51
|
Mamoune KE, Barantin L, Adriaensen H, Tillet Y. Application of Chemical Exchange Saturation Transfer (CEST) in neuroimaging. J Chem Neuroanat 2021; 114:101944. [PMID: 33716103 DOI: 10.1016/j.jchemneu.2021.101944] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 03/02/2021] [Accepted: 03/04/2021] [Indexed: 12/14/2022]
Abstract
Since the early eighties MRI has become the most powerful technic for in-vivo imaging particularly in the field of brain research. This non-invasive method allows acute anatomical observations of the living brain similar to post-mortem dissected tissues. However, one of the main limitation of MRI is that it does not make possible the neurochemical identification of the tissues conversely to positron emission tomography scanner which can provide a specific molecular characterization of tissue, in spite of poor anatomical definition. To gain neurochemical information using MRI, new categories of contrast agents were developed from the beginning of the 2000's, particularly using the chemical-exchange saturation transfer (CEST) method. This method induces a significant change in the magnitude of the water proton signal and allows the detection of specific molecules within the tissues like sugars, amino acids, transmitters, and nucleosides. This short review presents several CEST contrast agents and their recent developments for in vivo detection of metabolites and neurotransmitters in the brain for research and clinical purposes.
Collapse
Affiliation(s)
- Kahina El Mamoune
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; Siemens Healthcare SAS, Saint Denis, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Laurent Barantin
- iBrain, UMR 1253 INSERM, Université de Tours, 10 Bd Tonnellé, 37032 Tours, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Hans Adriaensen
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; CIRE UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France
| | - Yves Tillet
- Physiologie de la Reproduction et des Comportements, UMR 085 INRAE, CNRS 7247, Université de Tours, IFCE, Centre INRAE Val de Loire, 37380 Nouzilly, France; SFR FED 4226, Université de Tours, 2 Bd Tonnellé, 37032 Tours, France.
| |
Collapse
|
52
|
Hyder F, Coman D. Imaging Extracellular Acidification and Immune Activation in Cancer. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18. [PMID: 33997581 DOI: 10.1016/j.cobme.2021.100278] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Metabolism reveals pathways by which cells, in healthy and disease tissues, use nutrients to fuel their function and (re)growth. However, gene-centric views have dominated cancer hallmarks, relegating metabolic reprogramming that all cells in the tumor niche undergo as an incidental phenomenon. Aerobic glycolysis in cancer is well known, but recent evidence suggests that diverse symbolic traits of cancer cells are derived from oncogene-directed metabolism required for their sustenance and evolution. Cells in the tumor milieu actively metabolize different nutrients, but proficiently secrete acidic by-products using diverse mechanisms to create a hostile ecosystem for host cells, and where local immune cells suffer collateral damage. Since metabolic interactions between cancer and immune cells hold promise for future cancer therapies, here we focus on translational magnetic resonance methods enabling in vivo and simultaneous detection of tumor habitat acidification and immune activation - innovations for monitoring personalized treatments.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
- Quantitative Neuroimaging with Magnetic Resonance (QNMR) Research Program, Yale University, New Haven, CT, USA
| | - Daniel Coman
- Department of Radiology & Biomedical Imaging, Yale University, New Haven, CT, USA
- Magnetic Resonance Research Center (MRRC), Yale University, New Haven, CT, USA
| |
Collapse
|
53
|
von Knebel Doeberitz N, Maksimovic S, Loi L, Paech D. [Chemical exchange saturation transfer (CEST) : Magnetic resonance imaging in diagnostic oncology]. Radiologe 2021; 61:43-51. [PMID: 33337509 DOI: 10.1007/s00117-020-00786-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
BACKGROUND Contrast generation by chemical exchange saturation transfer (CEST) is a recently emerging magnetic resonance imaging (MRI) research field with high clinical potential. METHODS This review covers the methodological principles and summarizes the clinical experience of CEST imaging studies in diagnostic oncology performed to date. RESULTS AND CONCLUSION CEST enables the detection of lowly concentrated metabolites, such as peptides and glucose, through selective saturation of metabolite-bound protons and subsequent magnetization transfer to free water. This technology yields additional information about metabolic activity and the tissue microenvironment without the need for conventional contrast agents or radioactive tracers. Various studies, mainly conducted in patients with neuro-oncolgic diseases, suggest that this technology may aid to assess tumor malignancy as well as therapeutic response prior to and in the first follow-up after intervention. KEY POINTS CEST-MRI enables the indirect detection of metabolites without radioactive tracers or contrast agents. Clinical experience exists especially in the setting of neuro-oncologic imaging. In oncologic imaging, CEST-MRI may improve assessment of prognosis and therapy response.
Collapse
Affiliation(s)
- N von Knebel Doeberitz
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - S Maksimovic
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - L Loi
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland
| | - D Paech
- Abteilung Radiologie, Deutsches Krebsforschungszentrum (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Deutschland.
| |
Collapse
|
54
|
Multimodality In Vivo Imaging of Perfusion and Glycolysis in a Rat Model of C6 Glioma. Mol Imaging Biol 2021; 23:516-526. [PMID: 33534038 DOI: 10.1007/s11307-021-01585-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 12/20/2022]
Abstract
PURPOSE Chemical exchange saturation transfer MRI using an infusion of glucose (glucoCEST) is sensitive to the distribution of glucose in vivo; however, whether glucoCEST is more related to perfusion or glycolysis is still debatable. We compared glucoCEST to computed tomography perfusion (CTP), [18F] fluorodeoxyglucose positron emission tomography (FDG-PET), and hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy imaging (MRSI) in a C6 rat model of glioma to determine if glucoCEST is more strongly correlated with measurements of perfusion or glycolysis. METHODS 106 C6 glioma cells were implanted in Wistar rat brains (n = 11). CTP (including blood volume, BV; blood flow, BF; and permeability surface area product, PS) and FDG-PET standardized uptake value (SUV) were acquired at 11 to 13 days post-surgery. GlucoCEST measurements (∆CEST) were acquired the following day on a 9.4 T MRI before and after an infusion of glucose solution. This was followed by MRSI on a 3.0 T MRI after the injection of hyperpolarized [1-13C] pyruvate to generate regional maps of the lactate:pyruvate ratio (Lac:Pyr). Pearson's correlations between glucoCEST, CTP, FDG-PET, and Lac:Pyr ratio were evaluated. RESULTS Tumors had significantly higher SUV, BV, and PS than the contralateral brain. Tumor ∆CEST was most strongly correlated with CTP measurements of BV (ρ = 0.74, P = 0.01) and PS (ρ = 0.55, P = 0.04). No significant correlation was found between glycolysis measurements of SUV or Lac:Pyr with tumor ∆CEST. PS significantly correlated with SUV (ρ = 0.58, P = 0.005) and Lac:Pyr (ρ = 0.75, P = 0.005). BV significantly correlated with Lac:Pyr (ρ = 0.57, P = 0.02), and BF significantly correlated with SUV (ρ = 0.49, P = 0.02). CONCLUSION This study determined that glucoCEST is more strongly correlated to measurements of perfusion than glycolysis. GlucoCEST measurements have additional confounds, such as sensitivity to changing pH, that merit additional investigation.
Collapse
|
55
|
Takumi K, Nagano H, Kikuno H, Kumagae Y, Fukukura Y, Yoshiura T. Differentiating malignant from benign salivary gland lesions: a multiparametric non-contrast MR imaging approach. Sci Rep 2021; 11:2780. [PMID: 33531644 PMCID: PMC7854671 DOI: 10.1038/s41598-021-82455-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/19/2021] [Indexed: 02/08/2023] Open
Abstract
The purpose of this study is to determine whether multiparametric non-contrast MR imaging including diffusion-weighted imaging (DWI), arterial spin labeling (ASL), and amide proton transfer (APT) weighted imaging can help differentiate malignant from benign salivary gland lesions. The study population consisted of 42 patients, with 31 benign and 11 malignant salivary gland lesions. All patients were evaluated using DWI, three-dimensional pseudo-continuous ASL, and APT-weighted imaging on 3 T MR imaging before treatment. Apparent diffusion coefficient (ADC), tumor blood flow (TBF), and APT-related signal intensity (APTSI) values within the lesion were compared between the malignant and benign lesions by Mann-Whitney U test. For each parameter, optimal cutoff values were chosen using a threshold criterion that maximized the Youden index for predicting malignant lesions. The performance of ADC, TBF, APTSI, individually and combined, was evaluated in terms of diagnostic ability for malignant lesions. Diagnostic performance was compared by McNemar test. APTSI was significantly higher in malignant lesions (2.18 ± 0.89%) than in benign lesions (1.57 ± 1.09%, p = 0.047). There was no significant difference in ADC or TBF between benign and malignant lesions (p = 0.155 and 0.498, respectively). The accuracy of ADC, TBF, and APTSI for diagnosing malignant lesions was 47.6%, 50.0%, and 66.7%, respectively; whereas the accuracy of the three parameters combined was 85.7%, which was significantly higher than that of each parameter alone (p = 0.001, 0.001, and 0.008, respectively). Therefore, the combination of ADC, TBF, and APTSI can help differentiate malignant from benign salivary gland lesions.
Collapse
Affiliation(s)
- Koji Takumi
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan.
| | - Hiroaki Nagano
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Hidehiko Kikuno
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yuichi Kumagae
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Yoshihiko Fukukura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| | - Takashi Yoshiura
- Department of Radiology, Kagoshima University Graduate School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima, 890-8544, Japan
| |
Collapse
|
56
|
Clement P, Booth T, Borovečki F, Emblem KE, Figueiredo P, Hirschler L, Jančálek R, Keil VC, Maumet C, Özsunar Y, Pernet C, Petr J, Pinto J, Smits M, Warnert EAH. GliMR: Cross-Border Collaborations to Promote Advanced MRI Biomarkers for Glioma. J Med Biol Eng 2020; 41:115-125. [PMID: 33293909 PMCID: PMC7712600 DOI: 10.1007/s40846-020-00582-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Purpose There is an annual incidence of 50,000 glioma cases in Europe. The optimal treatment strategy is highly personalised, depending on tumour type, grade, spatial localization, and the degree of tissue infiltration. In research settings, advanced magnetic resonance imaging (MRI) has shown great promise as a tool to inform personalised treatment decisions. However, the use of advanced MRI in clinical practice remains scarce due to the downstream effects of siloed glioma imaging research with limited representation of MRI specialists in established consortia; and the associated lack of available tools and expertise in clinical settings. These shortcomings delay the translation of scientific breakthroughs into novel treatment strategy. As a response we have developed the network “Glioma MR Imaging 2.0” (GliMR) which we present in this article. Methods GliMR aims to build a pan-European and multidisciplinary network of experts and accelerate the use of advanced MRI in glioma beyond the current “state-of-the-art” in glioma imaging. The Action Glioma MR Imaging 2.0 (GliMR) was granted funding by the European Cooperation in Science and Technology (COST) in June 2019. Results GliMR’s first grant period ran from September 2019 to April 2020, during which several meetings were held and projects were initiated, such as reviewing the current knowledge on advanced MRI; developing a General Data Protection Regulation (GDPR) compliant consent form; and setting up the website. Conclusion The Action overcomes the pre-existing limitations of glioma research and is funded until September 2023. New members will be accepted during its entire duration.
