51
|
Cargnelutti E, Tomasino B, Fabbro F. Effects of Linguistic Distance on Second Language Brain Activations in Bilinguals: An Exploratory Coordinate-Based Meta-Analysis. Front Hum Neurosci 2022; 15:744489. [PMID: 35069147 PMCID: PMC8770833 DOI: 10.3389/fnhum.2021.744489] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022] Open
Abstract
In this quantitative meta-analysis, we used the activation likelihood estimation (ALE) approach to address the effects of linguistic distance between first (L1) and second (L2) languages on language-related brain activations. In particular, we investigated how L2-related networks may change in response to linguistic distance from L1. Thus, we examined L2 brain activations in two groups of participants with English as L2 and either (i) a European language (European group, n = 13 studies) or (ii) Chinese (Chinese group, n = 18 studies) as L1. We further explored the modulatory effect of age of appropriation (AoA) and proficiency of L2. We found that, irrespective of L1-L2 distance-and to an extent-irrespective of L2 proficiency, L2 recruits brain areas supporting higher-order cognitive functions (e.g., cognitive control), although with group-specific differences (e.g., the insula region in the European group and the frontal cortex in the Chinese group). The Chinese group also selectively activated the parietal lobe, but this did not occur in the subgroup with high L2 proficiency. These preliminary results highlight the relevance of linguistic distance and call for future research to generalize findings to other language pairs and shed further light on the interaction between linguistic distance, AoA, and proficiency of L2.
Collapse
Affiliation(s)
- Elisa Cargnelutti
- Dipartimento/Unità Operativa Pasian di Prato, Scientific Institute, IRCCS E. Medea, Udine, Italy
| | - Barbara Tomasino
- Dipartimento/Unità Operativa Pasian di Prato, Scientific Institute, IRCCS E. Medea, Udine, Italy
| | - Franco Fabbro
- Cognitive Neuroscience Laboratory, Department of Languages, Literature, Communication, Education, and Society, University of Udine, Udine, Italy
- Institute of Mechanical Intelligence, Scuola Superiore Sant’Anna, Pisa, Italy
| |
Collapse
|
52
|
Knorr D, Augustin MA. Food systems at a watershed: Unlocking the benefits of technology and ecosystem symbioses. Crit Rev Food Sci Nutr 2022; 63:5680-5697. [PMID: 34989303 DOI: 10.1080/10408398.2021.2023092] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The current food systems require change to improve sustainability resilience. Humans need food and food requires natural resources which have been consistently reduced, destroyed, or eliminated during human development, and excessive during the last 50-70 years. Though essential, there has been less of a focus on the inter-relations and inter-dependences of our food supply with and on the world's eco-system and organisms. Integrating evidence for the importance of plants, the microbiota in plants, animals and humans and their reciprocal effects of their interactions on food systems is essential for creating more inclusive strategies for future food systems. This review examines the role of plants, microorganisms, plant-microbial, animal-microbial, and human-microbial interactions, their co-evolution on the food supply and human and eco-systems well-being. It also recognizes the contribution of indigenous knowledge for lasting protection of the land, managing resources and biodiversity and the usefulness of food processing for producing safe, tasty, and nutritious food sustainably. We demonstrate that new targets and priorities for harnessing science and technology for improving food and nutritional security and avoiding environmental degradation and biodiversity loss are urgently needed. For improved long-term sustainability, the benefits of technology and ecosystem interactions must be unlocked.
Collapse
Affiliation(s)
- Dietrich Knorr
- Food Biotechnology and Food Process Engineering, Technische Universität Berlin, Berlin, Germany
| | | |
Collapse
|
53
|
Wooding SP, Ramirez VA. Worldwide diversity, association potential, and natural selection in the superimposed taste genes, CD36 and GNAT3. Chem Senses 2022; 47:6491270. [PMID: 34972209 DOI: 10.1093/chemse/bjab052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
CD36 and GNAT3 mediate taste responses, with CD36 acting as a lipid detector and GNAT3 acting as the α subunit of gustducin, a G protein governing sweet, savory, and bitter transduction. Strikingly, the genes encoding CD36 and GNAT3 are genomically superimposed, with CD36 completely encompassing GNAT3. To characterize genetic variation across the CD36-GNAT3 region, its implications for phenotypic diversity, and its recent evolution, we analyzed from ~2,500 worldwide subjects sequenced by the 1000 Genomes Project (1000GP). CD36-GNAT3 harbored extensive diversity including 8,688 single-nucleotide polymorphisms (SNPs), 414 indels, and other complex variants. Sliding window analyses revealed that nucleotide diversity and population differentiation across CD36-GNAT3 were consistent with genome-wide trends in the 1000GP (π = 0.10%, P = 0.64; FST = 9.0%, P = 0.57). In addition, functional predictions using SIFT and PolyPhen-2 identified 60 variants likely to alter protein function, and they were in weak linkage disequilibrium (r2 < 0.17), suggesting their effects are largely independent. However, the frequencies of predicted functional variants were low (P¯ = 0.0013), indicating their contributions to phenotypic variance on population scales are limited. Tests using Tajima's D statistic revealed that pressures from natural selection have been relaxed across most of CD36-GNAT3 during its recent history (0.39 < P < 0.67). However, CD36 exons showed signs of local adaptation consistent with prior reports (P < 0.035). Thus, CD36 and GNAT3 harbor numerous variants predicted to affect taste sensitivity, but most are rare and phenotypic variance on a population level is likely mediated by a small number of sites.
Collapse
Affiliation(s)
- Stephen P Wooding
- Department of Anthropology, University of California, Merced, Merced, CA, USA
| | - Vicente A Ramirez
- Department of Public Health, University of California, Merced, Merced, CA, USA
| |
Collapse
|
54
|
|
55
|
Holte SJ, Ohmann PR. Childhood in social learning models with changing environments: Implications for human evolution. Biosystems 2021; 210:104555. [PMID: 34601073 DOI: 10.1016/j.biosystems.2021.104555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 08/03/2021] [Accepted: 09/28/2021] [Indexed: 10/20/2022]
Abstract
Childhood is a time of learning, both individually and through social interactions. But the vulnerability inherent in childhood represents a fitness cost: individuals do not have progeny during childhood, and childhood is a net drain of familial or group resources. In this study we model childhood in resource acquisition scenarios where social learning through observation competes with learning through innovation across multiple generations in a variety of environments. In general, observing others allows useful knowledge to be gained more efficiently than self-exploration and may result in significantly greater resource acquisition. However, social learning needing a lengthy childhood to develop advanced cognitive ability may offset the net fitness advantage that might otherwise be gained. Through simulations we demonstrate that individuals with a substantial childhood burden acquire more lifetime resources by observing others than do individuals with negligible childhood costs using self-exploration, as long as the environment is fairly stable. This advantage decreases as the environment becomes less predictable, and reverses in rapidly changing environments where knowledge is unreliable. These results suggest that hominid evolution, with vastly growing cognitive abilities and a longer, more vulnerable childhood, may have been facilitated in similarly stable environments. On the other hand, hominid populations may have been particularly vulnerable to environmental instability. We apply this insight to the Out of Africa Homo sapiens migration roughly 50,000 years ago and show consistency with the serial founder model that best fits current archeological and genetic evidence. Our findings are important for models of social learning, especially those that describe the emergence and spread of Homo sapiens.
Collapse
Affiliation(s)
- Serena J Holte
- Department of Physics, University of Saint Thomas, St. Paul MN, 55105, USA
| | - Paul R Ohmann
- Department of Physics, University of Saint Thomas, St. Paul MN, 55105, USA.
| |
Collapse
|
56
|
Jablonski NG. The evolution of human skin pigmentation involved the interactions of genetic, environmental, and cultural variables. Pigment Cell Melanoma Res 2021; 34:707-729. [PMID: 33825328 PMCID: PMC8359960 DOI: 10.1111/pcmr.12976] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/30/2021] [Accepted: 04/03/2021] [Indexed: 12/12/2022]
Abstract
The primary biological role of human skin pigmentation is as a mediator of penetration of ultraviolet radiation (UVR) into the deep layers of skin and the cutaneous circulation. Since the origin of Homo sapiens, dark, protective constitutive pigmentation and strong tanning abilities have been favored under conditions of high UVR and represent the baseline condition for modern humans. The evolution of partly depigmented skin and variable tanning abilities has occurred multiple times in prehistory, as populations have dispersed into environments with lower and more seasonal UVR regimes, with unique complements of genes and cultural practices. The evolution of extremes of dark pigmentation and depigmentation has been rare and occurred only under conditions of extremely high or low environmental UVR, promoted by positive selection on variant pigmentation genes followed by limited gene flow. Over time, the evolution of human skin pigmentation has been influenced by the nature and course of human dispersals and modifications of cultural practices, which have modified the nature and actions of skin pigmentation genes. Throughout most of prehistory and history, the evolution of human skin pigmentation has been a contingent and non-deterministic process.
