KEAP1-NRF2 pathway, and not the BACH1-NRF2 pathway, controls cytoprotection against electrophiles as well as redox-cycling compounds. Carcinogenesis 2009; 30:1571-80. [PMID: 19608619 DOI: 10.1093/carcin/bgp176] [Citation(s) in RCA: 253] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To better understand the role of transcription factor NF-E2-related factor (NRF) 2 in the human and its contribution to cancer chemoprevention, we have knocked down its negative regulators, Kelch-like ECH-associated protein 1 (KEAP1) and broad-complex, tramtrack and bric à brac and cap'n'collar homology 1 (BACH1), in HaCaT keratinocytes. Whole-genome microarray revealed that knockdown of KEAP1 resulted in 23 messenger RNAs (mRNAs) being up-regulated > or = 2.0-fold. mRNA for aldo-keto reductase (AKR) 1B10, AKR1C1, AKR1C2 and AKR1C3 were induced to the greatest extent, showing increases of between 12- and 16-fold, whereas mRNA for glutamate-cysteine ligase catalytic and modifier subunits, NAD(P)H:quinone oxidoreductase-1 and haem oxygenase-1 (HMOX1) were induced between 2.0- and 4.8-fold. Knockdown of BACH1 increased HMOX1 135-fold but induced the other genes examined to a maximum of only 2.7-fold. Activation of NRF2, by KEAP1 knockdown, caused a 75% increase in the amount of glutathione in HaCaT cells and a 1.4- to 1.6-fold increase in their resistance to the electrophiles acrolein, chlorambucil and cumene hydroperoxide (CuOOH), as well as the redox-cycling agent menadione. Inhibition of glutathione synthesis during KEAP1 knockdown, by treatment with buthionine sulfoximine, abrogated resistance to acrolein, chlorambucil and CuOOH, but not to menadione. In contrast, knockdown of BACH1 did not increase glutathione levels or resistance to xenobiotics. Knockdown of NRF2 in HaCaT cells decreased glutathione to approximately 80% of normal homeostatic levels and similarly reduced their tolerance of electrophiles. Thus, the KEAP1-NRF2 pathway determines resistance to electrophiles and redox-cycling compounds in human keratinocytes through glutathione-dependent and glutathione-independent mechanisms. This study also shows that AKR1B10, AKR1C1 and AKR1C2 proteins have potential utility as biomarkers for NRF2 activation in the human.
Collapse
Affiliation(s)
- A Kenneth MacLeod
- Biomedical Research Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee DD1 9SY, Scotland, UK
| | | | | | | | | | | | | |
Collapse
|
83
|
Occupational exposure to polycyclic aromatic hydrocarbons and DNA damage by industry: a nationwide study in Germany. Arch Toxicol 2009; 83:947-57. [DOI: 10.1007/s00204-009-0444-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2008] [Accepted: 06/03/2009] [Indexed: 11/27/2022]
|
84
|
Matsunaga T, Arakaki M, Kamiya T, Endo S, El-Kabbani O, Hara A. Involvement of an aldo-keto reductase (AKR1C3) in redox cycling of 9,10-phenanthrenequinone leading to apoptosis in human endothelial cells. Chem Biol Interact 2009; 181:52-60. [PMID: 19442656 DOI: 10.1016/j.cbi.2009.05.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 05/01/2009] [Accepted: 05/01/2009] [Indexed: 11/28/2022]
Abstract
9,10-Phenanthrenequinone (9,10-PQ), a major quinone found in diesel exhaust particles, is considered to generate reactive oxygen species (ROS) through its redox cycling. Here, we show that 9,10-PQ evokes apoptosis in human aortic endothelial cells (HAECs) and its apoptotic signaling includes ROS generation and caspase activation. The 9,10-PQ-induced cytotoxicity was inhibited by ROS scavengers, indicating that intracellular ROS generation is responsible for the 9,10-PQ-induced apoptosis. Comparison of mRNA expression levels and kinetic constants in the 9,10-PQ reduction among 10 human reductases suggests that aldo-keto reductase 1C3 (AKR1C3) is a 9,10-PQ reductase in HAECs. In in vitro 9,10-PQ reduction by AKR1C3, the reduced product 9,10-dihydroxyphenanthrene and superoxide anions were formed, suggesting the enzymatic two-electron reduction of 9,10-PQ that thereby causes oxidative stress through its redox cycling. In addition, the participation of AKR1C3 in 9,10-PQ-redox cycling was confirmed by the data that AKR1C3 overexpression in endothelial cells augmented the ROS generation and cytotoxicity by 9,10-PQ, and the ROS scavengers inhibited the toxic effects. Pretreatment of the overexpressing cells with AKR1C3 inhibitors, flufenamic acid and indomethacin, suppressed the 9,10-PQ-induced GSH depletion. These results suggest that AKR1C3 is a key enzyme in the initial step of 9,10-PQ-induced cytotoxicity in HAECs.
