51
|
Samimi K, Pattnaik BR, Capowski EE, Saha K, Gamm DM, Skala MC. In situ autofluorescence lifetime assay of a photoreceptor stimulus response in mouse retina and human retinal organoids. BIOMEDICAL OPTICS EXPRESS 2022; 13:3476-3492. [PMID: 35781966 PMCID: PMC9208582 DOI: 10.1364/boe.455783] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/25/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
Photoreceptors are the key functional cell types responsible for the initiation of vision in the retina. Phototransduction involves isomerization and conversion of vitamin A compounds, known as retinoids, and their recycling through the visual cycle. We demonstrate a functional readout of the visual cycle in photoreceptors within stem cell-derived retinal organoids and mouse retinal explants based on spectral and lifetime changes in autofluorescence of the visual cycle retinoids after exposure to light or chemical stimuli. We also apply a simultaneous two- and three-photon excitation method that provides specific signals and increases contrast between these retinoids, allowing for reliable detection of their presence and conversion within photoreceptors. This multiphoton imaging technique resolves the slow dynamics of visual cycle reactions and can enable high-throughput functional screening of retinal tissues and organoid cultures with single-cell resolution.
Collapse
Affiliation(s)
- Kayvan Samimi
- Morgridge Institute for Research, Madison, WI 53715, USA
| | - Bikash R. Pattnaik
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Krishanu Saha
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53715, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M. Gamm
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA
- Waisman Center, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI 53715, USA
- McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, WI 53705, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
52
|
Giannini JP, Lu R, Bower AJ, Fariss R, Tam J. Visualizing retinal cells with adaptive optics imaging modalities using a translational imaging framework. BIOMEDICAL OPTICS EXPRESS 2022; 13:3042-3055. [PMID: 35774328 PMCID: PMC9203084 DOI: 10.1364/boe.454560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/08/2022] [Accepted: 04/08/2022] [Indexed: 05/18/2023]
Abstract
Adaptive optics reflectance-based retinal imaging has proved a valuable tool for the noninvasive visualization of cells in the living human retina. Many subcellular features that remain at or below the resolution limit of current in vivo techniques may be more easily visualized with the same modalities in an ex vivo setting. While most microscopy techniques provide significantly higher resolution, enabling the visualization of fine cellular detail in ex vivo retinal samples, they do not replicate the reflectance-based imaging modalities of in vivo retinal imaging. Here, we introduce a strategy for imaging ex vivo samples using the same imaging modalities as those used for in vivo retinal imaging, but with increased resolution. We also demonstrate the ability of this approach to perform protein-specific fluorescence imaging and reflectance imaging simultaneously, enabling the visualization of nearly transparent layers of the retina and the classification of cone photoreceptor types.
Collapse
|
53
|
Abstract
The eye, the photoreceptive organ used to perceive the external environment, is of great importance to humans. It has been proven that some diseases in humans are accompanied by fundus changes; therefore, the health status of people may be interpreted from retinal images. However, the human eye is not a perfect refractive system for the existence of ocular aberrations. These aberrations not only affect the ability of human visual discrimination and recognition, but restrict the observation of the fine structures of human eye and reduce the possibility of exploring the mechanisms of eye disease. Adaptive optics (AO) is a technique that corrects optical wavefront aberrations. Once integrated into ophthalmoscopes, AO enables retinal imaging at the cellular level. This paper illustrates the principle of AO in correcting wavefront aberrations in human eyes, and then reviews the applications and advances of AO in ophthalmology, including the adaptive optics fundus camera (AO-FC), the adaptive optics scanning laser ophthalmoscope (AO-SLO), the adaptive optics optical coherence tomography (AO-OCT), and their combined multimodal imaging technologies. The future development trend of AO in ophthalmology is also prospected.
Collapse
|
54
|
Kim TH, Ma G, Son T, Yao X. Functional Optical Coherence Tomography for Intrinsic Signal Optoretinography: Recent Developments and Deployment Challenges. Front Med (Lausanne) 2022; 9:864824. [PMID: 35445037 PMCID: PMC9013890 DOI: 10.3389/fmed.2022.864824] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/16/2022] [Indexed: 11/13/2022] Open
Abstract
Intrinsic optical signal (IOS) imaging of the retina, also termed as optoretinogram or optoretinography (ORG), promises a non-invasive method for the objective assessment of retinal function. By providing the unparalleled capability to differentiate individual retinal layers, functional optical coherence tomography (OCT) has been actively investigated for intrinsic signal ORG measurements. However, clinical deployment of functional OCT for quantitative ORG is still challenging due to the lack of a standardized imaging protocol and the complication of IOS sources and mechanisms. This article aims to summarize recent developments of functional OCT for ORG measurement, OCT intensity- and phase-based IOS processing. Technical challenges and perspectives of quantitative IOS analysis and ORG interpretations are discussed.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Guangying Ma
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Taeyoon Son
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
| | - Xincheng Yao
- Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL, United States
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
55
|
Tomczewski S, Węgrzyn P, Borycki D, Auksorius E, Wojtkowski M, Curatolo A. Light-adapted flicker optoretinograms captured with a spatio-temporal optical coherence-tomography (STOC-T) system. BIOMEDICAL OPTICS EXPRESS 2022; 13:2186-2201. [PMID: 35519256 PMCID: PMC9045926 DOI: 10.1364/boe.444567] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 02/20/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
For many years electroretinography (ERG) has been used for obtaining information about the retinal physiological function. More recently, a new technique called optoretinography (ORG) has been developed. In one form of this technique, the physiological response of retinal photoreceptors to visible light, resulting in a nanometric photoreceptor optical path length change, is measured by phase-sensitive optical coherence tomography (OCT). To date, a limited number of studies with phase-based ORG measured the retinal response to a flickering light stimulation. In this work, we use a spatio-temporal optical coherence tomography (STOC-T) system to capture optoretinograms with a flickering stimulus over a 1.7 × 0.85 mm2 area of a light-adapted retina located between the fovea and the optic nerve. We show that we can detect statistically-significant differences in the photoreceptor optical path length (OPL) modulation amplitudes in response to different flicker frequencies and with better signal to noise ratios (SNRs) than for a dark-adapted eye. We also demonstrate the ability to spatially map such response to a patterned stimulus with light stripes flickering at different frequencies, highlighting the prospect of characterizing the spatially-resolved temporal-frequency response of the retina with ORG.
Collapse
Affiliation(s)
- Sławomir Tomczewski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Equal contributors
| | - Piotr Węgrzyn
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Faculty of Physics, University of Warsaw, Pasteura 5, 02-093 Warszawa, Poland
- Equal contributors
| | - Dawid Borycki
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Egidijus Auksorius
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
- Center for Physical Sciences and Technology (FTMC), Saulėtekio al. 3, LT-10257 Vilnius, Lithuania
| | - Maciej Wojtkowski
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| | - Andrea Curatolo
- International Centre for Translational Eye Research, Skierniewicka 10A, 01-230, Warszawa, Poland
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warszawa, Poland
| |
Collapse
|
56
|
Zhang L, Dong R, Zawadzki RJ, Zhang P. Volumetric data analysis enabled spatially resolved optoretinogram to measure the functional signals in the living retina. JOURNAL OF BIOPHOTONICS 2022; 15:e202100252. [PMID: 34817116 PMCID: PMC8901551 DOI: 10.1002/jbio.202100252] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/21/2021] [Accepted: 11/22/2021] [Indexed: 05/05/2023]
Abstract
Optoretinogram, a technique in which optical coherence tomography (OCT) is used to measure retinal functions in response to a visible light stimulus, can be a potentially useful tool to quantify retinal health alterations. Existing experimental studies on animals have focused on measuring the global retinal response by transversally averaging 3D data across the retina, which minimizes the spatial resolution of the signals, and limits the signal-to-noise ratio because only central B-scans are collected and analyzed. These problems were addressed in this study by collecting volumetric data to probe functional signals and developing an improved 3D registration approach to align such series-acquired OCT volumes. These data were then divided into small blocks and subject to a spatiotemporal analysis, whose results confirmed the spatial-dependence of functional signals. By further averaging, the overall measurement accuracies for the position and the scattering signals were estimated to be approximately 30 nm and 1.1 %, respectively. With improved accuracy, this method revealed certain novel functional signals that have not been previously reported. In conclusion, this work provides a powerful tool to monitor retinal local and global functional changes in aging, diseased, or treated rodent eyes.
Collapse
Affiliation(s)
- Lijie Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
| | - Rongyao Dong
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
| | - Robert J. Zawadzki
- UC Davis Eye-Pod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, 95616, United States
- UC Davis Eye Center, Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California, 95817, United States
| | - Pengfei Zhang
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, 116024, China
- UC Davis Eye-Pod Small Animals Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, 95616, United States
- Correspondence: Pengfei Zhang, Dalian University of Technology, 116024, China,
| |
Collapse
|
57
|
Bensinger E, Wang Y, Roorda A. Patches of Dysflective Cones in Eyes With No Known Disease. Invest Ophthalmol Vis Sci 2022; 63:29. [PMID: 35072690 PMCID: PMC8802026 DOI: 10.1167/iovs.63.1.29] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Purpose To characterize the structure and function of patches of dysflective cones in the foveal region of subjects with normal vision and no known pathology. Dysflective cones are cones that have little or no reflective properties in optical coherence tomography (OCT) or adaptive optics scanning laser ophthalmoscope (AOSLO) images yet exhibit measurable function. Methods AOSLO images were surveyed for the presence of hyporeflective cone patches, and subjects were brought back for imaging to determine the changes in the hyporeflective region. Adaptive optics microperimetry (AOMP) was used to assess the function of hyporeflective patches in four subjects to determine that they did, in fact, contain dysflective cones. AOMP utilized a stimulus size of less than 1 arcmin to measure thresholds inside and outside the hyporeflective region. Results Nineteen out of 47 individuals retrospectively reviewed had one or more regions with hyporeflective cone patches in one or both eyes. Ten subjects with hyporeflective cone patches were brought back for imaging. Seven of the 10 had resolved at follow up, and in three subjects new hyporeflective patches appeared in a different location. All AOMP-measured subjects had measurable function in the dysflective cone region. Three out of four subjects showed no difference in light sensitivity in the dysflective region compared to adjacent areas, and one subject showed a 3× reduction in sensitivity in the area. Conclusions Patches of dysflective cone have been identified in subjects with normal vision and no known pathology, and we have observed instances where dysflective cones in these subjects regain normal reflective properties.