Collapse
Affiliation(s)
- Nina G. Jablonski
- Department of AnthropologyThe Pennsylvania State UniversityUniversity ParkPAUSA
| |
Collapse
|
57
|
Deng Z, Zhen J, Harrison GF, Zhang G, Chen R, Sun G, Yu Q, Nemat-Gorgani N, Guethlein LA, He L, Tang M, Gao X, Cai S, Palmer WH, Shortt JA, Gignoux CR, Carrington M, Zou H, Parham P, Hong W, Norman PJ. Adaptive Admixture of HLA Class I Allotypes Enhanced Genetically Determined Strength of Natural Killer Cells in East Asians. Mol Biol Evol 2021; 38:2582-2596. [PMID: 33616658 PMCID: PMC8136484 DOI: 10.1093/molbev/msab053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Human natural killer (NK) cells are essential for controlling infection, cancer, and fetal development. NK cell functions are modulated by interactions between polymorphic inhibitory killer cell immunoglobulin-like receptors (KIR) and polymorphic HLA-A, -B, and -C ligands expressed on tissue cells. All HLA-C alleles encode a KIR ligand and contribute to reproduction and immunity. In contrast, only some HLA-A and -B alleles encode KIR ligands and they focus on immunity. By high-resolution analysis of KIR and HLA-A, -B, and -C genes, we show that the Chinese Southern Han (CHS) are significantly enriched for interactions between inhibitory KIR and HLA-A and -B. This enrichment has had substantial input through population admixture with neighboring populations, who contributed HLA class I haplotypes expressing the KIR ligands B*46:01 and B*58:01, which subsequently rose to high frequency by natural selection. Consequently, over 80% of Southern Han HLA haplotypes encode more than one KIR ligand. Complementing the high number of KIR ligands, the CHS KIR locus combines a high frequency of genes expressing potent inhibitory KIR, with a low frequency of those expressing activating KIR. The Southern Han centromeric KIR region encodes strong, conserved, inhibitory HLA-C-specific receptors, and the telomeric region provides a high number and diversity of inhibitory HLA-A and -B-specific receptors. In all these characteristics, the CHS represent other East Asians, whose NK cell repertoires are thus enhanced in quantity, diversity, and effector strength, likely augmenting resistance to endemic viral infections.
Collapse
Affiliation(s)
- Zhihui Deng
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
- Department of Transfusion Medicine, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, P. R. China
| | - Jianxin Zhen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
- Central Laboratory, Shenzhen Baoan Women’s and Children’s Hospital, Shenzhen, Guangdong, P. R. China
| | - Genelle F Harrison
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Guobin Zhang
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Rui Chen
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Ge Sun
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Qiong Yu
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Neda Nemat-Gorgani
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisbeth A Guethlein
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Liumei He
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Mingzhong Tang
- Clinical Laboratory, Wuzhou Red Cross Hospital, Wuzhou, Guangxi, P. R. China
| | - Xiaojiang Gao
- Inflammatory Cell Dynamics Section, Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Siqi Cai
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - William H Palmer
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Jonathan A Shortt
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Christopher R Gignoux
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| | - Mary Carrington
- Basic Science Program, Frederick National Laboratory for Cancer Research (FNLCR), Frederick, MD21702, and Ragon Institute of MGH, Cambridge, MA, USA
| | - Hongyan Zou
- Immunogenetics Laboratory, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Peter Parham
- Department of Structural Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Wenxu Hong
- Shenzhen Institute of Transfusion Medicine, Shenzhen Blood Center, Shenzhen, Guangdong, P. R. China
| | - Paul J Norman
- Division of Biomedical Informatics and Personalized Medicine, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
- Department of Immunology and Microbiology, University of Colorado, Anschutz Medical Campus, Aurora, CO, USA
| |
Collapse
|
58
|
Dannemann M, Gallego Romero I. Harnessing pluripotent stem cells as models to decipher human evolution. FEBS J 2021; 289:2992-3010. [PMID: 33876573 DOI: 10.1111/febs.15885] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 04/16/2021] [Indexed: 12/13/2022]
Abstract
The study of human evolution, long constrained by a lack of experimental model systems, has been transformed by the emergence of the induced pluripotent stem cell (iPSC) field. iPSCs can be readily established from noninvasive tissue sources, from both humans and other primates; they can be maintained in the laboratory indefinitely, and they can be differentiated into other tissue types. These qualities mean that iPSCs are rapidly becoming established as viable and powerful model systems with which it is possible to address questions in human evolution that were until now logistically and ethically intractable, especially in the quest to understand humans' place among the great apes, and the genetic basis of human uniqueness. In this review, we discuss the key lessons and takeaways of this nascent field; from the types of research, iPSCs make possible to lingering challenges and likely future directions. We provide a comprehensive overview of how the seemingly unlikely combination of iPSCs and explicit evolutionary frameworks is transforming what is possible in our understanding of humanity's past and present.
Collapse
Affiliation(s)
| | - Irene Gallego Romero
- Institute of Genomics, University of Tartu, Estonia.,Melbourne Integrative Genomics, The University of Melbourne, Parkville, Australia.,School of BioSciences, The University of Melbourne, Parkville, Australia.,The Centre for Stem Cell Systems, The University of Melbourne, Parkville, Australia
| |
Collapse
|
59
|
|
60
|
Swanzey E, O'Connor C, Reinholdt LG. Mouse Genetic Reference Populations: Cellular Platforms for Integrative Systems Genetics. Trends Genet 2021; 37:251-265. [PMID: 33010949 PMCID: PMC7889615 DOI: 10.1016/j.tig.2020.09.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 08/28/2020] [Accepted: 09/02/2020] [Indexed: 02/07/2023]
Abstract
Interrogation of disease-relevant cellular and molecular traits exhibited by genetically diverse cell populations enables in vitro systems genetics approaches for uncovering the basic properties of cellular function and identity. Primary cells, stem cells, and organoids derived from genetically diverse mouse strains, such as Collaborative Cross and Diversity Outbred populations, offer the opportunity for parallel in vitro/in vivo screening. These panels provide genetic resolution for variant discovery and functional characterization, as well as disease modeling and in vivo validation capabilities. Here we review mouse cellular systems genetics approaches for characterizing the influence of genetic variation on signaling networks and phenotypic diversity, and we discuss approaches for data integration and cross-species validation.
Collapse
Affiliation(s)
| | - Callan O'Connor
- The Jackson Laboratory, Bar Harbor, ME, USA; Tufts Graduate School of Biomedical Sciences, Boston, MA, USA
| | | |
Collapse
|
61
|
Serebrova VN, Trifonova EA, Stepanov VA. Pregnancy as a Factor of Adaptive Human Evolution. The Role of Natural Selection in the Origin of Preeclampsia. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421010142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
62
|
Abstract
Homo erectus is the first hominin species with a truly cosmopolitan distribution and resembles recent humans in its broad spatial distribution. The microevolutionary events associated with dispersal and local adaptation may have produced similar population structure in both species. Understanding the evolutionary population dynamics of H. erectus has larger implications for the emergence of later Homo lineages in the Middle Pleistocene. Quantitative genetics models provide a means of interrogating aspects of long-standing H. erectus population history narratives. For the current study, cranial fossils were sorted into six major palaeodemes from sites across Africa and Asia spanning 1.8-0.1 Ma. Three-dimensional shape data from the occipital and frontal bones were used to compare intraspecific variation and test evolutionary hypotheses. Results indicate that H. erectus had higher individual and group variation than Homo sapiens, probably reflecting different levels of genetic diversity and population history in these spatially disperse species. This study also revealed distinct evolutionary histories for frontal and occipital bone shape in H. erectus, with a larger role for natural selection in the former. One scenario consistent with these findings is climate-driven facial adaptation in H. erectus, which is reflected in the frontal bone through integration with the orbits.
