51
|
Abstract
Asthma is a chronic disease which causes recurrent breathlessness affecting 300 million people worldwide of whom 250,000 die annually. The epigenome is a set of heritable modifications and tags that affect the genome without changing the intrinsic DNA sequence. These marks include DNA methylation, modifications to histone proteins around which DNA is wrapped and expression of noncoding RNA. Alterations in all of these processes have been reported in patients with asthma. In some cases these differences are linked to disease severity and susceptibility and may account for the limited value of genetic studies in asthma. Animal models of asthma suggest that epigenetic modifications and processes are linked to asthma and may be tractable targets for therapeutic intervention.
Collapse
Affiliation(s)
- Peter O Brook
- Imperial College London, National Heart & Lung Institute, Dovehouse Street, London, SW3 6LY, UK
| | - Mark M Perry
- Imperial College London, National Heart & Lung Institute, Dovehouse Street, London, SW3 6LY, UK
| | - Ian M Adcock
- Imperial College London, National Heart & Lung Institute, Dovehouse Street, London, SW3 6LY, UK
| | - Andrew L Durham
- Imperial College London, National Heart & Lung Institute, Dovehouse Street, London, SW3 6LY, UK
| |
Collapse
|
52
|
Harb H, Renz H. Update on epigenetics in allergic disease. J Allergy Clin Immunol 2015; 135:15-24. [PMID: 25567039 DOI: 10.1016/j.jaci.2014.11.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/04/2014] [Accepted: 11/04/2014] [Indexed: 12/20/2022]
Abstract
Chronic inflammatory diseases, including allergies and asthma, are the result of complex gene-environment interactions. One of the most challenging questions in this regard relates to the biochemical mechanism of how exogenous environmental trigger factors modulate and modify gene expression, subsequently leading to the development of chronic inflammatory conditions. Epigenetics comprises the umbrella of biochemical reactions and mechanisms, such as DNA methylation and chromatin modifications on histones and other structures. Recently, several lifestyle and environmental factors have been investigated in terms of such biochemical interactions with the gene expression-regulating machinery: allergens; microbes and microbial compounds; dietary factors, including vitamin B12, folic acid, and fish oil; obesity; and stress. This article aims to update recent developments in this context with an emphasis on allergy and asthma research.
Collapse
Affiliation(s)
- Hani Harb
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany
| | - Harald Renz
- Institute for Laboratory Medicine and Pathobiochemistry, Molecular Diagnostics, Philipps-Universität Marburg, Marburg, Germany.
| |
Collapse
|
53
|
Komori HK, Hart T, LaMere SA, Chew PV, Salomon DR. Defining CD4 T cell memory by the epigenetic landscape of CpG DNA methylation. THE JOURNAL OF IMMUNOLOGY 2015; 194:1565-79. [PMID: 25576597 DOI: 10.4049/jimmunol.1401162] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Memory T cells are primed for rapid responses to Ag; however, the molecular mechanisms responsible for priming remain incompletely defined. CpG methylation in promoters is an epigenetic modification, which regulates gene transcription. Using targeted bisulfite sequencing, we examined methylation of 2100 genes (56,000 CpGs) mapped by deep sequencing of T cell activation in human naive and memory CD4 T cells. Four hundred sixty-six CpGs (132 genes) displayed differential methylation between naive and memory cells. Twenty-one genes exhibited both differential methylation and gene expression before activation, linking promoter DNA methylation states to gene regulation; 6 of 21 genes encode proteins closely studied in T cells, whereas 15 genes represent novel targets for further study. Eighty-four genes demonstrated differential methylation between memory and naive cells that correlated to differential gene expression following activation, of which 39 exhibited reduced methylation in memory cells coupled with increased gene expression upon activation compared with naive cells. These reveal a class of primed genes more rapidly expressed in memory compared with naive cells and putatively regulated by DNA methylation. These findings define a DNA methylation signature unique to memory CD4 T cells that correlates with activation-induced gene expression.