Collapse
Affiliation(s)
- Toshiyuki Matsunaga
- Laboratory of Biochemistry, Gifu Pharmaceutical University, 5-6-1 Mitahora-Higashi, Gifu, Japan.
| | | | | | | | | | | |
Collapse
|
85
|
Folkmann JK, Risom L, Jacobsen NR, Wallin H, Loft S, Møller P. Oxidatively damaged DNA in rats exposed by oral gavage to C60 fullerenes and single-walled carbon nanotubes. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:703-8. [PMID: 19479010 PMCID: PMC2685830 DOI: 10.1289/ehp.11922] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2008] [Accepted: 11/12/2008] [Indexed: 05/19/2023]
Abstract
BACKGROUND C60 fullerenes and single-walled carbon nanotubes (SWCNT) are projected to be used in medicine and consumer products with potential human exposure. The hazardous effects of these particles are expected to involve oxidative stress with generation of oxidatively damaged DNA that might be the initiating event in the development of cancer. OBJECTIVE In this study we investigated the effect of a single oral administration of C60 fullerenes and SWCNT. METHODS We measured the level of oxidative damage to DNA as the premutagenic 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodG) in the colon mucosa, liver, and lung of rats after intragastric administration of pristine C60 fullerenes or SWCNT (0.064 or 0.64 mg/kg body weight) suspended in saline solution or corn oil. We investigated the regulation of DNA repair systems toward 8-oxodG in liver and lung tissue. RESULTS Both doses of SWCNT increased the levels of 8-oxodG in liver and lung. Administration of C60 fullerenes increased the hepatic level of 8-oxodG, whereas only the high dose generated 8-oxodG in the lung. We detected no effects on 8-oxodG in colon mucosa. Suspension of particles in saline solution or corn oil yielded a similar extent of genotoxicity, whereas corn oil per se generated more genotoxicity than the particles. Although there was increased mRNA expression of 8-oxoguanine DNA glycosylase in the liver of C60 fullerene-treated rats, we found no significant increase in repair activity. CONCLUSIONS Oral exposure to low doses of C60 fullerenes and SWCNT is associated with elevated levels of 8-oxodG in the liver and lung, which is likely to be caused by a direct genotoxic ability rather than an inhibition of the DNA repair system.
Collapse
Affiliation(s)
- Janne K. Folkmann
- Institute of Public Health, Department of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Lotte Risom
- Institute of Public Health, Department of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | | | - Håkan Wallin
- National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Steffen Loft
- Institute of Public Health, Department of Environmental Health, University of Copenhagen, Copenhagen, Denmark
| | - Peter Møller
- Institute of Public Health, Department of Environmental Health, University of Copenhagen, Copenhagen, Denmark
- Address correspondence to P. Møller, Institute of Public Health, University of Copenhagen, Øster Farimagsgade 5A, Building 5B, Second Floor, DK-1014 Copenhagen, Denmark. Telephone: 45-3532-7654. Fax: 45-3532-7686. E-mail:
| |
Collapse
|
86
|
Oxidative damage to DNA and repair induced by Norwegian wood smoke particles in human A549 and THP-1 cell lines. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 674:116-22. [DOI: 10.1016/j.mrgentox.2008.10.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Accepted: 10/29/2008] [Indexed: 11/22/2022]
|
87
|
Tao GH, Yang LQ, Gong CM, Huang HY, Liu JD, Liu JJ, Yuan JH, Chen W, Zhuang ZX. Effect of PARP-1 deficiency on DNA damage and repair in human bronchial epithelial cells exposed to Benzo(a)pyrene. Mol Biol Rep 2009; 36:2413-22. [DOI: 10.1007/s11033-009-9472-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 02/17/2009] [Indexed: 01/21/2023]
|
88
|
