51
|
Smith LL, Fessler JL, Alfaro ME, Streelman JT, Westneat MW. Phylogenetic relationships and the evolution of regulatory gene sequences in the parrotfishes. Mol Phylogenet Evol 2008; 49:136-52. [PMID: 18621133 PMCID: PMC3418665 DOI: 10.1016/j.ympev.2008.06.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2008] [Revised: 06/04/2008] [Accepted: 06/10/2008] [Indexed: 11/22/2022]
Abstract
Regulatory genes control the expression of other genes and are key components of developmental processes such as segmentation and embryonic construction of the skull in vertebrates. Here we examine the variability and evolution of three vertebrate regulatory genes, addressing issues of their utility for phylogenetics and comparing the rates of genetic change seen in regulatory loci to the rates seen in other genes in the parrotfishes. The parrotfishes are a diverse group of colorful fishes from coral reefs and seagrasses worldwide and have been placed phylogenetically within the family Labridae. We tested phylogenetic hypotheses among the parrotfishes, with a focus on the genera Chlorurus and Scarus, by analyzing eight gene fragments for 42 parrotfishes and eight outgroup species. We sequenced mitochondrial 12s rRNA (967 bp), 16s rRNA (577 bp), and cytochrome b (477 bp). From the nuclear genome, we sequenced part of the protein-coding genes rag2 (715 bp), tmo4c4 (485 bp), and the developmental regulatory genes otx1 (672 bp), bmp4 (488bp), and dlx2 (522 bp). Bayesian, likelihood, and parsimony analyses of the resulting 4903 bp of DNA sequence produced similar topologies that confirm the monophyly of the scarines and provide a phylogeny at the species level for portions of the genera Scarus and Chlorurus. Four major clades of Scarus were recovered, with three distributed in the Indo-Pacific and one containing Caribbean/Atlantic taxa. Molecular rates suggest a Miocene origin of the parrotfishes (22 mya) and a recent divergence of species within Scarus and Chlorurus, within the past 5 million years. Developmentally important genes made a significant contribution to phylogenetic structure, and rates of genetic evolution were high in bmp4, similar to other coding nuclear genes, but low in otx1 and the dlx2 exons. Synonymous and non-synonymous substitution patterns in developmental regulatory genes support the hypothesis of stabilizing selection during the history of these genes, with several phylogenetic regions of accelerated non-synonymous change detected in the phylogeny.
Collapse
Affiliation(s)
- Lydia L. Smith
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
| | - Jennifer L. Fessler
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL
| | - Michael E. Alfaro
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
- Department of Ecology and Evolution, Washington State University, Pullman, WA
| | - J. Todd Streelman
- School of Biology, Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology
| | - Mark W. Westneat
- Department of Zoology, Field Museum of Natural History, Chicago, IL 60605-2496
| |
Collapse
|
52
|
Natural variation in gene expression between wild and weedy populations of Helianthus annuus. Genetics 2008; 179:1881-90. [PMID: 18689879 DOI: 10.1534/genetics.108.091041] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The molecular genetic changes underlying the transformation of wild plants into agricultural weeds are poorly understood. Here we use a sunflower cDNA microarray to detect variation in gene expression between two wild (non-weedy) Helianthus annuus populations from Utah and Kansas and four weedy H. annuus populations collected from agricultural fields in Utah, Kansas, Indiana, and California. When grown in a common growth chamber environment, populations differed substantially in their gene expression patterns, indicating extensive genetic differentiation. Overall, 165 uni-genes, representing approximately 5% of total genes on the array, showed significant differential expression in one or more weedy populations when compared to both wild populations. This subset of genes is enriched for abiotic/biotic stimulus and stress response proteins, which may underlie niche transitions from the natural sites to agricultural fields for H. annuus. However, only a small proportion of the differentially expressed genes overlapped in multiple wild vs. weedy comparisons, indicating that most of the observed expression changes are due to local adaptation or neutral processes, as opposed to parallel genotypic adaptation to agricultural fields. These results are consistent with an earlier phylogeographic study suggesting that weedy sunflowers have evolved multiple times in different regions of the United States and further indicate that the evolution of weedy sunflowers has been accompanied by substantial gene expression divergence in different weedy populations.
Collapse
|
53
|
The gene regulatory logic of transcription factor evolution. Trends Ecol Evol 2008; 23:377-85. [DOI: 10.1016/j.tree.2008.03.006] [Citation(s) in RCA: 151] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Revised: 03/10/2008] [Accepted: 03/28/2008] [Indexed: 11/22/2022]
|
54
|
Allohexaploidy, introgression, and the complex phylogenetic history of Elymus repens (Poaceae). Mol Phylogenet Evol 2008; 47:598-611. [PMID: 18372193 DOI: 10.1016/j.ympev.2008.02.008] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 01/11/2008] [Accepted: 02/13/2008] [Indexed: 11/23/2022]
Abstract
The phylogenetic position of hexaploid Elymus repens within the tribe Triticeae (Poaceae) was examined using cloned sequences from the low-copy nuclear genes encoding phosphoenolpyruvate carboxylase (pepC) and beta-amylase. A previous analysis of E. repens using data from the nuclear granule-bound starch synthase I (GBSSI) gene had yielded five phylogenetically distinct gene copies, two more than expected from hexaploidy alone. The three gene trees share three distinct E. repens clades, suggesting that E. repens contains three phylogenetically divergent genomes, contributed by Hordeum, Pseudoroegneria, and an unknown donor. The two additional GBSSI sequences, including one that was apparently derived from outside of the tribe, appear to reflect past introgression of GBSSI sequences into the E. repens genome. On all three trees, the Hordeum-like E. repens sequences are polyphyletic within Hordeum, and the trees are in conflict with regard to the placement of these sequences within Hordeum, highlighting multiple contributions from Hordeum to E. repens.
Collapse
|
55
|
Kohn MH. Rapid sequence divergence rates in the 5 prime regulatory regions of young Drosophila melanogaster duplicate gene pairs. Genet Mol Biol 2008. [DOI: 10.1590/s1415-47572008000300028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Michael H. Kohn
- Ecology and Evolutionary Biology, Rice University, United States of America
| |
Collapse
|
56
|
Streisfeld MA, Rausher MD. Relaxed Constraint and Evolutionary Rate Variation between Basic Helix-Loop-Helix Floral Anthocyanin Regulators in Ipomoea. Mol Biol Evol 2007; 24:2816-26. [DOI: 10.1093/molbev/msm216] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
57
|
Lawton-Rauh A, Robichaux RH, Purugganan MD. Diversity and divergence patterns in regulatory genes suggest differential gene flow in recently derived species of the Hawaiian silversword alliance adaptive radiation (Asteraceae). Mol Ecol 2007; 16:3995-4013. [PMID: 17784920 DOI: 10.1111/j.1365-294x.2007.03445.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The impact of gene flow and population size fluctuations in shaping genetic variation during adaptive radiation, at both the genome-wide and gene-specific levels, is very poorly understood. To examine how historical population size and gene flow patterns within and between loci have influenced lineage divergence in the Hawaiian silversword alliance, we have investigated the nucleotide sequence diversity and divergence patterns of four floral regulatory genes (ASAP1-A, ASAP1-B, ASAP3-A, ASAP3-B) and a structural gene (ASCAB9). Levels and patterns of molecular divergence across these five nuclear loci were estimated between two recently derived species (Dubautia ciliolata and Dubautia arborea) which are presumed to be sibling species. This multilocus analysis of genetic variation, haplotype divergence and historical demography indicates that population expansion and differential gene flow occurred subsequent to the divergence of these two lineages. Moreover, contrasting patterns of allele- sharing for regulatory loci vs. a structural locus between these two sibling species indicate alternative histories of genetic variation and partitioning among loci where alleles of the floral regulatory loci are shared primarily from D. arborea to D. ciliolata and alleles of the structural locus are shared in both directions. Taken together, these results suggest that adaptively radiating species can exhibit contrasting allele migration rates among loci such that allele movement at specific loci may supersede genetic divergence caused by drift and that lineage divergence during adaptive radiation can be associated with population expansion.
