51
|
Abstract
Estrogen receptor alpha (ERα) is a critical player in development and function of the female reproductive system. Perturbations in ERα response can affect wide-ranging aspects of health in humans as well as in livestock and wildlife. Because of its long-known and broad impact, ERα mechanisms of action continue to be the focus on cutting-edge research efforts. Consequently, novel insights have greatly advanced understanding of every aspect of estrogen signaling. In this review, we attempt to briefly outline the current understanding of ERα mediated mechanisms in the context of the female reproductive system.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Wipawee Winuthayanon
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| | - Kenneth S Korach
- Receptor Biology GroupReproductive and Developmental Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USASchool of Molecular BiosciencesCollege of Veterinary Medicine, Washington State University, Pullman, Washington 99164, USA
| |
Collapse
|
52
|
Bhurke AS, Bagchi IC, Bagchi MK. Progesterone-Regulated Endometrial Factors Controlling Implantation. Am J Reprod Immunol 2016; 75:237-45. [PMID: 26804062 DOI: 10.1111/aji.12473] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/05/2015] [Indexed: 12/11/2022] Open
Abstract
The steroid hormone progesterone (P), acting via the progesterone receptor (PR) isoforms, PR-A and PR-B, exerts a profound influence on uterine functions during early gestation. In recent years, chromatin immunoprecipitation-sequencing in combination with microarray-based gene expression profiling analyses have revealed that the PR isoforms control a substantially large cistrome and transcriptome during endometrial differentiation in the human and the mouse. Genetically engineered mouse models have established that several PR-regulated genes, such as Ihh, Bmp2, Hoxa10, and Hand2, are essential for implantation and decidualization. PR-A and PR-B also collaborate with other transcription factors, such as FOS, JUN, C/EBPβ and STAT3, to regulate the expression of many target genes that functions in concert to properly control uterine epithelial proliferation, stromal differentiation, angiogenesis, and local immune response to render the uterus 'receptive' and allow embryo implantation. This review article highlights recent work describing the key PR-regulated pathways that govern critical uterine functions during establishment of pregnancy.
Collapse
Affiliation(s)
- Arpita S Bhurke
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Indrani C Bagchi
- Department of Comparative Biosciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Milan K Bagchi
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
53
|
Monsivais D, Clementi C, Peng J, Titus MM, Barrish JP, Creighton CJ, Lydon JP, DeMayo FJ, Matzuk MM. Uterine ALK3 is essential during the window of implantation. Proc Natl Acad Sci U S A 2016; 113:E387-95. [PMID: 26721398 PMCID: PMC4725477 DOI: 10.1073/pnas.1523758113] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The window of implantation is defined by the inhibition of uterine epithelial proliferation, structural epithelial cell remodeling, and attenuated estrogen (E2) response. These changes occur via paracrine signaling between the uterine epithelium and stroma. Because implantation defects are a major cause of infertility in women, identifying these signaling pathways will improve infertility interventions. Bone morphogenetic proteins (BMPs) are TGF-β family members that regulate the postimplantation and midgestation stages of pregnancy. In this study, we discovered that signaling via activin-like kinase 3 (ALK3/BMPR1A), a BMP type 1 receptor, is necessary for blastocyst attachment. Conditional knockout (cKO) of ALK3 in the uterus was obtained by producing Alk3(flox) (/flox)-Pgr-cre-positive females. Alk3 cKO mice are sterile and have defects in the luminal uterine epithelium, including increased microvilli density and maintenance of apical cell polarity. Moreover, Alk3 cKO mice exhibit an elevated uterine E2 response and unopposed epithelial cell proliferation during the window of implantation. We determined that dual transcriptional regulation of Kruppel-like factor 15 (Klf15), by both the transforming growth factor β (TGF-β) transcription factor SMAD family member 4 (SMAD4) and progesterone receptor (PR), is necessary to inhibit uterine epithelial cell proliferation, a key step for embryo implantation. Our findings present a convergence of BMP and steroid hormone signaling pathways in the regulation of uterine receptivity.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030
| | - Caterina Clementi
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Jia Peng
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - Mary M Titus
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030
| | - James P Barrish
- Electron Microscopy Laboratory, Texas Children's Hospital, Houston, TX 77030
| | - Chad J Creighton
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - John P Lydon
- Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030
| | - Francesco J DeMayo
- National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030; Center for Reproductive Medicine, Baylor College of Medicine, Houston, TX 77030; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030; Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030; Department of Pharmacology, Baylor College of Medicine, Houston, TX 77030; Center for Drug Discovery, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