Collapse
Affiliation(s)
- Patricia Clement
- Ghent Institute for Metabolic and Functional Imaging (GIfMI), Ghent University, Ghent, Belgium
| | - Thomas Booth
- School of Biomedical Engineering & Imaging Sciences, King's College London, St Thomas' Hospital, London, SE1 7EH UK.,Department of Neuroradiology, King's College Hospital NHS Foundation Trust, London, SE5 9RS UK
| | - Fran Borovečki
- Department of Neurology, University Hospital Centre Zagreb, Zagreb, Croatia
| | - Kyrre E Emblem
- Division of Radiology and Nuclear Medicine, Department of Diagnostic Physics, Oslo University Hospital, Oslo, Norway
| | - Patrícia Figueiredo
- Institute for Systems and Robotics - Lisboa and Department of Bioengineering, Instituto Superior Técnico, Universidade de Lisboa, Lisbon, Portugal
| | - Lydiane Hirschler
- Department of Radiology, C.J. Gorter Center for High Field MRI, Leiden University Medical Center, Leiden, The Netherlands
| | - Radim Jančálek
- Department of Neurosurgery, St. Anne's University Hospital and Medical Faculty, Masaryk University, Brno, Czech Republic
| | - Vera C Keil
- Department of Radiology, Amsterdam University Medical Center, VUmc, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Yelda Özsunar
- Department of Radiology, Faculty of Medicine, Adnan Menderes University, Aydın, Turkey
| | - Cyril Pernet
- Centre for Clinical Brain Sciences & Edinburgh Imaging, University of Edinburgh, Edinburgh, UK
| | - Jan Petr
- Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany
| | - Joana Pinto
- Department of Engineering Science, Institute of Biomedical Engineering, University of Oxford, Oxford, UK
| | - Marion Smits
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Esther A H Warnert
- Department of Radiology & Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
57
|
Subramani E, Radoul M, Najac C, Batsios G, Molloy AR, Hong D, Gillespie AM, Santos RD, Viswanath P, Costello JF, Pieper RO, Ronen SM. Glutamate Is a Noninvasive Metabolic Biomarker of IDH1-Mutant Glioma Response to Temozolomide Treatment. Cancer Res 2020; 80:5098-5108. [PMID: 32958546 PMCID: PMC7669718 DOI: 10.1158/0008-5472.can-20-1314] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 08/11/2020] [Accepted: 09/16/2020] [Indexed: 02/04/2023]
Abstract
Although lower grade gliomas are driven by mutations in the isocitrate dehydrogenase 1 (IDH1) gene and are less aggressive than primary glioblastoma, they nonetheless generally recur. IDH1-mutant patients are increasingly being treated with temozolomide, but early detection of response remains a challenge and there is a need for complementary imaging methods to assess response to therapy prior to tumor shrinkage. The goal of this study was to determine the value of magnetic resonance spectroscopy (MRS)-based metabolic changes for detection of response to temozolomide in both genetically engineered and patient-derived mutant IDH1 models. Using 1H MRS in combination with chemometrics identified several metabolic alterations in temozolomide-treated cells, including a significant increase in steady-state glutamate levels. This was confirmed in vivo, where the observed 1H MRS increase in glutamate/glutamine occurred prior to tumor shrinkage. Cells labeled with [1-13C]glucose and [3-13C]glutamine, the principal sources of cellular glutamate, showed that flux to glutamate both from glucose via the tricarboxylic acid cycle and from glutamine were increased following temozolomide treatment. In line with these results, hyperpolarized [5-13C]glutamate produced from [2-13C]pyruvate and hyperpolarized [1-13C]glutamate produced from [1-13C]α-ketoglutarate were significantly higher in temozolomide-treated cells compared with controls. Collectively, our findings identify 1H MRS-detectable elevation of glutamate and hyperpolarized 13C MRS-detectable glutamate production from either pyruvate or α-ketoglutarate as potential translatable metabolic biomarkers of response to temozolomide treatment in mutant IDH1 glioma. SIGNIFICANCE: These findings show that glutamate can be used as a noninvasive, imageable metabolic marker for early assessment of tumor response to temozolomide, with the potential to improve treatment strategies for mutant IDH1 patients.
Collapse
Affiliation(s)
- Elavarasan Subramani
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Marina Radoul
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Chloe Najac
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Georgios Batsios
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Abigail R Molloy
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Donghyun Hong
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Anne Marie Gillespie
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Romelyn Delos Santos
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Pavithra Viswanath
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California
| | - Joseph F Costello
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
| | - Russell O Pieper
- Department of Neurological Surgery, Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, California
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| | - Sabrina M Ronen
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California.
- Brain Tumor Research Center, University of California San Francisco, San Francisco, California
| |
Collapse
|
58
|
Su C, Jiang J, Liu C, Shi J, Li S, Chen X, Ao Q. Comparison of amide proton transfer imaging and magnetization transfer imaging in revealing glioma grades and proliferative activities: a histogram analysis. Neuroradiology 2020; 63:685-693. [PMID: 32997164 DOI: 10.1007/s00234-020-02547-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/31/2020] [Indexed: 11/25/2022]
Abstract
PURPOSE Comprehensive understanding glioma metabolic characters is of great help for patient management. We aimed to compare amide proton transfer imaging (APTw) and magnetization transfer imaging (MT) in predicting glioma malignancy and reflecting tumor proliferation. METHODS Thirty low-grade gliomas (LGGs) and 39 high-grade gliomas (HGGs) were prospectively included, of which 58 samples Ki-67 levels were quantified. Anatomical MRI, APTw, and MT were scanned, and magnetization transfer ratio (MTR) and asymmetric magnetic transfer ratio at 3.5 ppm (MTRasym(3.5ppm)) were calculated. ROIs were semi-automatically drawn with ImageJ, from which histogram features, including 5th, 25th, 50th, mean, 70th, 90th, and 95th percentiles were extracted. The independent t test was used to test differences in LGGs and HGGs, and correlations between histogram features and tumor grades, Ki-67 were revealed by Spearman's rank or Pearson's correlation analysis. RESULTS The maximum correlation coefficient (R) values of APTw were 0.526 (p < 0.001) with tumor grades and 0.397 (p < 0.001) with Ki-67 at 90th percentiles, while only 5th and 25th percentiles of MT significantly correlated with tumor grades. Moreover, APTw features were significantly different in LGGs and HGGs, except 5th percentile. The most significantly different feature was 95th percentile, providing the excellent AUC of 0.808. However, the best feature in MTR was 5th percentiles with AUC of 0.703. Combing 5th and 95th of APTw achieved highest AUC Of 0.837. CONCLUSIONS Both APTw and MT provide quantitative information for tumor metabolite imaging. However, APTw supplys more specific information in reflecting glioma biological behaviors than MT, and well differentiates glioma malignancy.
Collapse
Affiliation(s)
- Changliang Su
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, China.
| | - Jingjing Jiang
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Chengxia Liu
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - JingJing Shi
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Shihui Li
- Department of Radiology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| | - Xiaowei Chen
- The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qilin Ao
- Department of Pathology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, No. 1095 JieFang Avenue, Hankou, Wuhan, 430030, People's Republic of China
| |
Collapse
|
59
|
Qamar S, King AD, Ai QYH, Mo FKF, Chen W, Poon DMC, Tong M, Ma BB, Yeung DKW, Wang YX, Yuan J. Pre-treatment amide proton transfer imaging predicts treatment outcome in nasopharyngeal carcinoma. Eur Radiol 2020; 30:6339-6347. [DOI: 10.1007/s00330-020-06985-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/25/2020] [Accepted: 05/26/2020] [Indexed: 01/08/2023]
|
60
|
Advanced multimodal imaging in differentiating glioma recurrence from post-radiotherapy changes. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2020; 151:281-297. [PMID: 32448612 DOI: 10.1016/bs.irn.2020.03.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gliomas are the most common malignant primary brain tumor, and their prognosis is extremely poor. Radiotherapy is an important treatment for glioma patients, but the changes caused by radiotherapy have brought difficulties in clinical image evaluation because differentiating glioma recurrence from post-radiotherapy changes including pseudo-progression (PD) and radiation necrosis (RN) remains a challenge. Therefore, accurate and reliable imaging evaluation is very important for making clinical decisions. In recent years, advanced multimodal imaging techniques have been applied to achieve the goal of better differentiating glioma recurrence from post-radiotherapy changes for minimizing errors associated with interpretation of treatment effects. In this review, we discuss the recent applications of advanced multimodal imaging such as diffusion MRI sequences, amide proton transfer MRI sequences, perfusion MRI sequences, MR spectroscopy and multinuclides PET/CT in the evaluation of post-radiotherapy treatment response in glioma patients and highlight their potential role in differentiating post-radiotherapy changes from glioma recurrence.
Collapse
|
61
|
Han Y, Wang W, Yang Y, Sun YZ, Xiao G, Tian Q, Zhang J, Cui GB, Yan LF. Amide Proton Transfer Imaging in Predicting Isocitrate Dehydrogenase 1 Mutation Status of Grade II/III Gliomas Based on Support Vector Machine. Front Neurosci 2020; 14:144. [PMID: 32153362 PMCID: PMC7047712 DOI: 10.3389/fnins.2020.00144] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/12/2022] Open
Abstract
Background To compare the efficacies of univariate and radiomics analyses of amide proton transfer weighted (APTW) imaging in predicting isocitrate dehydrogenase 1 (IDH1) mutation of grade II/III gliomas. Methods Fifty-nine grade II/III glioma patients with known IDH1 mutation status were prospectively included (IDH1 wild type, 16; IDH1 mutation, 43). A total of 1044 quantitative radiomics features were extracted from APTW images. The efficacies of univariate and radiomics analyses in predicting IDH1 mutation were compared. Feature values were compared between two groups with independent t-test and receiver operating characteristic (ROC) analysis was applied to evaluate the predicting efficacy of each feature. Cases were randomly assigned to either the training (n = 49) or test cohort (n = 10) for the radiomics analysis. Support vector machine with recursive feature elimination (SVM-RFE) was adopted to select the optimal feature subset. The adverse impact of the imbalance dataset in the training cohort was solved by synthetic minority oversampling technique (SMOTE). Subsequently, the performance of SVM model was assessed on both training and test cohort. Results As for univariate analysis, 18 features were significantly different between IDH1 wild-type and mutant groups (P < 0.05). Among these parameters, High Gray Level Run Emphasis All Direction offset 8 SD achieved the biggest area under the curve (AUC) (0.769) with the accuracy of 0.799. As for radiomics analysis, SVM model was established using 19 features selected with SVM-RFE. The AUC and accuracy for IDH1 mutation on training set were 0.892 and 0.952, while on the testing set were 0.7 and 0.84, respectively. Conclusion Radiomics strategy based on APT image features is potentially useful for preoperative estimating IDH1 mutation status.
Collapse
Affiliation(s)
- Yu Han
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Wen Wang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Yang Yang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Ying-Zhi Sun
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Gang Xiao
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Qiang Tian
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Jin Zhang
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Guang-Bin Cui
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| | - Lin-Feng Yan
- Department of Radiology & Functional and Molecular Imaging Key Lab of Shaanxi Province, Tangdu Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
62
|
Hormuth DA, Sorace AG, Virostko J, Abramson RG, Bhujwalla ZM, Enriquez-Navas P, Gillies R, Hazle JD, Mason RP, Quarles CC, Weis JA, Whisenant JG, Xu J, Yankeelov TE. Translating preclinical MRI methods to clinical oncology. J Magn Reson Imaging 2019; 50:1377-1392. [PMID: 30925001 PMCID: PMC6766430 DOI: 10.1002/jmri.26731] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 02/05/2023] Open
Abstract
The complexity of modern in vivo magnetic resonance imaging (MRI) methods in oncology has dramatically changed in the last 10 years. The field has long since moved passed its (unparalleled) ability to form images with exquisite soft-tissue contrast and morphology, allowing for the enhanced identification of primary tumors and metastatic disease. Currently, it is not uncommon to acquire images related to blood flow, cellularity, and macromolecular content in the clinical setting. The acquisition of images related to metabolism, hypoxia, pH, and tissue stiffness are also becoming common. All of these techniques have had some component of their invention, development, refinement, validation, and initial applications in the preclinical setting using in vivo animal models of cancer. In this review, we discuss the genesis of quantitative MRI methods that have been successfully translated from preclinical research and developed into clinical applications. These include methods that interrogate perfusion, diffusion, pH, hypoxia, macromolecular content, and tissue mechanical properties for improving detection, staging, and response monitoring of cancer. For each of these techniques, we summarize the 1) underlying biological mechanism(s); 2) preclinical applications; 3) available repeatability and reproducibility data; 4) clinical applications; and 5) limitations of the technique. We conclude with a discussion of lessons learned from translating MRI methods from the preclinical to clinical setting, and a presentation of four fundamental problems in cancer imaging that, if solved, would result in a profound improvement in the lives of oncology patients. Level of Evidence: 5 Technical Efficacy: Stage 3 J. Magn. Reson. Imaging 2019;50:1377-1392.