Collapse
Affiliation(s)
- A Lawton-Rauh
- Department of Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC 29634-0318, USA.
| | | | | |
Collapse
|
58
|
Gone with the bird: Late tertiary and quaternary intercontinental long‐distance dispersal and allopolyploidization in plants. SYST BIODIVERS 2007. [DOI: 10.1017/s1477200007002393] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
59
|
Sun G, Daley T, Ni Y. Molecular evolution and genome divergence at RPB2 gene of the St and H genome in Elymus species. PLANT MOLECULAR BIOLOGY 2007; 64:645-55. [PMID: 17551673 DOI: 10.1007/s11103-007-9183-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2006] [Accepted: 05/04/2007] [Indexed: 05/15/2023]
Abstract
Molecular evolution of the second largest subunit of low copy nuclear RNA polymerase II (RPB2) in allotetrploid StH genomic species of Elymus is characterized here. Our study first reported a 39-bp MITE stowaway element insertion in the genic region of RPB2 gene for all tetraploid Elymus St genome and diploid Pseudoroegneria spicata and P. stipifolia St genome. The sequences on 3'-end are highly conserved, with AGTA in all sequences but H10339 (E. fibrosis), in which the AGTA was replaced with AGAA. All 12 Stowaway-containing sequences encompassed a 9 bp conserved TIRs (GAGGGAGTA). Interestingly, the 5'-end sequence of GGTA which was changed to AGTA or deleted resulted in Stowaway excision in the H genome of Elymus sepcies, in which Stowaway excision did not leave footprint. Another two large insertions in all St genome sequences are also transposable-like elements detected in the genic region of RPB2 gene. Our results indicated that these three transposable element indels have occurred prior to polyploidization, and shaped the homoeologous RPB2 loci in St and H genome of Eymus species. Nucleotide diversity analysis suggested that the RPB2 sequence may evolve faster in the polyploid species than in the diploids. Higher level of polymorphism and genome-specific amplicons generated by this gene indicated that RPB2 is an excellent tool for investigating the phylogeny and evolutionary dynamics of speciation, and the mode of polyploidy formation in Elymus species.
Collapse
Affiliation(s)
- Genlou Sun
- Department of Biology, Saint Mary's University, 923 Robie Street, Halifax, NS, Canada, B3H 3C3.
| | | | | |
Collapse
|
60
|
Nakamura K, Denda T, Kameshima O, Yokota M. Breakdown of distyly in a tetraploid variety of Ophiorrhiza japonica (Rubiaceae) and its phylogenetic analysis. JOURNAL OF PLANT RESEARCH 2007; 120:501-9. [PMID: 17530166 DOI: 10.1007/s10265-007-0089-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2006] [Accepted: 03/27/2007] [Indexed: 05/15/2023]
Abstract
We examined the floral morph of tetraploid Ophiorrhiza japonica Blume var. amamiana Hatus. and diploid O. japonica var. japonica to elucidate the association of distyly and ploidy levels. Chloroplast DNA phylogeny was reconstructed to determine the number of tetraploidization events and floral morph shifts in O. japonica. All individuals of O. japonica var. amamiana proved to be long-homostylous, whereas O. japonica var. japonica was distylous with typical long- and short-styled flowers. Distyly is related to the ploidy level. The bagging treatment of flowers indicated that O. japonica var. amamiana is self-compatible and potentially automatically self-pollinating. In cpDNA sequencing analysis, no haplotype was shared between the two varieties. The cpDNA haplotype network displayed the monophyly of O. japonica var. amamiana, suggesting a single origin of this variety. Hence, both tetraploidization and the breakdown of distyly to homostyly in O. japonica var. amamiana likely occurred just once. Because O. japonica var. amamiana having the morphological and cytological entity is recognized as a single lineage and clearly separated from O. japonica var. japonica, this variety can be considered to be a distinct species. We therefore propose to raise O. japonica var. amamiana to the rank of species.
Collapse
Affiliation(s)
- Koh Nakamura
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
| | | | | | | |
Collapse
|
61
|
Gollery M, Harper J, Cushman J, Mittler T, Girke T, Zhu JK, Bailey-Serres J, Mittler R. What makes species unique? The contribution of proteins with obscure features. Genome Biol 2007; 7:R57. [PMID: 16859532 PMCID: PMC1779552 DOI: 10.1186/gb-2006-7-7-r57] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Revised: 04/28/2006] [Accepted: 06/27/2006] [Indexed: 11/23/2022] Open
Abstract
An analysis of proteins with obscure features in ten eukaryotic genomes revealed that the majority are species-specific. Background Proteins with obscure features (POFs), which lack currently defined motifs or domains, represent between 18% and 38% of a typical eukaryotic proteome. To evaluate the contribution of this class of proteins to the diversity of eukaryotes, we performed a comparative analysis of the predicted proteomes derived from 10 different sequenced genomes, including budding and fission yeast, worm, fly, mosquito, Arabidopsis, rice, mouse, rat, and human. Results Only 1,650 protein groups were found to be conserved among these proteomes (BLAST E-value threshold of 10-6). Of these, only three were designated as POFs. Surprisingly, we found that, on average, 60% of the POFs identified in these 10 proteomes (44,236 in total) were species specific. In contrast, only 7.5% of the proteins with defined features (PDFs) were species specific (17,554 in total). As a group, POFs appear similar to PDFs in their relative contribution to biological functions, as indicated by their expression, participation in protein-protein interactions and association with mutant phenotypes. However, POF have more predicted disordered structure than PDFs, implying that they may exhibit preferential involvement in species-specific regulatory and signaling networks. Conclusion Because the majority of eukaryotic POFs are not well conserved, and by definition do not have defined domains or motifs upon which to formulate a functional working hypothesis, understanding their biochemical and biological functions will require species-specific investigations.