54
|
Kim TH, Yoo JY, Wang Z, Lydon JP, Khatri S, Hawkins SM, Leach RE, Fazleabas AT, Young SL, Lessey BA, Ku BJ, Jeong JW. ARID1A Is Essential for Endometrial Function during Early Pregnancy. PLoS Genet 2015; 11:e1005537. [PMID: 26378916 PMCID: PMC4574948 DOI: 10.1371/journal.pgen.1005537] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 08/27/2015] [Indexed: 02/03/2023] Open
Abstract
AT-rich interactive domain 1A gene (ARID1A) loss is a frequent event in endometriosis-associated ovarian carcinomas. Endometriosis is a disease in which tissue that normally grows inside the uterus grows outside the uterus, and 50% of women with endometriosis are infertile. ARID1A protein levels were significantly lower in the eutopic endometrium of women with endometriosis compared to women without endometriosis. However, an understanding of the physiological effects of ARID1A loss remains quite poor, and the function of Arid1a in the female reproductive tract has remained elusive. In order to understand the role of Arid1a in the uterus, we have generated mice with conditional ablation of Arid1a in the PGR positive cells (Pgrcre/+Arid1af/f; Arid1ad/d). Ovarian function and uterine development of Arid1ad/d mice were normal. However, Arid1ad/d mice were sterile due to defective embryo implantation and decidualization. The epithelial proliferation was significantly increased in Arid1ad/d mice compared to control mice. Enhanced epithelial estrogen activity and reduced epithelial PGR expression, which impedes maturation of the receptive uterus, was observed in Arid1ad/d mice at the peri-implantation period. The microarray analysis revealed that ARID1A represses the genes related to cell cycle and DNA replication. We showed that ARID1A positively regulates Klf15 expression with PGR to inhibit epithelial proliferation at peri-implantation. Our results suggest that Arid1a has a critical role in modulating epithelial proliferation which is a critical requisite for fertility. This finding provides a new signaling pathway for steroid hormone regulation in female reproductive biology and furthers our understanding of the molecular mechanisms that underlie dysregulation of hormonal signaling in human reproductive disorders such as endometriosis.
Collapse
Affiliation(s)
- Tae Hoon Kim
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Jung-Yoon Yoo
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
| | - Zhong Wang
- Department of Cardiac Surgery, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John P. Lydon
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shikha Khatri
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Shannon M. Hawkins
- Department of Obstetrics and Gynecology, Baylor College of Medicine, Houston, Texas, United States of America
| | - Richard E. Leach
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Asgerally T. Fazleabas
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
| | - Steven L. Young
- Department of Obstetrics and Gynecology, University of North Carolina, Chapel Hill, Chapel Hill, North Carolina, United States of America
| | - Bruce A. Lessey
- Department of Obstetrics and Gynecology, University Medical Group, Greenville Health System, Greenville, South Carolina, United States of America
| | - Bon Jeong Ku
- Department of Internal Medicine, Chungnam National University School of Medicine, Daejeon, South Korea
- * E-mail: (BJK); (JWJ)
| | - Jae-Wook Jeong
- Department of Obstetrics, Gynecology and Reproductive Biology, Michigan State University College of Human Medicine, Grand Rapids, Michigan, United States of America
- Department of Women’s Health, Spectrum Health System, Grand Rapids, Michigan, United States of America
- * E-mail: (BJK); (JWJ)
| |
Collapse
|
55
|
Zhang H, Zhu X, Chen J, Jiang Y, Zhang Q, Kong C, Xing J, Ding L, Diao Z, Zhen X, Sun H, Yan G. Krüppel-like factor 12 is a novel negative regulator of forkhead box O1 expression: a potential role in impaired decidualization. Reprod Biol Endocrinol 2015; 13:80. [PMID: 26223982 PMCID: PMC4520059 DOI: 10.1186/s12958-015-0079-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 07/18/2015] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Decidualization is a prerequisite for successful implantation and the establishment of pregnancy. Krüppel-like factor 12 (KLF12) is a negative regulator of endometrial decidualization in vitro. We investigated whether KLF12 was associated with impaired decidualization under conditions of repeated implantation failure (RIF). METHODS Uterine tissues were collected from a mouse model of early pregnancy and artificial decidualization for immunohistochemistry, Western blot and real-time PCR analysis. Reporter gene assays, chromatin immunoprecipitation-PCR and avidin-biotin conjugate DNA precipitation assays were performed to analyze the transcriptional regulation of forkhead box O1 (FOXO1) by KLF12. Furthermore, the protein levels of KLF12 and FOXO1 in patients with RIF were analyzed by Western blot and immunohistochemistry. RESULTS KLF12 led to defective implantation and decidualization in the mouse uterine model of early pregnancy and artificial decidualization by directly binding to the FOXO1 promoter region and inhibiting its expression in human endometrial stromal cells. Elevated KLF12 expression was accompanied by decreased FOXO1 expression in the endometria of patients with RIF. CONCLUSIONS As a novel regulator, KLF12 predominantly controls uterine endometrial differentiation during early pregnancy and leads to implantation failure.