Collapse
Affiliation(s)
- Ethan Bensinger
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Yiyi Wang
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| | - Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, California, United States
| |
Collapse
|
58
|
Affiliation(s)
- Austin Roorda
- Herbert Wertheim School of Optometry and Vision Science, University of California, Berkeley, CA 94720
| |
Collapse
|
59
|
The Impact of the Spectral Radiation Environment on the Maximum Absorption Wavelengths of Human Vision and Other Species. Life (Basel) 2021; 11:life11121337. [PMID: 34947867 PMCID: PMC8707699 DOI: 10.3390/life11121337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 12/04/2022] Open
Abstract
Since the earliest development of the eye (and vision) around 530 million years ago (Mya), it has evolved, adapting to different habitats, species, and changing environmental conditions on Earth. We argue that a radiation environment determined by the atmosphere played a determining role in the evolution of vision, specifically on the human eye, which has three vision regimes (photopic-, scotopic-, and mesopic vision) for different illumination conditions. An analysis of the irradiance spectra, reaching the shallow ocean depths, revealed that the available radiation could have determined the bandwidth of the precursor to vision systems, including human vision. We used the radiative transfer model to test the existing hypotheses on human vision. We argue that, once on the surface, the human photopic (daytime) and scotopic (night-time) vision followed different evolutionary directions, maximum total energy, and optimum information, respectively. Our analysis also suggests that solar radiation reflected from the moon had little or no influence on the evolution of scotopic vision. Our results indicate that, apart from human vision, the vision of only a few birds, rodents, and deep-sea fish are strongly correlated to the available radiation within their respective habitats.
Collapse
|
60
|
Daich Varela M, Esener B, Hashem SA, Cabral de Guimaraes TA, Georgiou M, Michaelides M. Structural evaluation in inherited retinal diseases. Br J Ophthalmol 2021; 105:1623-1631. [PMID: 33980508 PMCID: PMC8639906 DOI: 10.1136/bjophthalmol-2021-319228] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/07/2021] [Accepted: 04/21/2021] [Indexed: 12/20/2022]
Abstract
Ophthalmic genetics is a field that has been rapidly evolving over the last decade, mainly due to the flourishing of translational medicine for inherited retinal diseases (IRD). In this review, we will address the different methods by which retinal structure can be objectively and accurately assessed in IRD. We review standard-of-care imaging for these patients: colour fundus photography, fundus autofluorescence imaging and optical coherence tomography (OCT), as well as higher-resolution and/or newer technologies including OCT angiography, adaptive optics imaging, fundus imaging using a range of wavelengths, magnetic resonance imaging, laser speckle flowgraphy and retinal oximetry, illustrating their utility using paradigm genotypes with on-going therapeutic efforts/trials.
Collapse
Affiliation(s)
- Malena Daich Varela
- Moorfields Eye Hospital City Road Campus, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Burak Esener
- Department of Ophthalmology, Inonu University School of Medicine, Malatya, Turkey
| | - Shaima A Hashem
- Moorfields Eye Hospital City Road Campus, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | | | - Michalis Georgiou
- Moorfields Eye Hospital City Road Campus, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| | - Michel Michaelides
- Moorfields Eye Hospital City Road Campus, London, UK
- UCL Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
61
|
Pijewska E, Zhang P, Meina M, Meleppat RK, Szkulmowski M, Zawadzki RJ. Extraction of phase-based optoretinograms (ORG) from serial B-scans acquired over tens of seconds by mouse retinal raster scanning OCT system. BIOMEDICAL OPTICS EXPRESS 2021; 12:7849-7871. [PMID: 35003871 PMCID: PMC8713677 DOI: 10.1364/boe.439900] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 11/01/2021] [Accepted: 11/08/2021] [Indexed: 06/14/2023]
Abstract
Several specialized retinal optical coherence tomography (OCT) acquisition and processing methods have been recently developed to allow in vivo probing of light-evoked photoreceptors function, focusing on measurements in individual photoreceptors (rods and cones). Recent OCT investigations in humans and experimental animals have shown that the outer segments in dark-adapted rods and cones elongate in response to the visible optical stimuli that bleach fractions of their visual photopigment. We have previously successfully contributed to these developments by implementing OCT intensity-based "optoretinograms" (ORG), the paradigm of using near-infrared OCT (NIR OCT) to measure bleaching-induced back-scattering and/or elongation changes of photoreceptors in the eye in vivo. In parallel, several groups have successfully implemented phase-based ORGs, mainly in human studies, exploiting changes in the phases of back-scattered light. This allowed more sensitive observations of tiny alterations of photoreceptors structures. Applications of the phase-based ORG have been implemented primarily in high speed and cellular resolution AO-OCT systems that can visualize photoreceptor mosaic, allowing phase measurements of path length changes in outer segments of individual photoreceptors. The phase-based ORG in standard resolution OCT systems is much more demanding to implement and has not been explored extensively. This manuscript describes our efforts to implement a phase analysis framework to retinal images acquired with a standard resolution and raster scanning OCT system, which offers much lower phase stability than line-field or full-field OCT detection schemes due to the relatively slower acquisition speed. Our initial results showcase the successful extraction of phase-based ORG signal from the B-scans acquired at ∼100 Hz rate and its favorable comparison with intensity-based ORG signal extracted from the same data sets. We implemented the calculation of phase-based ORG signals using Knox-Thompson paths and modified signal recovery by adding decorrelation weights. The phase-sensitive ORG signal analysis developed here for mouse retinal raster scanning OCT systems could be in principle extended to clinical retinal raster scanning OCT systems, potentially opening doors for clinically friendly ORG probing.
Collapse
Affiliation(s)
- Ewelina Pijewska
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Pengfei Zhang
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, No. 2 Linggong Road, Ganjingzi District, Dalian City, Liaoning Province 116024, China
| | - Michał Meina
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Ratheesh K. Meleppat
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
| | - Maciej Szkulmowski
- Institute of Physics, Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University in Toruń, Grudziądzka 5, 87-100 Torun, Poland
| | - Robert J. Zawadzki
- UC Davis Eyepod Imaging Laboratory, Dept. of Cell Biology and Human Anatomy, University of California Davis, 4320 Tupper Hall, Davis, CA 95616, USA
- Department of Ophthalmology & Vision Science, University of California Davis, 4860 Y Street Suite 2400 Sacramento, CA 95817, USA
| |
Collapse
|
62
|
Lassoued A, Zhang F, Kurokawa K, Liu Y, Bernucci MT, Crowell JA, Miller DT. Cone photoreceptor dysfunction in retinitis pigmentosa revealed by optoretinography. Proc Natl Acad Sci U S A 2021; 118:e2107444118. [PMID: 34795055 PMCID: PMC8617487 DOI: 10.1073/pnas.2107444118] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/08/2021] [Indexed: 12/20/2022] Open
Abstract
Retinitis pigmentosa (RP) is the most common group of inherited retinal degenerative diseases, whose most debilitating phase is cone photoreceptor death. Perimetric and electroretinographic methods are the gold standards for diagnosing and monitoring RP and assessing cone function. However, these methods lack the spatial resolution and sensitivity to assess disease progression at the level of individual photoreceptor cells, where the disease originates and whose degradation causes vision loss. High-resolution retinal imaging methods permit visualization of human cone cells in vivo but have only recently achieved sufficient sensitivity to observe their function as manifested in the cone optoretinogram. By imaging with phase-sensitive adaptive optics optical coherence tomography, we identify a biomarker in the cone optoretinogram that characterizes individual cone dysfunction by stimulating cone cells with flashes of light and measuring nanometer-scale changes in their outer segments. We find that cone optoretinographic responses decrease with increasing RP severity and that even in areas where cone density appears normal, cones can respond differently than those in controls. Unexpectedly, in the most severely diseased patches examined, we find isolated cones that respond normally. Short-wavelength-sensitive cones are found to be more vulnerable to RP than medium- and long-wavelength-sensitive cones. We find that decreases in cone response and cone outer-segment length arise earlier in RP than changes in cone density but that decreases in response and length are not necessarily correlated within single cones.
Collapse
Affiliation(s)
- Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, IN 47405
| | - Furu Zhang
- School of Optometry, Indiana University, Bloomington, IN 47405
| | | | - Yan Liu
- School of Optometry, Indiana University, Bloomington, IN 47405
| | | | - James A Crowell
- School of Optometry, Indiana University, Bloomington, IN 47405
| | - Donald T Miller
- School of Optometry, Indiana University, Bloomington, IN 47405
| |
Collapse
|
63
|
Carrick FR, Azzolino SF, Hunfalvay M, Pagnacco G, Oggero E, D’Arcy RCN, Abdulrahman M, Sugaya K. The Pupillary Light Reflex as a Biomarker of Concussion. Life (Basel) 2021; 11:life11101104. [PMID: 34685475 PMCID: PMC8537991 DOI: 10.3390/life11101104] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/28/2021] [Accepted: 10/12/2021] [Indexed: 11/16/2022] Open
Abstract
The size of our pupils changes continuously in response to variations in ambient light levels, a process known as the pupillary light reflex (PLR). The PLR is not a simple reflex as its function is modulated by cognitive brain function and any long-term changes in brain function secondary to injury should cause a change in the parameters of the PLR. We performed a retrospective clinical review of the PLR of our patients using the BrightLamp Reflex iPhone app. The PLR variables of latency, maximum pupil diameter (MaxPD), minimum pupil diameter (MinPD), maximum constriction velocity (MCV), and the 75% recovery time (75% PRT) were associated with significant differences between subjects who had suffered a concussion and those that had not. There were also significant differences in PLR metrics over the life span and between genders and those subjects with and without symptoms. The differences in PLR metrics are modulated not only by concussion history but also by gender and whether or not the person has symptoms associated with a head injury. A concussive injury to the brain is associated with changes in the PLR that persist over the life span, representing biomarkers that might be used in clinical diagnosis, treatment, and decision making.
Collapse
Affiliation(s)
- Frederick Robert Carrick
- College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
- MGH Institute for Health Professions, Boston, MA 02129, USA
- Centre for Mental Health Research in Association with University of Cambridge, Cambridge CB2 1TN, UK
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Correspondence:
| | - Sergio F. Azzolino
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
| | - Melissa Hunfalvay
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
| | - Guido Pagnacco
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Elena Oggero
- Carrick Institute, Cape Canaveral, FL 32920, USA; (S.F.A.); (M.H.); (G.P.); (E.O.)
