51
|
Engin A. Reappraisal of Adipose Tissue Inflammation in Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:297-327. [PMID: 39287856 DOI: 10.1007/978-3-031-63657-8_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Chronic low-grade inflammation is a central component in the pathogenesis of obesity-related expansion of adipose tissue and complications in other metabolic tissues. Five different signaling pathways are defined as dominant determinants of adipose tissue inflammation: These are increased circulating endotoxin due to dysregulation in the microbiota-gut-brain axis, systemic oxidative stress, macrophage accumulation, and adipocyte death. Finally, the nucleotide-binding and oligomerization domain (NOD) leucine-rich repeat family pyrin domain-containing 3 (NLRP3) inflammasome pathway is noted to be a key regulator of metabolic inflammation. The NLRP3 inflammasome and associated metabolic inflammation play an important role in the relationships among fatty acids and obesity. Several highly active molecules, including primarily leptin, resistin, adiponectin, visfatin, and classical cytokines, are abundantly released from adipocytes. The most important cytokines that are released by inflammatory cells infiltrating obese adipose tissue are tumor necrosis factor-alpha (TNF-α), interleukin 6 (IL-6), monocyte chemoattractant protein 1 (MCP-1) (CCL-2), and IL-1. All these molecules mentioned above act on immune cells, causing local and then general inflammation. Three metabolic pathways are noteworthy in the development of adipose tissue inflammation: toll-like receptor 4 (TLR4)/phosphatidylinositol-3'-kinase (PI3K)/Protein kinase B (Akt) signaling pathway, endoplasmic reticulum (ER) stress-derived unfolded protein response (UPR), and inhibitor of nuclear factor kappa-B kinase beta (IKKβ)-nuclear factor kappa B (NF-κB) pathway. In fact, adipose tissue inflammation is an adaptive response that contributes to a visceral depot barrier that effectively filters gut-derived endotoxin. Excessive fatty acid release worsens adipose tissue inflammation and contributes to insulin resistance. However, suppression of adipose inflammation in obesity with anti-inflammatory drugs is not a rational solution and paradoxically promotes insulin resistance, despite beneficial effects on weight gain. Inflammatory pathways in adipocytes are indeed indispensable for maintaining systemic insulin sensitivity. Cannabinoid type 1 receptor (CB1R) is important in obesity-induced pro-inflammatory response; however, blockade of CB1R, contrary to anti-inflammatory drugs, breaks the links between insulin resistance and adipose tissue inflammation. Obesity, however, could be decreased by improving leptin signaling, white adipose tissue browning, gut microbiota interactions, and alleviating inflammation. Furthermore, capsaicin synthesized by chilies is thought to be a new and promising therapeutic option in obesity, as it prevents metabolic endotoxemia and systemic chronic low-grade inflammation caused by high-fat diet.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
52
|
Vrsaljko N, Gjurašin B, Papić N. COVID-19 severity and nonalcoholic fatty liver disease. MANAGEMENT, BODY SYSTEMS, AND CASE STUDIES IN COVID-19 2024:457-463. [DOI: 10.1016/b978-0-443-18703-2.00001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
53
|
Petrova NN. [Metabolic syndrome in clinical psychiatric practice]. Zh Nevrol Psikhiatr Im S S Korsakova 2024; 124:13-20. [PMID: 39269292 DOI: 10.17116/jnevro202412408113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
A literature review in PubMed and Google databases was performed. Inclusion criteria: randomized clinical trials, meta-analyses and systematic reviews, relevant full-text articles on metabolic syndrome (MS) in patients with schizophrenia. Exclusion criteria: articles of poor quality. The terminology of the article corresponds to that used in the publications included in the review. The review substantiates the relevance of the problem of MS, discloses the concept and discusses its criteria, provides data on the prevalence of MS in patients with schizophrenia, discusses the relationship between MS and schizophrenia, MS and cognitive impairment in schizophrenia, and describes metabolic changes in patients with a first episode of psychosis or early stage schizophrenia. Recommendations on therapeutic tactics in the development of metabolic syndrome in patients with schizophrenia are given.
Collapse
Affiliation(s)
- N N Petrova
- Saint Petersburg State University, St. Petersburg, Russia
| |
Collapse
|
54
|
Kuziel G, Moore BN, Haugstad GP, Xiong Y, Williams AE, Arendt LM. Alterations in the mammary gland and tumor microenvironment of formerly obese mice. BMC Cancer 2023; 23:1183. [PMID: 38041006 PMCID: PMC10693119 DOI: 10.1186/s12885-023-11688-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023] Open
Abstract
BACKGROUND Obesity is a risk factor for breast cancer, and women with obesity that develop breast cancer have a worsened prognosis. Within the mammary gland, obesity causes chronic, macrophage-driven inflammation and adipose tissue fibrosis. Weight loss is a recommended intervention to resolve obesity, but the impact of weight loss on the mammary gland microenvironment and in tumors has not been well identified. METHODS To examine the effects of weight loss following obesity, mice were fed a high-fat diet for 16 weeks to induce obesity, then switched to a low-fat diet for 6 weeks. We examined changes in immune cells, including fibrocytes, which are myeloid lineage cells that have attributes of both macrophages and myofibroblasts, and collagen deposition within the mammary glands of non-tumor-bearing mice and within the tumors of mice that were transplanted with estrogen receptor alpha positive TC2 tumor cells. RESULTS In formerly obese mice, we observed reduced numbers of crown-like structures and fibrocytes in mammary glands, while collagen deposition was not resolved with weight loss. Following transplant of TC2 tumor cells into the mammary glands of lean, obese, and formerly obese mice, diminished collagen deposition and cancer-associated fibroblasts were observed in tumors from formerly obese mice compared to obese mice. Within tumors of obese mice, increased myeloid-derived suppressor cells and diminished CD8+ T cells were identified, while the microenvironment of tumors of formerly obese mice were more similar to tumors from lean mice. When TC2 tumor cells were mixed with CD11b+CD34+ myeloid progenitor cells, which are the cells of origin for fibrocytes, and transplanted into mammary glands of lean and obese mice, collagen deposition within the tumors of both lean and obese was significantly greater than when tumor cells were mixed with CD11b+CD34- monocytes or total CD45+ immune cells. CONCLUSIONS Overall, these studies demonstrate that weight loss resolved some of the microenvironmental conditions within the mammary gland that may contribute to tumor progression. Additionally, fibrocytes may contribute to early collagen deposition in mammary tumors of obese mice leading to the growth of desmoplastic tumors.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Brittney N Moore
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Grace P Haugstad
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Yue Xiong
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Abbey E Williams
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Lisa M Arendt
- Cancer Biology Program, University of Wisconsin-Madison, Madison, WI, 53705, USA.
- Department of Comparative Biosciences, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Comparative Biomedical Sciences Program, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- School of Veterinary Medicine, 2015 Linden Drive Rm 4354A, Madison, WI, 53706, USA.
| |
Collapse
|
55
|
Li MK, Xing C, Ma LQ. Integrative bioinformatics analysis to screen key genes and signalling pathways related to ferroptosis in obesity. Adipocyte 2023; 12:2264442. [PMID: 37878496 PMCID: PMC10601513 DOI: 10.1080/21623945.2023.2264442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/18/2023] [Indexed: 10/27/2023] Open
Abstract
Ferroptosis is closely associated with the development of disease in the body. However, there are few studies on ferroptosis-related genes (FRGs) in obesity. Therefore, key genes and signalling pathways related to ferroptosis in obesity were screened. Briefly, the RNA sequencing data of obesity and the non-obesity human samples and 259 FRGs were downloaded from GEO database and FerrDb database, respectively. The obesity-related module genes were firstly screened by weighted gene co-expression network analysis (WGCNA) and crossed with differentially expressed genes (DEGs) of obesity/normal samples and FRGs to obtain obesity-ferroptosis related (OFR) DEGs. Then, key genes were screened by PPI network. Next, the correlation of key genes and differential immune cells between obesity and normal samples were further explored by immune infiltration analysis. Finally, microRNA (miRNA)-messenger RNA (mRNA), transcription factor (TF)-mRNA networks and drug-gene interaction networks were constructed. As a result, 17 OFR DEGs were obtained, which mainly participated in processes such as lipid metabolism or adipocyte differentiation. The 4 key genes, STAT3, IL-6, PTGS2, and VEGFA, constituted the network. M2 macrophages, T cells CD8, mast cells activated, and T cells CD4 memory resting had significant differences between obesity and normal samples. Moreover, 51 miRNAs and 164 drugs were predicted for 4 key genes. All in all, this study has screened 4 FRGs, including IL-6, VEGFA, STAT3, and PTGS2, in obesity patients.
Collapse
Affiliation(s)
- Ming-Ke Li
- Digestive Department, The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| | - Chang Xing
- Pediatric Hematology and Digestive Department, Qu Jing Maternal and Child Health-care Hospital, Qujing, China
| | - Lan-Qing Ma
- Digestive Department, The First Affiliated Hospital, Yunnan Institute of Digestive Disease, Yunnan Clinical Research Center for Digestive Diseases, Kunming Medical University, Kunming, China
| |
Collapse
|
56
|
Poursharifi P, Schmitt C, Chenier I, Leung YH, Oppong AK, Bai Y, Klein LL, Al-Mass A, Lussier R, Abu-Farha M, Abubaker J, Al-Mulla F, Peyot ML, Madiraju SRM, Prentki M. ABHD6 suppression promotes anti-inflammatory polarization of adipose tissue macrophages via 2-monoacylglycerol/PPAR signaling in obese mice. Mol Metab 2023; 78:101822. [PMID: 37838014 PMCID: PMC10622714 DOI: 10.1016/j.molmet.2023.101822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/16/2023] Open
Abstract
OBJECTIVE Pro-inflammatory polarization of adipose tissue macrophages (ATMs) plays a critical role in the pathogenesis of obesity-associated chronic inflammation. However, little is known about the role of lipids in the regulation of ATMs polarity and inflammation in response to metabolic stress. Deletion of α/β-hydrolase domain-containing 6 (ABHD6), a monoacylglycerol (MAG) hydrolase, has been shown to protect against diet-induced obesity and insulin resistance. METHODS Here we investigated the immunometabolic role of macrophage ABHD6 in response to nutrient excess using whole-body ABHD6-KO mice and human and murine macrophage cell-lines treated with KT203, a selective and potent pharmacological ABHD6 inhibitor. RESULTS KO mice on high-fat diet showed lower susceptibility to systemic diet-induced inflammation. Moreover, in the setting of overnutrition, stromal vascular cells from gonadal fat of KO vs. control mice contained lower number of M1 macrophages and exhibited enhanced levels of metabolically activated macrophages (MMe) and M2 markers, oxygen consumption, and interleukin-6 (IL-6) release. Likewise, under in vitro nutri-stress condition, inhibition of ABHD6 in MMe-polarized macrophages attenuated the expression and release of pro-inflammatory cytokines and M1 markers and induced the upregulation of lipid metabolism genes. ABHD6-inhibited MMe macrophages showed elevated levels of peroxisome proliferator-activated receptors (PPARs) and 2-MAG species. Notably, among different MAG species, only 2-MAG treatment led to increased levels of PPAR target genes in MMe macrophages. CONCLUSIONS Collectively, our findings identify ABHD6 as a key component of pro-inflammatory macrophage activation in response to excess nutrition and implicate an endogenous macrophage lipolysis/ABHD6/2-MAG/PPARs cascade, as a lipid signaling and immunometabolic pathway, which favors the anti-inflammatory polarization of ATMs in obesity.
Collapse
Affiliation(s)
- P Poursharifi
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| | - C Schmitt
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - I Chenier
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Y H Leung
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - A K Oppong
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - Y Bai
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - L-L Klein
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - A Al-Mass
- Department of Biological Sciences, Faculty of Science, Kuwait University, Kuwait City, Kuwait
| | - R Lussier
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - M Abu-Farha
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - J Abubaker
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - F Al-Mulla
- Dasman Diabetes Institute, Kuwait City, Kuwait
| | - M-L Peyot
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - S R M Madiraju
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada
| | - M Prentki
- Montreal Diabetes Research Center - Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montreal, Canada.
| |
Collapse
|
57
|
Woodward B, Hillyer LM, Monk JM. The Tolerance Model of Non-Inflammatory Immune Competence in Acute Pediatric Malnutrition: Origins, Evidence, Test of Fitness and Growth Potential. Nutrients 2023; 15:4922. [PMID: 38068780 PMCID: PMC10707886 DOI: 10.3390/nu15234922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/17/2023] [Accepted: 11/22/2023] [Indexed: 12/18/2023] Open
Abstract
The tolerance model rests on the thesis of a physiologically regulated, albeit unsustainable, systemic attempt to adapt to the catabolic challenge posed by acute prepubescent malnutrition even in its severe forms. The model centers on the immunological component of the attempt, positing reorientation toward a non-inflammatory form of competence in place of the classic paradigm of immunological attrition and exhaustion. The foundation of the model was laid in 1990, and sixteen years later it was articulated formally on the basis of a body of evidence centered on T cell cytokines and interventions with cytokine and hormonal mediators. The benefit originally suggested was a reduced risk of autoimmune pathologies consequent to the catabolic release of self-antigens, hence the designation highlighting immune tolerance. Herein, the emergence of the tolerance model is traced from its roots in the recognition that acute malnutrition elicits an endocrine-based systemic adaptive attempt. Thereafter, the growth of the evidence base supporting the model is outlined, and its potential to shed new light on existing information is tested by application to the findings of a published clinical study of acutely malnourished children. Finally, some knowledge gaps pertinent to the model are identified and its potential for growth consonant with evolving perceptions of immunobiology is illustrated.