Collapse
Affiliation(s)
- Hui Zhang
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Xudong Zhu
- College of Science Isotope Laboratory, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China.
| | - Jing Chen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Yue Jiang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Qun Zhang
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Chengcai Kong
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Jun Xing
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Lijun Ding
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Zhenyu Diao
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Xin Zhen
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| | - Haixiang Sun
- Reproductive Medicine Center, Drum Tower Clinic Medical College of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Guijun Yan
- Department of Obstetrics and Gynecology, Reproductive Medicine Center, Nanjing Drum Tower Hospital, Nanjing University Medical School, Nanjing, 210008, Jiangsu, China.
| |
Collapse
|
56
|
Mazur EC, Vasquez YM, Li X, Kommagani R, Jiang L, Chen R, Lanz RB, Kovanci E, Gibbons WE, DeMayo FJ. Progesterone receptor transcriptome and cistrome in decidualized human endometrial stromal cells. Endocrinology 2015; 156:2239-53. [PMID: 25781565 PMCID: PMC4430623 DOI: 10.1210/en.2014-1566] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Decidualization is a complex process involving cellular proliferation and differentiation of the endometrial stroma that is required to establish and support pregnancy. Progesterone acting via its nuclear receptor, the progesterone receptor (PGR), is a critical regulator of decidualization and is known to interact with certain members of the activator protein-1 (AP-1) family in the regulation of transcription. In this study, we identified the cistrome and transcriptome of PGR and identified the AP-1 factors FOSL2 and JUN to be regulated by PGR and important in the decidualization process. Direct targets of PGR were identified by integrating gene expression data from RNA sequencing with the whole-genome binding profile of PGR determined by chromatin immunoprecipitation followed by deep sequencing (ChIP-seq) in primary human endometrial stromal cells exposed to 17β-estradiol, medroxyprogesterone acetate, and cAMP to promote in vitro decidualization. Ablation of FOSL2 and JUN attenuates the induction of 2 decidual marker genes, IGFBP1 and PRL. ChIP-seq analysis of genomic binding revealed that FOSL2 is bound in proximity to 8586 distinct genes, including nearly 80% of genes bound by PGR. A comprehensive assessment of the PGR-dependent decidual transcriptome integrated with the genomic binding of PGR identified FOSL2 as a potentially important transcriptional coregulator of PGR via direct interaction with regulatory regions of genes actively regulated during decidualization.
Collapse
Affiliation(s)
- Erik C Mazur
- Division of Reproductive Endocrinology and Infertility (E.C.M., E.K., W.E.G.), Department of Obstetrics and Gynecology, Texas Children's Hospital Pavilion for Women, Department of Molecular and Cellular Biology (Y.M.V., X.L., R.K., R.B.L., F.J.D.), and Department of Molecular and Human Genetics (L.J., R.C.), Baylor College of Medicine, Houston, Texas 77030
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Abstract
PURPOSE Krüppel-like factor 15 (KLF15) is a transcription factor that is involved in various biological processes, including cellular proliferation, differentiation and death. In addition, KLF15 has recently been implicated in the development of several human malignancies, including breast cancer. In vitro breast cancer studies have pointed at a putative role in the regulation of cell proliferation. As yet, however, KLF15 expression analyses in primary human breast cancers have not been reported. Here, we set out to investigate the clinical and biological significance of KLF15 expression in human breast cancers. METHODS KLF15 expression was evaluated by immunohistochemistry in 54 primary invasive ductal breast carcinomas, and its status was correlated with various clinicopathological parameters. We also assessed KLF15 expression in vitro in 4 breast cancer-derived cell lines using Western blotting, and examined the effects of exogenous KLF15 expression on cell cycle progression using flow cytometry. Concomitant (changes in) p21, p27 and TOPO2A expression levels were examined using real-time RT-PCR and immunocytochemistry, respectively. RESULTS In ~90% of the primary breast carcinoma tissues tested, KLF15 was found to be expressed and localized in either the cytoplasm, the nucleus or both. Predominant nuclear immunoreactivity was found to be associated with clinicopathological factors predicting a better clinical outcome (i.e., ER positive, HER2 negative, low grade, low Ki-67 expression). The breast cancer-derived cell lines tested showed a low KLF15 expression with a predominant cytoplasmic localization. Subsequent exogenous KLF15 over-expression resulted in a predominant nuclear localization and a concomitant decreased cellular proliferation and an arrest at the G0/G1 phase of the cell cycle. In addition, we found that nuclear KLF15 expression results in up-regulation of p21, a pivotal suppressor of the G1 to S phase transition of the cell cycle. CONCLUSIONS Our results indicate that nuclear KLF15 expression suppresses breast cancer cell proliferation at least partially through p21 up-regulation and subsequent cell cycle arrest. This is a first study addressing the role of KLF15 in breast cancer development.