Collapse
Affiliation(s)
- Martin Gollery
- Department of Biochemistry and Molecular Biology, University Of Nevada, Reno, NV 89557, USA
| | - Jeff Harper
- Department of Biochemistry and Molecular Biology, University Of Nevada, Reno, NV 89557, USA
| | - John Cushman
- Department of Biochemistry and Molecular Biology, University Of Nevada, Reno, NV 89557, USA
| | - Taliah Mittler
- Department of Biochemistry and Molecular Biology, University Of Nevada, Reno, NV 89557, USA
| | - Thomas Girke
- Center for Plant Cell Biology, University Of California, Riverside, CA 92521, USA
| | - Jian-Kang Zhu
- Center for Plant Cell Biology, University Of California, Riverside, CA 92521, USA
| | - Julia Bailey-Serres
- Center for Plant Cell Biology, University Of California, Riverside, CA 92521, USA
| | - Ron Mittler
- Department of Biochemistry and Molecular Biology, University Of Nevada, Reno, NV 89557, USA
| |
Collapse
|
62
|
Wang WK, Schaal BA, Chiou YM, Murakami N, Ge XJ, Huang CC, Chiang TY. Diverse selective modes among orthologs/paralogs of the chalcone synthase (Chs) gene family of Arabidopsis thaliana and its relative A. halleri ssp. gemmifera. Mol Phylogenet Evol 2007; 44:503-20. [PMID: 17611127 DOI: 10.1016/j.ympev.2007.05.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2006] [Revised: 04/11/2007] [Accepted: 05/07/2007] [Indexed: 11/16/2022]
Abstract
As a model system, Arabidopsis thaliana and its wild relatives have played an important role in the study of genomics and evolution in plants. In this study, we examined the genetic diversity of the chalcone synthase (Chs) gene, which encodes a key enzyme of the flavonoid pathway and is located on chromosome five, as well as two Chs-like genes on the first and fourth chromosomes of Arabidopsis. The objectives of the study are to determine if natural selection operates differentially on the paralogs of the Chs gene family in A. thaliana and Arabidopsis halleri ssp. gemmifera. The mode of selection was inferred from Tajima's D values from noncoding and coding regions, as well as from the ratio of nonsynonymous to synonymous substitutions. Both McDonald-Kreitman and HKA tests revealed the effects of selection on the allelic distribution, except for the chromosome 1 paralog in ssp. gemmifera. The Chs gene on chromosome 5 was under purifying selection in both species. Significant, negative Tajima's D values at synonymous sites and positive Fay and Wu's H values within coding region, plus reduced genetic variability in introns, indicated effects of background selection in shaping the evolution of this gene region in A. thaliana. The Chs paralog on chromosome 1 was under positive selection in A. thaliana, while interspecific introgression and balancing selection determined the fates of the paralog and resulted in high heterogeneity in ssp. gemmifera. Local adaptation differentiated populations of Japan and China at the locus. In contrast, the other Chs-paralog of chromosome 4 was shaped by purifying selection in A. thaliana, while under positive selection in ssp. gemmifera, as indicated by dn/ds>1. Moreover, these contrasting patterns of selection have likely resulted in functional divergence in Arabidopsis, as indicated by radical amino acid substitutions at the chalcone synthase/stilbene synthase motif of the Chs genes. Unlike previous studies of the evolutionary history of A. thaliana, the high levels of genetic diversity in most gene regions of Chs paralogs and nonsignificant Tajima's D in the intron sequences of the Chs gene family in A. thaliana did not reflect the effects of a recent demographic expansion.
Collapse
Affiliation(s)
- Wei-Kuang Wang
- Department of Life Sciences, Cheng-Kung University, Tainan 701, Taiwan
| | | | | | | | | | | | | |
Collapse
|
63
|
Davies TJ, Savolainen V. NEUTRAL THEORY, PHYLOGENIES, AND THE RELATIONSHIP BETWEEN PHENOTYPIC CHANGE AND EVOLUTIONARY RATES. Evolution 2007. [DOI: 10.1111/j.0014-3820.2006.tb01129.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- T. Jonathan Davies
- Department of Biology, Gilmer Hall, University of Virginia, Charlottesville, Virginia 22904
| | - Vincent Savolainen
- Molecular Systematics Section, Jodrell Laboratory, Royal Botanic Gardens, Kew, TW9 3DS Richmond, United Kingdom
| |
Collapse
|
64
|
CALSBEEK RYAN, SMITH THOMASB, BARDELEBEN CAROLYNE. Intraspecific variation in Anolis sagrei mirrors the adaptive radiation of Greater Antillean anoles. Biol J Linn Soc Lond 2007. [DOI: 10.1111/j.1095-8312.2007.00700.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
65
|
Kapralov MV, Filatov DA. Molecular adaptation during adaptive radiation in the Hawaiian endemic genus Schiedea. PLoS One 2006; 1:e8. [PMID: 17183712 PMCID: PMC1762304 DOI: 10.1371/journal.pone.0000008] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2006] [Accepted: 09/06/2006] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND "Explosive" adaptive radiations on islands remain one of the most puzzling evolutionary phenomena. The rate of phenotypic and ecological adaptations is extremely fast during such events, suggesting that many genes may be under fairly strong selection. However, no evidence for adaptation at the level of protein coding genes was found, so it has been suggested that selection may work mainly on regulatory elements. Here we report the first evidence that positive selection does operate at the level of protein coding genes during rapid adaptive radiations. We studied molecular adaptation in Hawaiian endemic plant genus Schiedea (Caryophyllaceae), which includes closely related species with a striking range of morphological and ecological forms, varying from rainforest vines to woody shrubs growing in desert-like conditions on cliffs. Given the remarkable difference in photosynthetic performance between Schiedea species from different habitats, we focused on the "photosynthetic" Rubisco enzyme, the efficiency of which is known to be a limiting step in plant photosynthesis. RESULTS We demonstrate that the chloroplast rbcL gene, encoding the large subunit of Rubisco enzyme, evolved under strong positive selection in Schiedea. Adaptive amino acid changes occurred in functionally important regions of Rubisco that interact with Rubisco activase, a chaperone which promotes and maintains the catalytic activity of Rubisco. Interestingly, positive selection acting on the rbcL might have caused favorable cytotypes to spread across several Schiedea species. SIGNIFICANCE We report the first evidence for adaptive changes at the DNA and protein sequence level that may have been associated with the evolution of photosynthetic performance and colonization of new habitats during a recent adaptive radiation in an island plant genus. This illustrates how small changes at the molecular level may change ecological species performance and helps us to understand the molecular bases of extremely fast rate of adaptation during island adaptive radiations.
Collapse
Affiliation(s)
- Maxim V. Kapralov
- School of Biosciences, University of BirminghamBirmingham, United Kingdom
| | - Dmitry A. Filatov
- School of Biosciences, University of BirminghamBirmingham, United Kingdom
| |
Collapse
|
66
|
Whittall JB, Voelckel C, Kliebenstein DJ, Hodges SA. Convergence, constraint and the role of gene expression during adaptive radiation: floral anthocyanins in Aquilegia. Mol Ecol 2006; 15:4645-57. [PMID: 17107490 DOI: 10.1111/j.1365-294x.2006.03114.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Convergent phenotypes are testament to the role of natural selection in evolution. However, little is known about whether convergence in phenotype extends to convergence at the molecular level. We use the independent losses of floral anthocyanins in columbines (Aquilegia) to determine the degree of molecular convergence in gene expression across the anthocyanin biosynthetic pathway (ABP). Using a phylogeny of the North American Aquilegia clade, we inferred six independent losses of floral anthocyanins. Via semiquantitative reverse transcriptase-polymerase chain reaction (RT-PCR), we monitored developmental and tissue-specific variation in expression of the six major structural ABP loci in three Aquilegia species, two that produce anthocyanins (A+) and one that does not (A-). We then compared ABP expression in petals of old-bud and pre-anthesis flowers of 13 Aquilegia species, eight wild species and two horticultural lines representing seven independent A- lineages as well as three wild A+ species. We only found evidence of down-regulation of ABP loci in A- lineages and losses of expression were significantly more prevalent for genes late in the pathway. Independent contrast analysis indicates that changes in expression of dihydroflavonol reductase (DFR) and anthocyanidin synthase (ANS) are strongly phylogenetically correlated consistent with the multilocus targets of trans-regulatory elements in the ABP of other systems. Our findings strongly suggest that pleiotropy constrains the evolution of loss of floral anthocyanins to mutations affecting genes late in the ABP mostly through convergent changes in regulatory genes. These patterns support the hypothesis that rapid evolutionary change occurs largely through regulatory rather than structural mutations.