Collapse
Affiliation(s)
- David A. Hormuth
- Institute for Computational Engineering and Sciences,Livestrong Cancer Institutes, The University of Texas at Austin
| | - Anna G. Sorace
- Department of Biomedical Engineering, The University of Texas at Austin,Department of Diagnostic Medicine, The University of Texas at Austin,Department of Oncology, The University of Texas at Austin,Livestrong Cancer Institutes, The University of Texas at Austin
| | - John Virostko
- Department of Diagnostic Medicine, The University of Texas at Austin,Department of Oncology, The University of Texas at Austin,Livestrong Cancer Institutes, The University of Texas at Austin
| | - Richard G. Abramson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center
| | | | - Pedro Enriquez-Navas
- Departments of Cancer Imaging and Metabolism, Cancer Physiology, The Moffitt Cancer Center
| | - Robert Gillies
- Departments of Cancer Imaging and Metabolism, Cancer Physiology, The Moffitt Cancer Center
| | - John D. Hazle
- Imaging Physics, The University of Texas M.D. Anderson Cancer Center
| | - Ralph P. Mason
- Department of Radiology, The University of Texas Southwestern Medical Center
| | - C. Chad Quarles
- Department of NeuroImaging Research, The Barrow Neurological Institute
| | - Jared A. Weis
- Department of Biomedical Engineering Wake Forest School of Medicine
| | | | - Junzhong Xu
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center,Institute of Imaging Science, Vanderbilt University Medical Center
| | - Thomas E. Yankeelov
- Institute for Computational Engineering and Sciences,Department of Biomedical Engineering, The University of Texas at Austin,Department of Diagnostic Medicine, The University of Texas at Austin,Department of Oncology, The University of Texas at Austin,Livestrong Cancer Institutes, The University of Texas at Austin
| |
Collapse
|
63
|
Li B, Sun H, Zhang S, Wang X, Guo Q. The utility of APT and IVIM in the diagnosis and differentiation of squamous cell carcinoma of the cervix: A pilot study. Magn Reson Imaging 2019; 63:105-113. [DOI: 10.1016/j.mri.2019.08.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2018] [Revised: 06/14/2019] [Accepted: 08/15/2019] [Indexed: 11/26/2022]
|
64
|
Sun PZ. Fast correction of B 0 field inhomogeneity for pH-specific magnetization transfer and relaxation normalized amide proton transfer imaging of acute ischemic stroke without Z-spectrum. Magn Reson Med 2019; 83:1688-1697. [PMID: 31631414 DOI: 10.1002/mrm.28040] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE The magnetization transfer and relaxation normalized amide proton transfer (MRAPT) analysis is promising to provide a highly pH-specific mapping of tissue acidosis, complementing commonly used CEST asymmetry analysis. We aimed to develop a fast B0 inhomogeneity correction algorithm for acute stroke magnetization transfer and relaxation normalized amide proton transfer imaging without Z-spectral interpolation. METHODS The proposed fast field inhomogeneity correction describes B0 artifacts with linear regression. We compared the new algorithm with the routine interpolation correction approach in CEST imaging of a dual-pH phantom. The fast B0 correction was further evaluated in amide proton transfer imaging of normal and acute stroke rats. RESULTS Our phantom data showed that the proposed fast B0 inhomogeneity correction significantly improved pH MRI contrast, recovering over 80% of the pH MRI contrast-to-noise-ratio difference between the raw magnetization transfer ratio asymmetry and that using the routine interpolation-based B0 correction approach. In normal rat brains, the proposed fast B0 correction improved pH-specific MRI uniformity across the intact tissue, with the ratio of magnetization transfer and relaxation normalized amide proton transfer ratio being 10% of that without B0 inhomogeneity correction. In acute stroke rats, fast B0 inhomogeneity-corrected pH MRI reveals substantially improved pH lesion conspicuity, particularly in regions with nonnegligible B0 inhomogeneity. The pH MRI contrast-to-noise ratio between the ipsilateral diffusion lesion and contralateral normal tissue improved significantly with fast B0 correction (from 1.88 ± 0.48 to 2.20 ± 0.44, P < .01). CONCLUSIONS Our study established an expedient B0 inhomogeneity correction algorithm for fast pH imaging of acute ischemia.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
65
|
Sun PZ. Development of intravoxel inhomogeneity correction for chemical exchange saturation transfer spectral imaging: a high-resolution field map-based deconvolution algorithm for magnetic field inhomogeneity correction. Magn Reson Med 2019; 83:1348-1355. [PMID: 31628765 DOI: 10.1002/mrm.28015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 09/04/2019] [Accepted: 09/05/2019] [Indexed: 12/12/2022]
Abstract
PURPOSE CEST MRI is sensitive to dilute proteins/peptides and microenvironmental properties yet susceptible to magnetic field inhomogeneity. We aimed to develop a high-resolution field map-based CEST intravoxel inhomogeneity correction (CIVIC) algorithm for CEST Z-spectral imaging. METHODS The proposed CIVIC approach treats the intravoxel inhomogeneity as a point spread function and applies the deconvolution algorithm to reconstruct the original Z-spectrum. We simulated the effect of B0 field inhomogeneity on CEST measurement and tested the efficacy of the proposed CIVIC algorithm. We also performed CEST MRI on a dual-pH Creatine-gel phantom under varied field homogeneity conditions and compared the CEST MRI contrast-to-noise ratio from the raw Z-spectrum, water saturation shift referencing, and the proposed CIVIC methods. RESULTS The numerical simulation showed that the CIVIC algorithm remains effective even in the case of symmetric field dispersion with a 0 mean shift. The experimental results confirmed that the proposed CIVIC method substantially improves the CEST MRI contrast-to-noise ratio under different field homogeneity conditions. CONCLUSION Our study established a new intravoxel B0 inhomogeneity correction algorithm, promising to facilitate CEST spectral imaging in challenging experimental conditions.
Collapse
Affiliation(s)
- Phillip Zhe Sun
- Yerkes Imaging Center, Yerkes National Primate Research Center, Emory University, Atlanta, Georgia.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, Georgia
| |
Collapse
|
66
|
Zhang L, Zhao Y, Chen Y, Bie C, Liang Y, He X, Song X. Voxel-wise Optimization of Pseudo Voigt Profile (VOPVP) for Z-spectra fitting in chemical exchange saturation transfer (CEST) MRI. Quant Imaging Med Surg 2019; 9:1714-1730. [PMID: 31728314 PMCID: PMC6828582 DOI: 10.21037/qims.2019.10.01] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022]
Abstract
BACKGROUND Chemical exchange saturation transfer (CEST) MRI is a promising approach for detecting biochemical alterations in cancers and neurological diseases, but the quantification can be challenging. Among numerous quantification methods, Lorentzian difference (LD) is relatively simple and widely used, which employs Lorentzian line-shape as a reference to describe the direct saturation (DS) of water and takes account of difference against experimental CEST spectra data. However, LD often overestimates CEST and nuclear overhauser enhancement (NOE) effects. Specifically, for fast-exchanging CEST species require higher saturation power (B1_sat) or in the presence of strong magnetization transfer (MT) contrast, Z-spectrum appears more like a Gaussian line-shape rather than a Lorentzian line-shape. METHODS To improve the conventional LD analysis, the present study developed and validated a novel fitting algorithm through a linear combination of Gaussian and Lorentzian function as the reference spectra, namely, Voxel-wise Optimization of Pseudo Voigt Profile (VOPVP). The experimental Z-spectra were pre-fitted with Gaussian and Lorentzian method independently, in order to determine Lorentzian proportionality coefficient (a). To further compensate for the line-shape changes under different B1_sat's, a B1-dependent adjustment was applied to the experimental Z-spectra (Z_exp) according to the prior knowledge learned from 5-pool Bloch equation-based simulations at a range of B1_sat's. Then, the obtained Z-spectra (Z_B1adj) was fitted by the previously defined VOPVP function. Considering the asymmetric component of MT, the positive- and negative-side of Z-spectra were fitted separately, while the middle part (-0.6 to 0.6 ppm, consisted primarily of DS) was fitted using Lorentzian function. Finally, the difference between Z_VOPVP and Z_exp was defined as the CEST and NOE contrast. To validate our VOPVP method, an extensive simulation of CEST Z-spectra was performed using 5-pool model and 6-pool model with greater MT component. RESULTS In comparison with LD approach, VOPVP exhibited lower sum of squares due to error (SSE) and higher goodness of fit (R-square) for the experimental Z-spectra at all B1_sat. Moreover, the results indicated that VOPVP fitting improved the overestimated contributions from amide proton transfer (APT) and NOE through LD at all B1_sat. Despite that the relationship for B1-dependent adjustment was pre-determined using a single 5-pool model, the VOPVP fittings obtained accurate quantification for multiple 6-pool models with a range of T1w's and T2w's. The robustness of VOPVP fitting was also proved by simulations using 3T parameters. Furthermore, we assessed VOPVP in vivo in a glioblastoma-bearing mouse. Compared to LD maps, VOPVP quantification maps displayed higher contrast-to-noise ratio between tumor and normal contralateral tissue for APT, glutamate and nuclear overhauser effect (NOE), when B1_sat >1 µT. CONCLUSIONS As an improvement of LD method, VOPVP fitting can serve as a simple, robust and more accurate approach for quantifying CEST and NOE contrast.
Collapse
Affiliation(s)
- Lihong Zhang
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| | - Yingcheng Zhao
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| | - Yanrong Chen
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| | - Chongxue Bie
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| | - Yuhua Liang
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| | - Xiaowei He
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| | - Xiaolei Song
- School of Information Science and Technology, Northwest University, Xi'an 710127, China
| |
Collapse
|
67
|
Vinogradov E. Imaging molecules. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 306:145-149. [PMID: 31337563 DOI: 10.1016/j.jmr.2019.07.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/27/2019] [Accepted: 07/08/2019] [Indexed: 06/10/2023]
Abstract
Molecular imaging using MRI is gaining momentum. While sensitivity of MR is limited compared to other molecular imaging modalities, the molecular specificity is high in comparison. Moreover, MRI offers contrast based on multitude of processes and scales, from intramolecular relaxation pathways to water diffusion. Living tissue offers abundance of potential molecular targets of interest in biology and medicine. In this short perspective we focus on some direct and indirect methods to visualize endogenous molecules. We briefly discuss Spectroscopic Imaging (MRSI), Chemical Exchange Saturation Transfer (CEST) and Magnetization Transfer Contrast (MTC). Imaging molecules with MRI is part of the larger universe of imaging methods. Moreover, it is part of ever increasing pool of data combining imaging with other modalities, biology and patient outcomes.
Collapse
Affiliation(s)
- Elena Vinogradov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA; Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
68
|
Knowles BR, Friedrich F, Fischer C, Paech D, Ladd ME. Beyond T2 and 3T: New MRI techniques for clinicians. Clin Transl Radiat Oncol 2019; 18:87-97. [PMID: 31341982 PMCID: PMC6630188 DOI: 10.1016/j.ctro.2019.04.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/11/2019] [Accepted: 04/11/2019] [Indexed: 12/12/2022] Open
Abstract
Technological advances in Magnetic Resonance Imaging (MRI) in terms of field strength and hybrid MR systems have led to improvements in tumor imaging in terms of anatomy and functionality. This review paper discusses the applications of such advances in the field of radiation oncology with regards to treatment planning, therapy guidance and monitoring tumor response and predicting outcome.
Collapse
Affiliation(s)
- Benjamin R. Knowles
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Florian Friedrich
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Carola Fischer
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| | - Daniel Paech
- Department of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark E. Ladd
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Department of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
69
|
Albatany M, Ostapchenko VG, Meakin S, Bartha R. Brain tumor acidification using drugs simultaneously targeting multiple pH regulatory mechanisms. J Neurooncol 2019; 144:453-462. [PMID: 31392597 DOI: 10.1007/s11060-019-03251-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 07/22/2019] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Non-invasively distinguishing aggressive from non-aggressive brain tumors is an important clinical challenge. Intracellular pH (pHi) regulation is essential for normal cell function and is normally maintained within a narrow range. Cancer cells are characterized by a reversed intracellular to extracellular pH gradient, compared to healthy cells, that is maintained by several distinct mechanisms. Previous studies have demonstrated acute pH modulation in glioblastoma detectable by chemical exchange saturation transfer (CEST) magnetic resonance imaging (MRI) after blocking individual pH regulatory mechanisms. The purpose of the current study was to simultaneously block five pH regulatory mechanisms while also providing glucose as an energy substrate. We hypothesized that this approach would increase the acute pH modulation effect allowing the identification of aggressive cancer. METHODS Using a 9.4 T MRI scanner, CEST spectra were acquired sensitive to pHi using amine/amide concentration independent detection (AACID). Twelve mice were scanned approximately 11 ± 1 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after intraperitoneal injection of a combination of five drugs (quercetin, cariporide, dichloroacetate, acetazolamide, and pantoprazole) with and without glucose. RESULTS Two hours after combination drug injection there was a significant 0.1 ± 0.03 increase in tumor AACID value corresponding to a 0.4 decrease in pHi. After injecting the drug combination with glucose the AACID value increased by 0.18 ± 0.03 corresponding to a 0.72 decrease in pHi. AACID values were also slightly increased in contralateral tissue. CONCLUSIONS The combined drug treatment with glucose produced a large acute CEST MRI contrast indicating tumor acidification, which could be used to help localize brain cancer and monitor tumor response to chemotherapy.