Collapse
Affiliation(s)
- Karen L Baab
- Department of Anatomy, College of Graduate Studies, Midwestern University, Glendale, AZ 85308, USA
| |
Collapse
|
63
|
Kulski JK, Suzuki S, Shiina T. SNP-Density Crossover Maps of Polymorphic Transposable Elements and HLA Genes Within MHC Class I Haplotype Blocks and Junction. Front Genet 2021; 11:594318. [PMID: 33537058 PMCID: PMC7848197 DOI: 10.3389/fgene.2020.594318] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022] Open
Abstract
The genomic region (~4 Mb) of the human major histocompatibility complex (MHC) on chromosome 6p21 is a prime model for the study and understanding of conserved polymorphic sequences (CPSs) and structural diversity of ancestral haplotypes (AHs)/conserved extended haplotypes (CEHs). The aim of this study was to use a set of 95 MHC genomic sequences downloaded from a publicly available BioProject database at NCBI to identify and characterise polymorphic human leukocyte antigen (HLA) class I genes and pseudogenes, MICA and MICB, and retroelement indels as haplotypic lineage markers, and single-nucleotide polymorphism (SNP) crossover loci in DNA sequence alignments of different haplotypes across the Olfactory Receptor (OR) gene region (~1.2 Mb) and the MHC class I region (~1.8 Mb) from the GPX5 to the MICB gene. Our comparative sequence analyses confirmed the identity of 12 haplotypic retroelement markers and revealed that they partitioned the HLA-A/B/C haplotypes into distinct evolutionary lineages. Crossovers between SNP-poor and SNP-rich regions defined the sequence range of haplotype blocks, and many of these crossover junctions occurred within particular transposable elements, lncRNA, OR12D2, MUC21, MUC22, PSORS1A3, HLA-C, HLA-B, and MICA. In a comparison of more than 250 paired sequence alignments, at least 38 SNP-density crossover sites were mapped across various regions from GPX5 to MICB. In a homology comparison of 16 different haplotypes, seven CEH/AH (7.1, 8.1, 18.2, 51.x, 57.1, 62.x, and 62.1) had no detectable SNP-density crossover junctions and were SNP poor across the entire ~2.8 Mb of sequence alignments. Of the analyses between different recombinant haplotypes, more than half of them had SNP crossovers within 10 kb of LTR16B/ERV3-16A3_I, MLT1, Charlie, and/or THE1 sequences and were in close vicinity to structurally polymorphic Alu and SVA insertion sites. These studies demonstrate that (1) SNP-density crossovers are associated with putative ancestral recombination sites that are widely spread across the MHC class I genomic region from at least the telomeric OR12D2 gene to the centromeric MICB gene and (2) the genomic sequences of MHC homozygous cell lines are useful for analysing haplotype blocks, ancestral haplotypic landscapes and markers, CPSs, and SNP-density crossover junctions.
Collapse
Affiliation(s)
- Jerzy K. Kulski
- Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Shingo Suzuki
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| | - Takashi Shiina
- Division of Basic Medical Science and Molecular Medicine, Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Japan
| |
Collapse
|
64
|
ISHII K, MASUDA T, MATSUNAGA M, NOGUCHI Y, YAMASUE H, OHTSUBO Y. A REEXAMINATION OF THE EFFECTS OF CULTURE AND DOPAMINE D4 RECEPTOR GENE INTERACTION ON SOCIAL ORIENTATION. PSYCHOLOGIA 2021. [DOI: 10.2117/psysoc.2021-b014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
65
|
IRIKI A, SUZUKI H, TANAKA S, BRETAS VIEIRA R, YAMAZAKI Y. THE SAPIENT PARADOX AND THE GREAT JOURNEY: INSIGHTS FROM COGNITIVE PSYCHOLOGY, NEUROBIOLOGY, AND PHENOMENOLOGY. PSYCHOLOGIA 2021. [DOI: 10.2117/psysoc.2021-b017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
66
|
Santos FR, Pinotti T, Fujita R. Population Variation of the Human Genome. HUMAN GENOME STRUCTURE, FUNCTION AND CLINICAL CONSIDERATIONS 2021:329-350. [DOI: 10.1007/978-3-030-73151-9_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
67
|
Uren C, Hoal EG, Möller M. Mycobacterium tuberculosis complex and human coadaptation: a two-way street complicating host susceptibility to TB. Hum Mol Genet 2020; 30:R146-R153. [PMID: 33258469 DOI: 10.1093/hmg/ddaa254] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 11/09/2020] [Accepted: 11/26/2020] [Indexed: 11/14/2022] Open
Abstract
For centuries, the Mycobacterium tuberculosis complex (MTBC) has infected numerous populations, both human and non-human, causing symptomatic tuberculosis (TB) in some hosts. Research investigating the MTBC and how it has evolved with its host over time is sparse and has not resulted in many significant findings. There are even fewer studies investigating adaptation of the human host susceptibility to TB and these have largely focused on genome-wide association and candidate gene association studies. However, results emanating from these association studies are rarely replicated and appear to be population specific. It is, therefore, necessary to relook at the approach taken to investigate the relationship between the MTBC and the human host. Understanding that the evolution of the pathogen is coupled to the evolution of the host might be the missing link needed to effectively investigate their relationship. We hypothesize that this knowledge will bolster future efforts in combating the disease.
Collapse
Affiliation(s)
- Caitlin Uren
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| | - Eileen G Hoal
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa
| | - Marlo Möller
- DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, 8000 Cape Town, South Africa.,Centre for Bioinformatics and Computational Biology, Stellenbosch University, 7602 Stellenbosch, South Africa
| |
Collapse
|
68
|
The macroecology of macroeconomics in human evolution. Curr Biol 2020. [DOI: 10.1016/j.cub.2020.07.080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
69
|
The spatial Muller's ratchet: Surfing of deleterious mutations during range expansion. Theor Popul Biol 2020; 135:19-31. [PMID: 32818523 DOI: 10.1016/j.tpb.2020.07.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 11/20/2022]
Abstract
During a range expansion, deleterious mutations can "surf" on the colonization front. The resultant decrease in fitness is known as expansion load. An Allee effect is known to reduce the loss of genetic diversity of expanding populations, by changing the nature of the expansion from "pulled" to "pushed". We study the impact of an Allee effect on the formation of an expansion load with a new model, in which individuals have the genetic structure of a Muller's ratchet. A key feature of Muller's ratchet is that the population fatally accumulates deleterious mutations due to the stochastic loss of the fittest individuals, an event called a click of the ratchet. We observe fast clicks of the ratchet at the colonization front owing to small population size, followed by a slow fitness recovery due to migration of fit individuals from the bulk of the population, leading to a transient expansion load. For large population size, we are able to derive quantitative features of the expansion wave, such as the wave speed and the frequency of individuals carrying a given number of mutations. Using simulations, we show that the presence of an Allee effect reduces the rate at which clicks occur at the front, and thus reduces the expansion load.
Collapse
|
70
|
Nykänen M, Kaschner K, Dabin W, Brownlow A, Davison NJ, Deaville R, Garilao C, Kesner-Reyes K, Gilbert MTP, Penrose R, Islas-Villanueva V, Wales N, Ingram SN, Rogan E, Louis M, Foote AD. Postglacial Colonization of Northern Coastal Habitat by Bottlenose Dolphins: A Marine Leading-Edge Expansion? J Hered 2020; 110:662-674. [PMID: 31211393 DOI: 10.1093/jhered/esz039] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/14/2019] [Indexed: 11/15/2022] Open
Abstract
Oscillations in the Earth's temperature and the subsequent retreating and advancing of ice-sheets around the polar regions are thought to have played an important role in shaping the distribution and genetic structuring of contemporary high-latitude populations. After the Last Glacial Maximum (LGM), retreating of the ice-sheets would have enabled early colonizers to rapidly occupy suitable niches to the exclusion of other conspecifics, thereby reducing genetic diversity at the leading-edge. Bottlenose dolphins (genus Tursiops) form distinct coastal and pelagic ecotypes, with finer-scale genetic structuring observed within each ecotype. We reconstruct the postglacial colonization of the Northeast Atlantic (NEA) by bottlenose dolphins using habitat modeling and phylogenetics. The AquaMaps model hindcasted suitable habitat for the LGM in the Atlantic lower latitude waters and parts of the Mediterranean Sea. The time-calibrated phylogeny, constructed with 86 complete mitochondrial genomes including 30 generated for this study and created using a multispecies coalescent model, suggests that the expansion to the available coastal habitat in the NEA happened via founder events starting ~15 000 years ago (95% highest posterior density interval: 4 900-26 400). The founders of the 2 distinct coastal NEA populations comprised as few as 2 maternal lineages that originated from the pelagic population. The low effective population size and genetic diversity estimated for the shared ancestral coastal population subsequent to divergence from the pelagic source population are consistent with leading-edge expansion. These findings highlight the legacy of the Late Pleistocene glacial cycles on the genetic structuring and diversity of contemporary populations.