Collapse
Affiliation(s)
- Justen B Whittall
- Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA 93106, USA
| | | | | | | |
Collapse
|
67
|
Friar EA, Prince LM, Roalson EH, McGlaughlin ME, Cruse-Sanders JM, Groot SJD, Porter JM. ECOLOGICAL SPECIATION IN THE EAST MAUI-ENDEMIC DUBAUTIA (ASTERACEAE) SPECIES. Evolution 2006. [DOI: 10.1111/j.0014-3820.2006.tb00522.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
68
|
Abstract
It has often been argued that evolutionary diversification is the result of divergent natural selection for specialization on alternative resources. I provide a comprehensive review of experiments that examine the ecology and genetics of resource specialization and adaptive radiation in microbial microcosms. In these experiments, resource heterogeneity generates divergent selection for specialization on alternative resources. At a molecular level, the evolution of specialization is generally attributable to mutations that de-regulate the expression of existing biosynthetic and catabolic pathways. Trade-offs are associated with the evolution of resource specialization, but these trade-offs are often not the result of antagonistic pleiotropy. Replicate adaptive radiations result in the evolution of a similar assemblage of specialists, but the genetic basis of specialization differs in replicate radiations. The implications of microbial selection experiments for evolutionary theory are discussed and future directions of research are proposed.
Collapse
Affiliation(s)
- R Craig MacLean
- Department of Biology, McGill University, Montreal QC, Canada.
| |
Collapse
|
69
|
GRANT PETERR, GRANT BROSEMARY, ABZHANOV ARKHAT. A developing paradigm for the development of bird beaks. Biol J Linn Soc Lond 2006. [DOI: 10.1111/j.1095-8312.2006.00595.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
70
|
Lihová J, Shimizu KK, Marhold K. Allopolyploid origin of Cardamine asarifolia (Brassicaceae): incongruence between plastid and nuclear ribosomal DNA sequences solved by a single-copy nuclear gene. Mol Phylogenet Evol 2006; 39:759-86. [PMID: 16527494 DOI: 10.1016/j.ympev.2006.01.027] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2005] [Revised: 01/15/2006] [Accepted: 01/25/2006] [Indexed: 11/29/2022]
Abstract
Interspecific hybridization and polyploidization have played central roles in plant diversification. However, technical difficulties in the analyses of low-copy genes have limited the study of the origins of hybrid and polyploid plants. Here, we present a phylogenetic analysis of the hexaploid Cardamine asarifolia, distributed in the southern European Alps and northern Apennines. Our study included all relevant taxa of the genus found in Europe. A marked discrepancy was revealed between the trnL-trnF region of cpDNA and internal transcribed spacer (nrDNA ITS) sequences. To solve the incongruence, we sequenced a single-copy nuclear CHS gene (chalcone synthase) using a novel method to design homoeologue-specific PCR primers to bypass artefacts caused by artificial recombination of homoeologues during PCR and/or cloning. Three homoeologues were isolated from C. asarifolia, providing evidence for its allopolyploid origin. One homoeologue, showing the same phylogenetic position as the ITS sequences, most likely originated from an extinct parent. Furthermore, we documented recurrent polytopic hybridizations between C. asarifolia and diploid C. amara. The allohexaploidization and the following hybridization with a diploid species exemplify the ongoing dynamic processes of speciation in the genus Cardamine.
Collapse
Affiliation(s)
- Judita Lihová
- Institute of Botany, Slovak Academy of Sciences, Dúbravská cesta 14, SK-845 23 Bratislava, Slovak Republic.
| | | | | |
Collapse
|
71
|
Davies TJ, Savolainen V. NEUTRAL THEORY, PHYLOGENIES, AND THE RELATIONSHIP BETWEEN PHENOTYPIC CHANGE AND EVOLUTIONARY RATES. Evolution 2006. [DOI: 10.1554/04-675.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
72
|
Friar EA, Prince LM, Roalson EH, McGlaughlin ME, Cruse-Sanders JM, De Groot SJ, Porter JM. ECOLOGICAL SPECIATION IN THE EAST MAUI–ENDEMIC DUBAUTIA (ASTERACEAE) SPECIES. Evolution 2006. [DOI: 10.1554/05-345.1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
73
|
Sather DN, York A, Pobursky KJ, Golenberg EM. Sequence evolution and sex-specific expression patterns of the C class floral identity gene, SpAGAMOUS, in dioecious Spinacia oleracea L. PLANTA 2005; 222:284-92. [PMID: 15940462 DOI: 10.1007/s00425-005-1544-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2004] [Accepted: 03/11/2005] [Indexed: 05/02/2023]
Abstract
Development in dioecious cultivated spinach, Spinacia oleracea, is distinguished by the absence of alternative reproductive organ primordia in male and female flowers. Given the highly derived floral developmental program in spinach, we wished to characterize a spinach C class floral identity gene and to determine the patterns of sequence evolution as well as compare the spatial and temporal expression patterns with those of AGAMOUS. The isolated cDNA sequence clusters phylogenetically within the AGAMOUS/FARINELLI C class clade. In comparison with the SLM1 sequence from the related Silene latifolia, amino acid replacements are highly conservative and non-randomly distributed, being predominantly found in hinge regions or on exposed surfaces of helices. The spinach gene (SpAGAMOUS) appears to be exclusively expressed in reproductive tissues and not in vegetative organs. Initial expression of SpAGAMOUS is similar in male and female floral primordia. However, upon initiation of the first whorl organs, SpAGAMOUS becomes restricted to meristemic regions from which the reproductive primordia will develop. This results in an early gender-specific pattern. Thus, the spinach C class gene is differentially expressed prior to reproductive organ development and is, at least, correlated with, if not directly involved in, the sexual dimorphism in spinach.
Collapse
Affiliation(s)
- D Noah Sather
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
74
|
Abstract
Optimal plant growth form should vary across environments. We examined the potential for mutations causing large changes in growth form to produce new optimal phenotypes across light environments. We predicted that the upright growth form would be favoured in a light limiting environment as leaves were in a position to maximize light interception, while a rosette (leaves in a basal position) growth form would be favoured in a high light environment. Growth form genotypes of Brassica rapa (upright wild-type and rosette mutants) and Arabidopsis thaliana (large rosette wild-type and increasingly upright growth form mutants) were grown in a greenhouse in control (ambient) and filtered (low) light treatments. Compared to upright genotypes, rosette genotypes had relatively high fitness in control light but had a relatively large fitness reduction in filtered light. Our results demonstrate the potential importance of rapid growth form evolution in plant adaptation to new or changing environments.
Collapse
Affiliation(s)
- S P Bonser
- Department of Ecology and Evolutionary Biology, Corson Hall, Cornell University, Ithaca, NY, USA.
| | | |
Collapse
|
75
|
Chang SM, Lu Y, Rausher MD. Neutral evolution of the nonbinding region of the anthocyanin regulatory gene Ipmyb1 in Ipomoea. Genetics 2005; 170:1967-78. [PMID: 15944366 PMCID: PMC1449781 DOI: 10.1534/genetics.104.034975] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Accepted: 04/28/2005] [Indexed: 11/18/2022] Open
Abstract
Plant transcription factors often contain domains that evolve very rapidly. Although it has been suggested that this rapid evolution may contribute substantially to phenotypic differentiation among species, this suggestion has seldom been tested explicitly. We tested the validity of this hypothesis by examining the rapidly evolving non-DNA-binding region of an R2R3-myb transcription factor that regulates anthocyanin expression in flowers of the genus Ipomoea. We first provide evidence that the W locus in Ipomoea purpurea, which determines whether flowers will be pigmented or white, corresponds to a myb gene segregating in southeastern U.S. populations for one functional allele and one nonfunctional allele. While the binding domain exhibits substantial selective constraint, the nonbinding region evolves at an average K(a)/K(s) ratio of 0.74. This elevated rate of evolution is due to relaxed constraint rather than to increased levels of positive selection. Despite this relaxed constraint, however, approximately 20-25% of the codons, randomly distributed throughout the nonbinding region, are highly constrained, with the remainder evolving neutrally, indicating that the entire region performs important function(s). Our results provide little indication that rapid evolution in this regulatory gene is driven by natural selection or that it is responsible for floral-color differences among Ipomoea species.