Collapse
Affiliation(s)
- Bill Woodward
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada; (L.M.H.); (J.M.M.)
| | | | | |
Collapse
|
58
|
Turpin T, Thouvenot K, Gonthier MP. Adipokines and Bacterial Metabolites: A Pivotal Molecular Bridge Linking Obesity and Gut Microbiota Dysbiosis to Target. Biomolecules 2023; 13:1692. [PMID: 38136564 PMCID: PMC10742113 DOI: 10.3390/biom13121692] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/13/2023] [Accepted: 11/19/2023] [Indexed: 12/24/2023] Open
Abstract
Adipokines are essential mediators produced by adipose tissue and exert multiple biological functions. In particular, adiponectin, leptin, resistin, IL-6, MCP-1 and PAI-1 play specific roles in the crosstalk between adipose tissue and other organs involved in metabolic, immune and vascular health. During obesity, adipokine imbalance occurs and leads to a low-grade pro-inflammatory status, promoting insulin resistance-related diabetes and its vascular complications. A causal link between obesity and gut microbiota dysbiosis has been demonstrated. The deregulation of gut bacteria communities characterizing this dysbiosis influences the synthesis of bacterial substances including lipopolysaccharides and specific metabolites, generated via the degradation of dietary components, such as short-chain fatty acids, trimethylamine metabolized into trimethylamine-oxide in the liver and indole derivatives. Emerging evidence suggests that these bacterial metabolites modulate signaling pathways involved in adipokine production and action. This review summarizes the current knowledge about the molecular links between gut bacteria-derived metabolites and adipokine imbalance in obesity, and emphasizes their roles in key pathological mechanisms related to oxidative stress, inflammation, insulin resistance and vascular disorder. Given this interaction between adipokines and bacterial metabolites, the review highlights their relevance (i) as complementary clinical biomarkers to better explore the metabolic, inflammatory and vascular complications during obesity and gut microbiota dysbiosis, and (ii) as targets for new antioxidant, anti-inflammatory and prebiotic triple action strategies.
Collapse
Affiliation(s)
| | | | - Marie-Paule Gonthier
- Université de La Réunion, INSERM, UMR 1188 Diabète Athérothrombose Thérapies Réunion Océan Indien (DéTROI), 97410 Saint-Pierre, La Réunion, France; (T.T.); (K.T.)
| |
Collapse
|
59
|
Avihai B, Sundel EP, Lee E, Greenberg PJ, Cook BP, Altomare NJ, Ko TM, Chaia AI, Parikh PD, Blaser MJ. CRP Monitoring in Early Hospitalization: Implications for Predicting Outcomes in Patients with COVID-19. Pathogens 2023; 12:1315. [PMID: 38003780 PMCID: PMC10675493 DOI: 10.3390/pathogens12111315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/01/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023] Open
Abstract
Elevated C-reactive protein (CRP) levels have been associated with poorer COVID-19 outcomes. While baseline CRP levels are higher in women, obese individuals, and older adults, the relationship between CRP, sex, body mass index (BMI), age, and COVID-19 outcomes remains unknown. To investigate, we performed a retrospective analysis on 824 adult patients with COVID-19 admitted during the first pandemic wave, of whom 183 (22.2%) died. The maximum CRP value over the first five hospitalization days better predicted hospitalization outcome than the CRP level at admission, as a maximum CRP > 10 mg/dL independently quadrupled the risk of death (p < 0.001). Males (p < 0.001) and patients with a higher BMI (p = 0.001) had higher maximum CRP values, yet CRP levels did not impact their hospitalization outcome. While CRP levels did not statistically mediate any relation between sex, age, or BMI with clinical outcomes, age impacted the association between BMI and the risk of death. For patients 60 or over, a BMI < 25 kg/m2 increased the risk of death (p = 0.017), whereas the reverse was true for patients <60 (p = 0.030). Further impact of age on the association between BMI, CRP, and the risk of death could not be assessed due to a lack of statistical power but should be further investigated.
Collapse
Affiliation(s)
- Byron Avihai
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
- Cancer Institute of New Jersey, Rutgers University, New Brunswick, NJ 08901, USA
| | - Erin P. Sundel
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
- Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Eileen Lee
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
| | - Patricia J. Greenberg
- Department of Biostatistics and Epidemiology, Rutgers School of Public Health, Piscataway, NJ 08854, USA;
| | - Brennan P. Cook
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
| | - Nicole J. Altomare
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
- Northwestern Memorial Hospital, Chicago, IL 60611, USA
| | - Tomohiro M. Ko
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
| | - Angelo I. Chaia
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
- Mount Sinai Beth Israel, New York, NY 10003, USA
| | - Payal D. Parikh
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
| | - Martin J. Blaser
- Robert Wood Johnson Medical School, Rutgers University, Piscataway, NJ 08854, USA; (E.P.S.); (E.L.); (B.P.C.); (N.J.A.); (T.M.K.); (A.I.C.); (P.D.P.)
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
60
|
Abdurehman D, Guoruoluo Y, Lu X, Li J, Abudulla R, Liu G, Xin X, Aisa HA. Optimization of preparation method of hepatoprotective active components from Coreopsis tinctoria Nutt. and its action mechanism in vivo. Biomed Pharmacother 2023; 167:115590. [PMID: 37776638 DOI: 10.1016/j.biopha.2023.115590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/02/2023] Open
Abstract
Capitula of Coreopsis tinctoria are widely used as a flower tea with great health benefits due to rich content of flavonoids and phenolic acids. The hepatoprotective effect of C. tinctoria and its bioactive basis have seldom been investigated until now. In the present study, capitula of C. tinctoria were extracted with a method optimized by response surface methodology (RSM) and BoxBehnken design (BBD) and further purified by macroporous resin HPD-300 to obtain a fraction (CE) enriched with flavonoids and phenolic acids. The contents of the four most abundant compounds, isookanin-7-O-β-d-glucoside (1), quercetigetin-7-O-β-d-glucoside (2), okanin (3), and marein (4), were determined by HPLC as 9.98, 5.21, 41.78 and 1.85 mg/g, respectively. Seventy-four compounds including fifity-five flavonoids, fifteen organic acids (twelve of them were phenolic compounds), and three coumarins were tentatively identified in CE by LC-HRMS/MS. In vivo hepatoprotective effect and potential mechanism of CE were studied with a high-fat diet-induced NASH mouse model. CE administration decreased the amount of weight gain, hepatic lipid, and sequentially improved dyslipidemia, inflammation, oxidative stress, and IR in HFD-fed mice. Molecular data revealed that CE inhibited hepatic inflammation by reducing NFκB/iNOS/COX-2/NLRP3/MAPK in the liver tissues and ameliorated oxidative stress by activating the Nrf2/HO-1 pathway. Modulation of inflammation and oxidative stress with CE may represent a promising target for the treatment of NAFLD and provide insight into the mechanism by which CE protects against obesity.
Collapse
Affiliation(s)
- Dilinare Abdurehman
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yindengzhi Guoruoluo
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xueying Lu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Jun Li
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Rahima Abudulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Geyu Liu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China
| | - Xuelei Xin
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization and Key Laboratory of Plants Resources and Chemistry of Arid Zone, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, South Beijing Road 40-1, Urumqi 830011, Xinjiang, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
61
|
McGuckin MM, Giesy SL, Overton TR, Boisclair YR. Inflammatory tone in liver and adipose tissue in dairy cows experiencing a healthy transition from late pregnancy to early lactation. J Dairy Sci 2023; 106:8122-8132. [PMID: 37641299 PMCID: PMC10862531 DOI: 10.3168/jds.2023-23373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/05/2023] [Indexed: 08/31/2023]
Abstract
The transition from late pregnancy (LP) to early lactation (EL) in dairy cows is characterized by a major reorganization of the metabolic activities of liver and adipose tissue in support of milk synthesis. This reorganization has been attributed in large part to variation in the plasma concentration and actions of growth hormone, insulin, and other metabolic hormones. A role for the immune system has also been suggested by a near-universal rise in circulating levels of liver-derived acute-phase proteins (APP) in early lactating cows. However, less attention has been devoted to the possibility that resident macrophages of liver and adipose tissue adopt a proinflammatory state (referred herein as inflammatory tone) in parallel with the rise in plasma APP. We addressed this question by measuring the expression of genes expressed predominantly in the resident macrophage population of liver and adipose tissue and indicative of a proinflammatory (tumor necrosis factor α, IL-6, IL-12, resistin, and cluster of differentiation 80 [CD80]) or anti-inflammatory state (IL-10 and chitinase-3-like protein 1 [CHI3L1]). In a first group of cows, none of these inflammatory gene markers were regulated in liver between LP on d -29 (relative to parturition) and on d 8 of EL despite 1.7 to 5.6-fold upregulation in the expression of the APP (haptoglobin, serum amyloid α, and orosomucoid 1). In a second group of healthy cows, expression of the inflammatory gene markers did not differ between livers with low (<5.3%) or high (>11.5%) triglyceride content on d 7 of EL. In adipose tissue, a modest increase in inflammatory tone was suggested between LP and EL by increased CD80 expression and decreased CHI3L1 expression in EL. To assess the possibility that inflammatory tone would be more prominent if assayed in a cell compartment enriched with macrophages, adipose tissue was obtained in LP on d -28 and in EL on d +10 from cows experiencing a healthy transition period and fractionated into its adipocyte and stromal vascular cell (SVC) compartments. Expression of inflammatory gene markers was higher in SVC than adipocytes but remained unregulated in SVC between LP and EL. Overall, these results suggest little change in the inflammatory tone of resident macrophages in liver and adipose tissue of healthy transition dairy cows and do not support a role for the local immune system in the reorganization of metabolism in these tissues at the onset of lactation.
Collapse
Affiliation(s)
- M M McGuckin
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - S L Giesy
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - T R Overton
- Department of Animal Science, Cornell University, Ithaca, NY 14853
| | - Y R Boisclair
- Department of Animal Science, Cornell University, Ithaca, NY 14853.
| |
Collapse
|
62
|
Orange ST, Leslie J, Ross M, Mann DA, Wackerhage H. The exercise IL-6 enigma in cancer. Trends Endocrinol Metab 2023; 34:749-763. [PMID: 37633799 DOI: 10.1016/j.tem.2023.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/28/2023]
Abstract
Interleukin (IL)-6 elicits both anticancer and procancer effects depending on the context, which we have termed the 'exercise IL-6 enigma'. IL-6 is released from skeletal muscles during exercise to regulate short-term energy availability. Exercise-induced IL-6 provokes biological effects that may protect against cancer by improving insulin sensitivity, stimulating the production of anti-inflammatory cytokines, mobilising immune cells, and reducing DNA damage in early malignant cells. By contrast, IL-6 continuously produced by leukocytes in inflammatory sites drives tumorigenesis by promoting chronic inflammation and activating tumour-promoting signalling pathways. How can a molecule have such opposing effects on cancer? Here, we review the roles of IL-6 in chronic inflammation, tumorigenesis, and exercise-associated cancer prevention and define the factors that underpin the exercise IL-6 enigma.
Collapse
Affiliation(s)
- Samuel T Orange
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; School of Biomedical, Nutritional and Sport Sciences, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK.
| | - Jack Leslie
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Mark Ross
- Institute of Life and Earth Sciences, School of Energy, Geoscience, Infrastructure and Society, Heriot-Watt University, Edinburgh, UK
| | - Derek A Mann
- Newcastle University Centre for Cancer, Newcastle University, Newcastle upon Tyne, UK; Newcastle Fibrosis Research Group, Bioscience Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Henning Wackerhage
- Department of Sport & Health Science, Technical University of Munich, Munich, Germany
| |
Collapse
|
63
|
Ke D, Zhang Z, Liu J, Chen P, Dai Y, Sun X, Chu Y, Li L. RIPK1 and RIPK3 inhibitors: potential weapons against inflammation to treat diabetic complications. Front Immunol 2023; 14:1274654. [PMID: 37954576 PMCID: PMC10639174 DOI: 10.3389/fimmu.2023.1274654] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/05/2023] [Indexed: 11/14/2023] Open
Abstract
Diabetes mellitus is a metabolic disease that is characterized by chronic hyperglycemia due to a variety of etiological factors. Long-term metabolic stress induces harmful inflammation leading to chronic complications, mainly diabetic ophthalmopathy, diabetic cardiovascular complications and diabetic nephropathy. With diabetes complications being one of the leading causes of disability and death, the use of anti-inflammatories in combination therapy for diabetes is increasing. There has been increasing interest in targeting significant regulators of the inflammatory pathway, notably receptor-interacting serine/threonine-kinase-1 (RIPK1) and receptor-interacting serine/threonine-kinase-3 (RIPK3), as drug targets for managing inflammation in treating diabetes complications. In this review, we aim to provide an up-to-date summary of current research on the mechanism of action and drug development of RIPK1 and RIPK3, which are pivotal in chronic inflammation and immunity, in relation to diabetic complications which may be benefit for explicating the potential of selective RIPK1 and RIPK3 inhibitors as anti-inflammatory therapeutic agents for diabetic complications.
Collapse
Affiliation(s)
- Dan Ke
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Zhen Zhang
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
- School of First Clinical Medical College, Mudanjiang Medical University, Mudanjiang, China
| | - Jieting Liu
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Peijian Chen
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Yucen Dai
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Xinhai Sun
- Department of Thoracic Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Yanhui Chu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| | - Luxin Li
- College of Life Sciences, Mudanjiang Medical University, Mudanjiang, China
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, China
| |
Collapse
|
64
|
Saucedo R, Peña-Cano MI, Díaz-Velázquez MF, Ferreira-Hermosillo A, Solis-Paredes JM, Camacho-Arroyo I, Valencia-Ortega J. Gestational Weight Gain Is Associated with the Expression of Genes Involved in Inflammation in Maternal Visceral Adipose Tissue and Offspring Anthropometric Measures. J Clin Med 2023; 12:6766. [PMID: 37959231 PMCID: PMC10650626 DOI: 10.3390/jcm12216766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
BACKGROUND Adequate gestational weight gain (GWG) is essential for maternal and fetal health. GWG may be a sign of higher visceral adipose tissue (VAT) accretion. A higher proportion of VAT is associated with an inflammatory process that may play a role in the fetal programming of obesity. This study aimed to (1) compare the expression of genes involved in inflammatory responses (TLR2, TLR4, NFκB, IKKβ, IL-1RA, IL-1β, IL-6, IL-10, TNF-α) in the VAT of pregnant women according to GWG and (2) explore whether VAT inflammation and GWG are related to offspring anthropometric measures. MATERIAL AND METHODS 50 women scheduled for cesarean section who delivered term infants were included in the study. We collected maternal omental VAT, and the expression of genes was examined with RT-qPCR. RESULTS Women with excessive and with adequate GWG had significantly higher expressions of most inflammatory genes than women with insufficient GWG. Neonates from mothers with excessive GWG had greater birth weight and chest circumference than those from mothers with insufficient GWG. GWG was positively correlated with fetal birth weight. CONCLUSIONS The VAT expression of most genes associated with inflammatory pathways was higher in excessive and adequate GWG than in pregnant women with insufficient GWG. Moreover, GWG was found to be positively associated with newborn weight.
