51
|
Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates. Vaccine 2012; 30:5991-8. [PMID: 22732429 PMCID: PMC3425710 DOI: 10.1016/j.vaccine.2012.06.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 06/04/2012] [Accepted: 06/11/2012] [Indexed: 12/04/2022]
Abstract
Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses.
Collapse
|
52
|
Immunogenicity and clinical protection against equine influenza by DNA vaccination of ponies. Vaccine 2012; 30:3965-74. [PMID: 22449425 DOI: 10.1016/j.vaccine.2012.03.026] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Revised: 02/09/2012] [Accepted: 03/12/2012] [Indexed: 11/24/2022]
Abstract
Equine influenza A (H3N8) virus infection is a leading cause of respiratory disease in horses, resulting in widespread morbidity and economic losses. As with influenza in other species, equine influenza strains continuously mutate, often requiring the development of new vaccines. Current inactivated (killed) vaccines, while efficacious, only offer limited protection against diverse subtypes and require frequent boosts. Research into new vaccine technologies, including gene-based vaccines, aims to increase the neutralization potency, breadth, and duration of protective immunity. Here, we demonstrate that a DNA vaccine expressing the hemagglutinin protein of equine H3N8 influenza virus generates homologous and heterologous immune responses, and protects against clinical disease and viral replication by homologous H3N8 virus in horses. Furthermore, we demonstrate that needle-free delivery is as efficient and effective as conventional parenteral injection using a needle and syringe. These findings suggest that DNA vaccines offer a safe, effective, and promising alternative approach for veterinary vaccines against equine influenza.
Collapse
|
53
|
Alberts-Grill N, Rezvan A, Son DJ, Qiu H, Kim CW, Kemp ML, Weyand CM, Jo H. Dynamic immune cell accumulation during flow-induced atherogenesis in mouse carotid artery: an expanded flow cytometry method. Arterioscler Thromb Vasc Biol 2012; 32:623-32. [PMID: 22247254 DOI: 10.1161/atvbaha.111.242180] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVE Inflammation plays a central role in atherosclerosis. However, the detailed changes in the composition and quantity of leukocytes in the arterial wall during atherogenesis are not fully understood in part because of the lack of suitable methods and animal models. METHODS AND RESULTS We developed a 10-fluorochrome, 13-parameter flow cytometry method to quantitate 7 major leukocyte subsets in a single digested arterial wall sample. Apolipoprotein E-deficient mice underwent left carotid artery (LCA) partial ligation and were fed a high-fat diet for 4 to 28 days. Monocyte/macrophages, dendritic cells, granulocytes, natural killer cells, and CD4 T cells significantly infiltrated the LCA as early as 4 days. Monocyte/macrophages and dendritic cells decreased between 7 and 14 days, whereas T-cell numbers remained steady. Leukocyte numbers peaked at 7 days, preceding atheroma formation at 14 days. B cells entered LCA by 14 days. Control right carotid and sham-ligated LCAs showed no significant infiltrates. Polymerase chain reaction and ELISA arrays showed that expression of proinflammatory cytokines and chemokines peaked at 7 and 14 days postligation, respectively. CONCLUSION This is the first quantitative description of leukocyte number and composition over the life span of murine atherosclerosis. These results show that disturbed flow induces rapid and dynamic leukocyte accumulation in the arterial wall during the initiation and progression of atherosclerosis.