- Department of Electrical and Computer Engineering, University of Wyoming, Laramie, WY 82071, USA
| | - Ryan C. N. D’Arcy
- BrainNET, Health and Technology District, Vancouver, BC V3V 0C6, Canada;
- Centre for Neurology Studies, HealthTech Connex, Vancouver, BC V3V 0C6, Canada
- DM Centre for Brain Health, Department of Radiology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Mahera Abdulrahman
- Health Informatics and Smart Health Department, Health Regulation Sector, Dubai Health Authority, Dubai 7272, United Arab Emirates;
| | - Kiminobu Sugaya
- College of Medicine, University of Central Florida, Orlando, FL 32816, USA;
- Burnett School of Biomedical Science, University of Central Florida, Orlando, FL 32816, USA
| |
Collapse
|
64
|
Lee KE, Heitkotter H, Carroll J. Challenges Associated With Ellipsoid Zone Intensity Measurements Using Optical Coherence Tomography. Transl Vis Sci Technol 2021; 10:27. [PMID: 34665233 PMCID: PMC8543396 DOI: 10.1167/tvst.10.12.27] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/16/2021] [Indexed: 12/11/2022] Open
Abstract
Translational Relevance Qualitative evaluation of the ellipsoid zone band on optical coherence tomography is a valuable clinical tool for assessing photoreceptor structure, though more quantitative metrics are emerging. Awareness of the challenges involved in interpreting quantitative metrics is important for their clinical translation.
Collapse
Affiliation(s)
- Karen E. Lee
- Medical College of Wisconsin, Milwaukee, WI, USA
| | - Heather Heitkotter
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
65
|
Brais-Brunet S, Heckel É, Kanniyappan U, Chemtob S, Boudoux C, Joyal JS, Dehaes M. Morphometric and Microstructural Changes During Murine Retinal Development Characterized Using In Vivo Optical Coherence Tomography. Invest Ophthalmol Vis Sci 2021; 62:20. [PMID: 34698774 PMCID: PMC8556565 DOI: 10.1167/iovs.62.13.20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Purpose The purpose of this study was to develop an in vivo optical coherence tomography (OCT) system capable of imaging the developing mouse retina and its associated morphometric and microstructural changes. Methods Thirty-four wild-type mice (129S1/SvlmJ) were anesthetized and imaged between postnatal (P) day 7 and P21. OCT instrumentation was developed to optimize signal intensity and image quality. Semi-automatic segmentation tools were developed to quantify the retinal thickness of the nerve fiber layer (NFL), inner plexiform layer (IPL), inner nuclear layer (INL), and the outer retinal layers (ORL), in addition to the total retina. The retinal maturation was characterized by comparing layer thicknesses between consecutive time points. Results From P7 to P10, the IPL increased significantly, consistent with retinal synaptogenesis. From P10 to P12, the IPL and ORL also increased, which is coherent with synaptic connectivity and photoreceptor maturation. In contrast, during these periods, the INL decreased significantly, consistent with cellular densification and selective apoptotic “pruning” of the tissue during nuclear migration. Thereafter from P12 to P21, the INL continued to thin (significantly from P17 to P21) whereas the other layers remained unchanged. No time-dependent changes were observed in the NFL. Overall, changes in the total retina were attributed to those in the IPL, INL, and ORL. Regions of the retina adjacent to the optic nerve head were thinner than distal regions during maturation. Conclusions Changes in retinal layer thickness are consistent with retinal developmental mechanisms. Accordingly, this report opens new horizons in using our system in the mouse to characterize longitudinally developmental digressions in models of human diseases.
Collapse
Affiliation(s)
- Simon Brais-Brunet
- Institute of Biomedical Engineering, University of Montréal, Montréal, Canada.,Research Center, CHU Sainte-Justine, Montréal, Canada
| | - Émilie Heckel
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Pharmacology, University of Montréal, Montréal, Canada
| | - Udayakumar Kanniyappan
- Institute of Biomedical Engineering, University of Montréal, Montréal, Canada.,Research Center, CHU Sainte-Justine, Montréal, Canada
| | - Sylvain Chemtob
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Pharmacology, University of Montréal, Montréal, Canada.,Department of Pediatrics, University of Montréal, Montréal, Canada.,Department of Ophthalmology, University of Montréal, Montréal, Canada
| | - Caroline Boudoux
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Engineering Physics, Polytechnique Montréal, Montréal, Canada
| | - Jean-Sébastien Joyal
- Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Pharmacology, University of Montréal, Montréal, Canada.,Department of Pediatrics, University of Montréal, Montréal, Canada.,Department of Ophthalmology, University of Montréal, Montréal, Canada
| | - Mathieu Dehaes
- Institute of Biomedical Engineering, University of Montréal, Montréal, Canada.,Research Center, CHU Sainte-Justine, Montréal, Canada.,Department of Radiology, Radio-oncology and Nuclear Medicine, University of Montréal, Montréal, Canada
| |
Collapse
|
66
|
Kadomoto S, Muraoka Y, Uji A, Ooto S, Kawai K, Ishikura M, Nishigori N, Akagi T, Tsujikawa A. Human Foveal Cone and Müller Cells Examined by Adaptive Optics Optical Coherence Tomography. Transl Vis Sci Technol 2021; 10:17. [PMID: 34559184 PMCID: PMC8475288 DOI: 10.1167/tvst.10.11.17] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Purpose The purpose of this study was to image and investigate the foveal microstructure of human cone and Müller cells using adaptive optics-optical coherence tomography. Methods Six healthy subjects underwent the prototype adaptive optics-optical coherence tomography imaging, which allowed an axial resolution of 3.4 µm and a transverse resolution of approximately 3 µm. The morphological features of the individual retinal cells observed in the foveola were qualitatively and quantitatively evaluated. Results In the six healthy subjects, the image B-scans showed hyper-reflective dots that were densely packed in the outer nuclear layer. The mean number, diameter, and density of hyper-reflective dots in the foveola were 250.8 ± 59.6, 12.7 ± 59.6 µm, and 6966 ± 1833/mm2, respectively. These qualitative and quantitative findings regarding the hyper-reflective dots were markedly consistent with the morphological features of the foveal cone cell nuclei. Additionally, the images showed the funnel-shaped hyporeflective bodies running vertically and obliquely between the inner and external limiting membranes, illustrating the cell morphology of the foveal Müller cells. Conclusions Using adaptive optics, we succeeded in visualizing cross-sectional images of the individual cone and Müller cells of the human retina in vivo. Translational Relevance Adaptive optics-optical coherence tomography would help to improve our understanding of the pathogenesis of macular diseases.
Collapse
Affiliation(s)
- Shin Kadomoto
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Yuki Muraoka
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akihito Uji
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Sotaro Ooto
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Kentaro Kawai
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masaharu Ishikura
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Naomi Nishigori
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Tadamichi Akagi
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Akitaka Tsujikawa
- Department of Ophthalmology and Visual Sciences, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
67
|
Pandiyan VP, Jiang X, Kuchenbecker JA, Sabesan R. Reflective mirror-based line-scan adaptive optics OCT for imaging retinal structure and function. BIOMEDICAL OPTICS EXPRESS 2021; 12:5865-5880. [PMID: 34692221 PMCID: PMC8515964 DOI: 10.1364/boe.436337] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/16/2021] [Accepted: 08/20/2021] [Indexed: 05/06/2023]
Abstract
Line-scan OCT incorporated with adaptive optics (AO) offers high resolution, speed, and sensitivity for imaging retinal structure and function in vivo. Here, we introduce its implementation with reflective mirror-based afocal telescopes, optimized for imaging light-induced retinal activity (optoretinography) and weak retinal reflections at the cellular scale. A non-planar optical design was followed based on previous recommendations with key differences specific to a line-scan geometry. The three beam paths fundamental to an OCT system -illumination/sample, detection, and reference- were modeled in Zemax optical design software to yield theoretically diffraction-limited performance over a 2.2 deg. field-of-view and 1.5 D vergence range at the eye's pupil. The performance for imaging retinal structure was exemplified by cellular-scale visualization of retinal ganglion cells, macrophages, foveal cones, and rods in human observers. The performance for functional imaging was exemplified by resolving the light-evoked optical changes in foveal cone photoreceptors where the spatial resolution was sufficient for cone spectral classification at an eccentricity 0.3 deg. from the foveal center. This enabled the first in vivo demonstration of reduced S-cone (short-wavelength cone) density in the human foveola, thus far observed only in ex vivo histological preparations. Together, the feasibility for high resolution imaging of retinal structure and function demonstrated here holds significant potential for basic science and translational applications.
Collapse
Affiliation(s)
- Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Co-first authors with equal contribution
| | - Xiaoyun Jiang
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
- Co-first authors with equal contribution
| | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|
68
|
Jonnal RS. Toward a clinical optoretinogram: a review of noninvasive, optical tests of retinal neural function. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1270. [PMID: 34532407 PMCID: PMC8421939 DOI: 10.21037/atm-20-6440] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 07/12/2021] [Indexed: 11/17/2022]
Abstract
The past few years have witnessed rapid development of the optoretinogram-a noninvasive, optical measurement of neural function in the retina, and especially the photoreceptors (Ph). While its recent development has been rapid, it represents the culmination of hundreds of experiments spanning decades. Early work showed measurable and reproducible changes in the optical properties of retinal explants and suspensions of Ph, and uncovered some of the biophysical and biochemical mechanisms underlying them. That work thus provided critical motivation for more recent work based on clinical imaging platforms, whose eventual goal is the improvement of ophthalmic care and streamlining the discovery of novel therapeutics. The first part of this review consists of a selective summary of the early work, and identifies four kinds of stimulus-evoked optical signals that have emerged from it: changes in light scattered from the membranous discs of the Ph's outer segment (OS), changes in light scattered by the front and back boundaries of the OS, rearrangement of scattering material in and near the OS, and changes in the OS length. In the past decade, all four of these signals have continued to be investigated using imaging systems already used in the clinic or intended for clinical and translational use. The second part of this review discusses these imaging modalities, their potential to detect and quantify the signals of interest, and other factors influencing their translational promise. Particular attention is paid to phase-sensitive optical coherence tomography (OCT) with adaptive optics (AO), a method in which both the amplitude and the phase of light reflected from individual Ph is monitored as visible stimuli are delivered to them. The record of the light's phase is decoded to reveal a reproducible pattern of deformation in the OS, while the amplitude reveals changes in scattering and structural rearrangements. The method has been demonstrated in a few labs and has been used to measure responses from both rods and cones. With the ability to detect responses to stimuli isomerizing less than 0.01% of photopigment, this technique may prove to be a quick, noninvasive, and objective way to measure subtle disease-related dysfunction at the cellular level, and thus to provide an entirely new and complementary biomarker for retinal disease and recovery.