Collapse
Affiliation(s)
- Renata Saucedo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - María Isabel Peña-Cano
- Hospital de Gineco Obstetricia 221, Instituto Mexicano del Seguro Social, Toluca 50000, Mexico;
| | - Mary Flor Díaz-Velázquez
- Hospital de Gineco Obstetricia 3, Centro Médico Nacional La Raza, Instituto Mexicano del Seguro Social, Mexico City 02990, Mexico;
| | - Aldo Ferreira-Hermosillo
- Unidad de Investigación Médica en Enfermedades Endocrinas, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City 06720, Mexico; (R.S.); (A.F.-H.)
| | - Juan Mario Solis-Paredes
- Department of Reproductive and Perinatal Health Research, Instituto Nacional de Perinatología Isidro Espinosa de los Reyes, Mexico City 11000, Mexico;
| | - Ignacio Camacho-Arroyo
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| | - Jorge Valencia-Ortega
- Unidad de Investigación en Reproducción Humana, Instituto Nacional de Perinatología-Facultad de Química, Universidad Nacional Autónoma de México, Mexico City 11000, Mexico;
| |
Collapse
|
65
|
Yuan X, Lu H, Hu Y, Yang Z, Jin X, Qi Z. The Effect of Various Temperatures on the Inflammatory Profile of Fat Graft Storage: An Experimental Study. J Craniofac Surg 2023; 34:2217-2221. [PMID: 37365693 PMCID: PMC10521794 DOI: 10.1097/scs.0000000000009500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
Fat tissue has been widely used as a filler material during plastic surgery, but unpredictable fat retention remains a significant concern. Fat tissue is vulnerable to ischemia and hypoxia, but it always has waiting time before injection in the operation theater. Apart from transferring fat tissue as quickly as possible after harvesting, washing the aspirate with cool normal saline is often used. However, the mechanisms of cool temperature acting on adipose tissue have yet to be fully elucidated. Herein, this study aims to explore the effect of preservation at different temperatures on the inflammatory profile of adipose tissue. Inguinal adipose tissue of rats was collected and cultured in vitro under 4°C, 10°C, and room temperature for 2 hours. The proportion of damaged adipocytes and an array of cytokines were determined. We observed that the damage rate of the adipocyte membrane was slightly higher at room temperature, but there was no significant difference, while we noticed increased IL-6 and MCP-1 levels in adipose tissue at room temperature ( P <0.01). The 4°C and 10°C cool temperatures may offer protection against proinflammatory states during the adipose tissue preserved in vitro.
Collapse
|
66
|
Mazitova AM, Márquez-Sánchez AC, Koltsova EK. Fat and inflammation: adipocyte-myeloid cell crosstalk in atherosclerosis. Front Immunol 2023; 14:1238664. [PMID: 37781401 PMCID: PMC10540690 DOI: 10.3389/fimmu.2023.1238664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023] Open
Abstract
Adipose tissue inflammation has been implicated in various chronic inflammatory diseases and cancer. Perivascular adipose tissue (PVAT) surrounds the aorta as an extra layer and was suggested to contribute to atherosclerosis development. PVAT regulates the function of endothelial and vascular smooth muscle cells in the aorta and represent a reservoir for various immune cells which may participate in aortic inflammation. Recent studies demonstrate that adipocytes also express various cytokine receptors and, therefore, may directly respond to inflammatory stimuli. Here we will summarize current knowledge on immune mechanisms regulating adipocyte activation and the crosstalk between myeloid cells and adipocytes in pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- Aleksandra M. Mazitova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ana Cristina Márquez-Sánchez
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Ekaterina K. Koltsova
- Cedars-Sinai Cancer, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Cardiology, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
67
|
Ren J, Wang XQ, Nakao T, Libby P, Shi GP. Differential Roles of Interleukin-6 in Severe Acute Respiratory Syndrome-Coronavirus-2 Infection and Cardiometabolic Diseases. CARDIOLOGY DISCOVERY 2023; 3:166-182. [PMID: 38152628 PMCID: PMC10750760 DOI: 10.1097/cd9.0000000000000096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can lead to a cytokine storm, unleashed in part by pyroptosis of virus-infected macrophages and monocytes. Interleukin-6 (IL-6) has emerged as a key participant in this ominous complication of COVID-19. IL-6 antagonists have improved outcomes in patients with COVID-19 in some, but not all, studies. IL-6 signaling involves at least 3 distinct pathways, including classic-signaling, trans-signaling, and trans-presentation depending on the localization of IL-6 receptor and its binding partner glycoprotein gp130. IL-6 has become a therapeutic target in COVID-19, cardiovascular diseases, and other inflammatory conditions. However, the efficacy of inhibition of IL-6 signaling in metabolic diseases, such as obesity and diabetes, may depend in part on cell type-dependent actions of IL-6 in controlling lipid metabolism, glucose uptake, and insulin sensitivity owing to complexities that remain to be elucidated. The present review sought to summarize and discuss the current understanding of how and whether targeting IL-6 signaling ameliorates outcomes following SARS-CoV-2 infection and associated clinical complications, focusing predominantly on metabolic and cardiovascular diseases.
Collapse
Affiliation(s)
- Jingjing Ren
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Xiao-Qi Wang
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Tetsushi Nakao
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Peter Libby
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| | - Guo-Ping Shi
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115
| |
Collapse
|
68
|
Olou AA, Ambrose J, Jack JL, Walsh M, Ruckert MT, Eades AE, Bye BA, Dandawate P, VanSaun MN. SHP2 regulates adipose maintenance and adipocyte-pancreatic cancer cell crosstalk via PDHA1. J Cell Commun Signal 2023; 17:575-590. [PMID: 36074246 PMCID: PMC10409927 DOI: 10.1007/s12079-022-00691-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/10/2022] [Indexed: 11/26/2022] Open
Abstract
Adipocytes are the most abundant cell type in the adipose tissue, and their dysfunction is a significant driver of obesity-related pathologies, such as cancer. The mechanisms that (1) drive the maintenance and secretory activity of adipocytes and (2) mediate the cancer cellular response to the adipocyte-derived factors are not fully understood. To address that gap of knowledge, we investigated how alterations in Src homology region 2-containing protein (SHP2) activity affect adipocyte function and tumor crosstalk. We found that phospho-SHP2 levels are elevated in adipose tissue of obese mice, obese patients, and differentiating adipocytes. Immunofluorescence and immunoprecipitation analyses as well as in-silico protein-protein interaction modeling demonstrated that SHP2 associates with PDHA1, and that a positive association promotes a reactive oxygen species (ROS)-driven adipogenic program. Accordingly, this SHP2-PDHA1-ROS regulatory axis was crucial for adipocyte maintenance and secretion of interleukin-6 (IL-6), a key cancer-promoting cytokine. Mature adipocytes treated with an inhibitor for SHP2, PDHA1, or ROS exhibited an increased level of pro-lipolytic and thermogenic proteins, corresponding to an increased glycerol release, but a suppression of secreted IL-6. A functional analysis of adipocyte-cancer cell crosstalk demonstrated a decreased migration, invasion, and a slight suppression of cell cycling, corresponding to a reduced growth of pancreatic cancer cells exposed to conditioned media (CM) from mature adipocytes previously treated with inhibitors for SHP2/PDHA1/ROS. Importantly, PDAC cell growth stimulation in response to adipocyte CM correlated with PDHA1 induction but was suppressed by a PDHA1 inhibitor. The data point to a novel role for (1) SHP2-PDHA1-ROS in adipocyte maintenance and secretory activity and (2) PDHA1 as a regulator of the pancreatic cancer cells response to adipocyte-derived factors.
Collapse
Affiliation(s)
- Appolinaire A Olou
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| | - Joe Ambrose
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Jarrid L Jack
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - McKinnon Walsh
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Mariana T Ruckert
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Austin E Eades
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Bailey A Bye
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Prasad Dandawate
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA
| | - Michael N VanSaun
- Department of Cancer Biology, University of Kansas Medical Center, 3901 Rainbow Boulevard, Kansas City, KS, 66160, USA.
| |
Collapse
|
69
|
Axelrod CL, Dantas WS, Kirwan JP. Sarcopenic obesity: emerging mechanisms and therapeutic potential. Metabolism 2023; 146:155639. [PMID: 37380015 PMCID: PMC11448314 DOI: 10.1016/j.metabol.2023.155639] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 06/08/2023] [Accepted: 06/17/2023] [Indexed: 06/30/2023]
Abstract
Sarcopenic obesity, or the loss of muscle mass and function associated with excess adiposity, is a largely untreatable medical condition associated with diminished quality of life and increased risk of mortality. To date, it remains somewhat paradoxical and mechanistically undefined as to why a subset of adults with obesity develop muscular decline, an anabolic stimulus generally associated with retention of lean mass. Here, we review evidence surrounding the definition, etiology, and treatment of sarcopenic obesity with an emphasis on emerging regulatory nodes with therapeutic potential. We review the available clinical evidence largely focused on diet, lifestyle, and behavioral interventions to improve quality of life in patients with sarcopenic obesity. Based upon available evidence, relieving consequences of energy burden, such as oxidative stress, myosteatosis, and/or mitochondrial dysfunction, is a promising area for therapeutic development in the treatment and management of sarcopenic obesity.
Collapse
Affiliation(s)
- Christopher L Axelrod
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - Wagner S Dantas
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA
| | - John P Kirwan
- Integrated Physiology and Molecular Medicine Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, USA.
| |
Collapse
|
70
|
Zahedi AS, Daneshpour MS, Akbarzadeh M, Hedayati M, Azizi F, Zarkesh M. Association of baseline and changes in adiponectin, homocysteine, high-sensitivity C-reactive protein, interleukin-6, and interleukin-10 levels and metabolic syndrome incidence: Tehran lipid and glucose study. Heliyon 2023; 9:e19911. [PMID: 37809533 PMCID: PMC10559325 DOI: 10.1016/j.heliyon.2023.e19911] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/02/2023] [Accepted: 09/05/2023] [Indexed: 10/10/2023] Open
Abstract
Background Metabolic syndrome (MetS) is accompanied by chronic low-grade inflammation, and inflammatory markers like high-sensitivity C-reactive protein(hs-CRP), interleukin-6(IL-6), and homocysteine(Hcy) contribute to inflammation, obesity, and insulin resistance. Adiponectin(AdipoQ) and interleukin-10(IL-10) are anti-inflammatory markers that play protective roles in MetS. This study aimed to investigate the association between these biochemical marker changes and MetS in a sample of the Tehranian population during six years of follow-up. Methods In this longitudinal study, 340 adults at baseline and after a six-year follow-up, aged ≥18 years, were selected randomly from the Tehran Lipid and Glucose Study (TLGS). MetS was defined according to the Joint Interim Statement (JIS) criteria. Individuals were categorized into four groups based on their MetS status at baseline and follow-up: 1) non-MetS: participants who did not have MetS at both baseline and follow-up; 2) incident MetS: participants who did not have MetS at baseline but developed MetS during the follow-up ; 3) recovery MetS: participants who had MetS at baseline but no longer had MetS during the follow-up; 4) persistent MetS: participants who had MetS both at baseline and follow-up. Results The mean follow-up time was 6.1 years. There were 176 subjects in the non-MetS group, 35 in the incident MetS group, 41 in the recovery MetS group, and 88 in the persistent MetS group. Increases in the levels of both hs-CRP 1.40 (95% CI: 1.15, 1.71, p = 0.001) and IL-6 1.09 (95% CI: 1.03, 1.17, p = 0.004) significantly increased the odds of the incident and persistent MetS, respectively. The area under the ROC curve (AUC) was more than 0.69 (p < 0.000) for hs-CRP in predicting MetS incidence and more than 0.86 (p < 0.000) for IL-6 in predicting MetS persistence. Conclusion After a six-year average follow-up, hs-CRP and IL-6 levels were deemed more reliable predictors of MetS incidence and persistence, respectively.
Collapse
Affiliation(s)
- Asiyeh Sadat Zahedi
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Sadat Daneshpour
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereidoun Azizi
- Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
71
|
Abstract
In this review, we provide a brief synopsis of the connections between adipose tissue and metabolic health and highlight some recent developments in understanding and exploiting adipocyte biology. Adipose tissue plays critical roles in the regulation of systemic glucose and lipid metabolism and secretes bioactive molecules possessing endocrine, paracrine, and autocrine functions. Dysfunctional adipose tissue has a detrimental impact on metabolic health and is intimately involved in key aspects of metabolic diseases such as insulin resistance, lipid overload, inflammation, and organelle stress. Differences in the distribution of fat depots and adipose characteristics relate to divergent degrees of metabolic dysfunction found in metabolically healthy and unhealthy obese individuals. Thermogenic adipocytes increase energy expenditure via mitochondrial uncoupling or adenosine triphosphate-consuming futile substrate cycles, while functioning as a metabolic sink and participating in crosstalk with other metabolic organs. Manipulation of adipose tissue provides a wealth of opportunities to intervene and combat the progression of associated metabolic diseases. We discuss current treatment modalities for obesity including incretin hormone analogs and touch upon emerging strategies with therapeutic potential including exosome-based therapy, pharmacological activation of brown and beige adipocyte thermogenesis, and administration or inhibition of adipocyte-derived factors.