Collapse
|
58
|
Simmen RCM, Heard ME, Simmen AM, Montales MTM, Marji M, Scanlon S, Pabona JMP. The Krüppel-like factors in female reproductive system pathologies. J Mol Endocrinol 2015; 54:R89-R101. [PMID: 25654975 PMCID: PMC4369192 DOI: 10.1530/jme-14-0310] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Female reproductive tract pathologies arise largely from dysregulation of estrogen and progesterone receptor signaling, leading to aberrant cell proliferation, survival, and differentiation. The signaling pathways orchestrated by these nuclear receptors are complex, require the participation of many nuclear proteins serving as key binding partners or targets, and involve a range of paracrine and autocrine regulatory circuits. The members of the Krüppel-like factor (KLF) family of transcription factors are ubiquitously expressed in reproductive tissues and have been increasingly implicated as critical co-regulators and integrators of steroid hormone actions. Herein, we explore the involvement of KLF family members in uterine pathology, describe their currently known molecular mechanisms, and discuss their potential as targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rosalia C M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Melissa E Heard
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Angela M Simmen
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Maria Theresa M Montales
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Meera Marji
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - Samantha Scanlon
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| | - John Mark P Pabona
- Department of Physiology and BiophysicsUniversity of Arkansas for Medical Sciences, Little Rock, Arkansas 72205, USADepartment of Obstetrics and GynecologyUniversity of Michigan Health System, Ann Arbor, Michigan 48109, USADepartment of Internal MedicineHarlem Hospital Center, Columbia University Medical Center, New York, New York 10037, USA
| |
Collapse
|
59
|
Wang Y, Zhu L, Kuokkanen S, Pollard JW. Activation of protein synthesis in mouse uterine epithelial cells by estradiol-17β is mediated by a PKC-ERK1/2-mTOR signaling pathway. Proc Natl Acad Sci U S A 2015; 112:E1382-91. [PMID: 25733860 PMCID: PMC4371960 DOI: 10.1073/pnas.1418973112] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The uterine epithelium of mice and humans undergoes cyclical waves of cell proliferation and differentiation under the regulation of estradiol-17β (E2) and progesterone (P4). These epithelial cells respond to E2 with increased protein and DNA synthesis, whereas P4 inhibits only the E2-induced DNA synthetic response. Here we show that E2 regulates protein synthesis in these epithelial cells through activating PKC that in turn stimulates ERK1/2 to phosphorylate and thereby activate the central regulator of protein synthesis mechanistic target of rapamycin (mTOR). This mTOR pathway is not inhibited by P4. Inhibitor studies with an estrogen receptor (ESR1) antagonist showed the dependence of this mTOR pathway on ESR1 but that once activated, a phosphorylation cascade independent of ESR1 propagates the pathway. E2 also stimulates an IGF1 receptor (IGF1R) to PI3 kinase to AKT to GSK-3β pathway required for activation of the canonical cell cycle machinery that is inhibited by P4. PKC activation did not stimulate this pathway nor does inhibition of PKC or ERK1/2 affect it. These studies therefore indicate a mechanism whereby DNA and protein synthesis are regulated by two ESR1-activated pathways that run in parallel with only the one responsible for the initiation of DNA synthesis blocked by P4. Inhibition of mTOR by rapamycin in vivo resulted in inhibition of E2-induced protein and DNA synthesis. Proliferative diseases of the endometrium such as endometriosis and cancer are common and E2 dependent. Thus, defining this mTOR pathway suggests that local (intrauterine or peritoneal) rapamycin administration might be a therapeutic option for these diseases.
Collapse
Affiliation(s)
- Yuxiang Wang
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and
| | - Liyin Zhu
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and
| | - Satu Kuokkanen
- Center for the Study of Reproductive Biology and Women's Health, Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461; and
| | - Jeffrey W Pollard
- Center for the Study of Reproductive Biology and Women's Health, Departments of Developmental and Molecular Biology and Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY 10461; and Medical Research Council Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom
| |
Collapse
|
60
|
Kashkin K, Chernov I, Stukacheva E, Monastyrskaya G, Uspenskaya N, Kopantzev E, Sverdlov E. Cancer specificity of promoters of the genes controlling cell proliferation. J Cell Biochem 2015; 116:299-309. [PMID: 25187488 DOI: 10.1002/jcb.24968] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 08/29/2014] [Indexed: 12/20/2022]
Abstract
Violation of proliferation control is a common feature of cancer cells. We put forward the hypothesis that promoters of genes involved in the control of cell proliferation should possess intrinsic cancer specific activity. We cloned promoter regions of CDC6, POLD1, CKS1B, MCM2, and PLK1 genes into pGL3 reporter vector and studied their ability to drive heterologous gene expression in transfected cancer cells of different origin and in normal human fibroblasts. Each promoter was cloned in short (335-800 bp) and long (up to 2.3 kb) variants to cover probable location of core and whole promoter regulatory elements. Cloned promoters were significantly more active in cancer cells than in normal fibroblasts that may indicate their cancer specificity. Both versions of CDC6 promoters were shown to be most active while the activities of others were close to that of BIRC5 gene (survivin) gene promoter. Long and short variants of each cloned promoter demonstrated very similar cancer specificity with the exception of PLK1-long promoter that was substantially more specific than its short variant and other promoters under study. The data indicate that most of the important cis-regulatory transcription elements responsible for intrinsic cancer specificity are located in short variants of the promoters under study. CDC6 short promoter may serve as a promising candidate for transcription targeted cancer gene therapy.