Collapse
Affiliation(s)
- Milaja Nykänen
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland
| | - Kristin Kaschner
- Department of Biometry and Environmental System Analysis, Faculty of Environment and Natural Resources, University of Freiburg, Tennenbacher Straße, Freiburg, Germany
| | - Willy Dabin
- Centre d'Etudes Biologiques de Chizé. UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France.,Observatoire PELAGIS, UMS 3462 CNRS-Université de La Rochelle, 5 allées de l'Océan, La Rochelle, France
| | - Andrew Brownlow
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Inverness, UK
| | - Nicholas J Davison
- Scottish Marine Animal Stranding Scheme, SRUC Veterinary Services, Drummondhill, Inverness, UK
| | - Rob Deaville
- UK Cetacean Strandings Investigation Programme, The Wellcome Building, Institute of Zoology, Zoological Society of London, Regent's Park, London, UK
| | | | | | - M Thomas P Gilbert
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rod Penrose
- Marine Environmental Monitoring, Penwalk, Llechryd, Cardigan, Ceredigion, Wales, UK
| | | | - Nathan Wales
- Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Simon N Ingram
- Marine Vertebrate Research Group, School of Biological and Marine Sciences, University of Plymouth, Drake Circus, Plymouth, UK
| | - Emer Rogan
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland
| | - Marie Louis
- Centre d'Etudes Biologiques de Chizé. UMR 7372 CNRS-Université de La Rochelle, Villiers-en-Bois, France.,Scottish Oceans Institute, East Sands, St Andrews, UK
| | - Andrew D Foote
- School of Biological, Earth and Environmental Sciences, University College Cork, Distillery Fields, Cork, Ireland.,Section for Evolutionary Genomics, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
71
|
Abstract
Understanding the influence of genetics on human disease is among the primary goals for biology and medicine. To this end, the direct study of natural human genetic variation has provided valuable insights into human physiology and disease as well as into the origins and migrations of humans. In this review, we discuss the foundations of population genetics, which provide a crucial context to the study of human genes and traits. In particular, genome-wide association studies and similar methods have revealed thousands of genetic loci associated with diseases and traits, providing invaluable information into the biology of these traits. Simultaneously, as the study of rare genetic variation has expanded, so-called human knockouts have elucidated the function of human genes and the therapeutic potential of targeting them.
Collapse
Affiliation(s)
- Konrad J. Karczewski
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA;,
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| | - Alicia R. Martin
- Program in Medical and Population Genetics and Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA;,
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, Massachusetts 02114, USA
| |
Collapse
|
72
|
Lopes-Marques M, Serrano C, Cardoso AR, Salazar R, Seixas S, Amorim A, Azevedo L, Prata MJ. GBA3: a polymorphic pseudogene in humans that experienced repeated gene loss during mammalian evolution. Sci Rep 2020; 10:11565. [PMID: 32665690 PMCID: PMC7360587 DOI: 10.1038/s41598-020-68106-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/03/2020] [Indexed: 11/18/2022] Open
Abstract
The gene encoding the cytosolic β-glucosidase GBA3 shows pseudogenization due to a truncated allele (rs358231) that is polymorphic in humans. Since this enzyme is involved in the transformation of many plant β-glycosides, this particular case of gene loss may have been influenced by dietary adaptations during evolution. In humans, apart from the inactivating allele, we found that GBA3 accumulated additional damaging mutations, implying an extensive GBA3 loss. The allelic distribution of loss-of-function alleles revealed significant differences between human populations which can be partially related with their staple diet. The analysis of mammalian orthologs disclosed that GBA3 underwent at least nine pseudogenization events. Most events of pseudogenization occurred in carnivorous lineages, suggesting a possible link to a β-glycoside poor diet. However, GBA3 was also lost in omnivorous and herbivorous species, hinting that the physiological role of GBA3 is not fully understood and other unknown causes may underlie GBA3 pseudogenization. Such possibility relies upon a putative role in sialic acid biology, where GBA3 participates in a cellular network involving NEU2 and CMAH. Overall, our data shows that the recurrent loss of GBA3 in mammals is likely to represent an evolutionary endpoint of the relaxation of selective constraints triggered by diet-related factors.
Collapse
Affiliation(s)
- Monica Lopes-Marques
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Catarina Serrano
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ana R. Cardoso
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Renato Salazar
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - Susana Seixas
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
| | - António Amorim
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Luisa Azevedo
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Maria J. Prata
- i3S- Instituto de Investigação e Inovação em Saúde, Population Genetics and Evolution Group, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Institute of Molecular Pathology and Immunology, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
73
|
Zarubin M, Yakhnenko A, Kravchenko E. Transcriptome analysis of Drosophila melanogaster laboratory strains of different geographical origin after long-term laboratory maintenance. Ecol Evol 2020; 10:7082-7093. [PMID: 32760513 PMCID: PMC7391317 DOI: 10.1002/ece3.6410] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 04/28/2020] [Accepted: 05/03/2020] [Indexed: 01/18/2023] Open
Abstract
Positive selection may be the main factor of the between-population divergence in gene expression. Expression profiles of two Drosophila melanogaster laboratory strains of different geographical origin and long-term laboratory maintenance were analyzed using microchip arrays encompassing probes for 18,500 transcripts. The Russian strain D18 and the North American strain Canton-S were compared. A set of 223 known or putative genes demonstrated significant changes in expression levels between these strains. Differentially expressed genes (DEG) were enriched in response to DDT (p = .0014), proteolysis (p = 2.285E-5), transmembrane transport (p = 1.03E-4), carbohydrate metabolic process (p = .0317), protein homotetramerization (p = .0444), and antibacterial humoral response (p = 425E-4). The expression in subset of genes from different categories was verified by qRT-PCR. Analysis of transcript abundance between Canton-S and D18 strains allowed to select several genes to estimate their participation in latitude adaptation. Expression of selected genes was analyzed in five D. melanogaster lines of different geographic origins by qRT-PCR, and we found two candidate genes that may be associated with latitude adaptation in adult flies-smp-30 and Cda9. Quite possible that several alleles of these genes may be important for insect survival in the environments of global warming. It is interesting that the number of genes involved in local adaptation demonstrates expression level appropriate to their geographical origin even after decades of laboratory maintenance.
Collapse
Affiliation(s)
- Mikhail Zarubin
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| | - Alena Yakhnenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
- Laboratory of Analytical and Bioorganic ChemistryLimnological InstituteSiberian Branch of the Russian Academy of ScienceIrkutskRussia
| | - Elena Kravchenko
- Molecular Genetics GroupDzhelepov Laboratory of nuclear problemsJoint Institute for Nuclear ResearchDubnaRussia
| |
Collapse
|
74
|
Feldman MW. L. Luca Cavalli-Sforza: A Renaissance Scientist. Theor Popul Biol 2020; 133:75-79. [DOI: 10.1016/j.tpb.2019.11.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 11/26/2019] [Indexed: 01/01/2023]
|
75
|
Leroy T, Plomion C, Kremer A. Oak symbolism in the light of genomics. THE NEW PHYTOLOGIST 2020; 226:1012-1017. [PMID: 31183874 PMCID: PMC7166128 DOI: 10.1111/nph.15987] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 05/31/2019] [Indexed: 05/09/2023]
Abstract
Throughout the Northern Hemisphere, human societies, political systems, and religions have appropriated oaks in symbolic representations. In this review, we explore the possible associations between recent genetic and genomic findings and the symbolic representations of oaks. We first consider the ways in which evolutionary history during the Holocene has tightened links between humans and oaks in Europe, and how this may have led to symbolic representations. We then show how recent findings concerning the structure and evolution of the oak genome have provided additional knowledge about symbolic representations, such as longevity, cohesiveness, and robustness.