Xu D, Penning TM, Blair IA, Harvey RG. Synthesis of phenol and quinone metabolites of benzo[a]pyrene, a carcinogenic component of tobacco smoke implicated in lung cancer. J Org Chem 2009; 74:597-604. [PMID: 19132942 PMCID: PMC3418794 DOI: 10.1021/jo801864m] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread environmental pollutants produced in the combustion of organic matter. PAHs are present in automobile exhaust and tobacco smoke, and they have recently been designated as human carcinogens. Current evidence indicates that PAHs are activated enzymatically to mutagenic metabolites that interact with DNA. There is evidence for three pathways of activation: the diol epoxide path, the radical-cation path, and the quinone path. The relative importance of these paths for human lung cancer has not been established. We now report syntheses of the principal phenol and quinone isomers of the prototype PAH carcinogen benzo[a]pyrene (BP) that are known or are suspected to be formed as metabolites of BP in human bronchoalveolar cells. The methods of synthesis were designed to be adaptable to the preparation of the (13)C-labeled analogues of the BP metabolites. These compounds are needed as standards for sensitive LC-MS/MS methods for analysis of BP metabolites formed in lung cells. Efficient novel syntheses of the 1-, 3-, 6-, 9-, and 12-BP phenols and the BP 1,6-, 3,6-, 6,12-, and 9,10-quinones are now reported. The syntheses of the BP phenols (except 6-HO-BP) involve the key steps of Pd-catalyzed Suzuki-Miyaura cross-coupling of a naphthalene boronate ester with a substituted aryl bromide or triflate ester. The BP quinones were synthesized from the corresponding BP phenols by direct oxidation with the hypervalent iodine reagents IBX or TBI. These reagents exhibited different regiospecificities. IBX oxidation of the 7- and 9-BP phenols provided the ortho-quinone isomers (BP 7,8- and 9,10-diones, respectively), whereas TBI oxidation of the 1-, 3-, and 12-BP phenols furnished BP quinone isomers with carbonyl functions in separate rings (BP 1,6-, 3,6-, and 6,12-diones, respectively).
Collapse
Affiliation(s)
- Daiwang Xu
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637
| | - Trevor M. Penning
- The Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ian A. Blair
- The Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104
| | - Ronald G. Harvey
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637
| |
Collapse
|
89
|
The aldo-keto reductase AKR1C3 contributes to 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol mediated oxidative DNA damage in myeloid cells: implications for leukemogenesis. Mutat Res 2008; 662:67-74. [PMID: 19162045 DOI: 10.1016/j.mrfmmm.2008.12.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 12/04/2008] [Accepted: 12/16/2008] [Indexed: 11/23/2022]
Abstract
The aldo-keto reductase AKR1C3, has been shown to regulate myelopoiesis via its ability to metabolise prostaglandin D2 (PGD2). Other studies have demonstrated the oxidative activation of polycyclic aromatic hydrocarbon (PAH) procarcinogens by AKR1C3 in cell-free systems. This is the first study that addresses whether AKR1C3 mediates carcinogen activation within intact living cells following manipulation of AKR1C3 by molecular intervention. Quantitative RT-PCR identified AKR1C3 as the predominant AKR1C isoform expressed in acute myeloid leukemia (AML). Exposure of K562 and KG1a myeloid cell lines to the known AKR1C3 substrate 7,12-dimethylbenz(a)anthracene-3,4-dihydrodiol (7,12-DMBA-3,4-diol) resulted in both single strand DNA breaks and oxidative DNA damage as measured using conventional and FPG-modified comet assays respectively. PGD2-keto reductase activity was shown to be correlated with relative AKR1C3 expression and together with quantitative real time PCR was used to validate the RNAi-knockdown of AKR1C3 in K562 cells. Knockdown of AKR1C3 did not alter single strand DNA breaks following 7,12-DMBA-3,4-diol exposure but significantly decreased oxidative DNA damage. A similar interrelationship between AKR1C3 activity and 7,12-DMBA-3,4-diol mediated oxidative DNA damage but not single strand breaks was observed in KG1a cells. Finally, AKR1C3 knockdown also resulted in spontaneous erythroid differentiation of K562 cells. Since K562 cells are a model of AML blast crisis of chronic myeloid leukemia (CML) the data presented here identify AKR1C3 as a novel mediator of carcinogen-induced initiation of leukemia, as a novel regulator of erythroid differentiation and paradoxically as a potential new target in the treatment of CML.