Collapse
Affiliation(s)
- Kirill Kashkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russia
| | | | | | | | | | | | | |
Collapse
|
61
|
The Role of Steroid Hormone Receptors in the Establishment of Pregnancy in Rodents. ADVANCES IN ANATOMY EMBRYOLOGY AND CELL BIOLOGY 2015; 216:27-49. [DOI: 10.1007/978-3-319-15856-3_3] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
62
|
Lyu SJ, Tian YD, Wang SH, Han RL, Mei XX, Kang XT. A novel 2-bp indel within Krüppel-like factor 15 gene (KLF15) and its associations with chicken growth and carcass traits. Br Poult Sci 2014; 55:427-34. [DOI: 10.1080/00071668.2014.921886] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
63
|
Xiong H, Li Q, Liu S, Wang F, Xiong Z, Chen J, Chen H, Yang Y, Tan X, Luo Q, Peng J, Xiao G, Jiang Q. Integrated microRNA and mRNA transcriptome sequencing reveals the potential roles of miRNAs in stage I endometrioid endometrial carcinoma. PLoS One 2014; 9:e110163. [PMID: 25329664 PMCID: PMC4201519 DOI: 10.1371/journal.pone.0110163] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Accepted: 09/09/2014] [Indexed: 12/16/2022] Open
Abstract
Endometrioid endometrial carcinoma (EEC) is the most dominant subtype of endometrial cancer. Aberrant transcriptional regulation has been implicated in EEC. Herein, we characterized mRNA and miRNA transcriptomes by RNA sequencing in EEC to investigate potential molecular mechanisms underlying the pathogenesis. Total mRNA and small RNA were simultaneously sequenced by next generation sequencing technology for 3 pairs of stage I EEC and adjacent non-tumorous tissues. On average, 52,716,765 pair-end 100 bp mRNA reads and 1,669,602 single-end 50 bp miRNA reads were generated. Further analysis indicated that 7 miRNAs and 320 corresponding target genes were differentially expressed in the three stage I EEC patients. Six of all the seven differentially expressed miRNAs were targeting on eleven differentially expressed genes in the cell cycle pathway. Real-time quantitative PCR in sequencing samples and other independent 21 pairs of samples validated the miRNA-mRNA differential co-expression, which were involved in cell cycle pathway, in the stage I EEC. Thus, we confirmed the involvement of hsa-let-7c-5p and hsa-miR-99a-3p in EEC and firstly found dysregulation of hsa-miR-196a-5p, hsa-miR-328-3p, hsa-miR-337-3p, and hsa-miR-181c-3p in EEC. Moreover, synergistic regulations among these miRNAs were detected. Transcript sequence variants such as single nucleotide variant (SNV) and short insertions and deletions (Indels) were also characterized. Our results provide insights on dysregulated miRNA-mRNA co-expression and valuable resources on transcript variation in stage I EEC, which implies the new molecular mechanisms that underlying pathogenesis of stage I EEC and supplies opportunity for further in depth investigations.
Collapse
Affiliation(s)
- Hanzhen Xiong
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiulian Li
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Shaoyan Liu
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fang Wang
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Zhongtang Xiong
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Juan Chen
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hui Chen
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Yuexin Yang
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Xuexian Tan
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qiuping Luo
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Juan Peng
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Guohong Xiao
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qingping Jiang
- Department of Pathology, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- Key Laboratory of Major Obstetrics Diseases of Guangdong Province, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
64
|
Winuthayanon W, Hewitt SC, Korach KS. Uterine epithelial cell estrogen receptor alpha-dependent and -independent genomic profiles that underlie estrogen responses in mice. Biol Reprod 2014; 91:110. [PMID: 25210133 DOI: 10.1095/biolreprod.114.120170] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Estrogens exert their activity through estrogen receptor alpha (ERalpha) to stimulate hypertrophy and hyperplasia in the uterus. A uterine epithelial ERalpha conditional knockout mouse model (Wnt7a(Cre+);Esr1(f/f) or cKO) demonstrated that ERalpha in the epithelial cells was dispensable for an initial uterine proliferative response to 17beta-estradiol (E2) but required for subsequent uterine biological responses. This study aimed to characterize the differential gene expression patterns induced by E2 in the presence or absence of epithelial ERalpha. RNA microarray analysis revealed that approximately 20% of the genes differentially expressed at 2 h were epithelial ERalpha independent, as they were preserved in the cKO uteri. This indicates that early uterine transcripts mediated by stromal ERalpha are sufficient to promote initial proliferative responses. However, more than 90% of the differentially expressed transcripts at 24 h were not regulated in the cKO, indicating that the majority of later transcriptional regulation required epithelial ERalpha, especially those involved in mitosis. This shows that loss of regulation of these later transcripts results in blunted subsequent uterine growth after 3 days of E2 treatment. Additionally, progesterone's ability to inhibit E2-induced epithelial cell proliferation was impaired, consistent with a uterine receptivity defect that contributes to cKO infertility. These transcriptional profiles correlate with our previously observed biological responses, in which the initial proliferative response is independent of epithelial ERalpha and thus dependent on stromal ERalpha, yet epithelial ERalpha is essential for subsequent tissue responsiveness.