Collapse
|
69
|
Zhang F, Kurokawa K, Bernucci MT, Jung HW, Lassoued A, Crowell JA, Neitz J, Neitz M, Miller DT. Revealing How Color Vision Phenotype and Genotype Manifest in Individual Cone Cells. Invest Ophthalmol Vis Sci 2021; 62:8. [PMID: 33544131 PMCID: PMC7873503 DOI: 10.1167/iovs.62.2.8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Purpose Psychophysical and genetic testing provide substantial information about color vision phenotype and genotype. However, neither reveals how color vision phenotypes and genotypes manifest themselves in individual cones, where color vision and its anomalies are thought to originate. Here, we use adaptive-optics phase-sensitive optical coherence tomography (AO-PSOCT) to investigate these relationships. Methods We used AO-PSOCT to measure cone function—optical response to light stimulation—in each of 16 human subjects with different phenotypes and genotypes of color vision (five color-normal, three deuteranopic, two protanopic, and six deuteranomalous trichromatic subjects). We classified three spectral types of cones (S, M, and L), and we measured cone structure—namely cone density, cone mosaic arrangement, and spatial arrangement of cone types. Results For the different phenotypes, our cone function results show that (1) color normals possess S, M, and L cones; (2) deuteranopes are missing M cones but are normal otherwise; (3) protanopes are missing L cones but are normal otherwise; and (4) deuteranomalous trichromats are missing M cones but contain evidence of at least two subtypes of L cones. Cone function was consistent with the subjects’ genotype in which only the first two M and L genes in the gene array are expressed and was correlated with the estimated spectral separation between photopigments, including in the deuteranomalous trichromats. The L/M cone ratio was highly variable in the color normals. No association was found between cone density and the genotypes and phenotypes investigated, and the cone mosaic arrangement was altered in the dichromats. Conclusions AO-PSOCT is a novel method for assessing color vision phenotype and genotype in single cone cells.
Collapse
Affiliation(s)
- Furu Zhang
- School of Optometry, Indiana University, Bloomington, Indiana, United States.,Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, United States
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Marcel T Bernucci
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Hae Won Jung
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Ayoub Lassoued
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - James A Crowell
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| | - Jay Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Maureen Neitz
- Department of Ophthalmology, University of Washington, Seattle, Washington, United States
| | - Donald T Miller
- School of Optometry, Indiana University, Bloomington, Indiana, United States
| |
Collapse
|
70
|
Wynne N, Carroll J, Duncan JL. Promises and pitfalls of evaluating photoreceptor-based retinal disease with adaptive optics scanning light ophthalmoscopy (AOSLO). Prog Retin Eye Res 2021; 83:100920. [PMID: 33161127 PMCID: PMC8639282 DOI: 10.1016/j.preteyeres.2020.100920] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/28/2020] [Accepted: 10/31/2020] [Indexed: 12/15/2022]
Abstract
Adaptive optics scanning light ophthalmoscopy (AOSLO) allows visualization of the living human retina with exquisite single-cell resolution. This technology has improved our understanding of normal retinal structure and revealed pathophysiological details of a number of retinal diseases. Despite the remarkable capabilities of AOSLO, it has not seen the widespread commercial adoption and mainstream clinical success of other modalities developed in a similar time frame. Nevertheless, continued advancements in AOSLO hardware and software have expanded use to a broader range of patients. Current devices enable imaging of a number of different retinal cell types, with recent improvements in stimulus and detection schemes enabling monitoring of retinal function, microscopic structural changes, and even subcellular activity. This has positioned AOSLO for use in clinical trials, primarily as exploratory outcome measures or biomarkers that can be used to monitor disease progression or therapeutic response. AOSLO metrics could facilitate patient selection for such trials, to refine inclusion criteria or to guide the choice of therapy, depending on the presence, absence, or functional viability of specific cell types. Here we explore the potential of AOSLO retinal imaging by reviewing clinical applications as well as some of the pitfalls and barriers to more widespread clinical adoption.
Collapse
Affiliation(s)
- Niamh Wynne
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Joseph Carroll
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, CA, USA.
| |
Collapse
|
71
|
Berkowitz BA, Qian H. OCT imaging of rod mitochondrial respiration in vivo. Exp Biol Med (Maywood) 2021; 246:2151-2158. [PMID: 34024141 DOI: 10.1177/15353702211013799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
There remains a need for high spatial resolution imaging indices of mitochondrial respiration in the outer retina that probe normal physiology and measure pathogenic and reversible conditions underlying loss of vision. Mitochondria are involved in a critical, but somewhat underappreciated, support system that maintains the health of the outer retina involving stimulus-evoked changes in subretinal space hydration. The subretinal space hydration light-dark response is important because it controls the distribution of vision-critical interphotoreceptor matrix components, including anti-oxidants, pro-survival factors, ions, and metabolites. The underlying signaling pathway controlling subretinal space water management has been worked out over the past 30 years and involves cGMP/mitochondria respiration/pH/RPE water efflux. This signaling pathway has also been shown to be modified by disease-generating conditions, such as hypoxia or oxidative stress. Here, we review recent advances in MRI and commercially available OCT technologies that can measure stimulus-evoked changes in subretinal space water content based on changes in the external limiting membrane-retinal pigment epithelium region. Each step within the above signaling pathway can also be interrogated with FDA-approved pharmaceuticals. A highlight of these studies is the demonstration of first-in-kind in vivo imaging of mitochondria respiration of any cell in the body. Future examinations of subretinal space hydration are expected to be useful for diagnosing threats to sight in aging and disease, and improving the success rate when translating treatments from bench-to-bedside.
Collapse
Affiliation(s)
- Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
72
|
Gao S, Li Y, Bissig D, Cohen ED, Podolsky RH, Childers KL, Vernon G, Chen S, Berkowitz BA, Qian H. Functional regulation of an outer retina hyporeflective band on optical coherence tomography images. Sci Rep 2021; 11:10260. [PMID: 33986362 PMCID: PMC8119672 DOI: 10.1038/s41598-021-89599-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 04/27/2021] [Indexed: 12/30/2022] Open
Abstract
Human and animal retinal optical coherence tomography (OCT) images show a hyporeflective band (HB) between the photoreceptor tip and retinal pigment epithelium layers whose mechanisms are unclear. In mice, HB magnitude and the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness appear to be dependent on light exposure, which is known to alter photoreceptor mitochondria respiration. Here, we test the hypothesis that these two OCT biomarkers are linked to metabolic activity of the retina. Acetazolamide, which acidifies the subretinal space, had no significant impact on HB magnitude but produced ELM-RPE thinning. Mitochondrial stimulation with 2,4-dinitrophenol reduced both HB magnitude and ELM-RPE thickness in parallel, and also reduced F-actin expression in the same retinal region, but without altering ERG responses. For mice strains with relatively lower (C57BL/6J) or higher (129S6/ev) rod mitochondrial efficacy, light-induced changes in HB magnitude and ELM-RPE thickness were correlated. Humans, analyzed from published data captured with a different protocol, showed a similar light-dark change pattern in HB magnitude as in the mice. Our results indicate that mitochondrial respiration underlies changes in HB magnitude upstream of the pH-sensitive ELM-RPE thickness response. These two distinct OCT biomarkers could be useful indices for non-invasively evaluating photoreceptor mitochondrial metabolic activity.
Collapse
Affiliation(s)
- Shasha Gao
- Department of Ophthalmology, the First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Yichao Li
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - David Bissig
- Department of Neurology, University of California Davis, Sacramento, CA, USA
| | - Ethan D Cohen
- Division of Biomedical Physics, Office of Science and Engineering Labs, Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, MD, USA
| | - Robert H Podolsky
- Beaumont Research Institute, Beaumont Health, Royal Oak, MI, 48073, USA
| | | | - Gregory Vernon
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Sonia Chen
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Bruce A Berkowitz
- Department of Ophthalmology, Visual and Anatomical Sciences, Wayne State University School of Medicine, Detroit, MI, USA
| | - Haohua Qian
- Visual Function Core, National Eye Institute, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
73
|
Gulati S, Palczewski K. New focus on regulation of the rod photoreceptor phosphodiesterase. Curr Opin Struct Biol 2021; 69:99-107. [PMID: 33945959 DOI: 10.1016/j.sbi.2021.03.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/18/2021] [Accepted: 03/25/2021] [Indexed: 02/03/2023]
Abstract
Rod photoreceptor phosphodiesterase (PDE6) is the key catalytic enzyme of visual phototransduction. PDE6 is the only member of the phosphodiesterase family that consists of a heterodimeric catalytic core composed of PDE6α and PDE6β subunits and two inhibitory PDE6γ subunits. Both PDE6α and PDE6β contain two regulatory GAF domains and one catalytic domain. GAF domains and the tightly bound PDE6γ subunits allosterically regulate the activity of the catalytic domain in association with the GTP-bound transducin alpha subunit (Gtα-GTP). Recent cryo-electron microscopy structures of the PDE6αγβγ and PDE6αγβγ-(Gtα-GTP)2 complexes have provided valuable knowledge shedding additional light on the allosteric activation of PDE6 by Gtα-GTP. Here we discuss recent developments in our understanding of the mechanism of PDE6 activation.