Collapse
Affiliation(s)
- H Kiyomi Komori
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Traver Hart
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Sarah A LaMere
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Pamela V Chew
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| | - Daniel R Salomon
- Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, CA 92037
| |
Collapse
|
54
|
Comer BS, Ba M, Singer CA, Gerthoffer WT. Epigenetic targets for novel therapies of lung diseases. Pharmacol Ther 2014; 147:91-110. [PMID: 25448041 DOI: 10.1016/j.pharmthera.2014.11.006] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 11/06/2014] [Indexed: 12/13/2022]
Abstract
In spite of substantial advances in defining the immunobiology and function of structural cells in lung diseases there is still insufficient knowledge to develop fundamentally new classes of drugs to treat many lung diseases. For example, there is a compelling need for new therapeutic approaches to address severe persistent asthma that is insensitive to inhaled corticosteroids. Although the prevalence of steroid-resistant asthma is 5-10%, severe asthmatics require a disproportionate level of health care spending and constitute a majority of fatal asthma episodes. None of the established drug therapies including long-acting beta agonists or inhaled corticosteroids reverse established airway remodeling. Obstructive airways remodeling in patients with chronic obstructive pulmonary disease (COPD), restrictive remodeling in idiopathic pulmonary fibrosis (IPF) and occlusive vascular remodeling in pulmonary hypertension are similarly unresponsive to current drug therapy. Therefore, drugs are needed to achieve long-acting suppression and reversal of pathological airway and vascular remodeling. Novel drug classes are emerging from advances in epigenetics. Novel mechanisms are emerging by which cells adapt to environmental cues, which include changes in DNA methylation, histone modifications and regulation of transcription and translation by noncoding RNAs. In this review we will summarize current epigenetic approaches being applied to preclinical drug development addressing important therapeutic challenges in lung diseases. These challenges are being addressed by advances in lung delivery of oligonucleotides and small molecules that modify the histone code, DNA methylation patterns and miRNA function.
Collapse
Affiliation(s)
- Brian S Comer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA
| | - Mariam Ba
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - Cherie A Singer
- Department of Pharmacology, University of Nevada School of Medicine, Reno, NV 89557, USA
| | - William T Gerthoffer
- Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, AL, 36688, USA.
| |
Collapse
|
55
|
Huber JP, Gonzales-van Horn SR, Roybal KT, Gill MA, Farrar JD. IFN-α suppresses GATA3 transcription from a distal exon and promotes H3K27 trimethylation of the CNS-1 enhancer in human Th2 cells. THE JOURNAL OF IMMUNOLOGY 2014; 192:5687-94. [PMID: 24813204 DOI: 10.4049/jimmunol.1301908] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
CD4(+) Th2 development is regulated by the zinc finger transcription factor GATA3. Once induced by acute priming signals, such as IL-4, GATA3 poises the Th2 cytokine locus for rapid activation and establishes a positive-feedback loop that maintains elevated GATA3 expression. Type I IFN (IFN-α/β) inhibits Th2 cells by blocking the expression of GATA3 during Th2 development and in fully committed Th2 cells. In this study, we uncovered a unique mechanism by which IFN-α/β signaling represses the GATA3 gene in human Th2 cells. IFN-α/β suppressed expression of GATA3 mRNA that was transcribed from an alternative distal upstream exon (1A). This suppression was not mediated through DNA methylation, but rather by histone modifications localized to a conserved noncoding sequence (CNS-1) upstream of exon 1A. IFN-α/β treatment led to a closed conformation of CNS-1, as assessed by DNase I hypersensitivity, along with enhanced accumulation of H3K27me3 mark at this CNS region, which correlated with increased density of total nucleosomes at this putative enhancer. Consequently, accessibility of CNS-1 to GATA3 DNA binding activity was reduced in response to IFN-α/β signaling, even in the presence of IL-4. Thus, IFN-α/β disrupts the GATA3-autoactivation loop and promotes epigenetic silencing of a Th2-specific regulatory region within the GATA3 gene.
Collapse
Affiliation(s)
- Jonathan P Huber
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | | | - Kole T Roybal
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| | - Michelle A Gill
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX 75390
| | - J David Farrar
- Department of Immunology, University of Texas Southwestern Medical Center, Dallas, TX 75390; and
| |
Collapse
|
56
|
Lee GR. Transcriptional regulation of T helper type 2 differentiation. Immunology 2014; 141:498-505. [PMID: 24245687 DOI: 10.1111/imm.12216] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/29/2013] [Accepted: 11/13/2013] [Indexed: 12/20/2022] Open
Abstract
Considerable progress has been made in recent years towards our understanding of the molecular mechanisms of transcriptional regulation of T helper type 2 (Th2) cell differentiation. Additional transcription factors and chromatin-modifying factors were identified and shown to promote Th2 cell differentiation and inhibit differentiation into other subsets. Analyses of mice lacking several cis-regulatory elements have yielded more insight into the regulatory mechanism of Th2 cytokine genes. Gene deletion studies of several chromatin modifiers confirmed their impact on CD4 T-cell differentiation. In addition, recent genome-wide analyses of transcription factor binding and chromatin status revealed unexpected roles of these factors in Th2-cell differentiation. In this review, these recent findings and their implication are summarized.