Collapse
Affiliation(s)
- Mohammed Albatany
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N65B7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N65B7, Canada
| | - Valeriy G Ostapchenko
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N65B7, Canada
| | - Susan Meakin
- Department of Biochemistry, The University of Western Ontario, London, ON, N65B7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N65B7, Canada.
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N65B7, Canada.
| |
Collapse
|
70
|
Krikken E, van der Kemp WJ, Khlebnikov V, van Dalen T, Los M, van Laarhoven HW, Luijten PR, van den Bosch MA, Klomp DW, Wijnen JP. Contradiction between amide-CEST signal and pH in breast cancer explained with metabolic MRI. NMR IN BIOMEDICINE 2019; 32:e4110. [PMID: 31136039 PMCID: PMC6772111 DOI: 10.1002/nbm.4110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
PURPOSE Metabolic MRI is a noninvasive technique that can give new insights into understanding cancer metabolism and finding biomarkers to evaluate or monitor treatment plans. Using this technique, a previous study has shown an increase in pH during neoadjuvant chemotherapy (NAC) treatment, while recent observation in a different study showed a reduced amide proton transfer (APT) signal during NAC treatment (negative relation). These findings are counterintuitive, given the known intrinsic positive relation of APT signal to pH. METHODS In this study we combined APT MRI and 31 P-MRSI measurements to unravel the relation between the APT signal and pH in breast cancer. Twenty-two breast cancer patients were scanned with a 7 T MRI before and after the first cycle of NAC treatment. pH was determined by the chemical shift of inorganic phosphate (Pi). RESULTS While APT signals have a positive relation to pH and amide content, we observed a direct negative linear correlation between APT signals and pH in breast tumors in vivo. CONCLUSIONS As differentiation of cancer stages was confirmed by observation of a linear correlation between cell proliferation marker PE/Pi (phosphoethanolamine over inorganic phosphate) and pH in the tumor, our data demonstrates that the concentration of mobile proteins likely supersedes the contribution of the exchange rate to the APT signal.
Collapse
Affiliation(s)
- Erwin Krikken
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Vitaliy Khlebnikov
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Maartje Los
- Department of Medical OncologySt. Antonius ZiekenhuisNieuwegein/UtrechtThe Netherlands
| | - Hanneke W.M. van Laarhoven
- Department of Medical Oncology, Academic Medical Centre AmsterdamCancer Center AmsterdamAmsterdamThe Netherlands
| | - Peter R. Luijten
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Dennis W.J. Klomp
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jannie P. Wijnen
- Department of RadiologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
71
|
Tanoue M, Saito S, Takahashi Y, Araki R, Hashido T, Kioka H, Sakata Y, Yoshioka Y. Amide proton transfer imaging of glioblastoma, neuroblastoma, and breast cancer cells on a 11.7 T magnetic resonance imaging system. Magn Reson Imaging 2019; 62:181-190. [PMID: 31302222 DOI: 10.1016/j.mri.2019.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 07/10/2019] [Accepted: 07/10/2019] [Indexed: 01/01/2023]
Abstract
PURPOSE The purpose of this study was (i) to determine the optimal magnetization transfer (MT) pulse parameter for amide proton transfer (APT) chemical exchange saturation transfer (CEST) imaging on an ultra-high-field magnetic resonance imaging (MRI) system and (ii) to use APT CEST imaging to noninvasively assess brain orthotopic and ectopic tumor cells transplanted into the mouse brain. METHODS To evaluate APT without the influence of other metabolites, we prepared egg white phantoms. Next, we used 7-11-week-old nude female mice and the following cell lines to establish tumors after injection into the left striatum of mice: C6 (rat glioma, n = 8) as primary tumors and Neuro-2A (mouse neuroblastoma, n = 11) and MDA-MB231 (human breast cancer, n = 8) as metastatic tumors. All MRI experiments were performed on an 11.7 T vertical-bore scanner. CEST imaging was performed at 1 week after injection of Neuro-2A cells and at 2 weeks after injection of C6 and MDA-MB231 cells. The MT pulse amplitude was set at 2.2 μT or 4.4 μT. We calculated and compared the magnetization transfer ratio (MTR) and difference of MTR asymmetry between normal tissue and tumor (ΔMTR asymmetry) on APT CEST images between mouse models of brain tumors. Then, we performed hematoxylin and eosin (HE) staining and Ki-67 immunohistochemical staining to compare the APT CEST effect on tumor tissues and the pathological findings. RESULTS Phantom study of the amide proton phantom containing chicken egg white, z-spectra obtained at a pulse length of 500 ms showed smaller peaks, whereas those obtained at a pulse length of 2000 ms showed slightly higher peaks. The APT CEST effect on tumor tissues was clearer at a pulse amplitude of 2.2 μT than at 4.4 μT. For all mouse models of brain tumors, ΔMTR asymmetry was higher at 2.2 μT than at 4.4 μT. ΔMTR asymmetry was significantly higher for the Neuro-2A model than for the MDA-MB231 model. HE staining revealed light bleeding in Neuro-2A tumors. Immunohistochemical staining revealed that the density of Ki-67-positive cells was higher in Neuro-2A tumors than in C6 or MDA-MB231 tumors. CONCLUSION The MTR was higher at 4.4 μT than at 2.2 μT for each concentration of egg white at a pulse length of 500 ms or 2000 ms. High-resolution APT CEST imaging on an ultra-high-field MRI system was able to provide tumor information such as proliferative potential and intratumoral bleeding, noninvasively.
Collapse
Affiliation(s)
- Minori Tanoue
- Laboratory of Biofunctional Imaging, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 560-0871, Japan
| | - Shigeyoshi Saito
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 560-0871, Japan.
| | - Yusuke Takahashi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Rikita Araki
- BioSpin Division, Bruker Japan K.K., Yokohama, Kanagawa 221-0022, Japan
| | - Takashi Hashido
- Department of Medical Physics and Engineering, Division of Health Sciences, Osaka University Graduate School of Medicine, Suita, Osaka 560-0871, Japan
| | - Hidetaka Kioka
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Osaka 565-0871, Japan
| | - Yoshichika Yoshioka
- Laboratory of Biofunctional Imaging, Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 560-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Osaka 560-0871, Japan
| |
Collapse
|
72
|
Salehi Ravesh M, Huhndorf M, Moussavi A. Non-contrast enhanced molecular characterization of C6 rat glioma tumor at 7 T. Magn Reson Imaging 2019; 61:175-186. [PMID: 31150813 DOI: 10.1016/j.mri.2019.05.036] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/08/2019] [Accepted: 05/26/2019] [Indexed: 01/19/2023]
Abstract
PURPOSE The aim of this study was to investigate, how to assess the relevant magnetization changes in the rat brain tissue due to the present of glioma tumor and its growth at a 7 T animal magnetic resonance imaging (MRI) system. MATERIAL AND METHODS For this study, a custom-built two dimensional (2D) chemical exchange saturation transfer (CEST) pulse sequence was optimized for different tissue properties using fresh and cooked quail eggs. C6 tumor cells were investigated by in-vivo and post-mortem measurements in six Wistar rats using the optimized CEST sequence up to 5 weeks. Magnetization transfer ratio (MTR)- and asymmetric MTR (MTRasym)-maps of rat brains were created at different frequency offsets. In-vivo results were verified by 1H spectroscopic, histological and also in-vitro C6 cell culture examinations. RESULTS The CEST module for the optimal visualization of magnetization effects consists of five RF-pulses, each with a duration of 20 ms and a flip angle of 180°. In-vivo and post-mortem z-spectra of the cerebrospinal fluid (CSF), cortex, myelinated/demyelinated, healthy and tumorous tissue and tumor rim were obtained. The magnetization level and shape of the z-spectra on the upfield and downfield from the water peak were not the same. The magnetization dips on the upfield and downfield from the water peak of the z-spectra disappeared due to the thermal denaturation in cooked quail eggs and due to formaldehyde-induced fixation in post-mortem rat brains. The z-spectra of the rat brain in a range of ±2 to ±4 ppm displayed valuable information about the differentiation of various brain regions from the tumor tissue. Histological examinations confirmed our results. The C6 cell culture examinations showed that the observed magnetization changes in the rat brain occurred only due to the interaction between glioma cells and their environment in the rat brain and not from the C6 tumor cells. CONCLUSIONS Based on our in-vivo and post-mortem results, it is to be recommended to create the MTR-maps at a special offset frequency depending on the aim of research project instead of MTRasym-maps. Otherwise, the desired effect attenuates or vanishes.
Collapse
Affiliation(s)
- Mona Salehi Ravesh
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany; Department for Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany.
| | - Monika Huhndorf
- Department for Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany
| | - Amir Moussavi
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein (UKSH), Kiel University, Kiel, Germany; Functional Imaging Unit, German Primate Center, Leibnitz Institute for Primate Research, Göttingen, Germany
| |
Collapse
|
73
|
Assessment of Early Therapeutic Response to Nitroxoline in Temozolomide-Resistant Glioblastoma by Amide Proton Transfer Imaging: A Preliminary Comparative Study with Diffusion-weighted Imaging. Sci Rep 2019; 9:5585. [PMID: 30944404 PMCID: PMC6447588 DOI: 10.1038/s41598-019-42088-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 03/25/2019] [Indexed: 01/19/2023] Open
Abstract
Amide proton transfer (APT) imaging is a novel molecular MRI technique to detect endogenous mobile proteins and peptides through chemical exchange saturation transfer. In this preliminary study, the purpose was to evaluate the feasibility of APT imaging in monitoring the early therapeutic response to nitroxoline (NTX) in a temozolomide (TMZ)-resistant glioblastoma multiforme (GBM) mouse model, which was compared with diffusion-weighted imaging (DWI). Here, we prepared TMZ-resistant GBM mouse model (n = 12), which were treated with 100 mg/kg/day of NTX (n = 4) or TMZ (n = 4), or saline (n = 4) for 7 days for the evaluation of short-term treatment by using APT imaging and DWI sequentially. The APT signal intensities and apparent diffusion coefficient (ADC) values were calculated and compared before and after treatment. Moreover, immunohistological analysis was also employed for the correlation between APT imaging and histopathology. The association between the APT value and Ki-67 labeling index was evaluated by using simple linear regression analysis. The short-term NTX treatment resulted in significant decrease in APT value as compared to untreated and TMZ group, in which APT signals were increased. However, we did not observe significantly increased mean ADC value following short-term NTX treatment. The Ki-67 labeling index shows a correlation with APT value. APT imaging could show the earlier response to NTX treatment as compared to ADC values in a TMZ-resistant mouse model. We believe that APT imaging can be a useful imaging biomarker for the early therapeutic evaluation in GBM patients.
Collapse
|
74
|
pH-weighted amine chemical exchange saturation transfer echoplanar imaging (CEST-EPI) as a potential early biomarker for bevacizumab failure in recurrent glioblastoma. J Neurooncol 2019; 142:587-595. [PMID: 30806888 DOI: 10.1007/s11060-019-03132-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 02/21/2019] [Indexed: 11/27/2022]
Abstract
PURPOSE The objective of the current study was to explore the efficacy of using pH-weighted amine CEST-EPI as a potential non-invasive imaging biomarker for treatment response and/or failure in recurrent GBM patients treated with bevacizumab. METHOD A total of 11 patients with recurrent GBM treated with bevacizumab were included in this prospective study. CEST-EPI, perfusion MRI, and standardized anatomic MRI were obtained in patients before and after bevacizumab administration. CEST-EPI measures of magnetization transfer ratio asymmetry (MTRasym) at 3 ppm were used for pH-weighted imaging contrast. Multiple measures were examined for their association with progression-free survival (PFS). RESULT Tumor acidity, measured with MTRasym at 3 ppm, was significantly reduced in both contrast enhancing and non-enhancing tumor after bevacizumab (p = 0.0002 and p < 0.00001, respectively). The reduction in tumor acidity in both contrast enhancing and non-enhancing tumor was linearly correlated with PFS (p = 0.044 and p = 0.00026, respectively). In 9 of the 11 patients, areas of residual acidity were localized to areas of tumor recurrence, typically around 2 months prior to radiographic progression. Univariate (p = 0.006) and multivariate Cox regression controlling for age (p = 0.009) both indicated that change in tumor acidity (ΔMTRasym at 3 ppm) was a significant predictor of PFS. CONCLUSIONS This pilot study suggests pH-weighted amine CEST MRI may have value as a non-invasive, early imaging biomarker for bevacizumab treatment response and failure. Early decreases MTRasym at 3.0 ppm in recurrent GBM after bevacizumab may be associated with better PFS. Residual or emerging regions of acidity may colocalize to the site of tumor recurrence.