Collapse
Affiliation(s)
| | - Krzysztof Palczewski
- Gavin Herbert Eye Institute and the Department of Ophthalmology, Center for Translational Vision Research, University of California, 829 Health Sciences Road, Irvine, CA 92617, USA; The Department of Physiology & Biophysics, University of California, Irvine, CA 92697, USA; The Department of Chemistry, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
74
|
Ma G, Son T, Kim TH, Yao X. In vivo optoretinography of phototransduction activation and energy metabolism in retinal photoreceptors. JOURNAL OF BIOPHOTONICS 2021; 14:e202000462. [PMID: 33547871 PMCID: PMC8240094 DOI: 10.1002/jbio.202000462] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/09/2021] [Accepted: 02/02/2021] [Indexed: 05/05/2023]
Abstract
The objective of this study is to verify the anatomic correlate of the second (2nd) outer retina band in optical coherence tomography (OCT), and to demonstrate the potential of using intrinsic optical signal (IOS) imaging for concurrent optoretinography (ORG) of phototransduction activation and energy metabolism in stimulus activated retinal photoreceptors. A custom-designed OCT was employed for depth-resolved IOS imaging in mouse retina activated by a visible light flicker stimulation. The spatiotemporal properties of the IOS changes at the photoreceptor outer segment (OS) and inner segment (IS) were quantitatively evaluated. Rapid IOS change was observed at the OS almost right away, and the IOS at the IS was relatively slow. Comparative analysis indicates that the OS-IOS reflects transient OS deformation caused by the phototransduction activation, and IS-IOS might reflect the energy metabolism caused by mitochondria activation in retinal photoreceptors. The consistency of the distribution of the IS-IOS and the 2nd OCT band supports the IS ellipsoid (ISe), which has abundant mitochondria, as the signal source of the 2nd OCT band of the outer retina.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, Illinois
- Correspondence: Xincheng Yao, Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
75
|
Ma G, Son T, Kim TH, Yao X. Functional optoretinography: concurrent OCT monitoring of intrinsic signal amplitude and phase dynamics in human photoreceptors. BIOMEDICAL OPTICS EXPRESS 2021; 12:2661-2669. [PMID: 34123495 PMCID: PMC8176815 DOI: 10.1364/boe.423733] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 05/12/2023]
Abstract
Intrinsic optical signal (IOS) imaging promises a noninvasive method for objective assessment of retinal function. This study demonstrates concurrent optical coherence tomography (OCT) of amplitude-IOS and phase-IOS changes in human photoreceptors. A new procedure for differential-phase-mapping (DPM) is validated to enable depth-resolved phase-IOS imaging. Dynamic OCT revealed rapid amplitude-IOS and phase-IOS changes, which occur almost right away after the stimulus onset. These IOS changes were predominantly observed within the photoreceptor outer segment (OS), particularly two boundaries connecting to the inner segment and retinal pigment epithelium. The comparative analysis supports that both amplitude-IOS and phase-IOS attribute to transient OS morphological change associated with phototransduction activation in retinal photoreceptors. A simulation modeling is proposed to discuss the relationship between the photoreceptor OS length and phase-IOS changes.
Collapse
Affiliation(s)
- Guangying Ma
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
76
|
Ringel MJ, Tang EM, Tao YK. Advances in multimodal imaging in ophthalmology. Ther Adv Ophthalmol 2021; 13:25158414211002400. [PMID: 35187398 PMCID: PMC8855415 DOI: 10.1177/25158414211002400] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/23/2021] [Indexed: 12/12/2022] Open
Abstract
Multimodality ophthalmic imaging systems aim to enhance the contrast, resolution, and functionality of existing technologies to improve disease diagnostics and therapeutic guidance. These systems include advanced acquisition and post-processing methods using optical coherence tomography (OCT), combined scanning laser ophthalmoscopy and OCT systems, adaptive optics, surgical guidance, and photoacoustic technologies. Here, we provide an overview of these ophthalmic imaging systems and their clinical and basic science applications.
Collapse
Affiliation(s)
- Morgan J. Ringel
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Eric M. Tang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Yuankai K. Tao
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
77
|
Son T, Kim TH, Ma G, Kim H, Yao X. Functional intrinsic optical signal imaging for objective optoretinography of human photoreceptors. Exp Biol Med (Maywood) 2021; 246:639-643. [PMID: 33307802 PMCID: PMC7988726 DOI: 10.1177/1535370220978898] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022] Open
Abstract
Functional mapping of photoreceptor physiology is important for better disease diagnosis and treatment assessment. Fast intrinsic optical signal (IOS), which arises before light-evoked pupillary response, promises a unique biomarker of photoreceptor physiology for objective optoretinography with high resolution. This study is to test the feasibility of non-mydriatic IOS mapping of retinal photoreceptors in awake human. Depth-resolved optical coherence tomography verified outer segment (OS) as the anatomic origin of fast photoreceptor-IOS. Dynamic IOS changes are primarily confined at OS boundaries connected with inner segment and retinal pigment epithelium, supporting transient OS shrinkage due to phototransduction process as the mechanism of the fast photoreceptor-IOS response.
Collapse
Affiliation(s)
- Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Guangying Ma
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Hoonsup Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
78
|
Guillén E, Ferrer-Roselló M, Agrisuelas J, García-Jareño JJ, Vicente F. Digital video-electrochemistry (DVEC) to assess electrochromic materials in the frequency domain: RGB colorimetry impedance spectroscopy. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2020.137340] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
79
|
Kurokawa K, Crowell JA, Do N, Lee JJ, Miller DT. Multi-reference global registration of individual A-lines in adaptive optics optical coherence tomography retinal images. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-200266R. [PMID: 33410310 PMCID: PMC7787477 DOI: 10.1117/1.jbo.26.1.016001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/10/2020] [Indexed: 05/18/2023]
Abstract
SIGNIFICANCE Adaptive optics optical coherence tomography (AO-OCT) technology enables non-invasive, high-resolution three-dimensional (3D) imaging of the retina and promises earlier detection of ocular disease. However, AO-OCT data are corrupted by eye-movement artifacts that must be removed in post-processing, a process rendered time-consuming by the immense quantity of data. AIM To efficiently remove eye-movement artifacts at the level of individual A-lines, including those present in any individual reference volume. APPROACH We developed a registration method that cascades (1) a 3D B-scan registration algorithm with (2) a global A-line registration algorithm for correcting torsional eye movements and image scaling and generating global motion-free coordinates. The first algorithm corrects 3D translational eye movements to a single reference volume, accelerated using parallel computing. The second algorithm combines outputs of multiple runs of the first algorithm using different reference volumes followed by an affine transformation, permitting registration of all images to a global coordinate system at the level of individual A-lines. RESULTS The 3D B-scan algorithm estimates and corrects 3D translational motions with high registration accuracy and robustness, even for volumes containing microsaccades. Averaging registered volumes improves our image quality metrics up to 22 dB. Implementation in CUDA™ on a graphics processing unit registers a 512 × 512 × 512 volume in only 10.6 s, 150 times faster than MATLAB™ on a central processing unit. The global A-line algorithm minimizes image distortion, improves regularity of the cone photoreceptor mosaic, and supports enhanced visualization of low-contrast retinal cellular features. Averaging registered volumes improves our image quality up to 9.4 dB. It also permits extending the imaging field of view (∼2.1 × ) and depth of focus (∼5.6 × ) beyond what is attainable with single-reference registration. CONCLUSIONS We can efficiently correct eye motion in all 3D at the level of individual A-lines using a global coordinate system.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Indiana University, School of Optometry, Bloomington, Indiana, United States
| | - James A. Crowell
- Indiana University, School of Optometry, Bloomington, Indiana, United States
| | - Nhan Do
- Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States
- Google, Mountain View, California, United States
| | - John J. Lee
- Purdue School of Engineering and Technology, Indiana University-Purdue University Indianapolis, Indianapolis, Indiana, United States
| | - Donald T. Miller
- Indiana University, School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
80
|
Abstract
Color is a fundamental aspect of normal visual experience. This chapter provides an overview of the role of color in human behavior, a survey of current knowledge regarding the genetic, retinal, and neural mechanisms that enable color vision, and a review of inherited and acquired defects of color vision including a discussion of diagnostic tests.
Collapse
Affiliation(s)
- Joseph Carroll
- Department of Ophthalmology & Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, United States.
| | - Bevil R Conway
- Laboratory of Sensorimotor Research, National Eye Institute, National Institute of Mental Health, Bethesda, MD, United States.
| |
Collapse
|
81
|
Cooper RF, Brainard DH, Morgan JIW. Optoretinography of individual human cone photoreceptors. OPTICS EXPRESS 2020; 28:39326-39339. [PMID: 33379485 PMCID: PMC7771891 DOI: 10.1364/oe.409193] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 05/03/2023]
Abstract
Photoreceptors mediate the first step of vision, transducing light and passing signals to retinal neurons that ultimately send signals along the optic nerve to the brain. A functional deficiency in the photoreceptors, due to either congenital or acquired disease, can significantly affect an individual's sight and quality of life. Methods for quantifying the health and function of photoreceptors are essential for understanding both the progression of disease and the efficacy of treatment. Given that emerging treatments such as gene, stem cell, and small molecule therapy are designed to operate at the cellular scale, it is desirable to monitor function at the commensurate resolution of individual photoreceptors. Previously, non-invasive imaging methods for visualizing photoreceptor mosaic structure have been used to infer photoreceptor health, but these methods do not assess function directly. Conversely, most functional techniques, such as ERG and conventional microperimetry, measure function by aggregating the effects of signals from many photoreceptors. We have previously shown that stimulus-evoked intrinsic changes in intensity can be measured reliably in populations of cone photoreceptors in the intact human eye, a measurement we refer to more generally as the cone optoretinogram. Here we report that we can resolve the intensity optoretinogram at the level of individual cones. Moreover, we show that the individual cone optoretinogram exhibits two key signatures expected of a functional measure. First, responses in individual cones increase systematically as a function of stimulus irradiance. Second, we can use the amplitude of the functional response to middle wavelength (545 nm) light to separate the population of short-wavelength-sensitive (S) cones from the population of middle- and long-wavelength-sensitive (L and M) cones. Our results demonstrate the promise of optoretinography as a direct diagnostic measure of individual cone function in the living human eye.
Collapse
Affiliation(s)
- Robert F Cooper
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Currently at the Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin and the Department of Ophthalmology, Medical College of Wisconsin, Milwaukee, WI 53233, USA
| | - David H Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica I. W. Morgan
- Scheie Eye Institute, Department of Ophthalmology, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
82
|
Ruan Z, Qi J, Yin P, Qian Z(M, Liu J, Liu Y, Yang Y, Li H, Zhang S, Howard SW, Lin H, Wang L. Prolonged Life Expectancy for Those Dying of Stroke by Achieving the Daily PM 2.5 Targets. GLOBAL CHALLENGES (HOBOKEN, NJ) 2020; 4:2000048. [PMID: 33304609 PMCID: PMC7713556 DOI: 10.1002/gch2.202000048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Indexed: 05/11/2023]
Abstract
This time-series study collects data on stroke-related mortality, years of life lost (YLL), air pollution, and meteorological conditions in 96 Chinese cities from 2013 to 2016 and proposes a three-stage strategy to generate the national and regional estimations of avoidable YLL, gains in life expectancy and stroke-related population attributable fraction by postulating that the daily fine particulate matter (PM2.5) has been kept under certain standards. A total of 1 318 911 stroke deaths are analyzed. Each 10 µg m-3 increment in PM2.5 at lag03 is associated with a city-mean increase of 0.31 (95% CI: 0.19, 0.44) years of life lost from stroke. A number of 914.11 (95% CI: 538.28, 1288.94) years of city-mean life lost from stoke could be avoided by attaining the WHO's Air Quality Guidelines (AQG) (25 µg m-3). Moreover, by applying the AQG standard, 0.11 (0.08, 0.15) years of life lost might be prevented for each death, and about 0.91% (95% CI: 0.62%, 1.19%) of the total years of life lost from stroke might be explained by the daily excess PM2.5 exposure. This study indicates that stroke patients can have a longer life expectancy if stricter PM2.5 standards are put in place, especially ischemic stroke patients.