Collapse
Affiliation(s)
- Shu-Mei Chang
- Department of Plant Biology, University of Georgia, Athens, Georgia 30602, USA
| | | | | |
Collapse
|
76
|
Lindqvist C, Motley TJ, Jeffrey JJ, Albert VA. Cladogenesis and reticulation in the Hawaiian endemic mints (Lamiaceae). Cladistics 2005; 19:480-495. [DOI: 10.1111/j.1096-0031.2003.tb00384.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
77
|
Fan C, Purugganan MD, Thomas DT, Wiegmann BM, Xiang JQY. Heterogeneous evolution of the Myc-like Anthocyanin regulatory gene and its phylogenetic utility in Cornus L. (Cornaceae). Mol Phylogenet Evol 2005; 33:580-94. [PMID: 15522789 DOI: 10.1016/j.ympev.2004.08.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2003] [Indexed: 11/18/2022]
Abstract
Anthocyanin is a major pigment in vegetative and floral organs of most plants and plays an important role in plant evolution. The anthocyanin regulatory genes are responsible for regulating transcription of genes in the anthocyanin synthetic pathway. To assess evolutionary significance of sequence variation and evaluate the phylogenetic utility of an anthocyanin regulatory gene, we compared nucleotide sequences of the myc-like anthocyanin regulatory gene in the genus of dogwoods (Cornus: Cornaceae). Phylogenetic analyses demonstrate that the myc-like anthocyanin regulatory gene has potential as an informative phylogenetic marker at different taxonomic levels, depending on the data set considered (DNA or protein sequences) and regions applied (exons or introns). Pairwise nonsynonymous and synonymous substitution rate tests and codon-based substitution models were applied to characterize variation and to identify sites under diversifying selection. Mosaic evolution and heterogeneous rates among different domains and sites were detected.
Collapse
Affiliation(s)
- Chuanzhu Fan
- Department of Botany, North Carolina State University, Raleigh, NC 27695-7612, USA.
| | | | | | | | | |
Collapse
|
78
|
Abstract
This paper compares the flexibility in the nexus between phenotype and genotype in plants and animals. These taxa although considered to be fundamentally different are found to be surprisingly similar in the mechanisms used to achieve plasticity. Although non-cognitive behaviour occurs in plants, its range is limited, while morphological and developmental plasticity also occur to a considerable extent in animals. Yet both plants and animals are subject to unique constraints and thus need to find unique solutions to functional problems. A true comparison between the plant and animal phenotype would be a comparison between plants and sessile photosynthesizing colonial invertebrates. Such comparisons are lacking. However, they would provide important insights into the adaptive significance of plasticity in these groups. It is also suggested that a comparison of inflexible traits in these groups would provide an understanding of the constraints, as well as the costs and benefits,of a plastic versus non-plastic phenotype in plants and animals.
Collapse
Affiliation(s)
- Renee M Borges
- Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560 012, India.
| |
Collapse
|
79
|
Lynch VJ, Roth JJ, Takahashi K, Dunn CW, Nonaka DF, Stopper GF, Wagner GP. Adaptive evolution of HoxA-11 and HoxA-13 at the origin of the uterus in mammals. Proc Biol Sci 2005; 271:2201-7. [PMID: 15539344 PMCID: PMC1691855 DOI: 10.1098/rspb.2004.2848] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The evolution of morphological characters is mediated by the evolution of developmental genes. Evolutionary changes can either affect cis-regulatory elements, leading to differences in their temporal and spatial regulation, or affect the coding region. Although there is ample evidence for the importance of cis-regulatory evolution, it has only recently been shown that transcription factors do not remain functionally equivalent during evolution. These results suggest that the evolution of transcription factors may play an active role in the evolution of development. To test this idea we investigated the molecular evolution of two genes essential for the development and function of the mammalian female reproductive organs, HoxA-11 and HoxA-13. We predicted that if coding-region evolution plays an active role in developmental evolution, then these genes should have experienced adaptive evolution at the origin of the mammalian female reproductive system. We report the sequences of HoxA-11 from basal mammalian and amniote taxa and analyse HoxA-11 and HoxA-13 for signatures of adaptive molecular evolution. The data demonstrate that these genes were under strong positive (directional) selection in the stem lineage of therian and eutherian mammals, coincident with the evolution of the uterus and vagina. These results support the idea that adaptive evolution of transcription factors can be an integral part in the evolution of novel structures.
Collapse
Affiliation(s)
- Vincent J Lynch
- Department of Ecology and Evolutionary Biology, Yale University, 165 Prospect Street, New Haven, CT 06551, USA.
| | | | | | | | | | | | | |
Collapse
|
80
|
Chen CN, Chiang YC, Ho THD, Schaal BA, Chiang TY. Coalescent processes and relaxation of selective constraints leading to contrasting genetic diversity at paralogs AtHVA22d and AtHVA22e in Arabidopsis thaliana. Mol Phylogenet Evol 2005; 32:616-26. [PMID: 15223042 DOI: 10.1016/j.ympev.2004.01.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2003] [Revised: 01/19/2004] [Indexed: 11/24/2022]
Abstract
Duplicate loci offer a very powerful system for understanding the complicated genome structure and adaptive evolution of a gene family. In this study, the genetic variation at paralogs AtHVA22d and AtHVA22e, members of an ABA- and stress-inducible gene family, is examined in the selfing Arabidopsis thaliana. Population genetic analysis indicates contrasting levels of nucleotide diversity at overall exon sequence and nonsynonymous sites between AtHVA22d (pi = 0.00337, pi(rep) = 0.00158) and AtHVA22e (pi = 0.00054, pi(rep) = 0.00023). The fact of Ka/Ks ratios significantly less than 1 in all sequences indicates that both genes are functional and subjected to purifying selection. In addition, rooted at barley HVA22, accelerated evolution is detected at replacement changes in the AtHVA22d locus, indicating relaxation of purifying selection after gene duplication. However, relative rate tests reveal no deviation from the neutrality at synonymous sites between the two paralogs. Based on clock-like evolution, the rate of synonymous substitution is estimated at 1.83 x 10(-9) substitutions per site per year; and the divergence of the two paralogs is traced to 90 MYA, coinciding with a period of the diversification of angiosperms. Given no codon usage bias in both genes, natural selection alone cannot account for the 6.4-fold differences in the nucleotide variation at synonymous sites between the two paralogs. Random processes resulting in different coalescence times, 3.65 MYA at AtHVA22d vs. 1.20 MYA at AtHVA22e, may have predominantly contributed to the evident differences of the genetic diversity. Partially nonoverlapping modes of expression between the two functional paralogs suggest a subfunctionalization hypothesis for explaining the fates of duplicate loci.
Collapse
Affiliation(s)
- Ching-Nen Chen
- Department of Biology, Washington University, St. Louis, MO 63130, USA
| | | | | | | | | |
Collapse
|
81
|
Schulte PM. Changes in gene expression as biochemical adaptations to environmental change: a tribute to Peter Hochachka. Comp Biochem Physiol B Biochem Mol Biol 2004; 139:519-29. [PMID: 15544973 DOI: 10.1016/j.cbpc.2004.06.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2004] [Revised: 05/21/2004] [Accepted: 06/05/2004] [Indexed: 10/26/2022]
Abstract
Changes in gene expression are likely to play a critical role in both acclimation and adaptation to a changing environment. There is a rapidly growing body of literature implicating quantitative changes in gene expression during acclimation to environmental change, but less is known about the role of qualitative changes in gene expression, such as switching between alternative isoforms. Alternative isoforms can arise via gene duplication, alternative splicing, or alternative promoter usage. Organisms that have undergone recent genome duplication events may make use of environment-specific isoforms coded by multiple genes, but their role in other organisms is less well known. However, recent data suggest that isoforms arising from alternative splicing may be an under-appreciated source of physiological variation. The role of changes in gene expression during evolutionary adaptation has received comparatively limited attention, but novel approaches to addressing the adaptive significance of changes in gene expression have been applied to a few cases of differences in gene expression among taxa. Recent advances in genomics, including microarray technology, knock-out and knock-down approaches, and the wealth of data coming from large-scale sequencing projects have provided (and will continue to provide at ever increasing rates) new insights into these classic questions in comparative biochemistry.