Collapse
Affiliation(s)
- Sung-Min An
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - Seung-Hee Cho
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| | - John C. Yoon
- Division of Endocrinology, Department of Internal Medicine, University of California Davis School of Medicine, Davis, CA, USA
| |
Collapse
|
72
|
Mintoff D, Agius R, Benhadou F, Das A, Frew JW, Pace NP. Obesity and hidradenitis suppurativa: targeting meta-inflammation for therapeutic gain. Clin Exp Dermatol 2023; 48:984-990. [PMID: 37171791 DOI: 10.1093/ced/llad182] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/24/2023] [Accepted: 05/08/2023] [Indexed: 05/13/2023]
Abstract
Hidradenitis suppurativa (HS) is a chronic, inflammatory condition of the pilosebaceous unit. The typical patient with HS is characterized as someone with obesity, who smokes and who has nodules, abscesses and/or draining tunnels predominantly distributed in intertriginous skin. It has been established that lifestyle and genetic factors are the main pathophysiological drivers of HS. In this critical review, we explore the interrelatedness of meta-inflammation, obesity and HS and discuss if and how this relationship may be manipulated for a therapeutic end.
Collapse
Affiliation(s)
- Dillon Mintoff
- Department of Dermatology
- Department of Pathology, Faculty of Medicine and Surgery
| | - Rachel Agius
- Diabetes and Endocrine Centre, Mater Dei Hospital, Msida, Malta
- Faculty of Medicine and Surgery
| | - Farida Benhadou
- Department of Dermatology, Hôpital Erasme, Universite Libre de Bruxelles, Bruxelles, Belgium
| | - Anupam Das
- Department of Dermatology, Venereology and Leprosy; KPC Medical College & Hospital, Kolkata, India
| | - John W Frew
- Laboratory of Translational Cutaneous Medicine, Ingham Institute for Applied Medical Research, Sydney, NSW, Australia
- Department of Dermatology, Liverpool Hospital, Sydney, NSW, Australia
- University of New South Wales, Sydney, NSW, Australia
| | - Nikolai P Pace
- Faculty of Medicine and Surgery
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
73
|
Cavallo C, Boffa A, Salerno M, Merli G, Grigolo B, Filardo G. Adipose Tissue-Derived Products May Present Inflammatory Properties That Affect Chondrocytes and Synoviocytes from Patients with Knee Osteoarthritis. Int J Mol Sci 2023; 24:12401. [PMID: 37569775 PMCID: PMC10418602 DOI: 10.3390/ijms241512401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/25/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
Adipose tissue-derived cell-based injectable therapies have been demonstrated to have disease-modifying effects on joint tissues in preclinical studies on animal osteoarthritis (OA) models, but clinical results are heterogeneous and not always satisfactory. The aim of this study was to investigate the influence of adipose tissue properties on the therapeutic effects of the adipose-derived product in an in vitro OA setting. Micro-fragmented adipose tissue (MF-AT) samples were obtained from 21 OA patients (mean age 51.7 ± 11.8 years, mean BMI 25.7 ± 4.1 kg/m2). The analysis of the MF-AT supernatant was performed to analyze the release of inflammatory factors. The effects of MF-AT inflammatory factors were investigated on chondrocytes and synoviocytes gene expression levels. Patients' characteristics were analyzed to explore their influence on MF-AT inflammatory molecules and on the MF-AT effects on the gene expression of chondrocytes and synoviocytes. The study results demonstrated that adipose tissue-derived products may present inflammatory properties that influence the therapeutic potential for OA treatment, with products with a higher pro-inflammatory profile stimulating a higher expression of genes related to a more inflamed and catabolic phenotype. A higher pro-inflammatory cytokine pattern and a higher pro-inflammatory effect were found in adipose tissue-derived products obtained from OA patients with higher BMI.
Collapse
Affiliation(s)
- Carola Cavallo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.C.); (B.G.)
| | - Angelo Boffa
- Clinica Ortopedica e Traumatologica 2, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Manuela Salerno
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.F.)
| | - Giulia Merli
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.F.)
| | - Brunella Grigolo
- Laboratorio RAMSES, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (C.C.); (B.G.)
| | - Giuseppe Filardo
- Applied and Translational Research (ATR) Center, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy; (G.M.); (G.F.)
| |
Collapse
|
74
|
Korzun T, Moses AS, Diba P, Sattler AL, Taratula OR, Sahay G, Taratula O, Marks DL. From Bench to Bedside: Implications of Lipid Nanoparticle Carrier Reactogenicity for Advancing Nucleic Acid Therapeutics. Pharmaceuticals (Basel) 2023; 16:1088. [PMID: 37631003 PMCID: PMC10459564 DOI: 10.3390/ph16081088] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 07/24/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
In biomedical applications, nanomaterial-based delivery vehicles, such as lipid nanoparticles, have emerged as promising instruments for improving the solubility, stability, and encapsulation of various payloads. This article provides a formal review focusing on the reactogenicity of empty lipid nanoparticles used as delivery vehicles, specifically emphasizing their application in mRNA-based therapies. Reactogenicity refers to the adverse immune responses triggered by xenobiotics, including administered lipid nanoparticles, which can lead to undesirable therapeutic outcomes. The key components of lipid nanoparticles, which include ionizable lipids and PEG-lipids, have been identified as significant contributors to their reactogenicity. Therefore, understanding the relationship between lipid nanoparticles, their structural constituents, cytokine production, and resultant reactogenic outcomes is essential to ensure the safe and effective application of lipid nanoparticles in mRNA-based therapies. Although efforts have been made to minimize these adverse reactions, further research and standardization are imperative. By closely monitoring cytokine profiles and assessing reactogenic manifestations through preclinical and clinical studies, researchers can gain valuable insights into the reactogenic effects of lipid nanoparticles and develop strategies to mitigate undesirable reactions. This comprehensive review underscores the importance of investigating lipid nanoparticle reactogenicity and its implications for the development of mRNA-lipid nanoparticle therapeutics in various applications beyond vaccine development.
Collapse
Affiliation(s)
- Tetiana Korzun
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Abraham S. Moses
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Parham Diba
- Medical Scientist Training Program, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
| | - Ariana L. Sattler
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| | - Olena R. Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Gaurav Sahay
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
| | - Oleh Taratula
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, 2730 S Moody Avenue, Portland, OR 97201, USA; (T.K.)
- Department of Biomedical Engineering, Oregon Health & Science University, 3303 SW Bond Avenue, Portland, OR 97239, USA
| | - Daniel L. Marks
- Papé Family Pediatric Research Institute, Oregon Health & Science University, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, 2720 S Moody Avenue, Portland, OR 97201, USA
- Brenden-Colson Center for Pancreatic Care, Oregon Health & Science University, 2730 S Moody Avenue, Portland, OR 97201, USA
| |
Collapse
|
75
|
Lin W, Song H, Shen J, Wang J, Yang Y, Yang Y, Cao J, Xue L, Zhao F, Xiao T, Lin R. Functional role of skeletal muscle-derived interleukin-6 and its effects on lipid metabolism. Front Physiol 2023; 14:1110926. [PMID: 37555019 PMCID: PMC10405179 DOI: 10.3389/fphys.2023.1110926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/06/2023] [Indexed: 08/10/2023] Open
Abstract
The detrimental impact of obesity on human health is increasingly evident with the rise in obesity-related diseases. Skeletal muscle, the crucial organ responsible for energy balance metabolism, plays a significant role as a secretory organ by releasing various myokines. Among these myokines, interleukin 6 (IL-6) is closely associated with skeletal muscle contraction. IL-6 triggers the process of lipolysis by mobilizing energy-storing adipose tissue, thereby providing energy for physical exercise. This phenomenon also elucidates the health benefits of regular exercise. However, skeletal muscle and adipose tissue maintain a constant interaction, both directly and indirectly. Direct interaction occurs through the accumulation of excess fat within skeletal muscle, known as ectopic fat deposition. Indirect interaction takes place when adipose tissue is mobilized to supply the energy for skeletal muscle during exercise. Consequently, maintaining a functional balance between skeletal muscle and adipose tissue becomes paramount in regulating energy metabolism and promoting overall health. IL-6, as a representative cytokine, participates in various inflammatory responses, including non-classical inflammatory responses such as adipogenesis. Skeletal muscle influences adipogenesis through paracrine mechanisms, primarily by secreting IL-6. In this research paper, we aim to review the role of skeletal muscle-derived IL-6 in lipid metabolism and other physiological activities, such as insulin resistance and glucose tolerance. By doing so, we provide valuable insights into the regulatory function of skeletal muscle-derived myokines in lipid metabolism.
Collapse
Affiliation(s)
- Weimin Lin
- *Correspondence: Weimin Lin, ; Ruiyi Lin,
| | | | | | | | | | | | | | | | | | | | - Ruiyi Lin
- College of Animal Sciences (College of Bee Science), Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
76
|
Sun J, Wang W, Li D, Song J, Chen Z, Chen L, Smeets R, Beikler T, Strenge J, Yang Z, Friedrich RE. Association between C-Reactive protein and periodontitis in an obese population from the NHANES 2009-2010. BMC Oral Health 2023; 23:512. [PMID: 37481511 PMCID: PMC10362674 DOI: 10.1186/s12903-023-03189-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 06/30/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Various data have been obtained on the relationship between body mass index (BMI) and C-reactive protein (CRP) and periodontitis. The aim of this study was to determine whether CRP/BMI are associated with periodontitis using data from the National Health and Nutrition Examination Survey (NHANES) database. METHODS A cross-sectional analysis of data from 3602 participants in the 2009-2010 NHANES cycle was performed. The definition of periodontitis was used to divide participants into four groups according to the criteria of Eke. Correlations between CRP/BMI and periodontitis were tested for statistical significance by means of descriptive statistics, multivariate regression, and subgroup-stratified analyses, with and without adjustments for confounders (such as age and sex). RESULTS There were no statistically significant differences (p > 0.05) regarding BMI and the development of periodontitis. After adjustment for age, sex, race, marital status, annual family income, alcohol consumption, hypertension, smoking, chronic pulmonary disease, cardiovascular disease, diabetes, flossing, and arthritis, CRP correlated significantly with the development of periodontitis in the subgroups stratified by obesity, with an odds ratio (OR) of 1.2 (95% CI, 1.0 to 1.5). CONCLUSION Through data analysis, we found an association between CRP levels and periodontitis prevalence in the American population, although this association was only present in the obese population. While there are several hypotheses about the underlying mechanism, further studies are needed to validate these findings.
Collapse
Affiliation(s)
- Jiangling Sun
- Department of Science and Education, Guiyang Stomatological Hospital, 550002, Guizhou, China
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Wang Wang
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center, Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Dongdong Li
- Department of Clinical Teaching, Guizhou Medical University, Guizhou Province, China
| | - Jukun Song
- Department of Oral and Maxillofacial Surgery, the Affiliated Stomatological Hospital of Guizhou Medical University, Guizhou, China
| | - Zhu Chen
- Department of Periodontics, Guiyang Stomatological Hospital, Guizhou Province, China.
| | - Liming Chen
- Department of Periodontics, Guiyang Stomatological Hospital, Guizhou Province, China.
| | - Ralf Smeets
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Thomas Beikler
- Department of Periodontics, Preventive and Restorative Dentistry, University Medical Center, Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Jan Strenge
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Zhe Yang
- Department of Histology and Embryology, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou Province, China
| | - Reinhard E Friedrich
- Department of Oral and Maxillofacial Surgery, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
- Department of Oral and Maxillofacial Surgery, Division of Regenerative Orofacial Medicine, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| |
Collapse
|
77
|
Wierzchowska-Opoka M, Grunwald A, Rekowska AK, Łomża A, Mekler J, Santiago M, Kabała Z, Kimber-Trojnar Ż, Leszczyńska-Gorzelak B. Impact of Obesity and Diabetes in Pregnant Women on Their Immunity and Vaccination. Vaccines (Basel) 2023; 11:1247. [PMID: 37515062 PMCID: PMC10385489 DOI: 10.3390/vaccines11071247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
Pregnant women with obesity and diabetes are at increased risk of developing infections and other complications during pregnancy. Several mechanisms are involved in the immunological mechanisms that contribute to reduced immunity in these populations. Both obesity and diabetes are associated with chronic low-grade inflammation that can lead to an overactive immune response. Pregnant women with obesity and diabetes often have an increase in pro-inflammatory cytokines and adipokines, such as TNF-α, IL-6, IL-1β, leptin, and resistin, which are involved in the inflammatory response. Insulin resistance can also affect the functioning of immune cells. Furthermore, both conditions alter the composition of the gut microbiome, which produces a variety of biomolecules, including short-chain fatty acids, lipopolysaccharides, and other metabolites. These substances may contribute to immune dysfunction. In addition to increasing the risk of infections, obesity and diabetes can also affect the efficacy of vaccinations in pregnant women. Pregnant women with obesity and diabetes are at increased risk of developing severe illness and complications from COVID-19, but COVID-19 vaccination may help protect them and their fetuses from infection and its associated risks. Since both obesity and diabetes classify a pregnancy as high risk, it is important to elucidate the impact of these diseases on immunity and vaccination during pregnancy. Research examining the efficacy of the COVID-19 vaccine in a high-risk pregnant population should be of particular value to obstetricians whose patients are hesitant to vaccinate during pregnancy. Further research is needed to better understand these mechanisms and to develop effective interventions to improve immune function in these populations.