Collapse
Affiliation(s)
- Gap Ryol Lee
- Department of Life Science, Sogang University, Seoul, Korea
| |
Collapse
|
57
|
Involvement of lymphocytes in asthma and allergic diseases: a genetic point of view. Curr Opin Allergy Clin Immunol 2014; 13:500-6. [PMID: 23974678 DOI: 10.1097/aci.0b013e328364ea3a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE OF REVIEW The activation and regulation of lymphocytes play a central role in asthmatic inflammation. It is increasingly recognized that diverse panels of lymphocyte lineages and cytokine profiles are involved in the asthmatic phenotypes. In this review, we discuss the advances in the gene variants associated with the regulation of lymphocytes and relevant cytokines underlying asthma and allergic diseases. We also discuss the current evidence about the epigenetic regulation of lymphocyte differentiation and the interaction with environment. RECENT FINDINGS Many genetic variants in asthma are functionally associated with lymphocytes and relevant cytokines. Interleukin (IL)-2RB is important in the homeostasis of T regulatory cells (Tregs) through effects from IL-2. IL-18R1 and ST2/IL-1RL1 drive the T helper 1 and 2 inflammation via the ligands of their encoding receptors. Novel genes, like orosomucoid 1-like 3/gasdermin-like gene and taste receptor type 2 members are being explored for their roles in T-cell activation. T-cell lineages are epigenetically regulated by de novo methyltransferases, histone methylase, CD44 and microRNA. Environmental factors such as second-hand smoke and ambient air pollution modify Tregs differentiation significantly. SUMMARY Plenty of genetic loci of lymphocyte regulation provide us a deeper insight into the asthma pathogenesis. Future challenge is to define genetic drivers in asthma phenotypes to provide therapeutic targets.
Collapse
|
58
|
Tumes DJ, Onodera A, Suzuki A, Shinoda K, Endo Y, Iwamura C, Hosokawa H, Koseki H, Tokoyoda K, Suzuki Y, Motohashi S, Nakayama T. The polycomb protein Ezh2 regulates differentiation and plasticity of CD4(+) T helper type 1 and type 2 cells. Immunity 2014; 39:819-32. [PMID: 24238339 DOI: 10.1016/j.immuni.2013.09.012] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Accepted: 09/16/2013] [Indexed: 12/23/2022]
Abstract
After antigen encounter by CD4(+) T cells, polarizing cytokines induce the expression of master regulators that control differentiation. Inactivation of the histone methyltransferase Ezh2 was found to specifically enhance T helper 1 (Th1) and Th2 cell differentiation and plasticity. Ezh2 directly bound and facilitated correct expression of Tbx21 and Gata3 in differentiating Th1 and Th2 cells, accompanied by substantial trimethylation at lysine 27 of histone 3 (H3K27me3). In addition, Ezh2 deficiency resulted in spontaneous generation of discrete IFN-γ and Th2 cytokine-producing populations in nonpolarizing cultures, and under these conditions IFN-γ expression was largely dependent on enhanced expression of the transcription factor Eomesodermin. In vivo, loss of Ezh2 caused increased pathology in a model of allergic asthma and resulted in progressive accumulation of memory phenotype Th2 cells. This study establishes a functional link between Ezh2 and transcriptional regulation of lineage-specifying genes in terminally differentiated CD4(+) T cells.