Collapse
|
75
|
The diagnostic efficacy of amide proton transfer imaging in grading gliomas and predicting tumor proliferation. Neuroreport 2019; 30:139-144. [PMID: 30571668 DOI: 10.1097/wnr.0000000000001174] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Glioma is the most common primary intracranial tumor. Molecular neuropathology was introduced into the new 2016 WHO classification of brain tumor. Among the molecular biomarkers, Ki-67 antigen is the most important one, which reflects the proliferation rate and invasive ability of tumor cells. The amide proton transfer imaging, as a novel functional MR technique, can detect the free protein and polypeptide noninvasively, which might be a novel imaging method for predicting the WHO grading of glioma. In our study, the asymmetric magnetization transfer ratio (MTRasym) of high-grade gliomas (4.5%±2.3%) was significantly higher than of low-grade gliomas (2.9±1.1%), and the high-grade gliomas also showed higher expression of Ki-67 (38.9±21.0%) than did low-grade gliomas (4.3±2.8%). The MTRasym was positively correlated with Ki-67 values (r=0.25, P<0.001). The area under the receiver operating characteristic curve of MTRasym was 0.719. Furthermore, the diagnosis efficiency of MTRasym is better than that of the apparent diffusion coefficient (area under the receiver operating characteristic curve=0.682). This prospective study demonstrates that amide proton transfer may help in grading gliomas and has great potency in predicting tumor cell proliferation.
Collapse
|
76
|
Lohmann P, Werner JM, Shah NJ, Fink GR, Langen KJ, Galldiks N. Combined Amino Acid Positron Emission Tomography and Advanced Magnetic Resonance Imaging in Glioma Patients. Cancers (Basel) 2019; 11:cancers11020153. [PMID: 30699942 PMCID: PMC6406895 DOI: 10.3390/cancers11020153] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 02/07/2023] Open
Abstract
Imaging techniques such as positron emission tomography (PET) and magnetic resonance imaging (MRI) provide valuable information about brain tumor patients. Particularly amino acid PET, advanced MRI techniques, and combinations thereof are of great interest for the non-invasive assessment of biological characteristics in patients with primary or secondary brain cancer. A methodological innovation that potentially advances research in patients with brain tumors is the increasing availability of hybrid PET/MRI systems, which enables the simultaneous acquisition of both imaging modalities. Furthermore, the advent of ultra-high field MRI scanners operating at magnetic field strengths of 7 T or more will allow further development of metabolic MR imaging at higher resolution. This review focuses on the combination of amino acid PET with MR spectroscopic imaging, perfusion- and diffusion-weighted imaging, as well as chemical exchange saturation transfer in patients with high-grade gliomas, especially glioblastomas.
Collapse
Affiliation(s)
- Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
| | - Jan-Michael Werner
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - N Jon Shah
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- JARA-BRAIN-Translational Medicine, 52074 Aachen, Germany.
- Department of Neurology, RWTH Aachen University, 52074 Aachen, Germany.
| | - Gereon R Fink
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
| | - Karl-Josef Langen
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- Department of Nuclear Medicine, RWTH Aachen University, 52074 Aachen, Germany.
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-3, -4, -5, -11), Forschungszentrum Juelich, 52425 Juelich, Germany.
- Department of Neurology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany.
- Center of Integrated Oncology (CIO), Universities of Cologne and Bonn, 50937 Cologne, Germany.
| |
Collapse
|
77
|
Zhou J, Heo HY, Knutsson L, van Zijl PCM, Jiang S. APT-weighted MRI: Techniques, current neuro applications, and challenging issues. J Magn Reson Imaging 2019; 50:347-364. [PMID: 30663162 DOI: 10.1002/jmri.26645] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
Amide proton transfer-weighted (APTw) imaging is a molecular MRI technique that generates image contrast based predominantly on the amide protons in mobile cellular proteins and peptides that are endogenous in tissue. This technique, the most studied type of chemical exchange saturation transfer imaging, has been used successfully for imaging of protein content and pH, the latter being possible due to the strong dependence of the amide proton exchange rate on pH. In this article we briefly review the basic principles and recent technical advances of APTw imaging, which is showing promise clinically, especially for characterizing brain tumors and distinguishing recurrent tumor from treatment effects. Early applications of this approach to stroke, Alzheimer's disease, Parkinson's disease, multiple sclerosis, and traumatic brain injury are also illustrated. Finally, we outline the technical challenges for clinical APT-based imaging and discuss several controversies regarding the origin of APTw imaging signals in vivo. Level of Evidence: 3 Technical Efficacy Stage: 3 J. Magn. Reson. Imaging 2019;50:347-364.
Collapse
Affiliation(s)
- Jinyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Hye-Young Heo
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Linda Knutsson
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,Department of Medical Radiation Physics, Lund University, Lund, Sweden
| | - Peter C M van Zijl
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| | - Shanshan Jiang
- Division of MR Research, Department of Radiology, Johns Hopkins University, Baltimore, Maryland, USA.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
| |
Collapse
|
78
|
Qamar S, King AD, Ai QY, Law BKH, Chan JSM, Poon DMC, Tong M, Mo FKF, Chen W, Bhatia KS, Ahuja AT, Ma BBY, Yeung DKW, Wang YX, Yuan J. Amide proton transfer MRI detects early changes in nasopharyngeal carcinoma: providing a potential imaging marker for treatment response. Eur Arch Otorhinolaryngol 2018; 276:505-512. [DOI: 10.1007/s00405-018-5231-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 11/28/2018] [Indexed: 01/05/2023]
|
79
|
Cohen O, Huang S, McMahon MT, Rosen MS, Farrar CT. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF). Magn Reson Med 2018; 80:2449-2463. [PMID: 29756286 PMCID: PMC6234098 DOI: 10.1002/mrm.27221] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 03/19/2018] [Accepted: 03/25/2018] [Indexed: 01/19/2023]
Abstract
PURPOSE To develop a fast magnetic resonance fingerprinting (MRF) method for quantitative chemical exchange saturation transfer (CEST) imaging. METHODS We implemented a CEST-MRF method to quantify the chemical exchange rate and volume fraction of the Nα -amine protons of L-arginine (L-Arg) phantoms and the amide and semi-solid exchangeable protons of in vivo rat brain tissue. L-Arg phantoms were made with different concentrations (25-100 mM) and pH (pH 4-6). The MRF acquisition schedule varied the saturation power randomly for 30 iterations (phantom: 0-6 μT; in vivo: 0-4 μT) with a total acquisition time of ≤2 min. The signal trajectories were pattern-matched to a large dictionary of signal trajectories simulated using the Bloch-McConnell equations for different combinations of exchange rate, exchangeable proton volume fraction, and water T1 and T2 relaxation times. RESULTS The chemical exchange rates of the Nα -amine protons of L-Arg were significantly (P < 0.0001) correlated with the rates measured with the quantitation of exchange using saturation power method. Similarly, the L-Arg concentrations determined using MRF were significantly (P < 0.0001) correlated with the known concentrations. The pH dependence of the exchange rate was well fit (R2 = 0.9186) by a base catalyzed exchange model. The amide proton exchange rate measured in rat brain cortex (34.8 ± 11.7 Hz) was in good agreement with that measured previously with the water exchange spectroscopy method (28.6 ± 7.4 Hz). The semi-solid proton volume fraction was elevated in white (12.2 ± 1.7%) compared to gray (8.1 ± 1.1%) matter brain regions in agreement with previous magnetization transfer studies. CONCLUSION CEST-MRF provides a method for fast, quantitative CEST imaging.
Collapse
Affiliation(s)
- Ouri Cohen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Shuning Huang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Michael T. McMahon
- F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Matthew S. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
- Department of Physics, Harvard University, Cambridge, MA, USA
| | - Christian T. Farrar
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
80
|
Vohra R, Park J, Wang YN, Gravelle K, Whang S, Hwang JH, Lee D. Evaluation of pancreatic tumor development in KPC mice using multi-parametric MRI. Cancer Imaging 2018; 18:41. [PMID: 30409175 PMCID: PMC6225661 DOI: 10.1186/s40644-018-0172-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 10/16/2018] [Indexed: 12/18/2022] Open
Abstract
Background Pancreatic ductal adenocarcinoma (PDA) is a fatal disease with very poor prognosis. Development of sensitive and noninvasive methods to monitor tumor progression in PDA is a critical and unmet need. Magnetic resonance imaging (MRI) can noninvasively provide information regarding underlying pathophysiological processes such as necrosis, inflammatory changes and fibrotic tissue deposition. Methods A genetically engineered KPC mouse model that recapitulates human PDA was used to characterize disease progression. MR measures of T1 and T2 relaxation times, magnetization transfer ratio (MTR), diffusion and chemical exchange saturation transfer were compared in two separate phases i.e. slow and rapid growth phase of tumor. Fibrotic tissue accumulation was assessed histologically using Masson’s trichrome staining. Pearson correlation coefficient (r) was computed to assess the relationship between the fibrotic tissue accumulation and different MR parameters. Results There was a negative correlation between amide proton transfer signal intensity and tumor volume (r = − 0.63, p = 0.003) in the slow growth phase of the tumor development. In the terminal stage of rapid growth phase of the tumor development MTR was strongly correlated with tumor volume (r = 0.62, p = 0.008). Finally, MTR was significantly correlated with % fibrosis (r = 0.87; p < 0.01), followed by moderate correlation between tumor volume (r = 0.42); T1 (r = − 0.61), T2 (r = − 0.61) and accumulation of fibrotic tissue. Conclusions Here we demonstrated, using multi-parametric MRI (mp-MRI), that MRI parameters changed with tumor progression in a mouse model of PDA. Use of mp-MRI may have the potential to monitor the dynamic changes of tumor microenvironment with increase in tumor size in the transgenic KPC mouse model of pancreatic tumor. Electronic supplementary material The online version of this article (10.1186/s40644-018-0172-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ravneet Vohra
- Department of Radiology, University of Washington, Seattle, USA
| | - Joshua Park
- Department of Radiology, University of Washington, Seattle, USA
| | - Yak-Nam Wang
- Applied Physics Laboratory, University of Washington, Seattle, USA
| | - Kayla Gravelle
- Applied Physics Laboratory, University of Washington, Seattle, USA
| | - Stella Whang
- Applied Physics Laboratory, University of Washington, Seattle, USA
| | - Joo-Ha Hwang
- Department of Medicine, University of Washington, Seattle, USA
| | - Donghoon Lee
- Department of Radiology, University of Washington, Seattle, USA.
| |
Collapse
|
81
|
Wu Y, Chen Y, Zhao Y, Yang S, Zhao J, Zhou J, Chen Z, Sun PZ, Zheng H. Direct radiofrequency saturation corrected amide proton transfer tumor MRI at 3T. Magn Reson Med 2018; 81:2710-2719. [DOI: 10.1002/mrm.27562] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Yin Wu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| | - Yinsheng Chen
- Department of Neurosurgery Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Yiying Zhao
- Department of Neurosurgery Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Shasha Yang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| | - Jing Zhao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| | - Jian Zhou
- Department of Medical Imaging Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Zhongping Chen
- Department of Neurosurgery Cancer Center, Sun Yat‐Sen University Guangzhou Guangdong China
| | - Phillip Zhe Sun
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology Massachusetts General Hospital and Harvard Medical School Charlestown Massachusetts
- Yerkes Imaging Center Yerkes National Primate Research Center, Emory University Atlanta Georgia
- Department of Radiology Emory University School of Medicine Atlanta Georgia
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology Chinese Academy of Sciences Shenzhen Guangdong China
| |
Collapse
|
82
|
Roussel T, Rosenberg JT, Grant SC, Frydman L. Brain investigations of rodent disease models by chemical exchange saturation transfer at 21.1 T. NMR IN BIOMEDICINE 2018; 31:e3995. [PMID: 30052292 PMCID: PMC6419096 DOI: 10.1002/nbm.3995] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 06/08/2018] [Accepted: 06/09/2018] [Indexed: 05/08/2023]
Abstract
This study explores opportunities opened up by ultrahigh fields for in vivo saturation transfer brain magnetic resonance imaging experiments. Fast spin-echo images weighted by chemical exchange saturation transfer (CEST) effects were collected on Sprague-Dawley rats at 21.1 T, focusing on two neurological models. One involved a middle cerebral artery occlusion emulating ischemic stroke; the other involved xenografted glioma cells that were followed over the course of several days as they developed into brain tumors. A remarkably strong saturation-derived contrast was observed for the growing tumors when calculating magnetization transfer ratios at c. 3.8 ppm. This large contrast originated partially from an increase in the contribution of the amide CEST effect, but mostly from strong decreases in the Overhauser and magnetization transfer contributions to the upfield region, whose differential attenuations could be clearly discerned thanks to the ultrahigh field. The high spectral separation arising at 21.1 T also revealed numerous CEST signals usually overlapping at lower fields. Ischemic lesions were also investigated but, remarkably, magnetization and saturation transfer contrasts were nearly absent when computing transfer asymmetries using either high or low saturation power schemes. These behaviors were consistently observed at 24 hours post-occlusion, regardless of the data processing approach assayed. Considerations related to how various parameters defining these experiments depend on the magnetic field, primarily chemical shifts and T1 values, are discussed.