Collapse
Affiliation(s)
| | - Arkadiusz Grunwald
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Anna K Rekowska
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Aleksandra Łomża
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Julia Mekler
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Miracle Santiago
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Zuzanna Kabała
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Żaneta Kimber-Trojnar
- Chair and Department of Obstetrics and Perinatology, Medical University of Lublin, 20-059 Lublin, Poland
| | | |
Collapse
|
78
|
Kuziel G, Moore BN, Haugstad GP, Arendt LM. Fibrocytes enhance mammary gland fibrosis in obesity. FASEB J 2023; 37:e23049. [PMID: 37342915 PMCID: PMC10316715 DOI: 10.1096/fj.202300399rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Obesity rates continue to rise, and obese individuals are at higher risk for multiple types of cancer, including breast cancer. Obese mammary fat is a site of chronic, macrophage-driven inflammation, which enhances fibrosis within adipose tissue. Elevated fibrosis within the mammary gland may contribute to risk for obesity-associated breast cancer. To understand how inflammation due to obesity enhanced fibrosis within mammary tissue, we utilized a high-fat diet model of obesity and elimination of CCR2 signaling in mice to identify changes in immune cell populations and their impact on fibrosis. We observed that obesity increased a population of CD11b+ cells with the ability to form myofibroblast-like colonies in vitro. This population of CD11b+ cells is consistent with fibrocytes, which have been identified in wound healing and chronic inflammatory diseases but have not been examined in obesity. In CCR2-null mice, which have limited ability to recruit myeloid lineage cells into obese adipose tissue, we observed reduced mammary fibrosis and diminished fibrocyte colony formation in vitro. Transplantation of myeloid progenitor cells, which are the cells of origin for fibrocytes, into the mammary glands of obese CCR2-null mice resulted in significantly increased myofibroblast formation. Gene expression analyses of the myeloid progenitor cell population from obese mice demonstrated enrichment for genes associated with collagen biosynthesis and extracellular matrix remodeling. Together these results show that obesity enhances recruitment of fibrocytes to promote obesity-induced fibrosis in the mammary gland.
Collapse
Affiliation(s)
- Genevra Kuziel
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
| | - Brittney N. Moore
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Grace P. Haugstad
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| | - Lisa M. Arendt
- Cancer Biology Program, University of Wisconsin-Madison,
Madison WI 53706, U.S.A
- Department of Comparative Biosciences, University of
Wisconsin-Madison, Madison WI 53706, U.S.A
| |
Collapse
|
79
|
Biernacka KM, Giri D, Hawton K, Segers F, Perks CM, Hamilton-Shield JP. Case report: Molecular characterisation of adipose-tissue derived cells from a patient with ROHHAD syndrome. Front Pediatr 2023; 11:1128216. [PMID: 37456561 PMCID: PMC10348915 DOI: 10.3389/fped.2023.1128216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 06/07/2023] [Indexed: 07/18/2023] Open
Abstract
There have been over 100 cases of Rapid-onset obesity with hypothalamic dysfunction, hypoventilation, and autonomic dysregulation (ROHHAD) syndrome reported, but there is currently no curative treatment for children with this condition. We aimed to better characterise adipose cells from a child with ROHHAD syndrome. We isolated pre-adipocytes from a 4 year-old female patient with ROHHAD syndrome and assessed proliferation rate of these cells. We evaluated levels of DLP-Pref-1(pre-adipocyte marker) using western blotting, and concentrations of interleukin-6(IL-6) using ELISA. We performed next-generation sequencing (NGS) and bioinformatic analyses on these cells compared to tissue from an age/sex-matched control. The two most up-/down-regulated genes were validated using QPCR. We successfully isolated pre-adipocytes from a fat biopsy, by confirming the presence of Pref-1 and differentiated them to mature adipocytes. Interleukin 6, (Il-6) levels were 5.6-fold higher in ROHHAD cells compared to a control age/sex-matched biopsy. NGS revealed 25,703 differentially expressed genes (DEGs) from ROHHAD cells vs. control of which 2,237 genes were significantly altered. The 20 most significantly up/down-regulated genes were selected for discussion. This paper describes the first transcriptomic analysis of adipose cells from a child with ROHHAD vs. normal control adipose tissue as a first step in identifying targetable pathways/mechanisms underlying this condition with novel therapeutic interventions.
Collapse
Affiliation(s)
- Kalina M. Biernacka
- Cancer Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Dinesh Giri
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Katherine Hawton
- Department of Paediatric Endocrinology and Diabetes, Bristol Royal Hospital for Children, Bristol, United Kingdom
| | - Francisca Segers
- School of Biological Sciences, University of Bristol, Bristol, United Kingdom
| | - Claire M. Perks
- Cancer Endocrinology Group, Bristol Medical School, Translational Health Sciences, Southmead Hospital, Bristol, United Kingdom
| | - Julian P. Hamilton-Shield
- Department of Translational Health Sciences, Nutrition Theme, NIHR Bristol Biomedical Research Centre, Bristol Medical School, University of Bristol, UBHT Education Centre, Bristol, United Kingdom
| |
Collapse
|
80
|
Sforzini L, Cattaneo A, Ferrari C, Turner L, Mariani N, Enache D, Hastings C, Lombardo G, Nettis MA, Nikkheslat N, Worrell C, Zajkowska Z, Kose M, Cattane N, Lopizzo N, Mazzelli M, Pointon L, Cowen PJ, Cavanagh J, Harrison NA, Jones D, Drevets WC, Mondelli V, Bullmore ET, Pariante CM. Higher immune-related gene expression in major depression is independent of CRP levels: results from the BIODEP study. Transl Psychiatry 2023; 13:185. [PMID: 37264010 PMCID: PMC10235092 DOI: 10.1038/s41398-023-02438-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 04/14/2023] [Accepted: 04/19/2023] [Indexed: 06/03/2023] Open
Abstract
Compelling evidence demonstrates that some individuals suffering from major depressive disorder (MDD) exhibit increased levels of inflammation. Most studies focus on inflammation-related proteins, such as serum or plasma C-reactive protein (CRP). However, the immune-related modifications associated with MDD may be not entirely captured by CRP alone. Analysing mRNA gene expression levels, we aimed to identify broader molecular immune-related phenotypes of MDD. We examined 168 individuals from the non-interventional, case-control, BIODEP study, 128 with a diagnosis of MDD and 40 healthy controls. Individuals with MDD were further divided according to serum high-sensitivity (hs)CRP levels (n = 59 with CRP <1, n = 33 with CRP 1-3 and n = 36 with CRP >3 mg/L). We isolated RNA from whole blood and performed gene expression analyses using RT-qPCR. We measured the expression of 16 immune-related candidate genes: A2M, AQP4, CCL2, CXCL12, CRP, FKBP5, IL-1-beta, IL-6, ISG15, MIF, GR, P2RX7, SGK1, STAT1, TNF-alpha and USP18. Nine of the 16 candidate genes were differentially expressed in MDD cases vs. controls, with no differences between CRP-based groups. Only CRP mRNA was clearly associated with serum CRP. In contrast, plasma (proteins) IL-6, IL-7, IL-8, IL-10, IL-12/IL-23p40, IL-16, IL-17A, IFN-gamma and TNF-alpha, and neutrophils counts, were all differentially regulated between CRP-based groups (higher in CRP >3 vs. CRP <1 and/or controls), reflecting the gradient of CRP values. Secondary analyses on MDD individuals and controls with CRP values <1 mg/L (usually interpreted as 'no inflammation') confirmed MDD cases still had significantly different mRNA expression of immune-related genes compared with controls. These findings corroborate an immune-related molecular activation in MDD, which appears to be independent of serum CRP levels. Additional biological mechanisms may then be required to translate this mRNA signature into inflammation at protein and cellular levels. Understanding these mechanisms will help to uncover the true immune abnormalities in depression, opening new paths for diagnosis and treatment.
Collapse
Affiliation(s)
- Luca Sforzini
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK.
| | - Annamaria Cattaneo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Clarissa Ferrari
- Research and Clinical Trials Service, Fondazione Poliambulanza Istituto Ospedaliero, Brescia, 25124, Italy
| | - Lorinda Turner
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Nicole Mariani
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Daniela Enache
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Caitlin Hastings
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Giulia Lombardo
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Maria A Nettis
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Naghmeh Nikkheslat
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Courtney Worrell
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Zuzanna Zajkowska
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Melisa Kose
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
| | - Nadia Cattane
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
| | - Nicola Lopizzo
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Monica Mazzelli
- Biological Psychiatric Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125, Brescia, Italy
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Linda Pointon
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Philip J Cowen
- University of Oxford Department of Psychiatry, Warneford Hospital, Oxford, OX3 7JX, UK
| | - Jonathan Cavanagh
- Centre for Immunobiology, School of Infection & Immunity, University of Glasgow, G12 8TA, Glasgow, Scotland
| | - Neil A Harrison
- School of Medicine, School of Psychology, Cardiff University Brain Research Imaging Centre, Maindy Road, Cardiff, CF24 4HQ, UK
| | - Declan Jones
- Neuroscience External Innovation, Janssen Pharmaceuticals, J&J Innovation Centre, London, W1G 0BG, UK
| | - Wayne C Drevets
- Janssen Research & Development, Neuroscience Therapeutic Area, 3210 Merryfield Row, San Diego, CA, 92121, USA
| | - Valeria Mondelli
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| | - Edward T Bullmore
- Department of Psychiatry, School of Clinical Medicine, University of Cambridge, Cambridge, CB2 0SZ, UK
| | - Carmine M Pariante
- King's College London, Institute of Psychiatry, Psychology and Neuroscience, Department of Psychological Medicine, Maurice Wohl Clinical Neuroscience Institute, London, SE5 9RT, UK
- National Institute for Health Research (NIHR) Mental Health Biomedical Research Centre at South London and Maudsley NHS Foundation Trust, London, UK
| |
Collapse
|
81
|
Wu O, Yuan C, Leng J, Zhang X, Liu W, Yang F, Zhang H, Li J, Khederzadeh S, Jiang Z, Fang H, Liu X, Lu X, Xia J. Colorable role of interleukin (IL)-6 in obesity hypertension: A hint from a Chinese adult case-control study. Cytokine 2023; 168:156226. [PMID: 37235887 DOI: 10.1016/j.cyto.2023.156226] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/10/2023] [Accepted: 05/04/2023] [Indexed: 05/28/2023]
Abstract
BACKGROUND Obesity and hypertension are major risk factors for cardiovascular diseases that affect millions of people worldwide. Both conditions are associated with chronic low-grade inflammation, which is mediated by cytokines such as interleukin-6 (IL-6). IL-6 is a multifunctional cytokine that can have pro-inflammatory or anti-inflammatory effects depending on the context. The exact role of IL-6 in obesity-associated hypertension is unclear. OBJECTIVE To investigate how IL-6 affects blood pressure, inflammation, and metabolic function in obesity-hypertension using a Chinese adult case-control study. METHODS A total of 153 participants were sorted into four subgroups according to their body mass index (BMI) and blood pressure (BP): normal healthy group (NH), just obesity group (JO), just-hypertension group (JH), and obesity-hypertension group (OH). Serum IL-6 concentrations were measured by Enzyme-linked Immunosorbent Assay (ELISA) and their correlations with anthropometric and laboratory parameters and their differences across the subgroups were examined. Multiple linear regression analysis was performed to identify the predictors of serum IL-6 concentrations in each group. RESULTS Serum IL-6 concentrations were higher in NH group than in JO group and correlated positively with diastolic blood pressure in NH and JO groups, but not in JH and OH groups. Serum IL-6 concentrations also correlated with albumin in NH group, alkaline phosphatase in JO group, serum creatinine and fasting blood glucose in JH group. The influencing factors of serum IL-6 concentrations varied among the four groups, with gender, diastolic blood pressure and albumin being significant predictors in NH group, alkaline phosphatase in JO group, age and serum creatinine in JH group, and none in OH group. CONCLUSIONS These results suggest that IL-6 may play diverse effects in the pathogenesis of obesity- hypertension, depending on the presence or absence of obesity and hypertension. Further studies are needed to elucidate the underlying mechanisms of IL-6 signaling and function in these diseases.
Collapse
Affiliation(s)
- Ou Wu
- Shulan International Medical College, Zhejiang Shuren University, Zhejiang, China.
| | - Chengda Yuan
- Department of Dermatology, Hangzhou Hospital of Traditional Chinese Medicine, Hangzhou 310007, China
| | - Jianhang Leng
- Department of Central Laboratory/Medical examination center of Hangzhou, The Frist People's Hospital of Hangzhou, 310003, Zhejiang, China
| | - Xingyu Zhang
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Wei Liu
- JFIntelligent Healthcare Technology Co. Ltd, Building No.5-7, No.699 Tianxiang Avenue, Hi-Tech Zone, Nanchang, Jiangxi Province, China
| | - Fenfang Yang
- Department of Central Laboratory/Medical examination center of Hangzhou, The Frist People's Hospital of Hangzhou, 310003, Zhejiang, China
| | - Hu Zhang
- Department of Thoracic Surgery, Sir Run Run Shaw Hospital Affiliated with Medical College of Zhejiang University, Zhejiang, China
| | - Jiajia Li
- Department of Central Laboratory, the First Affiliated Hospital of Anhui Medical University, Anhui, China
| | - Saber Khederzadeh
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China; Institute of Basic Medical Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - Zhizhi Jiang
- ZhaNongKou Street Community Health Service Center, Hangzhou, Zhejiang, China
| | - Hangyan Fang
- Hangzhou Linping District Center for Disease Prevention and Control, zhejiang, China
| | - Xiaodong Liu
- Hangzhou center for disease control and prevention, Zhejiang, China
| | - Xi Lu
- Hangzhou Vocational and Technical College, Zhejiang, China.
| | - Jiangwei Xia
- Department of Neurology, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Municipal Geriatric Medical Research Center, Beijing, China.