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Receptor Biology, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Sylvia C Hewitt
- Receptor Biology, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| | - Kenneth S Korach
- Receptor Biology, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina
| |
Collapse
|
65
|
Pawar S, Hantak AM, Bagchi IC, Bagchi MK. Minireview: Steroid-regulated paracrine mechanisms controlling implantation. Mol Endocrinol 2014; 28:1408-22. [PMID: 25051170 DOI: 10.1210/me.2014-1074] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Implantation is an essential process during establishment of pregnancy in mammals. It is initiated with the attachment of the blastocyst to a receptive uterine epithelium followed by its invasion into the stromal tissue. These events are profoundly regulated by the steroid hormones 17β-estradiol and progesterone. During the past several years, mouse models harboring conditional gene knockout mutations have become powerful tools for determining the functional roles of cellular factors involved in various aspects of implantation biology. Studies using these genetic models as well as primary cultures of human endometrial cells have established that the estrogen receptor α, the progesterone receptor, and their downstream target genes critically regulate uterine growth and differentiation, which in turn control embryo-endometrial interactions during early pregnancy. These studies have uncovered a diverse array of molecular cues, which are produced under the influence of estrogen receptor α and progesterone receptor and exchanged between the epithelial and stromal compartments of the uterus during the progressive phases of implantation. These paracrine signals are critical for acquisition of uterine receptivity and functional interactions with the embryo. This review highlights recent work describing paracrine mechanisms that govern steroid-regulated uterine epithelial-stromal dialogue during implantation and their roles in fertility and disease.
Collapse
Affiliation(s)
- Sandeep Pawar
- Departments of Molecular and Integrative Physiology (S.P., A.M.H., M.K.B.) and Comparative Biosciences (I.C.B.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61801
| | | | | | | |
Collapse
|
66
|
Knoedler JR, Denver RJ. Krüppel-like factors are effectors of nuclear receptor signaling. Gen Comp Endocrinol 2014; 203:49-59. [PMID: 24642391 PMCID: PMC4339045 DOI: 10.1016/j.ygcen.2014.03.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2013] [Revised: 02/28/2014] [Accepted: 03/02/2014] [Indexed: 01/09/2023]
Abstract
Binding of steroid and thyroid hormones to their cognate nuclear receptors (NRs) impacts virtually every aspect of postembryonic development, physiology and behavior, and inappropriate signaling by NRs may contribute to disease. While NRs regulate genes by direct binding to hormone response elements in the genome, their actions may depend on the activity of other transcription factors (TFs) that may or may not bind DNA. The Krüppel-like family of transcription factors (KLF) is an evolutionarily conserved class of DNA-binding proteins that influence many aspects of development and physiology. Several members of this family have been shown to play diverse roles in NR signaling. For example, KLFs (1) act as accessory transcription factors for NR actions, (2) regulate expression of NR genes, and (3) as gene products of primary NR response genes function as key players in NR-dependent transcriptional networks. In mouse models, deletion of different KLFs leads to aberrant transcriptional and physiological responses to hormones, underscoring the importance of these proteins in the regulation of hormonal signaling. Understanding the functional relationships between NRs and KLFs will yield important insights into mechanisms of NR signaling. In this review we present a conceptual framework for understanding how KLFs participate in NR signaling, and we provide examples of how these proteins function to effect hormone action.
Collapse
Affiliation(s)
- Joseph R Knoedler
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA
| | - Robert J Denver
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI 48109-1048, USA; Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-1048, USA.