Collapse
Affiliation(s)
- Noah Alberts-Grill
- School of Medicine, Emory University, Woodruff Memorial Bldg, Rm 2005, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Brown TH, David J, Acosta-Ramirez E, Moore JM, Lee S, Zhong G, Hancock RE, Xing Z, Halperin SA, Wang J. Comparison of immune responses and protective efficacy of intranasal prime-boost immunization regimens using adenovirus-based and CpG/HH2 adjuvanted-subunit vaccines against genital Chlamydia muridarum infection. Vaccine 2012; 30:350-60. [DOI: 10.1016/j.vaccine.2011.10.086] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Revised: 10/26/2011] [Accepted: 10/28/2011] [Indexed: 12/23/2022]
|
55
|
Comparison of systemic and mucosal vaccination: impact on intravenous and rectal SIV challenge. Mucosal Immunol 2012; 5:41-52. [PMID: 22031182 PMCID: PMC3732474 DOI: 10.1038/mi.2011.45] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Mucosal tissues are the primary route of transmission for most respiratory and sexually transmitted diseases, including human immunodeficiency virus. We aimed to generate strong mucosal immune responses to simian immunodeficiency virus (SIV) in rhesus macaques by targeting recombinant adenovirus serotype 5 (rAd5) to the lung. The immunogenicity and efficacy of aerosol (AE) vaccination was compared with intramuscular (IM) delivery in either an intravenous (IV) or intrarectal (IR) SIV(mac251) challenge model. Aerosolized rAd5 induced strong cellular responses in the lung and systemic humoral responses equivalent to IM. Strikingly, all immunization groups controlled acute viremia in the IV challenge model by 1-2 logs. By contrast, after IR challenge, only peak viremia was reduced by immunization, with no significant effect on SIV infection acquisition rate or mucosal CD4(+) T-cell preservation. Improved disease outcome was associated with pre-challenge cellular and humoral responses, while post-challenge T-cell responses were highly correlated with viremia control. The similar outcomes achieved by systemic and airway mucosal immunization support AE delivery as a safe, effective, and less invasive alternative to parenteral vaccination.
Collapse
|
56
|
Roy CJ, Ault A, Sivasubramani SK, Gorres JP, Wei CJ, Andersen H, Gall J, Roederer M, Rao SS. Aerosolized adenovirus-vectored vaccine as an alternative vaccine delivery method. Respir Res 2011; 12:153. [PMID: 22103776 PMCID: PMC3287261 DOI: 10.1186/1465-9921-12-153] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/21/2011] [Indexed: 11/10/2022] Open
Abstract
Conventional parenteral injection of vaccines is limited in its ability to induce locally-produced immune responses in the respiratory tract, and has logistical disadvantages in widespread vaccine administration. Recent studies suggest that intranasal delivery or vaccination in the respiratory tract with recombinant viral vectors can enhance immunogenicity and protection against respiratory diseases such as influenza and tuberculosis, and can offer more broad-based generalized protection by eliciting durable mucosal immune responses. Controlled aerosolization is a method to minimize vaccine particle size and ensure delivery to the lower respiratory tract. Here, we characterize the dynamics of aerosolization and show the effects of vaccine concentration on particle size, vector viability, and the actual delivered dose of an aerosolized adenoviral vector. In addition, we demonstrate that aerosol delivery of a recombinant adenoviral vaccine encoding H1N1 hemagglutinin is immunogenic and protects ferrets against homologous viral challenge. Overall, aerosol delivery offers comparable protection to intramuscular injection, and represents an attractive vaccine delivery method for broad-based immunization campaigns.
Collapse
Affiliation(s)
- Chad J Roy
- Infectious Disease Aerobiology, Division of Microbiology, Tulane National Primate Research Center, Covington, LA 70447, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Tchilian EZ, Ronan EO, de Lara C, Lee LN, Franken KLMC, Vordermeier MH, Ottenhoff THM, Beverley PCL. Simultaneous immunization against tuberculosis. PLoS One 2011; 6:e27477. [PMID: 22110657 PMCID: PMC3217972 DOI: 10.1371/journal.pone.0027477] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/18/2011] [Indexed: 12/22/2022] Open
Abstract
Background BCG, the only licensed vaccine against tuberculosis, provides some protection against disseminated disease in infants but has little effect on prevention of adult pulmonary disease. Newer parenteral immunization prime boost regimes may provide improved protection in experimental animal models but are unproven in man so that there remains a need for new and improved immunization strategies. Methods and Findings Mice were immunized parenterally, intranasally or simultaneously by both routes with BCG or recombinant mycobacterial antigens plus appropriate adjuvants. They were challenged with Mycobacterium tuberculosis (Mtb) and the kinetics of Mtb growth in the lungs measured. We show that simultaneous immunization (SIM) of mice by the intranasal and parenteral routes is highly effective in increasing protection over parenteral BCG administration alone. Intranasal immunization induces local pulmonary immunity capable of inhibiting the growth of Mtb in the early phase (the first week) of infection, while parenteral immunization has a later effect on Mtb growth. Importantly, these two effects are additive and do not depend on priming and boosting the immune response. The best SIM regimes reduce lung Mtb load by up to 2 logs more than BCG given by either route alone. Conclusions These data establish SIM as a novel and highly effective immunization strategy for Mtb that could be carried out at a single clinic visit. The efficacy of SIM does not depend on priming and boosting an immune response, but SIM is complementary to prime boost strategies and might be combined with them.