Collapse
|
90
|
Quinn AM, Harvey RG, Penning TM. Oxidation of PAH trans-dihydrodiols by human aldo-keto reductase AKR1B10. Chem Res Toxicol 2008; 21:2207-15. [PMID: 18788756 PMCID: PMC2645959 DOI: 10.1021/tx8002005] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
AKR1B10 has been identified as a potential biomarker for human nonsmall cell lung carcinoma and as a tobacco exposure and response gene. AKR1B10 functions as an efficient retinal reductase in vitro and may regulate retinoic acid homeostasis. However, the possibility that this enzyme is able to activate polycyclic aromatic hydrocarbon (PAH) trans-dihydrodiols to form reactive and redox-active o-quinones has not been investigated to date. AKR1B10 was found to oxidize a wide range of PAH trans-dihydrodiol substrates in vitro to yield PAH o-quinones. Reactions of AKR1B10 proceeded with improper stereochemistry, since it was specific for the minor (+)-benzo[a]pyrene-7S,8S-dihydrodiol diastereomer formed in vivo. However, AKR1B10 displayed reasonable activity in the oxidation of both the (-)-R,R and (+)-S,S stereoisomers of benzo[g]chrysene-11,12-dihydrodiol and oxidized the potentially relevant, albeit minor, (+)-benz[a]anthracene-3S,4S-dihydrodiol metabolite. We find that AKR1B10 is therefore likely to play a contributing role in the activation of PAH trans-dihydrodiols in human lung. AKR1B10 retinal reductase activity was confirmed in vitro and found to be 5- to 150-fold greater than the oxidation of PAH trans-dihydrodiols examined. AKR1B10 was highly expressed at the mRNA and protein levels in human lung adenocarcinoma A549 cells, and robust retinal reductase activity was measured in lysates of these cells. The much greater catalytic efficiency of retinal reduction compared to PAH trans-dihydrodiol metabolism suggests AKR1B10 may play a greater role in lung carcinogenesis through dysregulation of retinoic acid homeostasis than through oxidation of PAH trans-dihydrodiols.
Collapse
Affiliation(s)
- Amy M. Quinn
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| | - Ronald G. Harvey
- Ben May Department for Cancer Research, University of Chicago, Chicago, Illinois 60637
| | - Trevor M. Penning
- Department of Pharmacology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
- Center of Excellence in Environmental Toxicology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104-6084
| |
Collapse
|
91
|
Porté S, Crosas E, Yakovtseva E, Biosca JA, Farrés J, Fernández MR, Parés X. MDR quinone oxidoreductases: the human and yeast zeta-crystallins. Chem Biol Interact 2008; 178:288-94. [PMID: 19007762 DOI: 10.1016/j.cbi.2008.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/03/2008] [Accepted: 10/07/2008] [Indexed: 11/19/2022]
Abstract
The medium-chain dehydrogenase/reductase (MDR) superfamily can be divided into Zn-containing and Zn-lacking proteins. Zn-containing MDRs are generally well-known enzymes, mostly acting as dehydrogenases. The non-Zn MDR are much less studied, and classified in several families of NADP(H)-dependent reductases, including quinone oxidoreductases (QOR). zeta-Crystallins are the best studied group of QOR, have a structural function in the lens of several mammals, exhibit ortho-quinone reductase activity, and bind to specific adenine-uracil-rich elements (ARE) in RNA. In the present work, we have further characterized human zeta-crystallin and Saccharomyces cerevisiae Zta1p, the only QOR in yeast. Subcellular localization using a fluorescent protein tag indicates that zeta-crystallin is distributed in the cytoplasm but not in nucleus. The protein may also be present in mitochondria. Zta1p localizes in both cytoplasm and nucleus. NADPH, but not NADH, competitively prevents binding of zeta-crystallin to RNA, suggesting that the cofactor-binding site is involved in RNA binding. Interference of NADPH on Zta1p binding to RNA is much lower, consistent with a weaker binding of NADPH to the yeast enzyme. Disruption of the yeast ZTA1 gene does not affect cell growth under standard conditions but makes yeast more sensitive to oxidative stress agents. Sequence alignments, phylogenetic tree analysis and kinetic properties reveal a close relationship between zeta-crystallin and Zta1p. Amino acid conservation, between the substrate-binding sites of the two proteins and that of an E. coli QOR, indicates that zeta-crystallins maintained their kinetic function throughout evolution. Quinones are toxic compounds and a relevant step in their detoxification is reduction to their corresponding hydroquinones. Many enzymes of several superfamilies can reduce quinones, including NAD(P)H:quinone oxidoreductase 1 (NQO1 or DT-diaphorase), aldo-keto reductases and short-chain dehydrogenases/reductases. In this context, the physiological role of zeta-crystallins is discussed.