| |
Collapse
|
67
|
Hewitt SC, Li L, Grimm SA, Winuthayanon W, Hamilton KJ, Pockette B, Rubel CA, Pedersen LC, Fargo D, Lanz RB, DeMayo FJ, Schütz G, Korach KS. Novel DNA motif binding activity observed in vivo with an estrogen receptor α mutant mouse. Mol Endocrinol 2014; 28:899-911. [PMID: 24713037 DOI: 10.1210/me.2014-1051] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Estrogen receptor α (ERα) interacts with DNA directly or indirectly via other transcription factors, referred to as "tethering." Evidence for tethering is based on in vitro studies and a widely used "KIKO" mouse model containing mutations that prevent direct estrogen response element DNA- binding. KIKO mice are infertile, due in part to the inability of estradiol (E2) to induce uterine epithelial proliferation. To elucidate the molecular events that prevent KIKO uterine growth, regulation of the pro-proliferative E2 target gene Klf4 and of Klf15, a progesterone (P4) target gene that opposes the pro-proliferative activity of KLF4, was evaluated. Klf4 induction was impaired in KIKO uteri; however, Klf15 was induced by E2 rather than by P4. Whole uterine chromatin immunoprecipitation-sequencing revealed enrichment of KIKO ERα binding to hormone response elements (HREs) motifs. KIKO binding to HRE motifs was verified using reporter gene and DNA-binding assays. Because the KIKO ERα has HRE DNA-binding activity, we evaluated the "EAAE" ERα, which has more severe DNA-binding domain mutations, and demonstrated a lack of estrogen response element or HRE reporter gene induction or DNA-binding. The EAAE mouse has an ERα null-like phenotype, with impaired uterine growth and transcriptional activity. Our findings demonstrate that the KIKO mouse model, which has been used by numerous investigators, cannot be used to establish biological functions for ERα tethering, because KIKO ERα effectively stimulates transcription using HRE motifs. The EAAE-ERα DNA-binding domain mutant mouse demonstrates that ERα DNA-binding is crucial for biological and transcriptional processes in reproductive tissues and that ERα tethering may not contribute to estrogen responsiveness in vivo.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology (S.C.H., W.W., K.J.H., B.P., K.S.K.), Laboratory of Reproductive and Developmental Toxicology, Biostatistics Branch (L.L.), Integrative Bioinformatics (S.A.G., D.F.), Laboratory of Structural Biology (L.C.P.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Molecular and Cellular Biology (C.A.R., R.B.L., F.J.D.), Baylor College of Medicine, Houston, Texas 77030; and Department of Molecular Biology of the Cell (G.S.), German Cancer Research Center, 69121 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Champeris Tsaniras S, Kanellakis N, Symeonidou IE, Nikolopoulou P, Lygerou Z, Taraviras S. Licensing of DNA replication, cancer, pluripotency and differentiation: an interlinked world? Semin Cell Dev Biol 2014; 30:174-80. [PMID: 24641889 DOI: 10.1016/j.semcdb.2014.03.013] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2014] [Accepted: 03/10/2014] [Indexed: 01/06/2023]
Abstract
Recent findings provide evidence for a functional interplay between DNA replication and the seemingly distinct areas of cancer, development and pluripotency. Protein complexes participating in DNA replication origin licensing are now known to have roles in development, while their deregulation can lead to cancer. Moreover, transcription factors implicated in the maintenance of or reversal to the pluripotent state have links to the pre-replicative machinery. Several studies have shown that overexpression of these factors is associated to cancer.
Collapse
Affiliation(s)
- S Champeris Tsaniras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - N Kanellakis
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - I E Symeonidou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - P Nikolopoulou
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - Z Lygerou
- Department of Biology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| | - S Taraviras
- Department of Physiology, Medical School, University of Patras, Rio, 26504 Patras, Greece.
| |
Collapse
|
69
|
Abstract
Krüppel-like factors (KLFs) are a family of DNA-binding transcriptional regulators with diverse and essential functions in a multitude of cellular processes, including proliferation, differentiation, migration, inflammation and pluripotency. In this Review, we discuss the roles and regulation of the 17 known KLFs in various cancer-relevant processes. Importantly, the functions of KLFs are context dependent, with some KLFs having different roles in normal cells and cancer, during cancer development and progression and in different cancer types. We also identify key questions for the field that are likely to lead to important new translational research and discoveries in cancer biology.
Collapse
Affiliation(s)
- Marie-Pier Tetreault
- Department of Medicine, Gastroenterology Division, University of Pennsylvania Perelman School of Medicine, 913 Biomedical Research Building II/III, 421 Curie Boulevard, Philadelphia PA 19104-6144, USA
| | | | | |
Collapse
|
70
|
Vasquez YM, DeMayo FJ. Role of nuclear receptors in blastocyst implantation. Semin Cell Dev Biol 2013; 24:724-35. [PMID: 23994285 DOI: 10.1016/j.semcdb.2013.08.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/12/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022]
Abstract
The regulation of blastocyst implantation in the uterus is orchestrated by the ovarian hormones estrogen and progesterone. These hormones act via their nuclear receptors to direct the transcriptional activity of the endometrial compartments and create a defined period in which the uterus is permissive to embryo implantation termed the "window of receptivity". Additional members of the nuclear receptor family have also been described to have a potential role in endometrial function. Much of what we know about the function of these nuclear receptors during implantation we have learned from the use of mouse models. Transgenic murine models with targeted gene ablation have allowed us to identify a complex network of paracrine signaling between the endometrial epithelium and stroma. While some of the critical molecules have been identified, the mechanism underlying the intricate communication between endometrial compartments during the implantation window has not been fully elucidated. Defining this mechanism will help identify markers of a receptive uterine environment, ultimately providing a useful tool to help improve the fertility outlook for reproductively challenged couples. The aim of this review is to outline our current understanding of how nuclear receptors and their effector molecules regulate blastocyst implantation in the endometrium.