Collapse
Affiliation(s)
- Elma Z Tchilian
- The Peter Medawar Building for Pathogen Research, University of Oxford, Oxford, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Long-term antibody and immune memory response induced by pulmonary delivery of the influenza Iscomatrix vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:79-83. [PMID: 22072721 DOI: 10.1128/cvi.05265-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pulmonary delivery of an influenza Iscomatrix adjuvant vaccine induces a strong systemic and mucosal antibody response. Since an influenza vaccine needs to induce immunological memory that lasts at least 1 year for utility in humans, we examined the longevity of the immune response induced by such a pulmonary vaccination, with and without antigen challenge. Sheep were vaccinated in the deep lung with an influenza Iscomatrix vaccine, and serum and lung antibody levels were quantified for up to 1 year. The immune memory response to these vaccinations was determined following antigen challenge via lung delivery of influenza antigen at 6 months and 1 year postvaccination. Pulmonary vaccination of sheep with the influenza Iscomatrix vaccine induced antigen-specific antibodies in both sera and lungs that were detectable until 6 months postimmunization. Importantly, a memory recall response following antigenic challenge was detected at 12 months post-lung vaccination, including the induction of functional antibodies with hemagglutination inhibition activity. Pulmonary delivery of an influenza Iscomatrix vaccine induces a long-lived influenza virus-specific antibody and memory response of suitable length for annual vaccination against influenza.
Collapse
|
59
|
Abstract
Viral respiratory infections cause significant morbidity and mortality in infants and young children as well as in at-risk adults and the elderly. Although many viral pathogens are capable of causing respiratory disease, vaccine development has to focus on a limited number of pathogens, such as those that commonly cause serious lower respiratory illness (LRI). Whereas influenza virus vaccines have been available for some time (see the review by Clark and Lynch in this issue), vaccines against other medically important viruses such as respiratory syncytial virus (RSV), the parainfluenza viruses (PIVs), and metapneumovirus (MPVs) are not available. This review aims to provide a brief update on investigational vaccines against RSV, the PIVs, and MPV that have been evaluated in clinical trials or are currently in clinical development.
Collapse
Affiliation(s)
- Alexander C Schmidt
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 10001, USA.
| |
Collapse
|
60
|
Dasgupta G, BenMohamed L. Of mice and not humans: how reliable are animal models for evaluation of herpes CD8(+)-T cell-epitopes-based immunotherapeutic vaccine candidates? Vaccine 2011; 29:5824-36. [PMID: 21718746 PMCID: PMC3159167 DOI: 10.1016/j.vaccine.2011.06.083] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 06/09/2011] [Accepted: 06/14/2011] [Indexed: 11/23/2022]
Abstract
Herpes simplex virus type 1 and type 2 (HSV-1 and HSV-2)-specific CD8(+) T cells that reside in sensory ganglia, appear to control recurrent herpetic disease by aborting or reducing spontaneous and sporadic reactivations of latent virus. A reliable animal model is the ultimate key factor to test the efficacy of therapeutic vaccines that boost the level and the quality of sensory ganglia-resident CD8(+) T cells against spontaneous herpes reactivation from sensory neurons, yet its relevance has been often overlooked. Herpes vaccinologists are hesitant about using mouse as a model in pre-clinical development of therapeutic vaccines because they do not adequately mimic spontaneous viral shedding or recurrent symptomatic diseases, as occurs in human. Alternatives to mouse models are rabbits and guinea pigs in which reactivation arise spontaneously with clinical herpetic features relevant to human disease. However, while rabbits and guinea pigs develop spontaneous HSV reactivation and recurrent ocular and genital disease none of them can mount CD8(+) T cell responses specific to Human Leukocyte Antigen- (HLA-)restricted epitopes. In this review, we discuss the advantages and limitations of these animal models and describe a novel "humanized" HLA transgenic rabbit, which shows spontaneous HSV-1 reactivation, recurrent ocular disease and mounts CD8(+) T cell responses to HLA-restricted epitopes. Adequate investments are needed to develop reliable preclinical animal models, such as HLA class I and class II double transgenic rabbits and guinea pigs to balance the ethical and financial concerns associated with the rising number of unsuccessful clinical trials for therapeutic vaccine formulations tested in unreliable mouse models.