| |
Collapse
|
82
|
Félix-Soriano E, Sáinz N, Gil-Iturbe E, Castilla-Madrigal R, Celay J, Fernández-Galilea M, Pejenaute Á, Lostao MP, Martínez-Climent JA, Moreno-Aliaga MJ. Differential remodeling of subcutaneous white and interscapular brown adipose tissue by long-term exercise training in aged obese female mice. J Physiol Biochem 2023:10.1007/s13105-023-00964-2. [PMID: 37204588 DOI: 10.1007/s13105-023-00964-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Obesity exacerbates aging-induced adipose tissue dysfunction. This study aimed to investigate the effects of long-term exercise on inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) of aged obese mice. Two-month-old female mice received a high-fat diet for 4 months. Then, six-month-old diet-induced obese animals were allocated to sedentarism (DIO) or to a long-term treadmill training (DIOEX) up to 18 months of age. In exercised mice, iWAT depot revealed more adaptability, with an increase in the expression of fatty acid oxidation genes (Cpt1a, Acox1), and an amelioration of the inflammatory status, with a favorable modulation of pro/antiinflammatory genes and lower macrophage infiltration. Additionally, iWAT of trained animals showed an increment in the expression of mitochondrial biogenesis (Pgc1a, Tfam, Nrf1), thermogenesis (Ucp1), and beige adipocytes genes (Cd137, Tbx1). In contrast, iBAT of aged obese mice was less responsive to exercise. Indeed, although an increase in functional brown adipocytes genes and proteins (Pgc1a, Prdm16 and UCP1) was observed, few changes were found on inflammation-related and fatty acid metabolism genes. The remodeling of iWAT and iBAT depots occurred along with an improvement in the HOMA index for insulin resistance and in glucose tolerance. In conclusion, long-term exercise effectively prevented the loss of iWAT and iBAT thermogenic properties during aging and obesity. In iWAT, the long-term exercise program also reduced the inflammatory status and stimulated a fat-oxidative gene profile. These exercise-induced adipose tissue adaptations could contribute to the beneficial effects on glucose homeostasis in aged obese mice.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Neira Sáinz
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Eva Gil-Iturbe
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Rosa Castilla-Madrigal
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Fernández-Galilea
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Álvaro Pejenaute
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Pilar Lostao
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - José A Martínez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
83
|
Park MJ, Choi KM. Interplay of skeletal muscle and adipose tissue: sarcopenic obesity. Metabolism 2023; 144:155577. [PMID: 37127228 DOI: 10.1016/j.metabol.2023.155577] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/19/2023] [Accepted: 04/21/2023] [Indexed: 05/03/2023]
Abstract
Sarcopenic obesity is becoming a global health concern, owing to the rising older population, causing cardiometabolic morbidity and mortality. Loss of muscle exceeding normal age-related changes has been revealed to be associated with obesity, aggravating each other through complex interactions. Physiological regeneration and proliferation of muscle tissue are achieved through harmonious processes of regulated inflammation, autophagy, muscle satellite cell proliferation, and signaling molecule function. Adipokines and myokines are signaling molecules from adipose tissue and muscle, respectively, that exert autocrine, paracrine, and endocrine effects on fat and muscle tissues. These signaling molecules interact with each other to regulate metabolic homeostasis. However, excessive adiposity creates pro-inflammatory conditions, leading to metabolic disorders and the disorganization of systemic homeostasis. Therefore, obesity impedes muscle tissue regeneration and induces the loss of muscle mass and function. Numerous studies have attempted to demonstrate the pathophysiological interaction between sarcopenia and obesity, but the interwoven matrix of the relationship between myokines and adipokines has made it difficult for researchers to understand them. This review briefly describes updated information about the crosstalk between muscle and adipose tissue.
Collapse
Affiliation(s)
- Min Jeong Park
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyung Mook Choi
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
84
|
Lodewijks F, McKinsey TA, Robinson EL. Fat-to-heart crosstalk in health and disease. Front Genet 2023; 14:990155. [PMID: 37035745 PMCID: PMC10079901 DOI: 10.3389/fgene.2023.990155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
According to the latest World Health Organization statistics, cardiovascular disease (CVD) is one of the leading causes of death globally. Due to the rise in the prevalence of major risk factors, such as diabetes mellitus and obesity, the burden of CVD is expected to worsen in the decades to come. Whilst obesity is a major and consistent risk factor for CVD, the underlying pathological molecular communication between peripheral fat depots and the heart remains poorly understood. Adipose tissue (AT) is a major endocrine organ in the human body, with composite cells producing and secreting hormones, cytokines, and non-coding RNAs into the circulation to alter the phenotype of multiple organs, including the heart. Epicardial AT (EAT) is an AT deposit that is in direct contact with the myocardium and can therefore influence cardiac function through both mechanical and molecular means. Moreover, resident and recruited immune cells comprise an important adipose cell type, which can create a pro-inflammatory environment in the context of obesity, potentially contributing to systemic inflammation and cardiomyopathies. New mechanisms of fat-to-heart crosstalk, including those governed by non-coding RNAs and extracellular vesicles, are being investigated to deepen the understanding of this highly common risk factor. In this review, molecular crosstalk between AT and the heart will be discussed, with a focus on endocrine and paracrine signaling, immune cells, inflammatory cytokines, and inter-organ communication through non-coding RNAs.
Collapse
Affiliation(s)
- Fleur Lodewijks
- Department of Pathology, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Timothy A. McKinsey
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Emma L. Robinson
- Department of Medicine, Division of Cardiology and Consortium for Fibrosis Research and Translation, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| |
Collapse
|
85
|
Williams CY, Wylie A, Ghobrial V, Coe CL, Short SJ. Racial differences in the associations between adiposity, placental growth hormone and inflammatory cytokines in pregnant women. Front Endocrinol (Lausanne) 2023; 14:1100724. [PMID: 37025401 PMCID: PMC10072229 DOI: 10.3389/fendo.2023.1100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 03/01/2023] [Indexed: 04/08/2023] Open
Abstract
Background The prevalence of obesity among women of child-bearing age has contributed to an increased risk of pregnancy complications with a disproportional impact on women of lower socioeconomic status and among certain racial groups. In particular, socio-demographic and historical factors have resulted in higher rates of premature births and small-for-gestational age infants among Black women, which may be associated with placental function during pregnancy. The current study investigated the influence of maternal pre-pregnancy adiposity and race on the associations between inflammatory proteins, placental growth hormone (PGH), and infant birthweight. This information was collected for a subsample of 109 participants (Black, n = 39 vs. White, n = 70) from the Brain and Early Experiences (BEE) study. Methods Serum samples were acquired late in the second trimester to assess PGH levels, C-reactive protein (CRP), interleukin 6 (IL-6), interleukin 8 (IL-8), and interleukin-1 receptor antagonist (IL-1Ra). Participant questionnaire responses provided information on pre-pregnancy BMI, health, race, educational attainment, and infant birthweight. Bivariate correlations and multiple linear regression models were utilized to evaluate associations by race between preconception adiposity, inflammatory markers and PGH. Results After controlling for covariates including maternal age and education, gestational age, and fetal sex, regression models indicated that pre-pregnancy BMI was negatively associated with PGH (β=-0.42, p<0.05) and IL-8 was positively associated with PGH (β=0.35, p<0.05) among the Black mothers only; neither were significantly associated with PGH in the White mothers. When extending models to birth outcomes, BMI was positively associated with birthweight corrected for gestational age (BWz) (β=0.24, p<0.05) and educational attainment was negatively associated with BWz (β=0.28, p<0.05) for infants of White women. In contrast, neither variable was predictive of BWz for infants of Black mothers. Conclusion Future work is needed to investigate racial differences in the association between adiposity and placental functioning, which are likely to contribute to differential effects on pregnancy outcomes and fetal growth.
Collapse
Affiliation(s)
- Camille Y. Williams
- Department of Counseling Psychology, University of Wisconsin–Madison, Madison, WI, United States
- Center for Healthy Minds, University of Wisconsin–Madison, Madison, WI, United States
| | - Amanda Wylie
- Frank Porter Graham Child Development Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Verina Ghobrial
- Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI, United States
| | - Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin–Madison, Madison, WI, United States
| | - Sarah J. Short
- Center for Healthy Minds, University of Wisconsin–Madison, Madison, WI, United States
- Department of Educational Psychology, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
86
|
Guha Ray A, Odum OP, Wiseman D, Weinstock A. The diverse roles of macrophages in metabolic inflammation and its resolution. Front Cell Dev Biol 2023; 11:1147434. [PMID: 36994095 PMCID: PMC10041730 DOI: 10.3389/fcell.2023.1147434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 03/14/2023] Open
Abstract
Macrophages are one of the most functionally diverse immune cells, indispensable to maintain tissue integrity and metabolic health. Macrophages perform a myriad of functions ranging from promoting inflammation, through inflammation resolution to restoring and maintaining tissue homeostasis. Metabolic diseases encompass a growing list of diseases which develop from a mix of genetics and environmental cues leading to metabolic dysregulation and subsequent inflammation. In this review, we summarize the contributions of macrophages to four metabolic conditions-insulin resistance and adipose tissue inflammation, atherosclerosis, non-alcoholic fatty liver disease and neurodegeneration. The role of macrophages is complex, yet they hold great promise as potential therapies to address these growing health concerns.
Collapse
Affiliation(s)
| | | | | | - Ada Weinstock
- Section of Genetic Medicine, Department of Medicine, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
87
|
Björkander S, Klevebro S, Hernandez‐Pacheco N, Kere M, Ekström S, Sparreman Mikus M, van Hage M, James A, Kull I, Bergström A, Mjösberg J, Tibbitt CA, Melén E. Obese asthma phenotypes display distinct plasma biomarker profiles. Clin Transl Allergy 2023; 13:e12238. [PMID: 36973952 PMCID: PMC10032201 DOI: 10.1002/clt2.12238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 02/06/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Obese asthma is a complex phenotype and further characterization of the pathophysiology is needed. This study aimed to explore inflammation-related plasma biomarkers in lean and overweight/obese asthmatics. METHODS We elucidated levels of inflammation-related plasma proteins in obese asthma phenotypes in the population-based cohort BAMSE (Swedish: Children, Allergy, Milieu, Stockholm, Epidemiology) using data from 2069 24-26-year-olds. Subjects were divided into lean asthma (n = 166), lean controls (n = 1440), overweight/obese asthma (n = 73) and overweight/obese controls (n = 390). Protein levels (n = 92) were analysed using the Olink Proseek Multiplex Inflammation panel. RESULTS Of the 92 included proteins, 41 were associated with lean and/or overweight/obese asthma. The majority of proteins associated with overweight/obese asthma also associated with overweight/obesity among non-asthmatics. Beta-nerve growth factor (BetaNGF), interleukin 10 (IL-10), and matrix metalloproteinase 10 (MMP10) were associated only with lean asthma while C-C motif chemokine 20 (CCL20), fibroblast growth factor 19 (FGF19), interleukin 5 (IL-5), leukemia inhibitory factor (LIF), tumor necrosis factor ligand superfamily member 9 (TNFRSF9), and urokinase-type plasminogen activator (uPA) were associated only with overweight/obese asthma. Overweight/obesity modified the association between asthma and 3 of the proteins: fibroblast growth factor 21 (FGF21), interleukin 4 (IL-4), and urokinase-type plasminogen activator (uPA). In the overweight/obese group, interleukin-6 (IL-6) was associated with non-allergic asthma but not allergic asthma. CONCLUSION These data indicate distinct plasma protein phenotypes in lean and overweight/obese asthmatics which, in turn, can impact upon therapeutic approaches.
Collapse
Grants
- Region Stockholm, ALF project, Clinical postdoctoral appointment (SK), and database maintenance
- Hjärt-Lungfonden
- European Academy of Allergy and Clinical Immunology, Medium-Term Research Fellowship (NHP)
- Thermo Fisher Scientific, reagents for the allergen-specific IgE analyses
- Insamlingsstiftelsen Cancer- och Allergifonden
- 757919 H2020 European Research Council
- LTRF202101-00861 European Respiratory Society (NHP)
- 2016-01646 Svenska Forskningsrådet Formas
- 2017-00526 Forskningsrådet om Hälsa, Arbetsliv och Välfärd
- 2016-03086 Vetenskapsrådet
- 2018-02524 Vetenskapsrådet
- 2019-01060 Vetenskapsrådet
- 2020-02170 Vetenskapsrådet
- Astma- och Allergiförbundet
- Region Stockholm, ALF project, Clinical postdoctoral appointment (SK), and database maintenance
- Hjärt‐Lungfonden
- European Academy of Allergy and Clinical Immunology, Medium‐Term Research Fellowship (NHP)
- Thermo Fisher Scientific, reagents for the allergen‐specific IgE analyses
- Insamlingsstiftelsen Cancer‐ och Allergifonden
- H2020 European Research Council
- European Respiratory Society (NHP)
- Svenska Forskningsrådet Formas
- Forskningsrådet om Hälsa, Arbetsliv och Välfärd
- Vetenskapsrådet
- Astma‐ och Allergiförbundet
Collapse
Affiliation(s)
- Sophia Björkander
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
| | - Susanna Klevebro
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs' Children and Youth HospitalSödersjukhusetStockholmSweden
| | - Natalia Hernandez‐Pacheco
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- CIBER de Enfermedades Respiratorias (CIBERES)MadridSpain
| | - Maura Kere
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
| | - Sandra Ekström
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Occupational and Environmental Medicine, Region StockholmStockholmSweden
| | | | - Marianne van Hage
- Department of Medicine, SolnaDivision of Immunology and AllergyKarolinska Institutet and Karolinska University HospitalStockholmSweden
| | - Anna James
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Inger Kull
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs' Children and Youth HospitalSödersjukhusetStockholmSweden
| | - Anna Bergström
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
- Centre for Occupational and Environmental Medicine, Region StockholmStockholmSweden
| | - Jenny Mjösberg
- Department of Medicine HuddingeCentre for Infectious MedicineKarolinska InstitutetStockholmSweden
| | | | - Erik Melén
- Department of Clinical Science and EducationSödersjukhusetKarolinska InstitutetStockholmSweden
- Sachs' Children and Youth HospitalSödersjukhusetStockholmSweden
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| |
Collapse
|
88
|
Luan D, Dadpey B, Zaid J, Bridge-Comer PE, DeLuca JH, Xia W, Castle J, Reilly SM. Adipocyte-Secreted IL-6 Sensitizes Macrophages to IL-4 Signaling. Diabetes 2023; 72:367-374. [PMID: 36449000 PMCID: PMC9935493 DOI: 10.2337/db22-0444] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
Complex bidirectional cross talk between adipocytes and adipose tissue immune cells plays an important role in regulating adipose function, inflammation, and insulin responsiveness. Adipocytes secrete the pleiotropic cytokine IL-6 in response to both inflammatory and catabolic stimuli. Previous studies have suggested that IL-6 secretion from adipocytes in obesity may promote adipose tissue inflammation. Here, we investigated catabolic stimulation of adipocyte IL-6 secretion and its impact on adipose tissue immune cells. In obesity, catecholamine resistance reduces cAMP-driven adipocyte IL-6 secretion in response to catabolic signals. By restoring adipocyte catecholamine sensitivity in obese adipocytes, amlexanox stimulates adipocyte-specific IL-6 secretion. We report that in this context, adipocyte-secreted IL-6 activates local macrophage STAT3 to promote Il4ra expression, thereby sensitizing them to IL-4 signaling and promoting an anti-inflammatory gene expression pattern. Supporting a paracrine adipocyte to macrophage mechanism, these effects could be recapitulated using adipocyte conditioned media to pretreat bone marrow-derived macrophages prior to polarization with IL-4. The effects of IL-6 signaling in adipose tissue are complex and context specific. These results suggest that cAMP-driven IL-6 secretion from adipocytes sensitizes adipose tissue macrophages to IL-4 signaling.