Collapse
Affiliation(s)
- Tangi Roussel
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Samuel C. Grant
- National High Magnetic Field Laboratory, Tallahassee, Florida
- Department of Chemical & Biomedical Engineering, FAMU-FSU College of Engineering, The Florida State University, Tallahassee, Florida
| | - Lucio Frydman
- Department of Chemical and Biological Physics, Weizmann Institute of Science, Rehovot, Israel
- National High Magnetic Field Laboratory, Tallahassee, Florida
| |
Collapse
|
83
|
Jiang S, Eberhart CG, Lim M, Heo HY, Zhang Y, Blair L, Wen Z, Holdhoff M, Lin D, Huang P, Qin H, Quinones-Hinojosa A, Weingart JD, Barker PB, Pomper MG, Laterra J, van Zijl PCM, Blakeley JO, Zhou J. Identifying Recurrent Malignant Glioma after Treatment Using Amide Proton Transfer-Weighted MR Imaging: A Validation Study with Image-Guided Stereotactic Biopsy. Clin Cancer Res 2018; 25:552-561. [PMID: 30366937 DOI: 10.1158/1078-0432.ccr-18-1233] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 09/06/2018] [Accepted: 10/22/2018] [Indexed: 12/13/2022]
Abstract
PURPOSE To quantify the accuracy of amide proton transfer-weighted (APTw) MRI for identifying active glioma after treatment via radiographically guided stereotactic tissue validation.Experimental Design: Twenty-one patients who were referred for surgery for MRI features concerning for tumor progression versus treatment effect underwent preoperative APTw imaging. Stereotactic biopsy samples were taken from regions of interest with varying APTw signal intensities. The relationship between final clinical pathology and the histopathology of each of the 64 specimens was analyzed relative to APTw results. Analysis of confirmed recurrent tumor or treatment effect tissue was used to perform ROC analysis. RESULTS Eighteen of 21 patients had recurrent tumor, and 3 had treatment effect on clinical pathology. In 12 patients, there were multiple histopathologic assignments confirmed within the same tumor. Of the 64 total specimens, 20 specimens were active glioma, 27 mixed active and quiescent glioma, and 17 quiescent/no identifiable tumor. APTw signal intensity and histopathologic assignment, cellularity, and proliferation index had significant positive correlations (R = 0.651, 0.580, and 0.458, respectively; all P < 0.001). ROC analysis with a 1.79% APTw intensity cutoff differentiated active from nonactive tumor (AUC of 0.881) with 85.1% sensitivity and 94.1% specificity. Analysis of clinical pathology showed the mean APTw intensity for each patient had 94.4% sensitivity and 100% positive predictive value for identifying recurrent glioma at this cutoff. CONCLUSIONS APTw imaging hyperintensity may be a marker of active malignant glioma. It is able to distinguish between regions of heterogeneous abnormality on anatomic brain MRI with high sensitivity and specificity.
Collapse
Affiliation(s)
- Shanshan Jiang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | | | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Hye-Young Heo
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Yi Zhang
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Lindsay Blair
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Doris Lin
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Peng Huang
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland
| | - Huamin Qin
- Department of Pathology, Johns Hopkins University, Baltimore, Maryland
| | | | - Jon D Weingart
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Peter B Barker
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - Martin G Pomper
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland
| | - John Laterra
- Department of Neurology, Johns Hopkins University, Baltimore, Maryland.,Department of Oncology, Johns Hopkins University, Baltimore, Maryland.,Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland.,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| | | | - Jinyuan Zhou
- Department of Radiology, Johns Hopkins University, Baltimore, Maryland. .,F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland
| |
Collapse
|
84
|
Zhu Y, Ramasawmy R, Johnson SP, Taylor V, Gibb A, Pedley RB, Chattopadhyay N, Lythgoe MF, Golay X, Bradley D, Walker-Samuel S. Non-invasive imaging of disrupted protein homeostasis induced by proteasome inhibitor treatment using chemical exchange saturation transfer MRI. Sci Rep 2018; 8:15068. [PMID: 30305717 PMCID: PMC6180115 DOI: 10.1038/s41598-018-33549-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 10/02/2018] [Indexed: 11/09/2022] Open
Abstract
Proteasome inhibitors (PIs) are now standard of care for several cancers, and noninvasive biomarkers of treatment response are critically required for early patient stratification and treatment personalization. The present study evaluated whether chemical exchange (CEST) magnetic resonance imaging (MRI) can provide measurements that can be used as the noninvasive biomarkers of proteasome inhibition, alongside diffusion MRI and relaxometry. The sensitivity of human colorectal carcinoma cells to the PI Ixazomib was assessed via in vitro and in vivo dose-response experiments. Acute in vivo response to Ixazomib was assessed at three dosing concentrations, using CEST MRI (amide, amine, hydroxyl signals), diffusion MRI (ADC) and relaxometry (T1, T2). These responses were further evaluated with the known histological markers for Ixazomib and Bradford assay ex vivo. The CEST signal from amides and amines increased in proportion to Ixazomib dose in colorectal cancer xenografts. The cell lines differed in their sensitivity to Ixazomib, which was reflected in the MRI measurements. A mild stimulation in tumor growth was observed at low Ixazomib doses. Our results identify CEST MRI as a promising method for safely and noninvasively monitoring disrupted tumor protein homeostasis induced by proteasome inhibitor treatment, and for stratifying sensitivity between tumor types.
Collapse
Affiliation(s)
- Yanan Zhu
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| | - Rajiv Ramasawmy
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| | - Sean Peter Johnson
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| | - Valerie Taylor
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| | - Alasdair Gibb
- Neuroscience, Physiology & Pharmacology, University College London, London, WC1E 6BT, United Kingdom
| | - R Barbara Pedley
- Cancer Institute, University College London, London, WC1E 6DD, United Kingdom
| | - Nibedita Chattopadhyay
- Cancer Pharmacology, Takeda Pharmaceutical International Corporation, Cambridge, MA, 02139, United States
| | - Mark F Lythgoe
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom
| | - Xavier Golay
- Institute of Neurology, University College London, London, WC1N 3BG, United Kingdom
| | - Daniel Bradley
- Biomedical Imaging Group, Takeda Pharmaceutical International Corporation, Cambridge, MA, 02139, United States
| | - Simon Walker-Samuel
- Centre for Advanced Biomedical Imaging, Division of Medicine, University College London, London, WC1E 6DD, United Kingdom.
| |
Collapse
|
85
|
Choi SH. Can Amide Proton Transfer MRI Distinguish Benign and Malignant Head and Neck Tumors? Radiology 2018; 288:791-792. [DOI: 10.1148/radiol.2018180914] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
86
|
She H, Greer JS, Zhang S, Li B, Keupp J, Madhuranthakam AJ, Dimitrov IE, Lenkinski RE, Vinogradov E. Accelerating chemical exchange saturation transfer MRI with parallel blind compressed sensing. Magn Reson Med 2018; 81:504-513. [PMID: 30146714 DOI: 10.1002/mrm.27400] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/07/2018] [Accepted: 05/20/2018] [Indexed: 12/20/2022]
Abstract
PURPOSE Chemical exchange saturation transfer is a novel and promising MRI contrast method, but it can be time-consuming. Common parallel imaging methods, like SENSE, can lead to reduced quality of CEST. Here, parallel blind compressed sensing (PBCS), combining blind compressed sensing (BCS) and parallel imaging, is evaluated for the acceleration of CEST in brain and breast. METHODS The CEST data were collected in phantoms, brain (N = 3), and breast (N = 2). Retrospective Cartesian undersampling was implemented and the reconstruction results of PBCS-CEST were compared with BCS-CEST and k-t sparse-SENSE CEST. The normalized RMSE and the high-frequency error norm were used for quantitative comparison. RESULTS In phantom and in vivo brain experiments, the acceleration factor of R = 10 (24 k-space lines) was achieved and in breast R = 5 (30 k-space lines), without compromising the quality of the PBCS-reconstructed magnetization transfer rate asymmetry maps and Z-spectra. Parallel BCS provides better reconstruction quality when compared with BCS, k-t sparse-SENSE, and SENSE methods using the same number of samples. Parallel BCS overperforms BCS, indicating that the inclusion of coil sensitivity improves the reconstruction of the CEST data. CONCLUSION The PBCS method accelerates CEST without compromising its quality. Compressed sensing in combination with parallel imaging can provide a valuable alternative to parallel imaging alone for accelerating CEST experiments.
Collapse
Affiliation(s)
- Huajun She
- Institute for Medical Imaging Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Joshua S Greer
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Bioengineering, University of Texas at Dallas, Dallas, Texas
| | - Shu Zhang
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Bian Li
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Ananth J Madhuranthakam
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Ivan E Dimitrov
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Philips Healthcare, Gainesville, Florida
| | - Robert E Lenkinski
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Elena Vinogradov
- Radiology, University of Texas Southwestern Medical Center, Dallas, Texas.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
87
|
Albatany M, Meakin S, Bartha R. The Monocarboxylate transporter inhibitor Quercetin induces intracellular acidification in a mouse model of Glioblastoma Multiforme: in-vivo detection using magnetic resonance imaging. Invest New Drugs 2018; 37:595-601. [PMID: 30101388 DOI: 10.1007/s10637-018-0644-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 07/13/2018] [Indexed: 01/22/2023]
Abstract
The response of tumor intracellular pH to a pharmacological challenge could help identify aggressive cancer. Chemical exchange saturation transfer (CEST) is an MRI contrast mechanism that is dependent on intracellular pH (pHi). pHi is important in the maintenance of normal cell function and is normally maintained within a narrow range by the activity of transporters located at the plasma membrane. In cancer, changes in pHi have been correlated with both cell proliferation and cell death. Quercetin is a bioflavonoid and monocarboxylate transporter (MCT) inhibitor. Since MCTs plays a significant role in maintaining pH balance in the tumor microenvironment, we hypothesized that systemically administered quercetin could selectively acidify brain tumors. The goals of the current study were to determine whether CEST MRI measurements sensitive to tumor pH could detect acidification after quercetin injection and to measure the magnitude of the pH change (ΔpH). Using a 9.4 T MRI, amine and amide concentration independent detection (AACID) CEST spectra were acquired in six mice approximately 15 ± 1 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after administration of quercetin (dose: 200 mg/kg) by intraperitoneal injection. Three additional mice were studied as controls and received only vehicle dimethyl sulfoxide (DMSO) injection. Repeated measures t-test was used to compare AACID changes in tumor and contralateral tissue regions of interest. Two hours after quercetin injection there was a significant increase in tumor AACID by 0.07 ± 0.03 corresponding to a 0.27 decrease in pHi, and no change in AACID in contralateral tissue. There was also a small average increase in AACID in tumors within the three mice injected with DMSO only. The use of the natural compound quercetin in combination with pH weighted MRI represents a unique approach to cancer detection that does not require injection of an imaging contrast agent.