Collapse
Affiliation(s)
- Damon J Tumes
- Department of Immunology, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Nestor CE, Barrenäs F, Wang H, Lentini A, Zhang H, Bruhn S, Jörnsten R, Langston MA, Rogers G, Gustafsson M, Benson M. DNA methylation changes separate allergic patients from healthy controls and may reflect altered CD4+ T-cell population structure. PLoS Genet 2014; 10:e1004059. [PMID: 24391521 PMCID: PMC3879208 DOI: 10.1371/journal.pgen.1004059] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 11/11/2013] [Indexed: 12/30/2022] Open
Abstract
Altered DNA methylation patterns in CD4+ T-cells indicate the importance of epigenetic mechanisms in inflammatory diseases. However, the identification of these alterations is complicated by the heterogeneity of most inflammatory diseases. Seasonal allergic rhinitis (SAR) is an optimal disease model for the study of DNA methylation because of its well-defined phenotype and etiology. We generated genome-wide DNA methylation (Npatients = 8, Ncontrols = 8) and gene expression (Npatients = 9, Ncontrols = 10) profiles of CD4+ T-cells from SAR patients and healthy controls using Illumina's HumanMethylation450 and HT-12 microarrays, respectively. DNA methylation profiles clearly and robustly distinguished SAR patients from controls, during and outside the pollen season. In agreement with previously published studies, gene expression profiles of the same samples failed to separate patients and controls. Separation by methylation (Npatients = 12, Ncontrols = 12), but not by gene expression (Npatients = 21, Ncontrols = 21) was also observed in an in vitro model system in which purified PBMCs from patients and healthy controls were challenged with allergen. We observed changes in the proportions of memory T-cell populations between patients (Npatients = 35) and controls (Ncontrols = 12), which could explain the observed difference in DNA methylation. Our data highlight the potential of epigenomics in the stratification of immune disease and represents the first successful molecular classification of SAR using CD4+ T cells. T-cells, a type of white blood cell, are an important part of the immune-system in humans. T-cells allow us to adapt our immune-response to the various infectious agents we encounter during life. However, T-cells can also cause disease when they target the body's own cells, e.g. Psoriasis, or when they react to a harmless particle or ‘antigen’, i.e. allergy. Much evidence supports an environmental, or ‘epigenetic’, component to allergy. Surprisingly, although allergy is viewed as a T-cell disease with an epigenetic component, no studies have identified epigenetic differences between healthy individuals and allergic individuals. Using a state-of-the-art genome-wide approach, we found that we could clearly and robustly separate allergic patients from healthy controls. It is often assumed that these changes reflect changes in DNA methylation in a given type of cell; however such differences can also result from different mixtures of T-cell subtypes in the samples. Indeed, we found that allergic patients had different proportions of T-cell sub-types compared to healthy controls. These changes in T-cell proportions may explain the difference in DNA methylation profile we observed between patients and controls. Our study is the first successful molecular classification of allergy using CD4+ T cells.
Collapse
Affiliation(s)
- Colm E. Nestor
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
- * E-mail:
| | - Fredrik Barrenäs
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Hui Wang
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
- Department of Pediatrics, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Antonio Lentini
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Huan Zhang
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Sören Bruhn
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, University of Gothenburg, Gothenburg, Sweden
| | - Michael A. Langston
- Department of Electrical Engineering and Computer Science, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Gary Rogers
- National Institute for Computational Sciences, University of Tennessee, Knoxville, Tennessee, United States of America
| | - Mika Gustafsson
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| | - Mikael Benson
- The Centre for Individualized Medicine, Linköping University Hospital, Linköping University, Linköping, Sweden
| |
Collapse
|
60
|
O'Brien E, Dolinoy DC, Mancuso P. Perinatal bisphenol A exposures increase production of pro-inflammatory mediators in bone marrow-derived mast cells of adult mice. J Immunotoxicol 2013; 11:205-12. [PMID: 23914806 DOI: 10.3109/1547691x.2013.822036] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bisphenol A (BPA) is a widely used monomer of polycarbonate plastics and epoxide resin that has been implicated in asthma pathogenesis when exposure occurs to the developing fetus. However, few studies have examined the relationship between perinatal BPA exposure and asthma pathogenesis in adulthood. This study used an isogenic mouse model to examine the influence of perinatal BPA exposure via maternal diet on inflammatory mediators associated with asthma in 6-month-old adult offspring by measuring bone marrow-derived mast cell (BMMC) production of lipid mediators (cysteinyl leukotrienes and prostaglandin D2), cytokines (interleukin [IL]-4, IL-5, IL-6, IL-13, and tumor necrosis factor [TNF]-α), and histamine. Global DNA methylation levels in BMMCs from adult offspring were determined to elucidate a potential regulatory mechanism linking perinatal exposure to mast cell phenotype later in life. Four BPA exposure doses were tested: low (50 ng BPA/kg diet, n = 5), medium (50 μg BPA/kg diet, n = 4), high (50 mg BPA/kg diet, n = 4), and control (n = 3). Following BMMC activation, increases in cysteinyl leukotriene (p < 0.01) and TNFα (p < 0.05) production were observed in all BPA-exposure groups, and increases in prostaglandin D2 (p < 0.01) and IL-13 (p < 0.01) production were observed in the high exposure group. Additionally, BMMCs from adult mice in all exposure groups displayed a decrease in global DNA methylation compared to control animals. Thus, perinatal BPA exposure displayed a long-term influence on mast cell-mediated production of pro-inflammatory mediators associated with asthma and global DNA methylation levels, suggesting a potential for mast cell dysregulation, which could affect pulmonary inflammation associated with allergic airway disease into adulthood.