Collapse
Affiliation(s)
- Gargi Dasgupta
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375
| | - Lbachir BenMohamed
- Laboratory of Cellular and Molecular Immunology, The Gavin Herbert Eye Institute, University of California Irvine, School of Medicine, Irvine, CA 92697-4375
- Institute for Immunology, University of California Irvine, Irvine, CA 92697-1450
| |
Collapse
|
61
|
Zhang J, Tarbet EB, Feng T, Shi Z, Van Kampen KR, Tang DCC. Adenovirus-vectored drug-vaccine duo as a rapid-response tool for conferring seamless protection against influenza. PLoS One 2011; 6:e22605. [PMID: 21818346 PMCID: PMC3144911 DOI: 10.1371/journal.pone.0022605] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2011] [Accepted: 06/25/2011] [Indexed: 11/19/2022] Open
Abstract
Few other diseases exert such a huge toll of suffering as influenza. We report here that intranasal (i.n.) administration of E1/E3-defective (ΔE1E3) adenovirus serotype 5 (Ad5) particles rapidly induced an anti-influenza state as a means of prophylactic therapy which persisted for several weeks in mice. By encoding an influenza virus (IFV) hemagglutinin (HA) HA1 domain, an Ad5-HA1 vector conferred rapid protection as a prophylactic drug followed by elicitation of sustained protective immunity as a vaccine for inducing seamless protection against influenza as a drug-vaccine duo (DVD) in a single package. Since Ad5 particles induce a complex web of host responses, which could arrest influenza by activating a specific arm of innate immunity to impede IFV growth in the airway, it is conceivable that this multi-pronged influenza DVD may escape the fate of drug resistance that impairs the current influenza drugs.
Collapse
Affiliation(s)
- Jianfeng Zhang
- Vaxin, Inc., Birmingham, Alabama, United States of America
| | - E. Bart Tarbet
- Institute for Antiviral Research, Utah State University, Logan, Utah, United States of America
| | - Tsungwei Feng
- Vaxin, Inc., Birmingham, Alabama, United States of America
| | - Zhongkai Shi
- Vaxin, Inc., Birmingham, Alabama, United States of America
| | | | - De-chu C. Tang
- Vaxin, Inc., Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
62
|
Schwander S, Dheda K. Human lung immunity against Mycobacterium tuberculosis: insights into pathogenesis and protection. Am J Respir Crit Care Med 2010; 183:696-707. [PMID: 21075901 DOI: 10.1164/rccm.201006-0963pp] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The study of human pulmonary immunity against Mycobacterium tuberculosis (M.tb) provides a unique window into the biological interactions between the human host and M.tb within the broncho-alveolar microenvironment, the site of natural infection. Studies of bronchoalveolar cells (BACs) and lung tissue evaluate innate, adaptive, and regulatory immune mechanisms that collectively contribute to immunological protection or its failure. In aerogenically M.tb-exposed healthy persons lung immune responses reflect early host pathogen interactions that may contribute to sterilization, the development of latent M.tb infection, or progression to active disease. Studies in these persons may allow the identification of biomarkers of protective immunity before the initiation of inflammatory and disease-associated immunopathological changes. In healthy close contacts of patients with tuberculosis (TB) and during active pulmonary TB, immune responses are compartmentalized to the lungs and characterized by an exuberant helper T-cell type 1 response, which as suggested by recent evidence is counteracted by local suppressive immune mechanisms. Here we discuss how exploring human lung immunity may provide insights into disease progression and mechanisms of failure of immunological protection at the site of the initial host-pathogen interaction. These findings may also aid in the identification of new biomarkers of protective immunity that are urgently needed for the development of new and the improvement of current TB vaccines, adjuvant immunotherapies, and diagnostic technologies. To facilitate further work in this area, methodological and procedural approaches for bronchoalveolar lavage studies and their limitations are also discussed.
Collapse
Affiliation(s)
- Stephan Schwander
- Department of Environmental and Occupational Health, UMDNJ-School of Public Health, 683 Hoes Lane West, Room 305, Piscataway, NJ 08854, USA.
| | | |
Collapse
|