Collapse
Affiliation(s)
- Y M Vasquez
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | | |
Collapse
|
71
|
Bobowski M, Vincent A, Steenackers A, Colomb F, Van Seuningen I, Julien S, Delannoy P. Estradiol represses the G(D3) synthase gene ST8SIA1 expression in human breast cancer cells by preventing NFκB binding to ST8SIA1 promoter. PLoS One 2013; 8:e62559. [PMID: 23626833 PMCID: PMC3633854 DOI: 10.1371/journal.pone.0062559] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2012] [Accepted: 03/23/2013] [Indexed: 12/13/2022] Open
Abstract
Recent data have underlined a possible role of G(D3) synthase (GD3S) and complex gangliosides in Estrogen Receptor (ER) negative breast cancer progression. Here, we describe the main transcript of the GD3S coding gene ST8SIA1 expressed in breast tumors. We characterized the corresponding core promoter in Hs578T breast cancer cells and showed that estradiol decreases ST8SIA1 mRNA expression in ER-positive MCF-7 cells and ERα-transfected ER-negative Hs578T cells. The activity of the core promoter sequence of ST8SIA1 is also repressed by estradiol. The core promoter of ST8SIA1 contains two putative Estrogen Response Elements (ERE) that were not found to be involved in the promoter activity pathway. However, NFκB was shown to be involved in ST8SIA1 transcriptional activation and we demonstrated that estradiol prevents NFκB to bind to ST8SIA1 core promoter in ERα expressing breast cancer cells by inhibiting p65 and p50 nucleus localization. The activation of NFκB pathway in ER-negative tumors, due to the absence of estradiol signaling, might explain the overexpression of G(D3) synthase in this tumor subtype.
Collapse
Affiliation(s)
- Marie Bobowski
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Audrey Vincent
- University Lille Nord de France, Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Jean Pierre Aubert Research Center, Lille, France
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Agata Steenackers
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Florent Colomb
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Isabelle Van Seuningen
- University Lille Nord de France, Lille, France
- Institut National de la Santé et de la Recherche Médicale (INSERM), Jean Pierre Aubert Research Center, Lille, France
- Centre Hospitalier Régional et Universitaire de Lille, Lille, France
| | - Sylvain Julien
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
| | - Philippe Delannoy
- University Lille Nord de France, Lille, France
- Université des Sciences et Technologies de Lille (USTL), Unité de Glycobiologie Structurale et Fonctionnelle (UGSF), Villeneuve d’Ascq, France
- Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche (UMR) 8576, Villeneuve d’Ascq, France
- * E-mail:
| |
Collapse
|
72
|
Heard ME, Pabona JMP, Clayberger C, Krensky AM, Simmen FA, Simmen RCM. The reproductive phenotype of mice null for transcription factor Krüppel-like factor 13 suggests compensatory function of family member Krüppel-like factor 9 in the peri-implantation uterus. Biol Reprod 2012; 87:115. [PMID: 22993382 DOI: 10.1095/biolreprod.112.102251] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The ovarian hormones estrogen and progesterone promote uterine receptivity and successful pregnancy through their cognate receptors functioning in concert with context-dependent nuclear coregulators. Previously, we showed that the transcription factor Krüppel-like factor (KLF) 9 is a progesterone receptor (PGR) coactivator in the uterus and that mice null for Klf9 exhibit subfertility and reduced progesterone sensitivity. The highly related family member KLF13 displays increased expression in uteri of pregnant and nonpregnant Klf9 null mice and similarly regulates PGR-mediated transactivation in endometrial stromal cells. However, a uterine phenotype with loss of Klf13 has not been reported. In the present study, we demonstrate that Klf13 deficiency in mice did not compromise female fertility and pregnancy outcome. Klf13 null females had litter sizes, numbers of implanting embryos, uterine morphology, and ovarian steroid hormone production comparable to those of wild-type (WT) counterparts. Further, pregnant WT and Klf13 null females at Day Postcoitum (DPC) 3.5 had similar uterine Pgr, estrogen receptor, and Wnt-signaling component transcript levels. Nuclear levels of KLF9 were higher in Klf13 null than in WT uteri at DPC 3.5, albeit whole-tissue KLF9 protein and transcript levels did not differ between genotypes. The lack of a similar induction of nuclear KLF9 levels in uteri of virgin Klf13((-/-)) mice relative to WT uteri was associated with lower stromal PGR expression. In differentiating human endometrial stromal cells, coincident KLF9/KLF13 knockdown by small interfering RNA targeting reduced decidualization-associated PRL expression, whereas KLF9 and KLF13 knockdowns alone reduced transcript levels of WNT4 and BMP2, respectively. Results suggest that KLF9 and KLF13 functionally compensate in peri-implantation uterus for pregnancy success.
Collapse
Affiliation(s)
- Melissa E Heard
- Department of Physiology & Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | | | | | | | | | | |
Collapse
|