Collapse
Affiliation(s)
- Thibault Leroy
- ISEM, Université de Montpellier, CNRS, IRD, EPHE, Place Eugène Bataillon, 34095 Montpellier, France
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Christophe Plomion
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| | - Antoine Kremer
- BIOGECO, INRA, Université de Bordeaux, 69 Route d'Arcachon, 33612 Cestas, France
| |
Collapse
|
76
|
Grogan KE, Perry GH. Studying human and nonhuman primate evolutionary biology with powerful in vitro and in vivo functional genomics tools. Evol Anthropol 2020; 29:143-158. [PMID: 32142200 PMCID: PMC10574139 DOI: 10.1002/evan.21825] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 09/18/2019] [Accepted: 02/06/2020] [Indexed: 12/19/2022]
Abstract
In recent years, tools for functional genomic studies have become increasingly feasible for use by evolutionary anthropologists. In this review, we provide brief overviews of several exciting in vitro techniques that can be paired with "-omics" approaches (e.g., genomics, epigenomics, transcriptomics, proteomics, and metabolomics) for potentially powerful evolutionary insights. These in vitro techniques include ancestral protein resurrection, cell line experiments using primary, immortalized, and induced pluripotent stem cells, and CRISPR-Cas9 genetic manipulation. We also discuss how several of these methods can be used in vivo, for transgenic organism studies of human and nonhuman primate evolution. Throughout this review, we highlight example studies in which these approaches have already been used to inform our understanding of the evolutionary biology of modern and archaic humans and other primates while simultaneously identifying future opportunities for anthropologists to use this toolkit to help answer additional outstanding questions in evolutionary anthropology.
Collapse
Affiliation(s)
- Kathleen E. Grogan
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
| | - George H. Perry
- Department of Anthropology, Pennsylvania State University, University Park, PA 16802
- Department of Biology, Pennsylvania State University, University Park, PA 16802
- Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802
| |
Collapse
|
77
|
|
78
|
Dai CL, Vazifeh MM, Yeang CH, Tachet R, Wells RS, Vilar MG, Daly MJ, Ratti C, Martin AR. Population Histories of the United States Revealed through Fine-Scale Migration and Haplotype Analysis. Am J Hum Genet 2020; 106:371-388. [PMID: 32142644 PMCID: PMC7058830 DOI: 10.1016/j.ajhg.2020.02.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
The population of the United States is shaped by centuries of migration, isolation, growth, and admixture between ancestors of global origins. Here, we assemble a comprehensive view of recent population history by studying the ancestry and population structure of more than 32,000 individuals in the US using genetic, ancestral birth origin, and geographic data from the National Geographic Genographic Project. We identify migration routes and barriers that reflect historical demographic events. We also uncover the spatial patterns of relatedness in subpopulations through the combination of haplotype clustering, ancestral birth origin analysis, and local ancestry inference. Examples of these patterns include substantial substructure and heterogeneity in Hispanics/Latinos, isolation-by-distance in African Americans, elevated levels of relatedness and homozygosity in Asian immigrants, and fine-scale structure in European descents. Taken together, our results provide detailed insights into the genetic structure and demographic history of the diverse US population.
Collapse
Affiliation(s)
- Chengzhen L Dai
- Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Mohammad M Vazifeh
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Chen-Hsiang Yeang
- Institute of Statistical Science, Academia Sinica, Nankang, Taipei, Taiwan
| | - Remi Tachet
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Miguel G Vilar
- Genographic Project, National Geographic Society, Washington, DC 20036, USA
| | - Mark J Daly
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland; Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Carlo Ratti
- Senseable City Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alicia R Martin
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA; Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Stanley Center for Psychiatric Research, Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA.
| |
Collapse
|
79
|
The Temporal Dynamics of Background Selection in Nonequilibrium Populations. Genetics 2020; 214:1019-1030. [PMID: 32071195 DOI: 10.1534/genetics.119.302892] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2019] [Accepted: 01/30/2020] [Indexed: 01/06/2023] Open
Abstract
Neutral genetic diversity across the genome is determined by the complex interplay of mutation, demographic history, and natural selection. While the direct action of natural selection is limited to functional loci across the genome, its impact can have effects on nearby neutral loci due to genetic linkage. These effects of selection at linked sites, referred to as genetic hitchhiking and background selection (BGS), are pervasive across natural populations. However, only recently has there been a focus on the joint consequences of demography and selection at linked sites, and some empirical studies have come to apparently contradictory conclusions as to their combined effects. To understand the relationship between demography and selection at linked sites, we conducted an extensive forward simulation study of BGS under a range of demographic models. We found that the relative levels of diversity in BGS and neutral regions vary over time and that the initial dynamics after a population size change are often in the opposite direction of the long-term expected trajectory. Our detailed observations of the temporal dynamics of neutral diversity in the context of selection at linked sites in nonequilibrium populations provide new intuition about why patterns of diversity under BGS vary through time in natural populations and help reconcile previously contradictory observations. Most notably, our results highlight that classical models of BGS are poorly suited for predicting diversity in nonequilibrium populations.
Collapse
|
80
|
Savell KRR. Evolvability in human postcranial traits across ecogeographic regions. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2020; 172:110-122. [PMID: 31912894 DOI: 10.1002/ajpa.24004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/19/2019] [Accepted: 12/20/2019] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Though recent quantitative genetic analyses have indicated that directional selection appears to be acting on limb lengths and measures of body size in modern humans, these studies assume equal evolvability across modern human groups. However, differences in trait covariance structure due to ancient migration patterns and/or selection may limit the evolvability of populations further from Africa. This study therefore explores patterns of human evolvability across ecogeographic regions. MATERIALS AND METHODS Mean evolvability, respondability, conditional evolvability, and autonomy were calculated from variance-covariance matrices of limb length and body size measures representing 14 human groups spanning four ecogeographic regions. Measures of evolvability were compared across groups and regions, and the minimum sample size, inaccuracy, and bias were calculated for each. RESULTS When compared between regions, humans demonstrate significant differences between indices of evolvability across regions. Despite the relatively recent evolution of modern humans, several measures of evolvability show a strong negative correlation with latitude across regions, demonstrating a reduction in genetic variance that is potentially reflective of human migration and/or response to selection. CONCLUSIONS These results demonstrate the importance of establishing patterns of evolvability prior to additional quantitative genetic analyses, and emphasize the influence of sample size on the accuracy of estimated evolvability measures. These findings also suggest that while modern human groups share similar covariance structures, there is evidence for emergent differentiation in evolvability and respondability between human groups across ecogeographic regions, further complicating our ability to apply results derived from modern human groups to ancient hominin lineages.
Collapse
|
81
|
Trumble BC, Finch CE. THE EXPOSOME IN HUMAN EVOLUTION: FROM DUST TO DIESEL. THE QUARTERLY REVIEW OF BIOLOGY 2019; 94:333-394. [PMID: 32269391 PMCID: PMC7141577 DOI: 10.1086/706768] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Global exposures to air pollution and cigarette smoke are novel in human evolutionary history and are associated with about 16 million premature deaths per year. We investigate the history of the human exposome for relationships between novel environmental toxins and genetic changes during human evolution in six phases. Phase I: With increased walking on savannas, early human ancestors inhaled crustal dust, fecal aerosols, and spores; carrion scavenging introduced new infectious pathogens. Phase II: Domestic fire exposed early Homo to novel toxins from smoke and cooking. Phases III and IV: Neolithic to preindustrial Homo sapiens incurred infectious pathogens from domestic animals and dense communities with limited sanitation. Phase V: Industrialization introduced novel toxins from fossil fuels, industrial chemicals, and tobacco at the same time infectious pathogens were diminishing. Thereby, pathogen-driven causes of mortality were replaced by chronic diseases driven by sterile inflammogens, exogenous and endogenous. Phase VI: Considers future health during global warming with increased air pollution and infections. We hypothesize that adaptation to some ancient toxins persists in genetic variations associated with inflammation and longevity.