Collapse
Affiliation(s)
- Sergio Porté
- Department of Biochemistry, Faculty of Biosciences, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
92
|
Mattsson A, Jernström B, Cotgreave IA, Bajak E. H2AX phosphorylation in A549 cells induced by the bulky and stable DNA adducts of benzo[a]pyrene and dibenzo[a,l]pyrene diol epoxides. Chem Biol Interact 2008; 177:40-7. [PMID: 18848825 DOI: 10.1016/j.cbi.2008.09.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2008] [Revised: 09/04/2008] [Accepted: 09/04/2008] [Indexed: 01/15/2023]
Abstract
Early events in the cellular response to DNA damage, such as double strand breaks, rely on lesion recognition and activation of proteins involved in maintenance of genomic stability. One important component of this process is the phosphorylation of the histone variant H2AX. To investigate factors explaining the variation in carcinogenic potency between different categories of polycyclic aromatic hydrocarbons (PAHs), we have studied the phosphorylation of H2AX (H2AXgamma). A549 cells were exposed to benzo[a]pyrene diol epoxide [(+)-anti-BPDE] (a bay-region PAH) and dibenzo[a,l]pyrene diol epoxide [(-)-anti-DBPDE] (a fjord-region PAH) and H2AXgamma was studied using immunocytochemistry and Western blot. Hydrogen peroxide (H(2)O(2)) was used to induce oxidative DNA damage and strand breaks. As showed with single cell gel electrophoresis, neither of the diol epoxides resulted in DNA strand breaks relative to H(2)O(2). Visualisation of H2AXgamma formation demonstrated that the proportion of cells exhibiting H2AXgamma staining at 1h differed between BPDE, 40% followed by a decline, and DBPDE, <10% followed by an increase. With H(2)O(2) treatment, almost all cells demonstrated H2AXgamma at 1h. Western blot analysis of the H2AXgamma formation also showed concentration and time-dependent response patterns. The kinetics of H2AXgamma formation correlated with the previously observed kinetics of elimination of BPDE and DBPDE adducts. Thus, the extent of H2AXgamma formation and persistence was related to both the number of adducts and their structural features.
Collapse
Affiliation(s)
- Ase Mattsson
- Institute of Environmental Medicine, Division of Biochemical Toxicology, Karolinska Institutet, Box 210, S-171 77 Stockholm, Sweden
| | | | | | | |
Collapse
|
93
|
Ran C, Xu D, Dai Q, Penning TM, Blair IA, Harvey RG. Synthesis of 13C 2-Benzo[ a]pyrene and its 7,8-Dihydrodiol and 7,8-Dione Implicated as Carcinogenic Metabolites. Tetrahedron Lett 2008; 49:4531-4533. [PMID: 24155502 PMCID: PMC3804341 DOI: 10.1016/j.tetlet.2008.05.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthesis of the 13C2-labelled analogues of the carcinogenic polycyclic aromatic hydrocarbon benzo[a]pyrene and its active metabolites are described. The method entails Pd-catalyzed Suzuki-Miyaura coupling of a naphthalene boronic acid with 2-bromobenzene-1,3-dialdehyde followed by Wittig reaction of the product with 13CH2=PPh3.
Collapse
Affiliation(s)
- Chongzhao Ran
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637
| | | | | | | | | | | |
Collapse
|