Collapse
Affiliation(s)
- Patricia M Schulte
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, Canada V6T 1Z4.
| |
Collapse
|
82
|
Sanderson MJ, Thorne JL, Wikström N, Bremer K. Molecular evidence on plant divergence times. AMERICAN JOURNAL OF BOTANY 2004; 91:1656-65. [PMID: 21652315 DOI: 10.3732/ajb.91.10.1656] [Citation(s) in RCA: 166] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Estimation of divergence times from sequence data has become increasingly feasible in recent years. Conflicts between fossil evidence and molecular dates have sparked the development of new methods for inferring divergence times, further encouraging these efforts. In this paper, available methods for estimating divergence times are reviewed, especially those geared toward handling the widespread variation in rates of molecular evolution observed among lineages. The assumptions, strengths, and weaknesses of local clock, Bayesian, and rate smoothing methods are described. The rapidly growing literature applying these methods to key divergence times in plant evolutionary history is also reviewed. These include the crown group ages of green plants, land plants, seed plants, angiosperms, and major subclades of angiosperms. Finally, attempts to infer divergence times are described in the context of two very different temporal settings: recent adaptive radiations and much more ancient biogeographic patterns.
Collapse
Affiliation(s)
- Michael J Sanderson
- Section of Evolution and Ecology, University of California, Davis, California 95616 USA
| | | | | | | |
Collapse
|
83
|
Abstract
Almost 30 years ago, A. C. Wilson and colleagues presented results indicating that hybrid inviability between species evolves 10 times faster in mammals than in birds and frogs. Here I revisit this question for birds and mammals using modern molecular data (mitochondrial cytochrome b DNA) and a more phylogenetically appropriate statistical approach. My analyses confirm that diverging mammals lose the ability to form viable hybrids faster than birds. To explain the difference in rates of evolutionary loss of hybridization potential, Wilson and coworkers proposed that mammals have higher rates of regulatory evolution, causing higher probabilities of developmental incompatibilities between mammal species. I briefly discuss this and other potential explanations.
Collapse
Affiliation(s)
- Benjamin M Fitzpatrick
- Center for Population Biology and Section of Evolution and Ecology, University of California, Davis, California 95616, USA.
| |
Collapse
|
84
|
Aoki S, Uehara K, Imafuku M, Hasebe M, Ito M. Phylogeny and divergence of basal angiosperms inferred from APETALA3- and PISTILLATA-like MADS-box genes. JOURNAL OF PLANT RESEARCH 2004; 117:229-44. [PMID: 15138844 DOI: 10.1007/s10265-004-0153-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2003] [Accepted: 03/10/2004] [Indexed: 05/06/2023]
Abstract
The B-class MADS-box genes composed of APETALA3 ( AP3) and PISTILLATA ( PI) lineages play an important role in petal and stamen identity in previously studied flowering plants. We investigated the diversification of the AP3-like and PI-like MADS-box genes of eight species in five basal angiosperm families: Amborella trichopoda (Amborellaceae); Brasenia schreberi and Cabomba caroliniana (Cabombaceae); Euryale ferox, Nuphar japonicum, and Nymphaea tetragona (Nymphaeaceae); Illicium anisatum (Illiciaceae); and Kadsura japonica (Schisandraceae). Sequence analysis showed that a four amino acid deletion in the K domain, which was found in all previously reported angiosperm PI genes, exists in a PI homologue of Schisandraceae, but not in six PI homologues of the Amborellaceae, Cabombaceae, and Nymphaeaceae, suggesting that the Amborellaceae, Cabombaceae, and Nymphaeaceae are basalmost lineages in angiosperms. The results of molecular phylogenetic analyses were not inconsistent with this hypothesis. The AP3 and PI homologues from Amborella share a sequence of five amino acids in the 5' region of exon 7. Using the linearized tree and likelihood methods, the divergence time between the AP3 and PI lineages was estimated as somewhere between immediately after to several tens of millions of years after the split between angiosperms and extant gymnosperms. Estimates of the age of the most recent common ancestor of all extant angiosperms range from approximately 140-210 Ma, depending on the trees used and assumptions made.
Collapse
Affiliation(s)
- Seishiro Aoki
- Department of Life Sciences, Graduate School of Arts and Sciences, University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | |
Collapse
|
85
|
Montieri S, Gaudio L, Aceto S. Isolation of the LFY/FLO homologue in Orchis italica and evolutionary analysis in some European orchids. Gene 2004; 333:101-9. [PMID: 15177685 DOI: 10.1016/j.gene.2004.02.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2003] [Revised: 10/23/2003] [Accepted: 02/10/2004] [Indexed: 11/20/2022]
Abstract
It has been suggested that the evolutionary analysis of floral development genes could explain the divergences between the rates of morphological and molecular evolution. The LEAFY (LFY) gene of Arabidopsis thaliana is one of the central regulatory genes in the control of flower development. We have identified the homologue of this gene (OrcLFY) in Orchis italica using 5'/3'RACE and primer walking, and compared the coding sequences of several orchid species. We analyzed nonsynonymous and synonymous substitution rates between the OrcLFY coding regions of 14 species, and performed a McDonald-Kreitman test on Orchis morio and Orchis laxiflora populations, showing that purifying selection is acting on this gene in these orchids. We have performed a phylogenetic analysis showing that OrcLFY is a new useful marker to reconstruct molecular phylogenies at low taxonomic levels.
Collapse
Affiliation(s)
- Stefania Montieri
- Dipartimento di Genetica, Biologia generale e molecolare, Università degli Studi di Napoli "Federico II", via Mezzocannone 8, 80134, Napoli, Italy
| | | | | |
Collapse
|
86
|
Abstract
Whether interspecific hybridization is important as a mechanism that generates biological diversity is a matter of controversy. Whereas some authors focus on the potential of hybridization as a source of genetic variation, functional novelty and new species, others argue against any important role, because reduced fitness would typically render hybrids an evolutionary dead end. By drawing on recent developments in the genetics and ecology of hybridization and on principles of ecological speciation theory, I develop a concept that reconciles these views and adds a new twist to this debate. Because hybridization is common when populations invade new environments and potentially elevates rates of response to selection, it predisposes colonizing populations to rapid adaptive diversification under disruptive or divergent selection. I discuss predictions and suggest tests of this hybrid swarm theory of adaptive radiation and review published molecular phylogenies of adaptive radiations in light of the theory.
Collapse
Affiliation(s)
- Ole Seehausen
- Department of Biological Sciences, Molecular and Evolutionary Ecology Group, University of Hull, Hull, UK, HU6 7RX.
| |
Collapse
|
87
|
Valenzuela A, Talavera D, Orozco M, de la Cruz X. Alternative splicing mechanisms for the modulation of protein function: conservation between human and other species. J Mol Biol 2004; 335:495-502. [PMID: 14672658 DOI: 10.1016/j.jmb.2003.10.061] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alternative splicing (AS) is an important process in eukaryotic organisms by which a given gene may express a set of different protein isoforms depending on the tissue, or the developmental stage of the individual. In the present work, we have compared AS among species, focusing on the conservation of AS mechanisms for the modulation of protein function. For this purpose, we first analysed the frequency with which different species, human, mouse, rat and fruitfly, utilise them. Second, we focused more directly on the conservation among species of the mechanisms themselves. To this end, we compared biologically equivalent AS events between human and mouse, or rat. Our results indicate only minor differences in the frequency of use of these mechanisms, as well as a high degree of conservation among the species studied.