Collapse
Affiliation(s)
- Benjamin C Trumble
- School of Human Evolution & Social Change and Center for Evolution and Medicine, Arizona State University Tempe, Arizona 85287 USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California Los Angeles, California 90089-0191 USA
| |
Collapse
|
82
|
Andreani M, Gaspari S, Locatelli F. Human leucocyte antigen diversity: A biological gift to escape infections, no longer a barrier for haploidentical Hemopoietic Stem Cell Transplantation. Int J Immunogenet 2019; 47:34-40. [PMID: 31657118 DOI: 10.1111/iji.12459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 09/10/2019] [Accepted: 10/05/2019] [Indexed: 11/29/2022]
Abstract
Since the beginning of life, every multicellular organism appeared to have a complex innate immune system although the adaptive immune system, centred on lymphocytes bearing antigen receptors generated by somatic recombination, arose in jawed fish approximately 500 million years ago. The major histocompatibility complex MHC, named the Human leucocyte antigen (HLA) system in humans, represents a vital function structure in the organism by presenting pathogen-derived peptides to T cells as the main initial step of the adaptive immune response. The huge level of polymorphism observed in HLA genes definitely reflects selection, favouring heterozygosity at the individual or population level, in a pathogen-rich environment, although many are located in introns or in exons that do not code for the antigen-biding site of the HLA. Over the past three decades, the extent of allelic diversity at HLA loci has been well characterized using high-resolution HLA-DNA typing and the number of new HLA alleles, produced through next-generation sequencing methods, is even more rapidly increasing. The level of the HLA system polymorphism represents an obstacle to the search of potential compatible donors for patients affected by haematological disease proposed for a hematopoietic stem cell transplant (HSCT). Data reported in literature clearly show that antigenic and/or allelic mismatches between related or unrelated donors and patients influences the successful HSCT outcome. However, the recent development of the new transplant strategy based on the choice of haploidentical donors for HSCT is questioning the role of HLA compatibility, since the great HLA disparities present do not worsen the overall clinical outcome. Nowadays, NGS has contributed to define at allelic levels the HLA polymorphism and solve potential ambiguities. However, HLA functions and tissue typing probably need to be further investigated in the next future, to understand the reasons why in haploidentical transplants the presence of a whole mismatch haplotype between donors and recipients, both the survival rate and the incidence of acute GvHD or graft rejection are similar to those reported for unrelated HSCTs.
Collapse
Affiliation(s)
- Marco Andreani
- Laboratorio d'Immunogenetica dei Trapianti, Polo di Ricerca di San Paolo, Dipartimento di Onco-Ematologia e Terapia Cellulare e Genica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Stefania Gaspari
- Dipartimento di Onco-Ematologia e Terapia Cellulare e Genica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| | - Franco Locatelli
- Dipartimento di Onco-Ematologia e Terapia Cellulare e Genica, IRCCS Ospedale Pediatrico Bambino Gesù, Roma, Italy
| |
Collapse
|
83
|
Abstract
For more than 50 years, biological anthropology has argued against the use of the biological race concept. Despite such efforts, aspects of the concept remain in circulation within society and within the discipline itself. As commonly articulated, anthropology's rejection of the biological race concept lacks an evolutionarily based explanatory grounding. Biological patterns of variation in living humans do not map onto commonly utilized categorizations of race, but this knowledge does not explain why human evolution has not produced such structures. This article attempts to offer one such explanation by constructing a biocultural framing of race around ancestry. By examining ancestry through two related lenses, genealogical and genetic, it is shown that the coherence of race as a biological concept has been disrupted by demographic changes in our recent evolutionary past. The biological construction of race is invalid not because it is impossible but because evolutionary forces have actively worked against such patterns in our evolutionary past.
Collapse
Affiliation(s)
- Adam P. Van Arsdale
- Department of Anthropology, Wellesley College, Wellesley, Massachusetts 02481, USA
| |
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW The goal of the review is to provide a comprehensive overview of the current understanding of the mechanisms underlying variation in human stature. RECENT FINDINGS Human height is an anthropometric trait that varies considerably within human populations as well as across the globe. Historically, much research focus was placed on understanding the biology of growth plate chondrocytes and how modifications to core chondrocyte proliferation and differentiation pathways potentially shaped height attainment in normal as well as pathological contexts. Recently, much progress has been made to improve our understanding regarding the mechanisms underlying the normal and pathological range of height variation within as well as between human populations, and today, it is understood to reflect complex interactions among a myriad of genetic, environmental, and evolutionary factors. Indeed, recent improvements in genetics (e.g., GWAS) and breakthroughs in functional genomics (e.g., whole exome sequencing, DNA methylation analysis, ATAC-sequencing, and CRISPR) have shed light on previously unknown pathways/mechanisms governing pathological and common height variation. Additionally, the use of an evolutionary perspective has also revealed important mechanisms that have shaped height variation across the planet. This review provides an overview of the current knowledge of the biological mechanisms underlying height variation by highlighting new research findings on skeletal growth control with an emphasis on previously unknown pathways/mechanisms influencing pathological and common height variation. In this context, this review also discusses how evolutionary forces likely shaped the genomic architecture of height across the globe.
Collapse
Affiliation(s)
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
85
|
Tesio L, Rota V. The Motion of Body Center of Mass During Walking: A Review Oriented to Clinical Applications. Front Neurol 2019; 10:999. [PMID: 31616361 PMCID: PMC6763727 DOI: 10.3389/fneur.2019.00999] [Citation(s) in RCA: 98] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 09/02/2019] [Indexed: 01/04/2023] Open
Abstract
Human walking is usually conceived as the cyclic rotation of the limbs. The goal of lower-limb movements, however, is the forward translation of the body system, which can be mechanically represented by its center of mass (CoM). Lower limbs act as struts of an inverted pendulum, allowing minimization of muscle work, from infancy to old age. The plantar flexors of the trailing limbs have been identified as the main engines of CoM propulsion. Motion of the CoM can be investigated through refined techniques, but research has been focused on the fields of human and animal physiology rather than clinical medicine. Alterations in CoM motion could reveal motor impairments that are not detectable by clinical observation. The study of the three-dimensional trajectory of the CoM motion represents a clinical frontier. After adjusting for displacement due to the average forward speed, the trajectory assumes a figure-eight shape (dubbed the “bow-tie”) with a perimeter about 18 cm long. Its lateral size decreases with walking velocity, thus ensuring dynamic stability. Lateral redirection appears as a critical phase of the step, requiring precise muscle sequencing. The shape and size of the “bow-tie” as functions of dynamically equivalent velocities do not change from child to adulthood, despite anatomical growth. The trajectory of the CoM thus appears to be a promising summary index of both balance and the neural maturation of walking. In asymmetric gaits, the affected lower limb avoids muscle work by pivoting almost passively, but extra work is required from the unaffected side during the next step, in order to keep the body system in motion. Generally, the average work to transport the CoM across a stride remains normal. In more demanding conditions, such as walking faster or uphill, the affected limb can actually provide more work; however, the unaffected limb also provides more work and asymmetry between the steps persists. This learned or acquired asymmetry is a formerly unsuspected challenge to rehabilitation attempts to restore symmetry. Techniques of selective loading of the affected side, which include constraining the motion of the unaffected limb or forcing the use of the affected limb on split-belt treadmills which impose a different velocity and power to either limb, are now under scrutiny.
Collapse
Affiliation(s)
- Luigi Tesio
- Department of Biomedical Sciences for Health, Università degli Studi, Milan, Italy.,Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | - Viviana Rota
- Department of Neurorehabilitation Sciences, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| |
Collapse
|
86
|
Dobon B, Montanucci L, Peretó J, Bertranpetit J, Laayouni H. Gene connectivity and enzyme evolution in the human metabolic network. Biol Direct 2019; 14:17. [PMID: 31481097 PMCID: PMC6724310 DOI: 10.1186/s13062-019-0248-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/21/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Determining the factors involved in the likelihood of a gene being under adaptive selection is still a challenging goal in Evolutionary Biology. Here, we perform an evolutionary analysis of the human metabolic genes to explore the associations between network structure and the presence and strength of natural selection in the genes whose products are involved in metabolism. Purifying and positive selection are estimated at interspecific (among mammals) and intraspecific (among human populations) levels, and the connections between enzymatic reactions are differentiated between incoming (in-degree) and outgoing (out-degree) links. RESULTS We confirm that purifying selection has been stronger in highly connected genes. Long-term positive selection has targeted poorly connected enzymes, whereas short-term positive selection has targeted different enzymes depending on whether the selective sweep has reached fixation in the population: genes under a complete selective sweep are poorly connected, whereas those under an incomplete selective sweep have high out-degree connectivity. The last steps of pathways are more conserved due to stronger purifying selection, with long-term positive selection targeting preferentially enzymes that catalyze the first steps. However, short-term positive selection has targeted enzymes that catalyze the last steps in the metabolic network. Strong signals of positive selection have been found for metabolic processes involved in lipid transport and membrane fluidity and permeability. CONCLUSIONS Our analysis highlights the importance of analyzing the same biological system at different evolutionary timescales to understand the evolution of metabolic genes and of distinguishing between incoming and outgoing links in a metabolic network. Short-term positive selection has targeted enzymes with a different connectivity profile depending on the completeness of the selective sweep, while long-term positive selection has targeted genes with fewer connections that code for enzymes that catalyze the first steps in the network. REVIEWERS This article was reviewed by Diamantis Sellis and Brandon Invergo.