Collapse
Affiliation(s)
- Danny Luan
- Division of Nephrology and Hypertension, Department of Medicine/NewYork-Presbyterian Hospital, Weill Cornell Medicine, New York, NY
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Benyamin Dadpey
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Jessica Zaid
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Pania E. Bridge-Comer
- Weill Center for Metabolic Health, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY
| | - Julia H. DeLuca
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Wenmin Xia
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA
| | - Joshua Castle
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
| | - Shannon M. Reilly
- Life Sciences Institute, University of Michigan, Ann Arbor, MI
- Division of Metabolism and Endocrinology, Department of Medicine, University of California, San Diego, La Jolla, CA
- Weill Center for Metabolic Health, Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Weill Cornell Medicine, New York, NY
| |
Collapse
|
89
|
Xiao L, Mochizuki M, Wang D, Shimamura N, Sunada K, Nakahara T. Types of cell culture inserts affect cell crosstalk between co-cultured macrophages and adipocytes. Biochem Biophys Res Commun 2023; 658:10-17. [PMID: 37011478 DOI: 10.1016/j.bbrc.2023.03.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 03/24/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023]
Abstract
Cell culture inserts offer an in vivo-like microenvironment to investigate cell-cell interactions between co-cultivated cells. However, it is unclear if types of inserts affect cell crosstalk. Here, we developed an environment-friendly cell culture insert, XL-insert, which can reduce plastic waste with lower cost. We compared XL insert with two types of commercial disposable culture inserts, Koken® insert with atelocollagen membrane (Col-inserts) and Falcon® inserts with plastic membrane (PET-inserts) on cell-cell interactions in co-cultivated THP-1 macrophages and OP9 adipocytes. Scanning electron microscope, immunoassay and imaging analysis showed that among three types of inserts, XL-inserts allowed cytokines from co-cultivated macrophages and adipocytes to diffuse freely and offered preferable in vivo-like microenvironment for cell-cell interactions. PET-inserts showed limitations for intercellular communication due to some pores being blocked by somas on the membrane that caused much lower permeability for cytokines passing through. Col-inserts blocked large sized cytokines but allowed small sized molecules to permeate resulting in improved lipid accumulation and adiponectin secretion in OP9 adipocytes. Taken together, our data demonstrated that membrane type and pore size on the membrane affect the cross-talk between co-cultivated cells very differently. Some previous co-culture studies might have different results if the inserts were changed.
Collapse
Affiliation(s)
- Li Xiao
- Department of Pharmacology, School of Life Dentistry at Tokyo, The Nippon Dental University, 1-9-20 Fujimi, Chiyoda-ku, Tokyo, 102-8159, Japan.
| | - Mai Mochizuki
- Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan; Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Dongliang Wang
- Beijing Xiaoxiandun Biotechnology Co., Ltd., No. 150, Guanzhuang Road, Changying Town, Chaoyang District, Beijing, 100020, China; Hebei Edible Bird's Nest Fresh Stew Technology Innovation Center, Bazhou Economic Development Zone, Langfang, 065700, China.
| | - Naohiro Shimamura
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Katsuhisa Sunada
- Department of Dental Anesthesiology, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| | - Taka Nakahara
- Department of Developmental and Regenerative Dentistry, School of Life Dentistry at Tokyo, The Nippon Dental University, Tokyo, Japan.
| |
Collapse
|
90
|
Analysis of Selected Salivary Adipokines and Cytokines in Patients with Obesity-A Pilot Study. Int J Mol Sci 2023; 24:ijms24044145. [PMID: 36835557 PMCID: PMC9964799 DOI: 10.3390/ijms24044145] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Obesity is a chronic, progressive and relapsing disease that produces many adverse health, social and economic effects. The aim of the study was to analyse the concentrations of selected proinflammatory parameters in the saliva of obese and normal body weight individuals. The study included 116 people divided into two groups: the study group (n = 75, subjects with obesity) and the control group (n = 41, individuals with normal body weight). Bioelectrical impedance analysis was performed, and saliva samples were collected from all study participants to determine the concentrations of selected proinflammatory adipokines and cytokines. Statistically significantly higher concentrations of MMP-2, MMP-9 and IL-1β were found in the saliva of obese women compared to women with normal body weight. Furthermore, statistically significantly higher concentrations of MMP-9, IL-6 and resistin were observed in the saliva of obese men compared to men with normal body weight. Higher concentrations of selected proinflammatory cytokines and adipokines were found in the saliva of obese individuals compared to individuals with normal body weight. It is likely that higher concentrations of MMP-2, MMP-9 and IL-1β can be detected in the saliva of obese women compared to non-obese women, while higher concentrations of MMP-9, IL-6 and resistin can be found in the saliva of obese men compared to non-obese men, which suggests that further research to confirm our observations and determine the mechanisms of development of metabolic complications associated with obesity depending on gender is needed.
Collapse
|
91
|
Pototschnig I, Feiler U, Diwoky C, Vesely PW, Rauchenwald T, Paar M, Bakiri L, Pajed L, Hofer P, Kashofer K, Sukhbaatar N, Schoiswohl G, Weichhart T, Hoefler G, Bock C, Pichler M, Wagner EF, Zechner R, Schweiger M. Interleukin-6 initiates muscle- and adipose tissue wasting in a novel C57BL/6 model of cancer-associated cachexia. J Cachexia Sarcopenia Muscle 2023; 14:93-107. [PMID: 36351437 PMCID: PMC9891934 DOI: 10.1002/jcsm.13109] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/23/2022] [Accepted: 09/26/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND Cancer-associated cachexia (CAC) is a wasting syndrome drastically reducing efficacy of chemotherapy and life expectancy of patients. CAC affects up to 80% of cancer patients, yet the mechanisms underlying the disease are not well understood and no approved disease-specific medication exists. As a multiorgan disorder, CAC can only be studied on an organismal level. To cover the diverse aetiologies of CAC, researchers rely on the availability of a multifaceted pool of cancer models with varying degrees of cachexia symptoms. So far, no tumour model syngeneic to C57BL/6 mice exists that allows direct comparison between cachexigenic- and non-cachexigenic tumours. METHODS MCA207 and CHX207 fibrosarcoma cells were intramuscularly implanted into male or female, 10-11-week-old C57BL/6J mice. Tumour tissues were subjected to magnetic resonance imaging, immunohistochemical-, and transcriptomic analysis. Mice were analysed for tumour growth, body weight and -composition, food- and water intake, locomotor activity, O2 consumption, CO2 production, circulating blood cells, metabolites, and tumourkines. Mice were sacrificed with same tumour weights in all groups. Adipose tissues were examined using high-resolution respirometry, lipolysis measurements in vitro and ex vivo, and radioactive tracer studies in vivo. Gene expression was determined in adipose- and muscle tissues by quantitative PCR and Western blotting analyses. Muscles and cultured myotubes were analysed histologically and by immunofluorescence microscopy for myofibre cross sectional area and myofibre diameter, respectively. Interleukin-6 (Il-6) was deleted from cancer cells using CRISPR/Cas9 mediated gene editing. RESULTS CHX207, but not MCA207-tumour-bearing mice exhibited major clinical features of CAC, including systemic inflammation, increased plasma IL-6 concentrations (190 pg/mL, P ≤ 0.0001), increased energy expenditure (+28%, P ≤ 0.01), adipose tissue loss (-47%, P ≤ 0.0001), skeletal muscle wasting (-18%, P ≤ 0.001), and body weight reduction (-13%, P ≤ 0.01) 13 days after cancer cell inoculation. Adipose tissue loss resulted from reduced lipid uptake and -synthesis combined with increased lipolysis but was not associated with elevated beta-adrenergic signalling or adipose tissue browning. Muscle atrophy was evident by reduced myofibre cross sectional area (-21.8%, P ≤ 0.001), increased catabolic- and reduced anabolic signalling. Deletion of IL-6 from CHX207 cancer cells completely protected CHX207IL6KO -tumour-bearing mice from CAC. CONCLUSIONS In this study, we present CHX207 fibrosarcoma cells as a novel tool to investigate the mediators and metabolic consequences of CAC in C57BL/6 mice in comparison to non-cachectic MCA207-tumour-bearing mice. IL-6 represents an essential trigger for CAC development in CHX207-tumour-bearing mice.
Collapse
Affiliation(s)
| | - Ursula Feiler
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Clemens Diwoky
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Paul W. Vesely
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | - Margret Paar
- Division of Physiological Chemistry, Otto‐Loewi Research CenterMedical University of GrazGrazAustria
| | - Latifa Bakiri
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
| | - Laura Pajed
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Peter Hofer
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
| | - Karl Kashofer
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
| | | | | | - Thomas Weichhart
- Institute of Medical GeneticsMedical University of ViennaViennaAustria
| | - Gerald Hoefler
- Diagnostic and Research Institute of PathologyMedical University of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of SciencesViennaAustria
- Institute of Artificial Intelligence, Center for Medical Statistics, Informatics, and Intelligent SystemsMedical University of ViennaViennaAustria
| | | | - Erwin F. Wagner
- Department of Laboratory MedicineMedical University of ViennaViennaAustria
- Department of DermatologyMedical University of ViennaViennaAustria
| | - Rudolf Zechner
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth ‐ University of GrazGrazAustria
| | - Martina Schweiger
- Institute of Molecular BiosciencesUniversity of GrazGrazAustria
- BioTechMed‐GrazGrazAustria
- Field of Excellence BioHealth ‐ University of GrazGrazAustria
| |
Collapse
|
92
|
Inactivity and obesity: consequences for macrophage-mediated inflammation and the development of cardiometabolic disease. Proc Nutr Soc 2023; 82:13-21. [PMID: 35996926 DOI: 10.1017/s0029665122002671] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Obesity and dyslipidaemia are strongly associated with the development of cardiometabolic diseases including CVD, stroke, type 2 diabetes, insulin resistance and non-alcoholic fatty liver disease. While these conditions are preventable, they are leading causes of mortality globally. There is now overwhelming clinical and experimental evidence that these conditions are driven by chronic systemic inflammation, with a growing body of data suggesting that this can be regulated by increasing levels of physical activity and reducing sedentary time. In this review we address the role of macrophage-mediated inflammation on the development of cardiometabolic diseases in individuals with overweight and obesity and how reducing sedentary behaviour and increasing physical activity appears to lessen these pro-inflammatory processes, reducing the risk of developing cardiometabolic diseases. While loss of subcutaneous and visceral fat mass is important for reducing chronic systemic inflammation, the mediating effects of increasing physical activity levels and lowering sedentary time on the development of inflamed adipose tissue also occur independently of changes in adiposity. The message that weight loss is not necessary for the benefits of physical activity in lowering chronic inflammation and improving health should encourage those for whom losing weight is difficult. Additionally, while the health benefits of meeting the recommended physical activity guidelines are clear, simply moving more appears to lower chronic systemic inflammation. Reducing sitting time and increasing light physical activity may therefore provide an alternative, more approachable manner for some with overweight and obesity to become more active, reduce chronic inflammation and improve cardiometabolic health.
Collapse
|
93
|
Sun K, Li X, Scherer PE. Extracellular Matrix (ECM) and Fibrosis in Adipose Tissue: Overview and Perspectives. Compr Physiol 2023; 13:4387-4407. [PMID: 36715281 PMCID: PMC9957663 DOI: 10.1002/cphy.c220020] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Fibrosis in adipose tissue is a major driver of obesity-related metabolic dysregulation. It is characterized by an overaccumulation of extracellular matrix (ECM) during unhealthy expansion of adipose tissue in response to over nutrition. In obese adipose-depots, hypoxia stimulates multiple pro-fibrotic signaling pathways in different cell populations, thereby inducing the overproduction of the ECM components, including collagens, noncollagenous proteins, and additional enzymatic components of ECM synthesis. As a consequence, local fibrosis develops. The result of fibrosis-induced mechanical stress not only triggers cell necrosis and inflammation locally in adipose tissue but also leads to system-wide lipotoxicity and insulin resistance. A better understanding of the mechanisms underlying the obesity-induced fibrosis will help design therapeutic approaches to reduce or reverse the pathological changes associated with obese adipose tissue. Here, we aim to summarize the major advances in the field, which include newly identified fibrotic factors, cell populations that contribute to the fibrosis in adipose tissue, as well as novel mechanisms underlying the development of fibrosis. We further discuss the potential therapeutic strategies to target fibrosis in adipose tissue for the treatment of obesity-linked metabolic diseases and cancer. © 2023 American Physiological Society. Compr Physiol 13:4387-4407, 2023.