Collapse
Affiliation(s)
- Abel Valenzuela
- Unitat de Modelització Molecular i Bioinformática, Institut de Recerca Biomèdica de Barcelona, Parc Científic de Barcelona, C/Josep Samitier, 1-5, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
88
|
|
89
|
|
90
|
NICOLA PATRICIAAVELLO, MONTEIRO LEANDRORABELLO, PESSÔA LEILAMARIA, VON ZUBEN FERNANDOJOSÉ, ROHLF FJAMES, DOS REIS SÉRGIOFURTADO. Congruence of hierarchical, localized variation in cranial shape and molecular phylogenetic structure in spiny rats, genus Trinomys (Rodentia: Echimyidae). Biol J Linn Soc Lond 2003. [DOI: 10.1046/j.1095-8312.2003.00245.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
91
|
Resnick MA, Inga A. Functional mutants of the sequence-specific transcription factor p53 and implications for master genes of diversity. Proc Natl Acad Sci U S A 2003; 100:9934-9. [PMID: 12909720 PMCID: PMC187891 DOI: 10.1073/pnas.1633803100] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2003] [Indexed: 12/17/2022] Open
Abstract
There are many sources of genetic diversity, ranging from programmed mutagenesis in antibody genes to random mutagenesis during species evolution or development of cancer. We propose that mutations in DNA sequence-specific transcription factors that target response elements (REs) in many genes can also provide for rapid and broad phenotypic diversity, if the mutations lead to altered binding affinities at individual REs. To test this concept, we examined the in vivo transactivation capacity of wild-type human and murine p53 and 25 partial function mutants. The p53s were expressed in yeast from a rheostatable promoter, and the transactivation capacities toward >15 promoter REs upstream of a reporter gene were measured. Surprisingly, there was wide variation in transactivation by the mutant p53s toward the various REs. This is the first study to address directly the impact of mutations in a sequence-specific transcription factor on transactivation from a wide array of REs. We propose a master gene hypothesis for phenotypic diversity where the master gene is a single transcriptional activator (or repressor) that regulates many genes through different REs. Mutations of the master gene can lead to a variety of simultaneous changes in both the selection of targets and the extent of transcriptional modulation at the individual targets, resulting in a vast number of potential phenotypes that can be created with minimal mutational changes without altering existing protein-protein interactions.
Collapse
Affiliation(s)
- Michael A Resnick
- Laboratory of Molecular Genetics, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA.
| | | |
Collapse
|
92
|
Lawton-Rauh A, Robichaux RH, Purugganan MD. Patterns of nucleotide variation in homoeologous regulatory genes in the allotetraploid Hawaiian silversword alliance (Asteraceae). Mol Ecol 2003; 12:1301-13. [PMID: 12694292 DOI: 10.1046/j.1365-294x.2003.01814.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Genome-wide duplication (polyploidization) is prevalent in a large number of eukaryotic organisms and is particularly widespread in flowering plants. Polyploid species appear to vary from their diploid progenitors in a variety of ecologically important traits, suggesting that genome duplications provide a mechanism for ecological diversification. Studies of nucleotide variation at duplicate genes that arise via polyploidization allow us to infer the evolutionary forces that act on these polyploid loci. In an effort to examine the evolutionary dynamics of homoeologous loci, molecular population genetic analyses were undertaken for duplicate regulatory genes in the allopolyploid Hawaiian silversword alliance, a premier example of adaptive radiation. The levels and patterns of nucleotide variation for the floral homeotic genes ASAPETALA1 (ASAP1) and ASAPETALA3/TM6 (ASAP3/TM6) were studied in two species representing different lineages within the Hawaiian silversword alliance: Argyroxiphium sandwicense ssp. macrocephalum and Dubautia ciliolata ssp. glutinosa. Homoeologueous copies of ASAP1 and ASAP3/TM6 show differing levels and patterns of nucleotide polymorphism. Duplicate ASAP1 copies have similar levels of nucleotide diversity and haplotype structure in both species; by contrast, duplicate ASAP3/TM6 genes display different levels and patterns of variation in D. ciliolata ssp. glutinosa. Additionally, D. ciliolata ssp. glutinosa appears to be segregating for a moderate frequency null allele in one ASAP3/TM6 homoeologue. These results suggest that differing evolutionary forces can affect duplicate loci arising from allopolyploidization.
Collapse
Affiliation(s)
- Amy Lawton-Rauh
- Department of Genetics, Box 7614, North Carolina State University, Raleigh, NC 27695, USA
| | | | | |
Collapse
|
93
|
Abstract
Flowers have long fascinated humans. The scientific study of floral biology unifies many diverse areas of research, ranging from systematics to ecology, and from genetics to molecular biology. Despite this unity, few plant species offer the experimental versatility to encompass all levels of biological investigation in a single system. An exception is the morning glory genus Ipomoea, in which a broad picture of floral evolution, ranging from ecology to molecular biology, is emerging.
Collapse
Affiliation(s)
- Michael T Clegg
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521, USA.
| | | |
Collapse
|
94
|
Dias AP, Braun EL, McMullen MD, Grotewold E. Recently duplicated maize R2R3 Myb genes provide evidence for distinct mechanisms of evolutionary divergence after duplication. PLANT PHYSIOLOGY 2003; 131:610-20. [PMID: 12586885 PMCID: PMC166837 DOI: 10.1104/pp.012047] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2002] [Revised: 09/22/2002] [Accepted: 10/19/2002] [Indexed: 05/17/2023]
Abstract
R2R3 Myb genes are widely distributed in the higher plants and comprise one of the largest known families of regulatory proteins. Here, we provide an evolutionary framework that helps explain the origin of the plant-specific R2R3 Myb genes from widely distributed R1R2R3 Myb genes, through a series of well-established steps. To understand the routes of sequence divergence that followed Myb gene duplication, we supplemented the information available on recently duplicated maize (Zea mays) R2R3 Myb genes (C1/Pl1 and P1/P2) by cloning and characterizing ZmMyb-IF35 and ZmMyb-IF25. These two genes correspond to the recently expanded P-to-A group of maize R2R3 Myb genes. Although the origins of C1/Pl1 and ZmMyb-IF35/ZmMyb-IF25 are associated with the segmental allotetraploid origin of the maize genome, other gene duplication events also shaped the P-to-A clade. Our analyses indicate that some recently duplicated Myb gene pairs display substantial differences in the numbers of synonymous substitutions that have accumulated in the conserved MYB domain and the divergent C-terminal regions. Thus, differences in the accumulation of substitutions during evolution can explain in part the rapid divergence of C-terminal regions for these proteins in some cases. Contrary to previous studies, we show that the divergent C termini of these R2R3 MYB proteins are subject to purifying selection. Our results provide an in-depth analysis of the sequence divergence for some recently duplicated R2R3 Myb genes, yielding important information on general patterns of evolution for this large family of plant regulatory genes.