Collapse
Affiliation(s)
- Begoña Dobon
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain
| | - Ludovica Montanucci
- Dipartimento di Biomedicina Comparata e Alimentazione, Università degli Studi di Padova, Padua, Italy
| | - Juli Peretó
- Institute for Integrative Systems Biology I2SysBio (University of Valencia-CSIC) and Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - Jaume Bertranpetit
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain.
| | - Hafid Laayouni
- Institut de Biologia Evolutiva (UPF-CSIC), Universitat Pompeu Fabra, Dr. Aiguader 88, 08003, Barcelona, Catalonia, Spain. .,Bioinformatics Studies, ESCI-UPF, Pg.Pujades 1, 08003, Barcelona, Catalonia, Spain.
| |
Collapse
|
87
|
Fattahi Z, Beheshtian M, Mohseni M, Poustchi H, Sellars E, Nezhadi SH, Amini A, Arzhangi S, Jalalvand K, Jamali P, Mohammadi Z, Davarnia B, Nikuei P, Oladnabi M, Mohammadzadeh A, Zohrehvand E, Nejatizadeh A, Shekari M, Bagherzadeh M, Shamsi-Gooshki E, Börno S, Timmermann B, Haghdoost A, Najafipour R, Khorram Khorshid HR, Kahrizi K, Malekzadeh R, Akbari MR, Najmabadi H. Iranome: A catalog of genomic variations in the Iranian population. Hum Mutat 2019; 40:1968-1984. [PMID: 31343797 DOI: 10.1002/humu.23880] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 07/16/2019] [Accepted: 07/22/2019] [Indexed: 11/12/2022]
Abstract
Considering the application of human genome variation databases in precision medicine, population-specific genome projects are continuously being developed. However, the Middle Eastern population is underrepresented in current databases. Accordingly, we established Iranome database (www.iranome.com) by performing whole exome sequencing on 800 individuals from eight major Iranian ethnic groups representing the second largest population of Middle East. We identified 1,575,702 variants of which 308,311 were novel (19.6%). Also, by presenting higher frequency for 37,384 novel or known rare variants, Iranome database can improve the power of molecular diagnosis. Moreover, attainable clinical information makes this database a good resource for classifying pathogenicity of rare variants. Principal components analysis indicated that, apart from Iranian-Baluchs, Iranian-Turkmen, and Iranian-Persian Gulf Islanders, who form their own clusters, rest of the population were genetically linked, forming a super-population. Furthermore, only 0.6% of novel variants showed counterparts in "Greater Middle East Variome Project", emphasizing the value of Iranome at national level by releasing a comprehensive catalog of Iranian genomic variations and also filling another gap in the catalog of human genome variations at international level. We introduce Iranome as a resource which may also be applicable in other countries located in neighboring regions historically called Greater Iran (Persia).
Collapse
Affiliation(s)
- Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Marzieh Mohseni
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| | - Hossein Poustchi
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Erin Sellars
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | | | - Amir Amini
- Information Technology Office, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Khadijeh Jalalvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Peyman Jamali
- Shahrood Genetic Counseling Center, Welfare Office, Semnan, Iran
| | - Zahra Mohammadi
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Behzad Davarnia
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Pooneh Nikuei
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Morteza Oladnabi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Akbar Mohammadzadeh
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Elham Zohrehvand
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Azim Nejatizadeh
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Mohammad Shekari
- Molecular Medicine Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Bagherzadeh
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Ehsan Shamsi-Gooshki
- Medical Ethics and History of Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Ethics, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Stefan Börno
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | | | - Aliakbar Haghdoost
- Modeling in Health Research Center, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran.,Regional Knowledge Hub, and WHO Collaborating Centre for HIV Surveillance, Institute for Futures Studies in Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Reza Najafipour
- Cellular and Molecular Research Centre, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Reza Malekzadeh
- Digestive Diseases Research Center, Digestive Diseases Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad R Akbari
- Women's College Research Institute, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran.,Kariminejad-Najmabadi Pathology & Genetics Center, Tehran, Iran
| |
Collapse
|
88
|
Manoharan A, Shewade DG, Ravindranath PA, Rajkumar RP, Ramprasad VL, Adithan S, Damodaran SE. Resequencing CYP2D6 gene in Indian population: CYP2D6*41 identified as the major reduced function allele. Pharmacogenomics 2019; 20:719-729. [PMID: 31368850 DOI: 10.2217/pgs-2019-0049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Aim: The CYP2D6 gene is highly polymorphic and harbors population specific alleles that define its predominant metabolizer phenotype. This study aimed to identify polymorphisms in Indian population owing to scarcity of CYP2D6 data in this population. Materials & methods: The CYP2D6 gene was resequenced in 105 south Indians using next generation sequencing technology and haplotypes were reconstructed. Results & conclusion: Four novel missense variants have been designated as CYP2D6*110, *111, *112 and *113. The most common alleles were CYP2D6*1 (42%), *2 (32%), and *41 (12.3%) and diplotypes were CYP2D6*1/*2 (26%), *1/*1 (11%), *2/*41 (10%) and *1/*41 (7%) accounting for high incidence of extensive metabolizers in Indians.
Collapse
Affiliation(s)
- Aarthi Manoharan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Deepak Gopal Shewade
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Ravi Philip Rajkumar
- Department of Psychiatry, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | | | - Surendiran Adithan
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| | - Solai Elango Damodaran
- Department of Pharmacology, Jawaharlal Institute of Postgraduate Medical Education & Research, Puducherry 605006, India
| |
Collapse
|
89
|
Willi Y. The relevance of mutation load for species range limits. AMERICAN JOURNAL OF BOTANY 2019; 106:757-759. [PMID: 31162640 DOI: 10.1002/ajb2.1296] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Affiliation(s)
- Yvonne Willi
- Department of Environmental Sciences, University of Basel, 4056, Basel, Switzerland
| |
Collapse
|
90
|
Krenn VA, Fornai C, Wurm L, Bookstein FL, Haeusler M, Weber GW. Variation of 3D outer and inner crown morphology in modern human mandibular premolars. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2019; 169:646-663. [PMID: 31099892 PMCID: PMC6767701 DOI: 10.1002/ajpa.23858] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 12/30/2022]
Abstract
Objectives This study explores the outer and inner crown of lower third and fourth premolars (P3, P4) by analyzing the morphological variation among diverse modern human groups. Materials and Methods We studied three‐dimensional models of the outer enamel surface and the enamel–dentine junction (EDJ) from μCT datasets of 77 recent humans using both an assessment of seven nonmetric traits and a standard geometric morphometric (GM) analysis. For the latter, the dental crown was represented by four landmarks (dentine horns and fossae), 20 semilandmarks along the EDJ marginal ridge, and pseudolandmarks along the crown and cervical outlines. Results Certain discrete traits showed significantly different regional frequencies and sexual dimorphism. The GM analyses of both P3s and P4s showed extensive overlap in shape variation of the various populations (classification accuracy 15–69%). The first principal components explained about 40% of shape variance with a correlation between 0.59 and 0.87 of the features of P3s and P4s. Shape covariation between P3s and P4s expressed concordance of high and narrow or low and broad crowns. Conclusions Due to marked intragroup and intergroup variation in GM analyses of lower premolars, discrete traits such as the number of lingual cusps and mesiolingual groove expression provide better geographic separation of modern human populations. The greater variability of the lingual region suggests a dominance of functional constraints over geographic provenience or sex. Additional information about functionally relevant aspects of the crown surface and odontogenetic data are needed to unravel the factors underlying dental morphology in modern humans.
Collapse
Affiliation(s)
- Viktoria A Krenn
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Cinzia Fornai
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland.,Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria
| | - Lisa Wurm
- Department for Clinical Veterinary Medicine, Ludwig-Maximilians University of Munich, 80539 Munich, Germany
| | - Fred L Bookstein
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.,Department of Statistics, University of Washington, Seattle, WA-98195, Washington, USA
| | - Martin Haeusler
- Institute of Evolutionary Medicine, University of Zurich, 8057 Zurich, Switzerland
| | - Gerhard W Weber
- Department of Evolutionary Anthropology, University of Vienna, 1090 Vienna, Austria.,Core Facility for Micro-Computed Tomography, 1090 Vienna, Austria
| |
Collapse
|
91
|
Abstract
Factors that limit the geographic distribution of species are broadly important in ecology and evolutionary biology, and understanding distribution limits is imperative for predicting how species will respond to environmental change. Good data indicate that factors such as dispersal limitation, small effective population size, and isolation are sometimes important. But empirical research highlights no single factor that explains the ubiquity of distribution limits. In this article, we outline a guide to tackling distribution limits that integrates established causes, such as dispersal limitation and spatial environmental heterogeneity, with understudied causes, such as mutational load and genetic or developmental integration of traits limiting niche expansion. We highlight how modeling and quantitative genetic and genomic analyses can provide insight into sources of distribution limits. Our practical guide provides a framework for considering the many factors likely to determine species distributions and how the different approaches can be integrated to predict distribution limits using eco-evolutionary modeling. The framework should also help predict distribution limits of invasive species and of species under climate change.