Collapse
Affiliation(s)
- Edmund O'Brien
- Department of Environmental Health Sciences, School of Public Health, University of Michigan , Ann Arbor, MI , USA
| | | | | |
Collapse
|
61
|
Knoechel B, Lohr JG. Genomics of lymphoid malignancies reveal major activation pathways in lymphocytes. J Autoimmun 2013; 45:15-23. [PMID: 23880067 DOI: 10.1016/j.jaut.2013.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 06/19/2013] [Indexed: 01/21/2023]
Abstract
Breakdown of tolerance leads to autoimmunity due to emergence of autoreactive T or B cell clones. Autoimmune diseases predispose to lymphoid malignancies and lymphoid malignancies, conversely, can manifest as autoimmune diseases. While it has been clear for a long time that a competitive advantage and uncontrolled growth of lymphocytes contribute to the pathogenesis of both lymphoid malignancies as well as autoimmune diseases, the overlap of the underlying mechanisms has been less well described. Next generation sequencing has led to massive expansion of the available genomic data in many diseases over the last five years. These data allow for comparison of the molecular pathogenesis between autoimmune diseases and lymphoid malignancies. Here, we review the similarities between autoimmune diseases and lymphoid malignancies: 1) Both, autoimmune diseases and lymphoid malignancies are characterized by activation of the same T and B cell signaling pathways, and dysregulation of these pathways can occur through genetic or epigenetic events. 2) In both scenarios, clonal and subclonal evolution of lymphocytes contribute to disease. 3) Development of both diseases not only depends on T or B cell intrinsic factors, such as germline or somatic mutations, but also on environmental factors. These include infections, the presence of other immune cells in the microenvironment, and the cytokine milieu. A better mechanistic understanding of the parallels between lymphomagenesis and autoimmunity may help the development of precision treatment strategies with rationally designed therapeutic agents.
Collapse
Affiliation(s)
- Birgit Knoechel
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Division of Hematology/Oncology, Boston Children's Hospital and Harvard Medical School, Boston, MA 02115, USA; The Eli and Edythe L. Broad Institute, Cambridge, MA 02142, USA; Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | | |
Collapse
|
62
|
Pham D, Yu Q, Walline CC, Muthukrishnan R, Blum JS, Kaplan MH. Opposing roles of STAT4 and Dnmt3a in Th1 gene regulation. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:902-11. [PMID: 23772023 PMCID: PMC3703830 DOI: 10.4049/jimmunol.1203229] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The STAT transcription factor STAT4 is a critical regulator of Th1 differentiation and inflammatory disease. Yet, how STAT4 regulates gene expression is still unclear. In this report, we define a STAT4-dependent sequence of events including histone H3 lysine 4 methylation, Jmjd3 association with STAT4 target loci, and a Jmjd3-dependent decrease in histone H3 lysine 27 trimethylation and DNA methyltransferase (Dnmt) 3a association with STAT4 target loci. Dnmt3a has an obligate role in repressing Th1 gene expression, and in Th1 cultures deficient in both STAT4 and Dnmt3a, there is recovery in the expression of a subset of Th1 genes that is sufficient to increase IFN-γ production. Moreover, although STAT4-deficient mice are protected from the development of experimental autoimmune encephalomyelitis, mice deficient in STAT4 and conditionally deficient in Dnmt3a in T cells develop paralysis. Th1 genes that are derepressed in the absence of Dnmt3a have greater induction after the ectopic expression of the Th1-associated transcription factors T-bet and Hlx1. Together, these data demonstrate that STAT4 and Dnmt3a play opposing roles in regulating Th1 gene expression, and that one mechanism for STAT4-dependent gene programming is in establishing a derepressed genetic state susceptible to transactivation by additional fate-determining transcription factors.