Collapse
Affiliation(s)
- Zengliang Ruan
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Jinlei Qi
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Peng Yin
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Zhengmin (Min) Qian
- Department of Epidemiology and BiostatisticsCollege for Public Health & Social JusticeSaint Louis UniversitySaint LouisMO63104USA
| | - Jiangmei Liu
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Yunning Liu
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| | - Yin Yang
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Huan Li
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Shiyu Zhang
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Steven W. Howard
- Department of Health Management & PolicyCollege for Public Health & Social JusticeSaint Louis UniversitySaint LouisMO63104USA
| | - Hualiang Lin
- Department of EpidemiologySchool of Public HealthSun Yat‐Sen UniversityGuangzhou510080China
| | - Lijun Wang
- National Center for Chronic and Noncommunicable Disease Control and PreventionChinese Center for Disease Control and PreventionBeijing100050China
| |
Collapse
|
83
|
Abd El-Sadek I, Miyazawa A, Tzu-Wei Shen L, Makita S, Fukuda S, Yamashita T, Oka Y, Mukherjee P, Matsusaka S, Oshika T, Kano H, Yasuno Y. Optical coherence tomography-based tissue dynamics imaging for longitudinal and drug response evaluation of tumor spheroids. BIOMEDICAL OPTICS EXPRESS 2020; 11:6231-6248. [PMID: 33282486 PMCID: PMC7687946 DOI: 10.1364/boe.404336] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/30/2020] [Accepted: 10/01/2020] [Indexed: 05/18/2023]
Abstract
We present optical coherence tomography (OCT)-based tissue dynamics imaging method to visualize and quantify tissue dynamics such as subcellular motion based on statistical analysis of rapid-time-sequence OCT signals at the same location. The analyses include logarithmic intensity variance (LIV) method and two types of OCT correlation decay speed analysis (OCDS). LIV is sensitive to the magnitude of the signal fluctuations, while OCDSs including early- and late-OCDS (OCDS e and OCDS l , respectively) are sensitive to the fast and slow tissue dynamics, respectively. These methods were able to visualize and quantify the longitudinal necrotic process of a human breast adenocarcinoma spheroid and its anti-cancer drug response. Additionally, the effects of the number of OCT signals and the total acquisition time on dynamics imaging are examined. Small number of OCT signals, e.g., five or nine suffice for dynamics imaging when the total acquisition time is suitably long.
Collapse
Affiliation(s)
| | - Arata Miyazawa
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Larina Tzu-Wei Shen
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shuichi Makita
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Shinichi Fukuda
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Department of Advanced Vision Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Toshiharu Yamashita
- Laboratory of Regenerative Medicine and Stem Cell Biology, Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuki Oka
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Pradipta Mukherjee
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Satoshi Matsusaka
- Clinical Research and Regional Innovation, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Tetsuro Oshika
- Department of Ophthalmology, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Hideaki Kano
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yoshiaki Yasuno
- Computational Optics Group, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
84
|
Boyle KC, Chen ZC, Ling T, Pandiyan VP, Kuchenbecker J, Sabesan R, Palanker D. Mechanisms of Light-Induced Deformations in Photoreceptors. Biophys J 2020; 119:1481-1488. [PMID: 33031739 PMCID: PMC7642315 DOI: 10.1016/j.bpj.2020.09.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/02/2020] [Accepted: 09/08/2020] [Indexed: 01/11/2023] Open
Abstract
Biological cells deform on a nanometer scale when their transmembrane voltage changes, an effect that has been visualized during the action potential using quantitative phase imaging. Similar changes in the optical path length have been observed in photoreceptor outer segments after a flash stimulus via phase-resolved optical coherence tomography. These optoretinograms reveal a fast, millisecond-scale contraction of the outer segments by tens of nanometers, followed by a slow (hundreds of milliseconds) elongation reaching hundreds of nanometers. Ultrafast measurements of the contractile response using line-field phase-resolved optical coherence tomography show a logarithmic increase in amplitude and a decreasing time to peak with increasing stimulus intensity. We present a model that relates the early receptor potential to these deformations based on the voltage-dependent membrane tension-the mechanism observed earlier in neurons and other electrogenic cells. The early receptor potential is caused by conformational changes in opsins after photoisomerization, resulting in the fractional shift of the charge across the disk membrane. Lateral repulsion of the ions on both sides of the membrane affects its surface tension and leads to its lateral expansion. Because the volume of the disks does not change on a millisecond timescale, their lateral expansion leads to an axial contraction of the outer segment. With increasing stimulus intensity and the resulting tension, the area expansion coefficient of the disk membrane also increases as thermally induced fluctuations are pulled flat, resisting further expansion. This leads to the logarithmic saturation observed in measurements as well as the peak shift in time. This imaging technique therefore relates the structural changes in the photoreceptor to the underlying neurological function of transducing light into electrical signals. Such label-free optical monitoring of neural activity using fast interferometry may be applicable not only to optoretinography but also to neuroscience in general.
Collapse
Affiliation(s)
- K C Boyle
- Department of Electrical Engineering, Stanford University, Stanford, California; Hansen Experimental Physics Laboratory, Stanford University, Stanford, California.
| | - Z C Chen
- Department of Electrical Engineering, Stanford University, Stanford, California; Hansen Experimental Physics Laboratory, Stanford University, Stanford, California
| | - T Ling
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California; Department of Ophthalmology, Stanford University, Stanford, California
| | - V P Pandiyan
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - J Kuchenbecker
- Department of Ophthalmology, University of Washington, Seattle, Washington
| | - R Sabesan
- Department of Ophthalmology, University of Washington, Seattle, Washington.
| | - D Palanker
- Hansen Experimental Physics Laboratory, Stanford University, Stanford, California; Department of Ophthalmology, Stanford University, Stanford, California.
| |
Collapse
|
85
|
Valente D, Vienola KV, Zawadzki RJ, Jonnal RS. Kilohertz retinal FF-SS-OCT and flood imaging with hardware-based adaptive optics. BIOMEDICAL OPTICS EXPRESS 2020; 11:5995-6011. [PMID: 33150001 PMCID: PMC7587251 DOI: 10.1364/boe.403509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 05/18/2023]
Abstract
A retinal imaging system was designed for full-field (FF) swept-source (SS) optical coherence tomography (OCT) with cellular resolution. The system incorporates a real-time adaptive optics (AO) subsystem and a very high-speed CMOS sensor, and is capable of acquiring volumetric images of the retina at rates up to 1 kHz. While digital aberration correction (DAC) is an attractive potential alternative to AO, it has not yet been shown to provide resolution allowing visualization of cones in the fovea, where early detection of functional deficits is most critical. Here we demonstrate that FF-SS-OCT with hardware AO permits resolution of foveal cones, imaged at eccentricities of 1° and 2°, with volume rates adequate to measure light-evoked changes in photoreceptors. With the reference arm blocked, the system can operate as a kilohertz AO flood illumination fundus camera with adjustable temporal coherence and is expected to allow measurement of light-evoked changes caused by common path interference in photoreceptor outer segments (OS). In this paper, we describe the system's optical design, characterize its performance, and demonstrate its ability to produce images of the human photoreceptor mosaic.
Collapse
Affiliation(s)
- Denise Valente
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
| | - Kari V. Vienola
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
| | - Robert J. Zawadzki
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
- EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, CA 95616, USA
| | - Ravi S. Jonnal
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, University of California Davis, Sacramento, CA 95817, USA
| |
Collapse
|
86
|
Miller DT, Kurokawa K. Cellular-Scale Imaging of Transparent Retinal Structures and Processes Using Adaptive Optics Optical Coherence Tomography. Annu Rev Vis Sci 2020; 6:115-148. [PMID: 32609578 PMCID: PMC7864592 DOI: 10.1146/annurev-vision-030320-041255] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
High-resolution retinal imaging is revolutionizing how scientists and clinicians study the retina on the cellular scale. Its exquisite sensitivity enables time-lapse optical biopsies that capture minute changes in the structure and physiological processes of cells in the living eye. This information is increasingly used to detect disease onset and monitor disease progression during early stages, raising the possibility of personalized eye care. Powerful high-resolution imaging tools have been in development for more than two decades; one that has garnered considerable interest in recent years is optical coherence tomography enhanced with adaptive optics. State-of-the-art adaptive optics optical coherence tomography (AO-OCT) makes it possible to visualize even highly transparent cells and measure some of their internal processes at all depths within the retina, permitting reconstruction of a 3D view of the living microscopic retina. In this review, we report current AO-OCT performance and its success in visualizing and quantifying these once-invisible cells in human eyes.
Collapse
Affiliation(s)
- Donald T Miller
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA; ,
| | - Kazuhiro Kurokawa
- School of Optometry, Indiana University, Bloomington, Indiana 47405, USA; ,
| |
Collapse
|
87
|
Structural imaging of the retina in psychosis spectrum disorders: current status and perspectives. Curr Opin Psychiatry 2020; 33:476-483. [PMID: 32639357 DOI: 10.1097/yco.0000000000000624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Structural changes of the retina in schizophrenia and other psychotic disorders seem plausible as these conditions are accompanied by widespread morphological abnormalities of the brain. Advances in structural retinal imaging have led to the possibility of precise quantification of individual retinal layers, using optical coherence tomography (OCT) scanners. RECENT FINDINGS The aggregation of information related to OCT findings in schizophrenia has resulted in three metaanalyses, which are currently described. Areas where retinal changes were reported include retinal nerve fiber layer (RNFL), ganglion cell layer complex (GCC), macular volume, and macular thickness, but findings on affected retinal segments vary to some extent across studies. Discrepancies in individual studies could be because of small samples, heterogeneity within schizophrenia (phase of the illness, illness duration, predominant symptomatology), inconsistent reporting of antipsychotic therapy, insufficient control of confounding variables (somatic comorbidities, smoking, and so on), and use of the different types of OCT scanners. SUMMARY Exploration of potential disturbances in retinal architecture could provide new insights into neuronal changes associated with psychosis spectrum disorders, with potential to elucidate the nature and timing of developmental, progressive, inflammatory, and degenerative aspects of neuropathology and pathophysiology, and to assist with characterizing heterogeneity and facilitating personalized treatment approaches.