Collapse
Affiliation(s)
- Mohammed Albatany
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Susan Meakin
- Department of Biochemistry, The University of Western Ontario, London, ON, N6A 3K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, The University of Western Ontario, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
- Department of Medical Biophysics, The University of Western Ontario, London, ON, N6A 3K7, Canada.
| |
Collapse
|
88
|
Liu J, Han Z, Chen G, Li Y, Zhang J, Xu J, van Zijl PCM, Zhang S, Liu G. CEST MRI of sepsis-induced acute kidney injury. NMR IN BIOMEDICINE 2018; 31:e3942. [PMID: 29897643 DOI: 10.1002/nbm.3942] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Sepsis-induced acute kidney injury (SAKI) is a major complication of kidney disease associated with increased mortality and faster progression. Therefore, the development of imaging biomarkers to detect septic AKI is of great clinical interest. In this study, we aimed to characterize the endogenous chemical exchange saturation transfer (CEST) MRI contrast in the lipopolysaccharide (LPS)-induced SAKI mouse model and to investigate the use of CEST MRI for detecting such injury. We used a SAKI mouse model that was generated by i.p. injection of 10 mg/kg LPS. The resulting kidney injury was confirmed by the elevation of serum creatinine and histology. MRI assessments were performed 24 h after LPS injection, including CEST MRI at different B1 strengths (1, 1.8 and 3 μT), T1 mapping, T2 mapping and conventional magnetization transfer contrast (MTC) MRI. The CEST MRI results were analyzed using Z-spectra, in which the normalized water signal saturation (Ssat /S0 ) is measured as a function of saturation frequency. Substantial decreases in CEST contrast were observed at both 3.5 and - 3.5 ppm frequency offset from water at all B1 powers, with the most significant difference obtained at a B1 of 1.8 μT. The average Ssat /S0 differences between injured and normal kidneys were 0.07 (0.55 ± 0.04 versus 0.62 ± 0.04, P = 0.0028) and 0.07 (0.50 ± 0.04 versus 0.57 ± 0.03, P = 0.0008) for 3.5 and - 3.5 ppm, respectively. In contrast, the T1 and T2 relaxation times and MTC contrast in the injured kidneys did not show a significant change compared with the normal control. Our results showed that CEST MRI is more sensitive to the pathological changes in injured kidneys than the changes in T1 , T2 and MTC effect, indicating its potential clinical utility for molecular imaging of renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Han
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guoli Chen
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yuguo Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shuixing Zhang
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
89
|
Regnery S, Adeberg S, Dreher C, Oberhollenzer J, Meissner JE, Goerke S, Windschuh J, Deike-Hofmann K, Bickelhaupt S, Zaiss M, Radbruch A, Bendszus M, Wick W, Unterberg A, Rieken S, Debus J, Bachert P, Ladd M, Schlemmer HP, Paech D. Chemical exchange saturation transfer MRI serves as predictor of early progression in glioblastoma patients. Oncotarget 2018; 9:28772-28783. [PMID: 29983895 PMCID: PMC6033360 DOI: 10.18632/oncotarget.25594] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 05/24/2018] [Indexed: 12/03/2022] Open
Abstract
PURPOSE To prospectively investigate chemical exchange saturation transfer (CEST) MRI in glioblastoma patients as predictor of early tumor progression after first-line treatment. EXPERIMENTAL DESIGN Twenty previously untreated glioblastoma patients underwent CEST MRI employing a 7T whole-body scanner. Nuclear Overhauser effect (NOE) as well as amide proton transfer (APT) CEST signals were isolated using Lorentzian difference (LD) analysis and relaxation compensated by the apparent exchange-dependent relaxation rate (AREX) evaluation. Additionally, NOE-weighted asymmetric magnetic transfer ratio (MTRasym) and downfield-NOE-suppressed APT (dns-APT) were calculated. Patient response to consecutive treatment was determined according to the RANO criteria. Mean signal intensities of each contrast in the whole tumor area were compared between early-progressive and stable disease. RESULTS Pre-treatment tumor signal intensity differed significantly regarding responsiveness to first-line therapy in NOE-LD (p = 0.0001), NOE-weighted MTRasym (p = 0.0186) and dns-APT (p = 0.0328) contrasts. Hence, significant prediction of early progression was possible employing NOE-LD (AUC = 0.98, p = 0.0005), NOE-weighted MTRasym (AUC = 0.83, p = 0.0166) and dns-APT (AUC = 0.80, p = 0.0318). The NOE-LD provided the highest sensitivity (91%) and specificity (100%). CONCLUSIONS CEST derived contrasts, particularly NOE-weighted imaging and dns-APT, yielded significant predictors of early progression after fist-line therapy in glioblastoma. Therefore, CEST MRI might be considered as non-invasive tool for customization of treatment in the future.
Collapse
Affiliation(s)
- Sebastian Regnery
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | - Sebastian Adeberg
- German Cancer Research Center (DKFZ), HIRO (Heidelberg Institute for Radiation Oncology), Heidelberg, Germany
| | - Constantin Dreher
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | | | - Jan-Eric Meissner
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Steffen Goerke
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Johannes Windschuh
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | | | | | | | - Alexander Radbruch
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| | - Martin Bendszus
- Department of Neuroradiology, University Hospital Heidelberg, Heidelberg, Germany
| | - Wolfgang Wick
- Department of Neurology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Rieken
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Jürgen Debus
- Department of Radiation Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Bachert
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
| | - Mark Ladd
- German Cancer Research Center (DKFZ), Division of Medical Physics in Radiology, Heidelberg, Germany
- Faculty of Physics and Astronomy, University of Heidelberg, Heidelberg, Germany
- Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| | | | - Daniel Paech
- German Cancer Research Center (DKFZ), Division of Radiology, Heidelberg, Germany
| |
Collapse
|
90
|
Albatany M, Li A, Meakin S, Bartha R. In vivo detection of acute intracellular acidification in glioblastoma multiforme following a single dose of cariporide. Int J Clin Oncol 2018; 23:812-819. [PMID: 29749579 DOI: 10.1007/s10147-018-1289-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/02/2018] [Indexed: 12/29/2022]
Abstract
Glioblastoma is an aggressive brain cancer that is very difficult to treat. Clinically, it is important to be able to distinguish aggressive from non-aggressive brain tumors. Previous studies have shown that some drugs can induce a rapid change in intracellular pH that could help to identify aggressive cancer. The sodium proton exchanger (NHE1) plays a significant role in maintaining pH balance in the tumor microenvironment. Cariporide is a sodium proton exchange inhibitor that is well tolerated by humans in cardiac applications. We hypothesized that cariporide could selectively acidify brain tumors. The purpose of this study was to determine whether amine/amide concentration-independent detection (AACID) chemical exchange saturation transfer (CEST) MRI measurement of tumor pHi could detect acidification after cariporide injection. Using a 9.4T MRI scanner, CEST spectra were acquired in six mice approximately 14 days after implanting 105 U87 human glioblastoma multiforme cells in the brain, before and after administration of cariporide (dose: 6 mg/kg) by intraperitoneal injection. Three additional mice were studied as controls and received only vehicle injection (DMSO + PBS). Repeated measures t test was used to examine changes in tumor and contralateral tissue regions of interest. Two hours after cariporide injection, there was a significant 0.12 ± 0.03 increase in tumor AACID value corresponding to a 0.48 decrease in pHi and no change in AACID value in contralateral tissue. A small but significant increase of 0.04 ± 0.017 in tumor AACID value was also observed following vehicle injection. This study demonstrates that acute CEST MRI contrast changes, indicative of intracellular acidification, after administration of cariporide could help localize glioblastoma.
Collapse
Affiliation(s)
- Mohammed Albatany
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
- Department of Medical Biophysics, Western University, London, ON, Canada
| | - Alex Li
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Susan Meakin
- Department of Biochemistry, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada
| | - Robert Bartha
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, Western University, 1151 Richmond Street, London, ON, N6A 3K7, Canada.
- Department of Medical Biophysics, Western University, London, ON, Canada.
| |
Collapse
|
91
|
Kikuchi K, Ishimatsu K, Zhang S, Dimitrov IE, Honda H, Sherry AD, Takahashi M. Presaturation Power Adjusted Pulsed CEST: A Method to Increase Independence of Target CEST Signals. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:3141789. [PMID: 29853805 PMCID: PMC5964408 DOI: 10.1155/2018/3141789] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 03/25/2018] [Indexed: 11/18/2022]
Abstract
Chemical exchange saturation transfer (CEST) imaging has been demonstrated to discuss the concentration changes of amide proton, glutamate, creatine, or glucose measured at 3.5, 3.0, 2.0, and 1.0-1.2 ppm. However, these peaks in z-spectra are quite broad and overlap with each other, and thus, the independence of a CEST signal on any specific metabolite is still open to question. Here, we described whether there was interference among the CEST signals and how these CEST signals behave when the power of the presaturation pulse was changed. Based on these results, further experiments were designed to investigate a method to increase the independence of the CEST signal in both phantoms and animals. The result illustrates a clear interference among CEST signals. A presaturation power adjusted pulsed- (PPAP-) CEST method which was designed based on the exchange rates of the metabolites can be used to remove contributions from other exchanging species in the same sample. Further, the method was shown to improve the independence of the glutamate signal in vivo in the renal medulla in mice. The PPAP-CEST method has the potential to increase the independence of any target CEST signals in vivo by choosing the appropriate combination of pulse amplitudes and durations.
Collapse
Affiliation(s)
- Kazufumi Kikuchi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Keisuke Ishimatsu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Shanrong Zhang
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan E. Dimitrov
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Philips Healthcare, Gainesville, FL, USA
| | - Hiroshi Honda
- Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - A. Dean Sherry
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Masaya Takahashi
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
92
|
Zhang S, Keupp J, Wang X, Dimitrov I, Madhuranthakam AJ, Lenkinski RE, Vinogradov E. Z-spectrum appearance and interpretation in the presence of fat: Influence of acquisition parameters. Magn Reson Med 2018; 79:2731-2737. [PMID: 28862349 PMCID: PMC5821535 DOI: 10.1002/mrm.26900] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 08/04/2017] [Accepted: 08/13/2017] [Indexed: 11/08/2022]
Abstract
PURPOSE Chemical exchange saturation transfer (CEST) MRI is increasingly evolving from brain to body applications. One of the known problems in the body imaging is the presence of strong lipid signals. Although their influence on the CEST effect is acknowledged, there was no study that focuses on the interplay among echo time, fat fraction, and Z-spectrum. This study strives to address these points, with the emphasis on the application in the breast. METHODS Z-spectra were simulated in phase and out of phase of the main fat peak at -3.4 ppm, with the fat fraction varying from 0 to 100%. The magnetization transfer ratio asymmetry in two ranges, centering at the exchanging pool and at 3.5 ppm approximately opposite the nonexchanging fat pool, were calculated and were plotted against fat fraction. The results were verified in phantoms and in vivo. RESULTS The results demonstrate the combined influence of fat fraction and echo time on the Z-spectrum for gradient echo based CEST acquisitions. The influence is straightforward in the in-phase images, but it is more complicated in the out-of-phase images, potentially leading to erroneous CEST contrast. CONCLUSIONS This study provides a basis for understanding the origin and appearance of lipid artifacts in CEST imaging, and lays the foundation for their efficient removal. Magn Reson Med 79:2731-2737, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Shu Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | | | - Xinzeng Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ivan Dimitrov
- Philips Medical Systems, Gainesville, FL, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ananth J. Madhuranthakam
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Robert E. Lenkinski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elena Vinogradov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
93
|
|
94
|
Mehrabian H, Myrehaug S, Soliman H, Sahgal A, Stanisz GJ. Evaluation of Glioblastoma Response to Therapy With Chemical Exchange Saturation Transfer. Int J Radiat Oncol Biol Phys 2018; 101:713-723. [PMID: 29893279 DOI: 10.1016/j.ijrobp.2018.03.057] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 03/27/2018] [Indexed: 11/25/2022]
Abstract
PURPOSE To monitor cellular and metabolic characteristics of glioblastoma (GBM) over the course of standard 6-week chemoradiation treatment with chemical exchange saturation transfer (CEST)-MRI; and to identify the earliest time point CEST could determine subsequent therapeutic response. METHODS AND MATERIALS Nineteen patients with newly diagnosed GBM were recruited, and CEST-MRI was acquired immediately before (Day0), 2 weeks (Day14) and 4 weeks (Day28) into treatment, and 1 month after the end of treatment (Day70). Several CEST metrics, including magnetization transfer ratio and area under the curve of CEST peaks corresponding to nuclear Overhauser effect (NOE) and amide protons (MTRNOE, MTRAmide, CESTNOE, and CESTAmide respectively), magnetization transfer (MT), and direct water effect were investigated. Lack of early progression was determined as no increase in tumor size or worsening of clinical symptoms according to routine post-chemoradiation serial structural MRI. RESULTS Changes in MTRNOE (nonprogressors = 1.35 ± 0.18, progressors = 0.97 ± 0.22, P = .006) and MTRAmide (nonprogressors = 1.25 ± 0.17, progressors = 0.99 ± 0.10, P = .017) between baseline (Day0) and Day14 resulted in the best separation of nonprogressors from progressors. Moreover, the baseline (Day0) MTRNOE (nonprogressors = 6.5% ± 1.6%, progressors = 9.1% ± 2.1%, P = .015), MTRAmide (nonprogressors = 6.7% ± 1.7%, progressors = 8.9% ± 1.9%, P = .028), MT (nonprogressors = 3.8% ± 0.9%, progressors = 5.4% ± 1.4%, P = .019), and CESTNOE (nonprogressors = 4.1%ċHz ± 1.7%ċHz, progressors = 6.1%ċHz ± 1.9%ċHz, P = .044) were able to identify progressors even before the start of the treatment. CONCLUSIONS Chemical exchange saturation transfer (CEST) provides imaging-based biomarkers of GBM response as early as 2 weeks into the treatment. Certain CEST metrics can characterize tumor aggressiveness and identify early progressors even before beginning the treatment. Such an early biomarker of response may allow for adjusting the GBM treatment plan for adaptive radiation therapy in early progressors and more confidently continuing standard adjuvant treatment for nonprogressors.