Collapse
Affiliation(s)
- Duy Pham
- Department of Pediatrics, Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | |
Collapse
|
63
|
Wang M, Yu Q, Wang L, Gu H. Distinct patterns of histone modifications at cardiac-specific gene promoters between cardiac stem cells and mesenchymal stem cells. Am J Physiol Cell Physiol 2013; 304:C1080-90. [PMID: 23552285 DOI: 10.1152/ajpcell.00359.2012] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mesenchymal stem cells (MSCs) and cardiac stem cells (CSCs) possess different potential to develop into cardiomyocytes. The mechanism underlying cardiomyogenic capacity of MSCs and CSCs remains elusive. It is well established that histone modifications correlate with gene expression and contribute to cell fate commitment. Here we hypothesize that specific histone modifications accompany cardiac-specific gene expression, thus determining the differentiation capacity of MSCs and CSCs toward heart cells. Our results indicate that, at the promoter regions of cardiac-specific genes (Myh6, Myl2, Actc1, Tnni3, and Tnnt2), the levels of histone acetylation of H3 (acH3) and H4 (acH4), as a mark indicative of gene activation, were higher in CSCs (Sca-1(+)CD29(+)) than MSCs. Additionally, lower binding levels of histone deacetylase (HDAC) 1 and HDAC2 at promoter regions of cardiac-specific genes were noticed in CSCs than MSCs. Treatment with trichostatin A, an HDAC inhibitor, upregulated cardiac-specific gene expression in MSCs. Suppression of HDAC1 or HDAC2 expression by small interfering RNAs led to increased cardiac gene expression and was accompanied by enhanced acH3 and acH4 levels at gene loci. We conclude that greater levels of histone acetylation at cardiac-specific gene loci in CSCs than MSCs reflect a stronger potential for CSCs to develop into cardiomyocytes. These lineage-differential histone modifications are likely due to less HDAC recruitment at cardiac-specific gene promoters in CSCs than MSCs.
Collapse
Affiliation(s)
- Meijing Wang
- Division of Cardiovascular and Thoracic Surgery, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, USA.
| | | | | | | |
Collapse
|
64
|
Transcription factor YY1 is essential for regulation of the Th2 cytokine locus and for Th2 cell differentiation. Proc Natl Acad Sci U S A 2012; 110:276-81. [PMID: 23248301 DOI: 10.1073/pnas.1214682110] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The Th2 locus control region (LCR) has been shown to be important in efficient and coordinated cytokine gene regulation during Th2 cell differentiation. However, the molecular mechanism for this is poorly understood. To study the molecular mechanism of the Th2 LCR, we searched for proteins binding to it. We discovered that transcription factor YY1 bound to the LCR and the entire Th2 cytokine locus in a Th2-specific manner. Retroviral overexpression of YY1 induced Th2 cytokine expression. CD4-specific knockdown of YY1 in mice caused marked reduction in Th2 cytokine expression, repressed chromatin remodeling, decreased intrachromosomal interactions, and resistance in an animal model of asthma. YY1 physically associated with GATA-binding protein-3 (GATA3) and is required for GATA3 binding to the locus. YY1 bound to the regulatory elements in the locus before GATA3 binding. Thus, YY1 cooperates with GATA3 and is required for regulation of the Th2 cytokine locus and Th2 cell differentiation.
Collapse
|
65
|
Epistatic interactions between Tgfb1 and genetic loci, Tgfbm2 and Tgfbm3, determine susceptibility to an asthmatic stimulus. Proc Natl Acad Sci U S A 2012; 109:18042-7. [PMID: 23064636 DOI: 10.1073/pnas.1205374109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
TGFβ activation and signaling have been extensively studied in experimental models of allergen-induced asthma as potential therapeutic targets during chronic or acute phases of the disease. Outcomes of experimental manipulation of TGFβ activity have been variable, in part due to use of different model systems. Using an ovalbumin (OVA)-induced mouse model of asthma, we here show that innate variation within TGFβ1 genetic modifier loci, Tgfbm2 and Tgfbm3, alters disease susceptibility. Specifically, Tgfbm2(129) and Tgfbm3(C57) synergize to reverse accentuated airway hyperresponsiveness (AHR) caused by low TGFβ1 levels in Tgfb1(+/-) mice of the NIH/OlaHsd strain. Moreover, epistatic interaction between Tgfbm2(129) and Tgfbm3(C57) uncouples the inflammatory response to ovalbumin from those of airway remodeling and airway hyperresponsiveness, illustrating independent genetic control of these responses. We conclude that differential inheritance of genetic variants of Tgfbm genes alters biological responses to reduced TGFβ1 signaling in an experimental asthma model. TGFβ antagonists for treatment of lung diseases might therefore give diverse outcomes, dependent on genetic variation.
Collapse
|