Collapse
|
88
|
Kim TH, Wang B, Lu Y, Son T, Yao X. Functional optical coherence tomography enables in vivo optoretinography of photoreceptor dysfunction due to retinal degeneration. BIOMEDICAL OPTICS EXPRESS 2020; 11:5306-5320. [PMID: 33014616 PMCID: PMC7510876 DOI: 10.1364/boe.399334] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 05/16/2023]
Abstract
Stimulus-evoked intrinsic optical signal (IOS), which occurs almost immediately after the onset of retinal stimulus has been observed in retinal photoreceptors, promises to be a unique biomarker for objective optoretinography (ORG) of photoreceptor function. We report here the first-time in vivo ORG detection of photoreceptor dysfunction due to retinal degeneration. A custom-designed optical coherence tomography (OCT) was employed for longitudinal ORG monitoring of photoreceptor-IOS distortions in retinal degeneration mice. Depth-resolved OCT analysis confirmed the outer segment (OS) as the physical source of the photoreceptor-IOS. Comparative ERG measurement verified the phototransduction activation as the physiological correlator of the photoreceptor-IOS. Histological examination revealed disorganized OS discs, i.e. the pathological origin of the photoreceptor-IOS distortion.
Collapse
Affiliation(s)
- Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Benquan Wang
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA 20147, USA
| | - Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Taeyoon Son
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
89
|
Pandiyan VP, Maloney-Bertelli A, Kuchenbecker JA, Boyle KC, Ling T, Chen ZC, Park BH, Roorda A, Palanker D, Sabesan R. The optoretinogram reveals the primary steps of phototransduction in the living human eye. SCIENCE ADVANCES 2020; 6:6/37/eabc1124. [PMID: 32917686 PMCID: PMC9222118 DOI: 10.1126/sciadv.abc1124] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Accepted: 07/24/2020] [Indexed: 05/05/2023]
Abstract
Photoreceptors initiate vision by converting photons to electrical activity. The onset of the phototransduction cascade is marked by the isomerization of photopigments upon light capture. We revealed that the onset of phototransduction is accompanied by a rapid (<5 ms), nanometer-scale electromechanical deformation in individual human cone photoreceptors. Characterizing this biophysical phenomenon associated with phototransduction in vivo was enabled by high-speed phase-resolved optical coherence tomography in a line-field configuration that allowed sufficient spatiotemporal resolution to visualize the nanometer/millisecond-scale light-induced shape change in photoreceptors. The deformation was explained as the optical manifestation of electrical activity, caused due to rapid charge displacement following isomerization, resulting in changes of electrical potential and surface tension within the photoreceptor disc membranes. These all-optical recordings of light-induced activity in the human retina constitute an optoretinogram and hold remarkable potential to reveal the biophysical correlates of neural activity in health and disease.
Collapse
Affiliation(s)
| | | | | | - Kevin C Boyle
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Tong Ling
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Zhijie Charles Chen
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
| | - B Hyle Park
- Department of Bioengineering, University of California, Riverside, CA 92521, USA
| | - Austin Roorda
- School of Optometry, University of California, Berkeley, CA 94720, USA
| | - Daniel Palanker
- Hansen Experimental Physics Laboratory, Stanford, CA 94305, USA
- Department of Ophthalmology, Stanford University, Stanford, CA 94305, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington, Seattle, WA 98109, USA.
| |
Collapse
|
90
|
Pandiyan VP, Jiang X, Maloney-Bertelli A, Kuchenbecker JA, Sharma U, Sabesan R. High-speed adaptive optics line-scan OCT for cellular-resolution optoretinography. BIOMEDICAL OPTICS EXPRESS 2020; 11:5274-5296. [PMID: 33014614 PMCID: PMC7510866 DOI: 10.1364/boe.399034] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/05/2020] [Accepted: 08/19/2020] [Indexed: 05/15/2023]
Abstract
Optoretinography-the non-invasive, optical imaging of light-induced functional activity in the retina-stands to provide a critical biomarker for testing the safety and efficacy of new therapies as well as their rapid translation to the clinic. Optical phase change in response to light, as readily accessible in phase-resolved OCT, offers a path towards all-optical imaging of retinal function. However, typical human eye motion adversely affects phase stability. In addition, recording fast light-induced retinal events necessitates high-speed acquisition. Here, we introduce a high-speed line-scan spectral domain OCT with adaptive optics (AO), aimed at volumetric imaging and phase-resolved acquisition of retinal responses to light. By virtue of parallel acquisition of an entire retinal cross-section (B-scan) in a single high-speed camera frame, depth-resolved tomograms at speeds up to 16 kHz were achieved with high sensitivity and phase stability. To optimize spectral and spatial resolution, an anamorphic detection paradigm was introduced, enabling improved light collection efficiency and signal roll-off compared to traditional methods. The benefits in speed, resolution and sensitivity were exemplified in imaging nanometer-millisecond scale light-induced optical path length changes in cone photoreceptor outer segments. With 660 nm stimuli, individual cone responses readily segregated into three clusters, corresponding to long, middle, and short-wavelength cones. Recording such optoretinograms on spatial scales ranging from individual cones, to 100 µm-wide retinal patches offers a robust and sensitive biomarker for cone function in health and disease.
Collapse
Affiliation(s)
- Vimal Prabhu Pandiyan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Xiaoyun Jiang
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Aiden Maloney-Bertelli
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - James A Kuchenbecker
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| | - Utkarsh Sharma
- Catapult Sky LLC, 34116 Blue Heron Dr, Solon, OH 44139, USA
| | - Ramkumar Sabesan
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, WA 98109, USA
| |
Collapse
|
91
|
Azimipour M, Valente D, Vienola KV, Werner JS, Zawadzki RJ, Jonnal RS. Optoretinogram: optical measurement of human cone and rod photoreceptor responses to light. OPTICS LETTERS 2020; 45:4658-4661. [PMID: 32870829 PMCID: PMC7891461 DOI: 10.1364/ol.398868] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/21/2020] [Indexed: 05/18/2023]
Abstract
Noninvasive, objective measurement of rod function is as significant as that of cone function, and for retinal diseases such as retinitis pigmentosa and age-related macular degeneration, rod function may be a more sensitive biomarker of disease progression and efficacy of treatment than cone function. Functional imaging of single human rod photoreceptors, however, has proven difficult because their small size and rapid functional response pose challenges for the resolution and speed of the imaging system. Here, we describe light-evoked, functional responses of human rods and cones, measured noninvasively using a synchronized adaptive optics optical coherence tomography (OCT) and scanning light ophthalmoscopy (SLO) system. The higher lateral resolution of the SLO images made it possible to confirm the identity of rods in the corresponding OCT volumes.
Collapse
Affiliation(s)
- Mehdi Azimipour
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, UC Davis Eye Center, Sacramento, California 95817, USA
| | - Denise Valente
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, UC Davis Eye Center, Sacramento, California 95817, USA
| | - Kari V. Vienola
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, UC Davis Eye Center, Sacramento, California 95817, USA
| | - John S. Werner
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, UC Davis Eye Center, Sacramento, California 95817, USA
| | - Robert J. Zawadzki
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, UC Davis Eye Center, Sacramento, California 95817, USA
- EyePod Small Animal Ocular Imaging Laboratory, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California 95616, USA
| | - Ravi S. Jonnal
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology and Vision Science, UC Davis Eye Center, Sacramento, California 95817, USA
| |
Collapse
|
92
|
Zhu D, Wang R, Žurauskas M, Pande P, Bi J, Yuan Q, Wang L, Gao Z, Boppart SA. Automated fast computational adaptive optics for optical coherence tomography based on a stochastic parallel gradient descent algorithm. OPTICS EXPRESS 2020; 28:23306-23319. [PMID: 32752329 PMCID: PMC7470677 DOI: 10.1364/oe.395523] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The transverse resolution of optical coherence tomography is decreased by aberrations introduced from optical components and the tested samples. In this paper, an automated fast computational aberration correction method based on a stochastic parallel gradient descent (SPGD) algorithm is proposed for aberration-corrected imaging without adopting extra adaptive optics hardware components. A virtual phase filter constructed through combination of Zernike polynomials is adopted to eliminate the wavefront aberration, and their coefficients are stochastically estimated in parallel through the optimization of the image metrics. The feasibility of the proposed method is validated by a simulated resolution target image, in which the introduced aberration wavefront is estimated accurately and with fast convergence. The computation time for the aberration correction of a 512 × 512 pixel image from 7 terms to 12 terms requires little change, from 2.13 s to 2.35 s. The proposed method is then applied for samples with different scattering properties including a particle-based phantom, ex-vivo rabbit adipose tissue, and in-vivo human retina photoreceptors, respectively. Results indicate that diffraction-limited optical performance is recovered, and the maximum intensity increased nearly 3-fold for out-of-focus plane in particle-based tissue phantom. The SPGD algorithm shows great potential for aberration correction and improved run-time performance compared to our previous Resilient backpropagation (Rprop) algorithm when correcting for complex wavefront distortions. The fast computational aberration correction suggests that after further optimization our method can be integrated for future applications in real-time clinical imaging.
Collapse
Affiliation(s)
- Dan Zhu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Ruoyan Wang
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mantas Žurauskas
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Paritosh Pande
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jinci Bi
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Qun Yuan
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Lingjie Wang
- Key Laboratory of Optical System Advanced Manufacturing Technology, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
| | - Zhishan Gao
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Stephen A. Boppart
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
93
|
Shirazi MF, Brunner E, Laslandes M, Pollreisz A, Hitzenberger CK, Pircher M. Visualizing human photoreceptor and retinal pigment epithelium cell mosaics in a single volume scan over an extended field of view with adaptive optics optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2020; 11:4520-4535. [PMID: 32923061 PMCID: PMC7449740 DOI: 10.1364/boe.393906] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 07/13/2020] [Accepted: 07/17/2020] [Indexed: 05/18/2023]
Abstract
Using adaptive optics optical coherence tomography, human photoreceptors and retinal pigment epithelium (RPE) cells are typically visualized on a small field of view of ∼1° to 2°. In addition, volume averaging is required for visualizing the RPE cell mosaic. To increase the imaging area, we introduce a lens based spectral domain AO-OCT system that shows low aberrations within an extended imaging area of 4°×4° while maintaining a high (theoretical) transverse resolution (at >7 mm pupil diameter) in the order of 2 µm. A new concept for wavefront sensing is introduced that uses light mainly originating from the RPE layer and yields images of the RPE cell mosaic in a single volume acquisition. The capability of the instrument for in vivo imaging is demonstrated by visualizing various cell structures within the posterior retinal layers over an extended field of view.