Collapse
Affiliation(s)
- Hatef Mehrabian
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada.
| | - Sten Myrehaug
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada; Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
| | - Greg J Stanisz
- Medical Biophysics, University of Toronto, Toronto, Ontario, Canada; Physical Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada; Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
95
|
Mehrabian H, Lam WW, Myrehaug S, Sahgal A, Stanisz GJ. Glioblastoma (GBM) effects on quantitative MRI of contralateral normal appearing white matter. J Neurooncol 2018; 139:97-106. [PMID: 29594656 DOI: 10.1007/s11060-018-2846-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
Abstract
PURPOSE The objective was to investigate (with quantitative MRI) whether the normal appearing white matter (NAWM) of glioblastoma (GBM) patients on the contralateral side (cNAWM) was different from NAWM of healthy controls. METHODS Thirteen patients with newly diagnosed GBM and nine healthy age-matched controls were MRI-scanned with quantitative magnetization transfer (qMT), chemical exchange saturation transfer (CEST), and transverse relaxation time (T2)-mapping. MRI scans were performed after surgery and before chemo-radiation treatment. Comprehensive qMT, CEST, T2 data were acquired. A two-pool MT model was fit to qMT data in transient state, to calculate MT model parameters [Formula: see text]. CEST signal was isolated by removing the contributions from the MT and direct water saturation, and CEST signal was calculated for Amide (CESTAmide), Amine (CESTAmine) and nuclear overhauser effect, NOE (CESTNOE). RESULTS There was no difference between GBM patients and normal controls in the qMT properties of the macromolecular pool [Formula: see text]. However, their free water pool spectrum was different (1/RaT2a,patient = 28.1 ± 3.9, 1/RaT2a,control = 25.0 ± 1.1, p = 0.03). This difference could be attributed to the difference in their T2 time ([Formula: see text] = 83 ± 4, [Formula: see text] = 88 ± 1, p = 0.004). CEST signals were statistically significantly different with the CESTAmide having the largest difference between the two cohorts (CESTAmide,patient = 2.8 ± 0.4, CESTAmide,control = 3.4 ± 0.5, p = 0.009). CONCLUSIONS CEST in cNAWM of GBM patients was lower than healthy controls which could be caused by modified brain metabolism due to tumor cell infiltration. There was no difference in MT properties of the patients and controls, however, the differences in free water pool properties were mainly due to reduced T2 in cNAWM of the patients (resulting from structural changes and increased cellularity).
Collapse
Affiliation(s)
- Hatef Mehrabian
- Medical Biophysics, University of Toronto, Toronto, ON, Canada. .,Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), 1700 - 4th St., Suite BH 201, San Francisco, CA, 94158, USA.
| | - Wilfred W Lam
- Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Sten Myrehaug
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Department of Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
96
|
Assessment of bevacizumab resistance increased by expression of BCAT1 in IDH1 wild-type glioblastoma: application of DSC perfusion MR imaging. Oncotarget 2018; 7:69606-69615. [PMID: 27626306 PMCID: PMC5342501 DOI: 10.18632/oncotarget.11901] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 09/02/2016] [Indexed: 01/22/2023] Open
Abstract
BCAT1 (branched-chain amino acid trasaminase1) expression is necessary for the progression of IDH1 wild-type (WT) glioblastoma multiforme (GBM), which is known to be associated with aggressive tumors. The purpose of our study is to investigate the bevacizumab resistance increased by the expression of BCAT1 in IDH1 WT GBM in a rat model, which was evaluated using DSC perfusion MRI. BCAT1 sh#1 inhibits cell proliferation and limits cell migration potential in vitro. In vivo MRI showed that the increase in both tumor volume and nCBV after bevacizumab treatment in IDH1 WT tumors was significantly higher compared with BCAT1 sh#1tumors. In a histological analysis, more micro-vessel reformation by bevacizumab resistance was observed in IDH1 WT tumors than BCAT1 sh#1 tumors. These findings indicate that BCAT1 expression in IDH1 WT GBM increases resistance to bevacizumab treatment, which could be assessed by DSC perfusion MRI, and that nCBV can be a surrogate imaging biomarker for the prediction of antiangiogenic treatment in GBM.
Collapse
|
97
|
Abstract
The aim of this study was to explore the role of TGF-β1/Smad4 signalling in the DNA damage-induced ionization radiation (IR) resistance of glioma cells. T98G cells were assigned to the IR group (treated with IR) or the Blank group (with no treatment). The IR-treated cells were also treated/transfected with the TGF-β receptor inhibitor SB431542, SUMO1-overexpressing plasmids (SUMO1 group), SUMO1-interfering plasmids (si-SUMO1 group) or negative control plasmids group. The wound-healing capacity, cell proliferation and cell apoptosis were evaluated by the scratch assay, flow cytometry and the CCK-8 assay, respectively, and protein interactions were investigated by coimmunoprecipitation and colocalization assays. IR-treated T98G cells had DNA damage, but the wound-healing capacity and cell apoptosis were not significantly suppressed. DNA damage also induced TGF-β1, Smad4, SUMO1, SUMO2/3 and Ubc9 expression. In IR-treated cells cultured with SB431542, the wound-healing capacity and proliferation were promoted. SUMO1 and Smad4 colocalized in the nucleus of T98G cells, and the IR-treated cells had a significantly higher expression of the SUMO1-Smad4 protein complex. Smad4 expression in the nucleus was significantly reduced in the si-SUMO1 group, but was markedly increased in the SUMO1 group; the SUMO1 group had significantly elevated apoptotic activity, whereas the si-SUMO1 group showed significantly suppressed apoptotic activity and the si-SUMO1+SB41542 group had the lowest levels of cell apoptosis. DNA damage may activate Smad4 SUMOylation and the SUMOylation of Smad4 participates in the activation of TGF-β/Smad4 signalling; therefore, enhanced Smad4 SUMOylation is critical for the damage-induced activation of IR resistance.
Collapse
|
98
|
Abstract
Metabolism is central to neuroimaging because it can reveal pathways by which neuronal and glial cells use nutrients to fuel their growth and function. We focus on advanced magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) methods used in brain metabolic studies. 17O-MRS and 31P-MRS, respectively, provide rates of oxygen use and ATP synthesis inside mitochondria, whereas 19F-MRS enables measurement of cytosolic glucose metabolism. Calibrated functional MRI (fMRI), an advanced form of fMRI that uses contrast generated by deoxyhemoglobin, provides maps of oxygen use that track neuronal firing across brain regions. 13C-MRS is the only noninvasive method of measuring both glutamatergic neurotransmission and cell-specific energetics with signaling and nonsignaling purposes. Novel MRI contrasts, arising from endogenous diamagnetic agents and exogenous paramagnetic agents, permit pH imaging of glioma. Overall, these magnetic resonance methods for imaging brain metabolism demonstrate translational potential to better understand brain disorders and guide diagnosis and treatment.
Collapse
Affiliation(s)
- Fahmeed Hyder
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| | - Douglas L Rothman
- Department of Biomedical Engineering, Department of Radiology and Biomedical Imaging, Magnetic Resonance Research Center, and Quantitative Neuroscience with Magnetic Resonance Core Center, Yale University, New Haven, Connecticut 06520;
| |
Collapse
|
99
|
Zhang S, Seiler S, Wang X, Madhuranthakam AJ, Keupp J, Knippa EE, Lenkinski RE, Vinogradov E. CEST-Dixon for human breast lesion characterization at 3 T: A preliminary study. Magn Reson Med 2018; 80:895-903. [PMID: 29322559 DOI: 10.1002/mrm.27079] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 11/24/2017] [Accepted: 12/17/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Shu Zhang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Stephen Seiler
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Xinzeng Wang
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ananth J Madhuranthakam
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Emily E Knippa
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Robert E Lenkinski
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Elena Vinogradov
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
100
|
Sakata A, Okada T, Yamamoto Y, Fushimi Y, Dodo T, Arakawa Y, Mineharu Y, Schmitt B, Miyamoto S, Togashi K. Addition of Amide Proton Transfer Imaging to FDG-PET/CT Improves Diagnostic Accuracy in Glioma Grading: A Preliminary Study Using the Continuous Net Reclassification Analysis. AJNR Am J Neuroradiol 2018; 39:265-272. [PMID: 29301781 DOI: 10.3174/ajnr.a5503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 10/20/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND AND PURPOSE Amide proton transfer imaging has been successfully applied to brain tumors, however, the relationships between amide proton transfer and other quantitative imaging values have yet to be investigated. The aim was to examine the additive value of amide proton transfer imaging alongside [18F] FDG-PET and DWI for preoperative grading of gliomas. MATERIALS AND METHODS Forty-nine patients with newly diagnosed gliomas were included in this retrospective study. All patients had undergone MR imaging, including DWI and amide proton transfer imaging on 3T scanners, and [18F] FDG-PET. Logistic regression analyses were conducted to examine the relationship between each imaging parameter and the presence of high-grade (grade III and/or IV) glioma. These parameters included the tumor-to-normal ratio of FDG uptake, minimum ADC, mean amide proton transfer value, and their combinations. In each model, the overall discriminative power for the detection of high-grade glioma was assessed with receiver operating characteristic curve analysis. Additive information from minimum ADC and mean amide proton transfer was also evaluated by continuous net reclassification improvement. P < .05 was considered significant. RESULTS Tumor-to-normal ratio, minimum ADC, and mean amide proton transfer demonstrated comparable diagnostic accuracy in differentiating high-grade from low-grade gliomas. When mean amide proton transfer was combined with the tumor-to-normal ratio, the continuous net reclassification improvement was 0.64 (95% CI, 0.036-1.24; P = .04) for diagnosing high-grade glioma and 0.95 (95% CI, 0.39-1.52; P = .001) for diagnosing glioblastoma. When minimum ADC was combined with the tumor-to-normal ratio, the continuous net reclassification improvement was 0.43 (95% CI, -0.17-1.04; P = .16) for diagnosing high-grade glioma, and 1.36 (95% CI, 0.79-1.92; P < .001) for diagnosing glioblastoma. CONCLUSIONS Addition of amide proton transfer imaging to FDG-PET/CT may improve the ability to differentiate high-grade from low-grade gliomas.
Collapse
Affiliation(s)
- A Sakata
- From the Department of Diagnostic Imaging and Nuclear Medicine (A.S., T.O., Y.F., T.D., K.T.)
| | - T Okada
- From the Department of Diagnostic Imaging and Nuclear Medicine (A.S., T.O., Y.F., T.D., K.T.) .,Brain Research Center (T.O.)
| | - Y Yamamoto
- Department of Healthcare Epidemiology (Y.Y.), School of Public Health, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Y Fushimi
- From the Department of Diagnostic Imaging and Nuclear Medicine (A.S., T.O., Y.F., T.D., K.T.)
| | - T Dodo
- From the Department of Diagnostic Imaging and Nuclear Medicine (A.S., T.O., Y.F., T.D., K.T.)
| | - Y Arakawa
- Department of Neurosurgery (Y.A., Y.M., S.M.)
| | - Y Mineharu
- Department of Neurosurgery (Y.A., Y.M., S.M.)
| | - B Schmitt
- Magnetic Resonance (B.S.), Siemens Healthcare, Bayswater, Australia
| | - S Miyamoto
- Department of Neurosurgery (Y.A., Y.M., S.M.)
| | - K Togashi
- From the Department of Diagnostic Imaging and Nuclear Medicine (A.S., T.O., Y.F., T.D., K.T.)
| |
Collapse
|