Collapse
|
92
|
Arguello JR, Laurent S, Clark AG. Demographic History of the Human Commensal Drosophila melanogaster. Genome Biol Evol 2019; 11:844-854. [PMID: 30715331 PMCID: PMC6430986 DOI: 10.1093/gbe/evz022] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/25/2019] [Indexed: 12/14/2022] Open
Abstract
The cohabitation of Drosophila melanogaster with humans is nearly ubiquitous. Though it has been well established that this fly species originated in sub-Saharan Africa, and only recently has spread globally, many details of its swift expansion remain unclear. Elucidating the demographic history of D. melanogaster provides a unique opportunity to investigate how human movement might have impacted patterns of genetic diversity in a commensal species, as well as providing neutral null models for studies aimed at identifying genomic signatures of local adaptation. Here, we use whole-genome data from five populations (Africa, North America, Europe, Central Asia, and the South Pacific) to carry out demographic inferences, with particular attention to the inclusion of migration and admixture. We demonstrate the importance of these parameters for model fitting and show that how previous estimates of divergence times are likely to be significantly underestimated as a result of not including them. Finally, we discuss how human movement along early shipping routes might have shaped the present-day population structure of D. melanogaster.
Collapse
Affiliation(s)
- J Roman Arguello
- Department of Ecology and Evolution, University of Lausanne, Switzerland
| | - Stefan Laurent
- Max Planck Institute for Plant Breeding Research, Köln, Germany
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University
- Department of Biological Statistics and Computational Biology, Cornell University
| |
Collapse
|
93
|
A qualitative criterion for identifying the root of the tree of life. J Theor Biol 2019; 464:126-131. [DOI: 10.1016/j.jtbi.2018.12.039] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/19/2018] [Accepted: 12/29/2018] [Indexed: 11/18/2022]
|
94
|
Abstract
Usually, paleoanthropology studies remains and artefacts. However, more recently, genetics offer new avenues. Information on humanisation mechanisms has been obtained from comparison with primate or archaic Homo DNA sequences. Likewise, the 1 000 Genomes Project has characterized the geographic spectrum of human genetic variation offering a basis for a genomic study of Homo sapiens phylogeny. From these studies, a model, Out of Africa, was derived. His origin is Africa, where he lived 200 000 years ago. A small fraction of the population left Africa between 50 and 100 000 years ago that have populated the rest of the world, to Europe, coastal Asia to Australia and mainland Asia to Behring Land Bridge and America. The model is supported by the decrease of genetic diversity with the distance to Eastern Africa (serial founder effect). In Europe and Asia, Homo sapiens met archaic Homo neanderthalis and H denisova. The presence of 1-3% neanderthalis sequences in modern Homo ADN indicates admixtures between these groups. Some archaic sequences are on positive selection pressure, thus suggesting that the extinct hominins might have facilitated the adaptation of H sapiens to new environments.
Collapse
Affiliation(s)
- Jean-Pierre Henry
- Université Paris Diderot, Laboratoire Matière et Systèmes Complexes, CNRS UMR7057, bâtiment Condorcet, 10, rue Alice Domon et Léonie Duquet, 75013 Paris, France
| |
Collapse
|
95
|
Roberts L, Rebello G, Greenberg J, Ramesar R. Update on Inherited Retinal Disease in South Africa: Encouraging Diversity in Molecular Genetics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1185:257-261. [PMID: 31884621 DOI: 10.1007/978-3-030-27378-1_42] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a glaring disparity in the populations included in genetic research; the majority of work involves European-derived cohorts, while other global populations - including Africans - are underrepresented. This is also true for the study of inherited retinal diseases. Being the most ancient of extant populations, African samples carry more variation than others, making them valuable for novel gene and variant discovery. The inclusion of diverse populations in research is essential to gain a more comprehensive understanding of genetic variation and molecular mechanisms of disease.
Collapse
Affiliation(s)
- Lisa Roberts
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.
| | - George Rebello
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jacquie Greenberg
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Raj Ramesar
- UCT/MRC Genomic and Precision Medicine Research Unit, Division of Human Genetics, Department of Pathology, Institute of Infectious Disease and Molecular Medicine, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
96
|
Ancient Migrations: Biodistance, Genetics, and the Persistence of Typological Thinking. BIOARCHAEOLOGY AND SOCIAL THEORY 2019. [DOI: 10.1007/978-3-319-93012-1_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
97
|
Abstract
Maternal mortality remains one of the leading causes of death in women of reproductive age in developing countries, and a major concern in some developed countries. It is puzzling why such a condition has not been reduced in frequency, if not eliminated, in the course of evolution. Maternal mortality is a complex phenomenon caused by several physiological and physical factors. Among the physical factors, maternal mortality due to fetopelvic disproportion remains controversial. Several explanations including evolution of bipedal locomotion, rapid brain growth, and nutritional changes and life style changes in settler communities have been proposed. The influences of human reproductive biology and sexual selection have rarely been considered to explain why maternal mortality persisted through human evolution. We entertain the hypothesis that irrespective of the causes, the risks of all factors causing maternal mortality would be aggravated by disassortative mating, specifically male preference for younger females who are generally small statured and at higher risk of obstetric complications. Maternal mortality arising due to sexual selection and mate choice would have the long-term effect of driving widowers toward younger women, often resulting in "child marriage," which still remains a significant cause of maternal mortality globally. Evolutionarily, such a male driven mating system in polygamous human populations would have prolonged the persistence of maternal mortality despite selection acting against it. The effects may extend beyond maternal mortality because male-mate choice driven maternal mortality would reduce average reproductive life spans of women, thus influencing the evolution of menopause.
Collapse
Affiliation(s)
- Santosh Jagadeeshan
- 1 Department of Biology, McMaster University, Hamilton, Canada.,2 Department of Physiology, College of Medicine, University of Saskatchewan, Saskatoon, Canada
| | - Alyssa K Gomes
- 1 Department of Biology, McMaster University, Hamilton, Canada
| | - Rama S Singh
- 1 Department of Biology, McMaster University, Hamilton, Canada
| |
Collapse
|
98
|
The arms race between man and Mycobacterium tuberculosis: Time to regroup. INFECTION GENETICS AND EVOLUTION 2018; 66:361-375. [DOI: 10.1016/j.meegid.2017.08.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 08/22/2017] [Indexed: 12/12/2022]
|
99
|
Raynal L, Marin JM, Pudlo P, Ribatet M, Robert CP, Estoup A. ABC random forests for Bayesian parameter inference. Bioinformatics 2018; 35:1720-1728. [DOI: 10.1093/bioinformatics/bty867] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 09/17/2018] [Accepted: 10/12/2018] [Indexed: 01/07/2023] Open
Affiliation(s)
- Louis Raynal
- IMAG, Univ Montpellier, CNRS, Montpellier, France
| | - Jean-Michel Marin
- IMAG, Univ Montpellier, CNRS, Montpellier, France
- IBC, Univ Montpellier, CNRS, Montpellier, France
| | - Pierre Pudlo
- Institut de Mathématiques de Marseille, Aix-Marseille Université, Marseille, France
| | | | - Christian P Robert
- Université Paris Dauphine, PSL Research University, Paris, France
- Department of Statistics, University of Warwick, Coventry, UK
| | - Arnaud Estoup
- IBC, Univ Montpellier, CNRS, Montpellier, France
- CBGP, INRA, CIRAD, IRD, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| |
Collapse
|
100
|
Cox CL, Stringer JF, Moseley MA, Chippindale PT, Streicher JW. Testing the geographical dimensions of genetic diversity following range expansion in a North American snake. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Christian L Cox
- Department of Biology, Georgia Southern University, Statesboro, GA, USA
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Joel F Stringer
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Matthew A Moseley
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Paul T Chippindale
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
| | - Jeffrey W Streicher
- Department of Biology, University of Texas at Arlington, South Nedderman Drive, Arlington, USA
- Department of Life Sciences, The Natural History Museum, London, UK
| |
Collapse
|