Collapse
Affiliation(s)
- Muhammad Faizan Shirazi
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Elisabeth Brunner
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Marie Laslandes
- ALPAO 727 rue Aristide Bergès 38330
Montbonnot-Saint-Martin, France
| | - Andreas Pollreisz
- Department of Ophthalmology and Optometry,
Medical University of Vienna, Vienna, Waehringer Guertel 18-20, A-1090
Vienna, Austria
| | - Christoph K. Hitzenberger
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| | - Michael Pircher
- Center for Medical Physics and Biomedical
Engineering, Medical University of Vienna, Waehringer Guertel 18-20,
A-1090 Vienna, Austria
| |
Collapse
|
94
|
Yao X, Kim TH. Fast intrinsic optical signal correlates with activation phase of phototransduction in retinal photoreceptors. Exp Biol Med (Maywood) 2020; 245:1087-1095. [PMID: 32558598 PMCID: PMC7400727 DOI: 10.1177/1535370220935406] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
IMPACT STATEMENT As the center of phototransduction, retinal photoreceptors are responsible for capturing and converting photon energy to bioelectric signals for following visual information processing in the retina. This article summarizes experimental observation and discusses biophysical mechanism of fast photoreceptor-intrinsic optical signal (IOS) correlated with early phase of phototransduction. Quantitative imaging of fast photoreceptor-IOS may provide objective optoretinography to advance the study and diagnosis of age-related macular degeneration, retinitis pigmentosa, diabetic retinopathy, and other eye diseases that can cause photoreceptor dysfunctions.
Collapse
Affiliation(s)
- Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
95
|
Silverstein SM, Demmin DL, Schallek JB, Fradkin SI. Measures of Retinal Structure and Function as Biomarkers in Neurology and Psychiatry. Biomark Neuropsychiatry 2020. [DOI: 10.1016/j.bionps.2020.100018] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
96
|
Zhang P, Shibata B, Peinado G, Zawadzki RJ, FitzGerald P, Pugh EN. Measurement of Diurnal Variation in Rod Outer Segment Length In Vivo in Mice With the OCT Optoretinogram. Invest Ophthalmol Vis Sci 2020; 61:9. [PMID: 32176260 PMCID: PMC7401691 DOI: 10.1167/iovs.61.3.9] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 11/25/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose To investigate diurnal variation in the length of mouse rod outer segments in vivo. Methods The lengths of rod inner and outer segments (RIS, ROS) of dark-adapted albino mice maintained on a 12-hour dark:12-hour light cycle with light onset 7 AM were measured at prescribed times (6:30 AM, 11 AM, 3:30 PM) during the diurnal cycle with optical coherence tomography (OCT), taking advantage of increased visibility, after a brief bleaching exposure, of the bands corresponding to RIS/ROS boundaries and ROS tips (ROST). Results Deconvolution of OCT depth profiles resolved two backscatter bands located 7.4 ± 0.1 and 10.8 ± 0.2 µm (mean ± SEM) proximal to Bruch's membrane (BrM). These bands were identified with histology as arising from the apical surface of RPE and ROST, respectively. The average length of dark-adapted ROS at 6:30 AM was 17.7 ± 0.8 µm. By 11 AM, the average ROS length had decreased by 10% to 15.9 ± 0.7 µm. After 11 AM, the ROS length increased steadily at an average rate of 0.12 µm/h, returning to baseline length by 23.5 hours in the cycle. Conclusions The diurnal variation in ROS length measured in these experiments is consistent with prior histological investigations showing that rodent rod discs are phagocytosed by the RPE maximally over several hours around the time of normal light onset. The rate of recovery of ROS to baseline length before normal light onset is consistent with the hypothesis that disc membrane synthesis is fairly constant over the diurnal cycle.
Collapse
Affiliation(s)
- Pengfei Zhang
- UC Davis Eye-Pod, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| | - Bradley Shibata
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Gabriel Peinado
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Robert J. Zawadzki
- UC Davis Eye-Pod, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
- Vision Science and Advanced Retinal Imaging Laboratory (VSRI), Department of Ophthalmology & Vision Science, University of California Davis, Sacramento, California, United States
| | - Paul FitzGerald
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California Davis, Davis, California, United States
| | - Edward N. Pugh
- UC Davis Eye-Pod, Department of Cell Biology and Human Anatomy, University of California Davis, Davis, California, United States
| |
Collapse
|
97
|
Kurokawa K, Crowell JA, Zhang F, Miller DT. Suite of methods for assessing inner retinal temporal dynamics across spatial and temporal scales in the living human eye. NEUROPHOTONICS 2020; 7:015013. [PMID: 32206680 PMCID: PMC7070771 DOI: 10.1117/1.nph.7.1.015013] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 02/17/2020] [Indexed: 05/08/2023]
Abstract
Significance: There are no label-free imaging descriptors related to physiological activity of inner retinal cells in the living human eye. A major reason is that inner retinal neurons are highly transparent and reflect little light, making them extremely difficult to visualize and quantify. Aim: To measure physiologically-induced optical changes of inner retinal cells despite their challenging optical properties. Approach: We developed an imaging method based on adaptive optics and optical coherence tomography (AO-OCT) and a suite of postprocessing algorithms, most notably a new temporal correlation method. Results: We captured the temporal dynamics of entire inner retinal layers, of specific tissue types, and of individual cells across three different timescales from fast (seconds) to extremely slow (one year). Time correlation analysis revealed significant differences in time constant (up to 0.4 s) between the principal layers of the inner retina with the ganglion cell layer (GCL) being the most dynamic. At the cellular level, significant differences were found between individual GCL somas. The mean time constant of the GCL somas ( 0.69 ± 0.17 s ) was ∼ 30 % smaller than that of nerve fiber bundles and inner plexiform layer synapses and processes. Across longer durations, temporal speckle contrast and time-lapse imaging revealed motion of macrophage-like cells (over minutes) and GCL neuron loss and remodeling (over one year). Conclusions: Physiological activity of inner retinal cells is now measurable in the living human eye.
Collapse
Affiliation(s)
- Kazuhiro Kurokawa
- Indiana University, School of Optometry, Bloomington, Indiana, United States
| | - James A. Crowell
- Indiana University, School of Optometry, Bloomington, Indiana, United States
| | - Furu Zhang
- Indiana University, School of Optometry, Bloomington, Indiana, United States
| | - Donald T. Miller
- Indiana University, School of Optometry, Bloomington, Indiana, United States
| |
Collapse
|
98
|
Lu Y, Kim TH, Yao X. Comparative study of wild-type and rd10 mice reveals transient intrinsic optical signal response before phosphodiesterase activation in retinal photoreceptors. Exp Biol Med (Maywood) 2019; 245:360-367. [PMID: 31852239 DOI: 10.1177/1535370219896284] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Transient intrinsic optical signal (IOS) has been observed in stimulus-evoked retinal photoreceptors. This study is to compare IOS changes in wild-type and retinal degeneration 10 (rd10) mouse retinas, to evaluate the effect of cyclic guanosine monophosphate phosphodiesterase on photoreceptor-IOS. Time-lapse near-infrared light microscopy was employed to monitor the spatiotemporal dynamics of the IOS responses in freshly isolated retinas activated by visible light stimulation. Comparative IOS recordings were conducted at postnatal days 14 (P14) and P16. At P14, intrinsic optical signal magnitudes and spatiotemporal dynamics in wild-type and rd10 retinas were similar, indicating that the phosphodiesterase deficiency in rd10 did not affect the formation of photoreceptor-IOS. At P16, IOS magnitude in rd10 significantly decreased compared to that in wild-type, suggesting the IOS sensitivity to the photoreceptor degeneration in rd10. Our experimental results and theoretical analysis indicate that early disc-based stages of the phototransduction cascade before the activation of phosphodiesterase may contribute to the formation of the photoreceptor-IOS responses; and the IOS can be a sensitive biomarker for objective assessment of retinal function. Impact statement Comparative study of wild-type and rd10 mice was implemented to reveal that transient intrinsic optical signal (IOS) was initiated before the phosphodiesterase activation in stimulus-activated photoreceptors and the IOS magnitude was sensitive to photoreceptor degeneration. The photoreceptor-IOS promises a noninvasive biomarker for objective assessment of age-related macular degeneration, retinitis pigmentosa, and other eye diseases that can produce photoreceptor dysfunctions.
Collapse
Affiliation(s)
- Yiming Lu
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Tae-Hoon Kim
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Xincheng Yao
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA.,Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
99
|
Abstract
Textbook trichromacy accounts for human color vision in terms of spectral sampling by three classes of cone photoreceptors. This account neglects entangling of color and pattern information created by wavelength-dependent optical blur (chromatic aberrations) and interleaved spatial sampling of the retinal image by the three classes of cones. Recent experimental, computational, and neurophysiological work is now considering color and pattern vision at the elementary scale of daylight vison, that is at the scale of individual cones. The results provide insight about rich interactions between color and pattern vision as well as the role of the statistical structure of natural scenes in shaping visual processing.
Collapse
Affiliation(s)
- David H Brainard
- Department of Psychology, University of Pennsylvania, Philadelphia, PA, 19104
| |
Collapse
|
100
|
Pfäffle C, Spahr H, Kutzner L, Burhan S, Hilge F, Miura Y, Hüttmann G, Hillmann D. Simultaneous functional imaging of neuronal and photoreceptor layers in living human retina. OPTICS LETTERS 2019; 44:5671-5674. [PMID: 31774751 DOI: 10.1364/ol.44.005671] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/24/2019] [Indexed: 05/18/2023]
Abstract
Functional retinal imaging, especially of neuronal activity non-invasively in humans, is of tremendous interest. Although the activation of photoreceptor cells (PRCs) could be detected in humans, imaging the function of other retinal neurons had been so far hardly possible. Here, using phase-sensitive full-field swept-source optical coherence tomography (FF-SS-OCT), we show simultaneous imaging of the activation in the photoreceptor and ganglion cell layer/inner plexiform layer (GCL/IPL). The signals from the GCL/IPL are 10-fold smaller than those from the PRC and were detectable only using algorithms for suppression of motion artifacts and pulsatile blood flow in the retinal vessels. FF-SS-OCT with improved phase evaluation algorithms, therefore, allowed us to map functional connections between PRC and GCL/IPL, confirming previous ex vivo results. The demonstrated functional imaging of retinal neuronal layers can be a valuable tool in diagnostics and basic research.
Collapse
|