Collapse
Affiliation(s)
- Anusha P Dias
- Plant Genetics Research and Plant Science Units, United States Department of Agriculture-Agricultural Research Service, University of Missouri, Columbia, Missouri 65211, USA
| | | | | | | |
Collapse
|
95
|
Remington DL, Purugganan MD. GAI homologues in the Hawaiian silversword alliance (Asteraceae-Madiinae): molecular evolution of growth regulators in a rapidly diversifying plant lineage. Mol Biol Evol 2002; 19:1563-74. [PMID: 12200483 DOI: 10.1093/oxfordjournals.molbev.a004218] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Accelerated evolution of regulatory genes has been proposed as an explanation for decoupled rates of morphological and molecular evolution. The Hawaiian silversword alliance (Asteraceae-Madiinae) has evolved drastic differences in growth form, including rosette plants, cushion plants, shrubs, and trees, since its origin approximately 6 MYA. We have isolated genes in the DELLA subfamily of putative growth regulators from 13 taxa of Hawaiian and North American Madiinae. The Hawaiian taxa contain two copies of DaGAI that form separate clades within the Madiinae, consistent with an allotetraploid origin for the silversword alliance. DaGAI retains conserved features that have previously been identified in DELLA genes. Selective constraint in the Hawaiian DaGAI copies remains strong in spite of rapid growth form divergence in the silversword alliance, although the constraint was somewhat relaxed in the Hawaiian copies relative to the North American lineages. We failed to detect evidence for positive selection on individual codons. Notably, selective constraint remained especially strong in the gibberellin-responsive DELLA region for which the gene subfamily is named, which is truncated or deleted in all identified dwarf mutants in GAI homologues in different angiosperm species. In contrast with the coding region, however, approximately 900 bp of the upstream flanking region shows variable rates and patterns of evolution, which might reflect positive selection on regulatory regions.
Collapse
|
96
|
Leebens-Mack J, DePamphilis C. Power analysis of tests for loss of selective constraint in cave crayfish and nonphotosynthetic plant lineages. Mol Biol Evol 2002; 19:1292-302. [PMID: 12140241 DOI: 10.1093/oxfordjournals.molbev.a004190] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Loss of selective constraint on a gene may be expected following changes in the environment or life history that render its function unnecessary. The long-term persistence of protein-coding genes after the loss of known functional necessity can occur by chance or because of selective maintenance of an unknown gene function. The selective maintenance of an alternative gene function is not demonstrated by the failure of statistical tests to reject the hypothesis that there has been no change in the degree of constraint on the evolution of coding genes. Maintenance may be inferred, however, when power analyses of such tests demonstrate that there has been a sufficient number of nucleotide substitutions to detect the loss of selective constraint. Here, we describe a power analysis for tests of loss of constraint on protein-coding genes. The power analysis was applied to loss-of-constraint tests for opsin gene evolution in cave-dwelling crayfish and rbcL evolution in nonphotosynthetic parasitic plants. The power of previously applied tests for loss of constraint on cave crayfish opsin genes was insufficient to distinguish between chance retention and selective maintenance of opsin genes. However, the power of codon-based likelihood ratio tests for change in d(N)/d(S) (=omega) (nonsynonymous to synonymous change) did have sufficient power to detect a loss of constraint on rbcL associated with a loss of photosynthesis in most examples but failed to detect such a change in three independent lineages. We conclude that rbcL has been selectively maintained in these holoparasitic plant lineages. This conclusion suggests that either these taxa are photosynthetic for at least a part of their life or rbcL may have an unknown function in these plants unrelated to photosynthesis.
Collapse
|
97
|
Lecompte E, Granjon L, Peterhans JK, Denys C. Cytochrome b-based phylogeny of the Praomys group (Rodentia, Murinae): a new African radiation? C R Biol 2002; 325:827-40. [PMID: 12360851 DOI: 10.1016/s1631-0691(02)01488-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Complete cytochrome b gene sequences allows, for the first time, establishing a nearly complete phylogeny among the Praomys group sensu lato. The genera Praomys, Mastomys and Stenocephalemys appear paraphyletic. Myomys is polyphyletic and this genus name probably needs to be restricted to its type species, M. verreauxii. The genera Zelotomys and Colomys appear as sister groups. Mastomys pernanus and Malacomys verschureni nest within the Praomys group, but their generic assignation must be further clarified. The genus Heimyscus appears closest to Praomys than to Hylomyscus. The different lineages probably result from an adaptive radiation at the end of the Miocene.
Collapse
Affiliation(s)
- Emilie Lecompte
- Laboratoire Zoologie, Mammifères et Oiseaux, Muséum national d'histoire naturelle, 55, rue Buffon, 75005 Paris, France.
| | | | | | | |
Collapse
|
98
|
|
99
|
Liu JQ, Gao TG, Chen ZD, Lu AM. Molecular phylogeny and biogeography of the Qinghai-Tibet Plateau endemic Nannoglottis (Asteraceae). Mol Phylogenet Evol 2002; 23:307-25. [PMID: 12099790 DOI: 10.1016/s1055-7903(02)00039-8] [Citation(s) in RCA: 135] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
All taxa endemic to the Qinghai-Tibet Plateau are hypothesized to have originated in situ or from immediately adjacent areas because of the relatively recent formation of the plateau since the Pliocene, followed by the large-scaled biota extinction and recession caused by the Quaternary ice sheet. However, identification of specific progenitors remains difficult for some endemics, especially some endemic genera. Nannoglottis, with about eight species endemic to this region, is one such genus. Past taxonomic treatments have suggested its relationships with four different tribes of Asteraceae. We intend to identify the closest relatives of Nannoglottis by evaluating the level of monophyly, tribal delimitation, and systematic position of the genus by using molecular data from ndhF gene, trnL-F, and ITS region sequences. We find that all sampled species of Nannoglottis are a well-defined monophyly. This supports all recent taxonomic treatments of Nannoglottis, in which all sampled species were placed in one broadly re-circumscribed genus. Nannoglottis is most closely related to the Astereae, but stands as an isolated genus as the first diverging lineage of the tribe, without close relatives. A tentative relationship was suggested for Nannoglottis and the next lineage of the tribe was based on the ITS topology, the "basal group," which consists of seven genera from the Southern Hemisphere. Such a relationship is supported by some commonly shared plesiomorphic morphological characters. Despite the very early divergence of Nannoglottis in the Astereae, the tribe must be regarded to have its origin in Southern Hemisphere rather than in Asia, because based on all morphological, molecular, biogeographical, and fossil data, the Asteraceae and its major lineages (tribes) are supposed to have originated in the former area. Long-distance dispersal using Southeast Asia as a steppingstone from Southern Hemisphere to the Qinghai-Tibet Plateau is the most likely explanation for this unusual biogeographic link of Nannoglottis. The 23-32-million-year divergence time between Nannoglottis and the other Astereae estimated by DNA sequences predated the formation of the plateau. This estimation is further favored by the fossil record of the Asteraceae and the possible time of origin of the Astereae. Nannoglottis seems to have reached the Qinghai-Tibet area in the Oligocene-Eocene and then re-diversified with the uplift of the plateau. The molecular infragenetic phylogeny of the genus identifies two distinct clades, which reject the earlier infrageneric classification based on the arrangement of the involucral bracts and the length of the ligules, but agree well with the habits and ecological preferences of its current species. The "alpine shrub" vs. "coniferous forest" divergence within Nannoglottis was estimated at about 3.4 million years ago when the plateau began its first large-scale uplifting and the coniferous vegetation began to appear. Most of the current species at the "coniferous forest" clade of the genus are estimated to have originated from 1.02 to 1.94 million years ago, when the second and third uprisings of the plateau occurred, the climate oscillated and the habitats were strongly changed. The assumed evolution, speciation diversity, and radiation of Nannoglottis based on molecular phylogeny and divergence times agree well with the known geological and paleobotanical histories of the Qinghai-Tibet Plateau.
Collapse
Affiliation(s)
- Jian-Quan Liu
- Northwest Plateau Institute of Biology, Chinese Academy of Sciences, Xining 81001, Qinghai, China
| | | | | | | |
Collapse
|
100
|
Schlichting CD, Smith H. Phenotypic plasticity: linking molecular mechanisms with evolutionary outcomes. Evol Ecol 2002. [DOI: 10.1023/a:1019624425971] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|