Collapse
Affiliation(s)
- Kai Sun
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Xin Li
- Center for Metabolic and Degenerative Diseases, Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Philipp E. Scherer
- Department of Internal Medicine, Touchstone Diabetes Center, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
- Department of Cell Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| |
Collapse
|
94
|
Hortová-Kohoutková M, Skotáková M, Onyango IG, Slezáková M, Panovský R, Opatřil L, Slanina P, De Zuani M, Mrkva O, Andrejčinová I, Lázničková P, Dvončová M, Mýtniková A, Ostland V, Šitina M, Stokin GB, Šrámek V, Vlková M, Helán M, Frič J. Hepcidin and ferritin levels as markers of immune cell activation during septic shock, severe COVID-19 and sterile inflammation. Front Immunol 2023; 14:1110540. [PMID: 36776891 PMCID: PMC9911830 DOI: 10.3389/fimmu.2023.1110540] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 01/16/2023] [Indexed: 01/28/2023] Open
Abstract
Introduction Major clinically relevant inflammatory events such as septic shock and severe COVID-19 trigger dynamic changes in the host immune system, presenting promising candidates for new biomarkers to improve precision diagnostics and patient stratification. Hepcidin, a master regulator of iron metabolism, has been intensively studied in many pathologies associated with immune system activation, however these data have never been compared to other clinical settings. Thus, we aimed to reveal the dynamics of iron regulation in various clinical settings and to determine the suitability of hepcidin and/or ferritin levels as biomarkers of inflammatory disease severity. Cohorts To investigate the overall predictive ability of hepcidin and ferritin, we enrolled the patients suffering with three different diagnoses - in detail 40 patients with COVID-19, 29 patients in septic shock and eight orthopedic patients who were compared to nine healthy donors and all cohorts to each other. Results We showed that increased hepcidin levels reflect overall immune cell activation driven by intrinsic stimuli, without requiring direct involvement of infection vectors. Contrary to hepcidin, ferritin levels were more strongly boosted by pathogen-induced inflammation - in septic shock more than four-fold and in COVID-19 six-fold in comparison to sterile inflammation. We also defined the predictive capacity of hepcidin-to-ferritin ratio with AUC=0.79 and P = 0.03. Discussion Our findings confirm that hepcidin is a potent marker of septic shock and other acute inflammation-associated pathologies and demonstrate the utility of the hepcidin-to-ferritin ratio as a predictor of mortality in septic shock, but not in COVID-19.
Collapse
Affiliation(s)
| | - Monika Skotáková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Isaac G. Onyango
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Miriam Slezáková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Roman Panovský
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Lukáš Opatřil
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,1st Department of Internal Medicine/Cardioangiology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Peter Slanina
- Institute of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marco De Zuani
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ondřej Mrkva
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Ivana Andrejčinová
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Petra Lázničková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia
| | - Martina Dvončová
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Alexandra Mýtniková
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | | | - Michal Šitina
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Gorazd B. Stokin
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Celica BIOMEDICAL, Ljubljana, Slovenia,Division of Neurology, University Medical Centre, Ljubljana, Slovenia
| | - Vladimír Šrámek
- Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Marcela Vlková
- Institute of Clinical Immunology and Allergology, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Martin Helán
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Anesthesiology and Intensive Care, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Jan Frič
- International Clinical Research Center, St. Anne’s University Hospital, Brno, Czechia,Department of Modern Immunotherapy, Institute of Hematology and Blood Transfusion, Prague, Czechia,*Correspondence: Jan Frič,
| |
Collapse
|
95
|
Johnston EK, Abbott RD. Adipose Tissue Paracrine-, Autocrine-, and Matrix-Dependent Signaling during the Development and Progression of Obesity. Cells 2023; 12:407. [PMID: 36766750 PMCID: PMC9913478 DOI: 10.3390/cells12030407] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/19/2023] [Accepted: 01/23/2023] [Indexed: 01/27/2023] Open
Abstract
Obesity is an ever-increasing phenomenon, with 42% of Americans being considered obese (BMI ≥ 30) and 9.2% being considered morbidly obese (BMI ≥ 40) as of 2016. With obesity being characterized by an abundance of adipose tissue expansion, abnormal tissue remodeling is a typical consequence. Importantly, this pathological tissue expansion is associated with many alterations in the cellular populations and phenotypes within the tissue, lending to cellular, paracrine, mechanical, and metabolic alterations that have local and systemic effects, including diabetes and cardiovascular disease. In particular, vascular dynamics shift during the progression of obesity, providing signaling cues that drive metabolic dysfunction. In this review, paracrine-, autocrine-, and matrix-dependent signaling between adipocytes and endothelial cells is discussed in the context of the development and progression of obesity and its consequential diseases, including adipose fibrosis, diabetes, and cardiovascular disease.
Collapse
Affiliation(s)
| | - Rosalyn D. Abbott
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| |
Collapse
|
96
|
Li X, Zhang H, Ma X, Wang Y, Han X, Yang Y, Yu H, Bao Y. FSTL3 is highly expressed in adipose tissue of individuals with overweight or obesity and is associated with inflammation. Obesity (Silver Spring) 2023; 31:171-183. [PMID: 36502285 PMCID: PMC10107713 DOI: 10.1002/oby.23598] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/07/2022] [Accepted: 08/25/2022] [Indexed: 12/14/2022]
Abstract
OBJECTIVE This study aimed to investigate the expression of follistatin-like 3 (FSTL3) in adipose tissue in individuals with overweight or obesity and to explore the role of FSTL3 in human adipocytes, as well as the relationship between serum FSTL3 levels and fat distribution and inflammation. METHODS This study enrolled 236 individuals (171 with overweight or obesity; aged 18-67 years). Bulk transcriptome sequencing was performed on subcutaneous and visceral adipose tissue. The function of FSTL3 was studied in human adipocytes. Serum FSTL3 levels were measured using enzyme-linked immunosorbent assay. RESULTS Adipose FTSL3 expression was higher in individuals with overweight or obesity than in individuals with normal weight. FSTL3 was mainly expressed in mature adipocytes and stimulated by tumor necrosis factor alpha (TNFα). FSTL3 suppressed inflammatory responses in human adipocytes, whereas FSTL3 knockdown promoted inflammatory responses. Serum FSTL3 levels were correlated with adipose FTSL3 expression and obesity-related indicators (all p < 0.05). Multiple linear regression analysis showed that serum FSTL3 levels were independently associated with the visceral fat area and serum TNFα levels (both p < 0.05). CONCLUSIONS FSTL3 was highly expressed in adipose tissue in individuals with overweight or obesity and could suppress adipocyte inflammation. Serum FSTL3 levels might be considered as a biomarker of visceral obesity and inflammation.
Collapse
Affiliation(s)
- Xiaoya Li
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Hongwei Zhang
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaojing Ma
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Yufei Wang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiaodong Han
- Department of General Surgery, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Haoyong Yu
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| | - Yuqian Bao
- Department of Endocrinology and Metabolism, Shanghai Diabetes Institute, Shanghai Clinical Center for Diabetes, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Key Clinical Center for Metabolic Disease, Shanghai Jiao Tong University School of Medicine Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
97
|
Wu M, Pang Y, Chen M, Li L, Yan L, Ning J, Liu Q, Zhang Y, Jiang T, Kang A, Huang X, Hu W, Hu H, Geng Z, He L, Wang H, Wang M, Yang P, Chen J, Wu R, Shi B, Niu Y, Zhang R. Moderate physical activity against effects of short-term PM 2.5 exposure on BP via myokines-induced inflammation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158598. [PMID: 36108849 DOI: 10.1016/j.scitotenv.2022.158598] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/24/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Exposure to PM2.5 increases blood pressure (BP) and cardiovascular morbidity and mortality. We conducted a randomized controlled panel study in Shijiazhuang, China among 55 healthy college students randomly assigned to either the control (CON) or SPORTS group with intervention of 2000 m jogging in 20 min for 3 times in 4 days, and 3-round health examinations from November 15, 2020 to December 6, 2020. We aimed to evaluate whether moderate physical activity (PA) protected BP health against PM2.5 exposure and explore potential mechanisms through myokines and inflammation. Individual PM2.5 exposure was calculated based on outdoor and indoor PM2.5 concentration monitoring data as well as time-activity diary of each subject. In the CON group, the exposure-response curve for SBP was linear with a threshold concentration of approximately 31 μg/m3, while an increment of SBP level was 4.38 mm Hg (95%CI: 0.17 mm Hg, 8.59 mm Hg) at lag03 for each 10-μg/m3 increase in PM2.5, using linear mixed-effect models. For inflammatory indicators, PM2.5 exposure was associated with significant increases in eosinophil counts and proportion in CON group, but decreases in MCP-1 and TNF-α in SPORTS group. Meanwhile, higher myokines including CLU and IL-6 were observed in SPORTS group compared to the CON group. Further mediation analyses revealed that eosinophil counts mediated the elevated BP in CON group, whereas MCP-1 and TNF-α were also crucial mediating cytokines for the SPORTS group, as well as CLU and IL-6 acted as mediators on BP and inflammation indicators in SPORTS group. This study suggests that moderate PA could counteract the elevated BP induced by PM2.5 exposure via myokines-suppressed inflammation pathways.
Collapse
Affiliation(s)
- Mengqi Wu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yaxian Pang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Meiyu Chen
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Lipeng Li
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Department of Reproductive Medicine, The Second Hospital of Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Lina Yan
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jie Ning
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Qingping Liu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yaling Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Tao Jiang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Aijuan Kang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Xiaoyan Huang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Wentao Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Huaifang Hu
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Zihan Geng
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Liyi He
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Hui Wang
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Mengruo Wang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Peihao Yang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Jiawei Chen
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Ruiting Wu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Beibei Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China
| | - Rong Zhang
- Department of Toxicology, Hebei Medical University, Shijiazhuang 050017, Hebei, China; Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang 050017, Hebei, China.
| |
Collapse
|
98
|
Metabolic changes after surgical fat removal: A dose-response meta-analysis. J Plast Reconstr Aesthet Surg 2023; 76:238-250. [PMID: 36527906 DOI: 10.1016/j.bjps.2022.10.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 10/26/2022] [Indexed: 12/23/2022]
Abstract
BACKGROUND Bariatric surgery averts obesity-induced insulin resistance and the metabolic syndrome. By contrast, surgical fat removal is considered merely an esthetic endeavor. The aim of this article was to establish whether surgical fat removal, similar to bariatric surgery, exerts measurable, lasting metabolic benefits. METHODS PubMed, Embase, and Scopus were searched using the Polyglot Search Translator to find studies examining quantitative expression of metabolic markers. Quality assessment was done using the MethodologicAl STandard for Epidemiological Research scale. The robust-error meta-regression model was employed for this synthesis. RESULTS Twenty-two studies with 493 participants were included. Insulin sensitivity improved gradually with a maximum reduction in fasting insulin and homeostatic model assessment for insulin resistance of 17 pmol/L and 1 point, respectively, at postoperative day 180. Peak metabolic benefits manifest as a reduction of 2 units in body mass index, 3 kg of fat mass, 5 cm of waist circumference, 15 µg/L of serum leptin, 0.75 pg/ml of tumor necrosis factor-alpha, 0.25 mmol/L of total cholesterol, and 3.5 mmHg of systolic and diastolic blood pressure that were observed at day 50 but were followed by a return to preoperative levels by day 180. Serum high-density lipoproteins peaked at 50 days post-surgery before falling below the baseline. No significant changes were observed in lean body mass, serum adiponectin, resistin, interleukin-6, C-reactive protein, triglyceride, low-density lipoproteins, free fatty acids, and fasting blood glucose. CONCLUSION Surgical fat removal exerts several metabolic benefits in the short term, but only improvements in insulin sensitivity last beyond 6 months.
Collapse
|
99
|
Luo TT, Wu YJ, Yin Q, Chen WG, Zuo J. The Involvement of Glucose and Lipid Metabolism Alteration in Rheumatoid Arthritis and Its Clinical Implication. J Inflamm Res 2023; 16:1837-1852. [PMID: 37131409 PMCID: PMC10149064 DOI: 10.2147/jir.s398291] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/19/2023] [Indexed: 05/04/2023] Open
Abstract
Obviously, immune cells like T cells and macrophages play a major role in rheumatoid arthritis (RA). On one hand, the breakdown of immune homeostasis directly induces systemic inflammation; on the other hand, these cells initiate and perpetuate synovitis and tissue damages through the interaction with fibroblast-like synoviocytes (FLS). In recent years, the pathological link between metabolic disorders and immune imbalance has received increasing attention. High energy demand of immune cells leads to the accumulation of metabolic byproducts and inflammatory mediators. They act on various metabolism-sensitive signal pathways as well as relevant transcription factors, such as HIF-1α, and STATs. These molecular events will impact RA-related effectors like circulating immune cells and joint-resident cells in return, allowing the continuous progression of systemic inflammation, arthritic manifestations, and life-threatening complications. In other words, metabolic complications are secondary pathological factors for the progression of RA. Therefore, the status of energy metabolism may be an important indicator to evaluate RA severity, and in-depth explorations of the mechanisms underlying the mystery of how RA-related metabolic disorders develop will provide useful clues to further clarify the etiology of RA, and inspire the discovery of new anti-rheumatic targets. This article reviews the latest research progress on the interactions between immune and metabolism systems in the context of RA. Great importance is attached to the changes in certain pathways controlling both immune and metabolism functions during RA progression.
Collapse
Affiliation(s)
- Ting-Ting Luo
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Yi-Jin Wu
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Qin Yin
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Wen-Gang Chen
- Department of Pharmacy, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
| | - Jian Zuo
- Xin’an Medical Research Center, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Research Center of Integration of Traditional Chinese and Western Medicine, Wannan Medical College, Wuhu, 241000, People’s Republic of China
- Correspondence: Jian Zuo, Email
| |
Collapse
|
100
|
Papageorgiou L, Papakonstantinou E, Diakou I, Pierouli K, Dragoumani K, Bacopoulou F, Chrousos GP, Eliopoulos E, Vlachakis D. Semantic and Population Analysis of the Genetic Targets Related to COVID-19 and Its Association with Genes and Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1423:59-78. [PMID: 37525033 DOI: 10.1007/978-3-031-31978-5_6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
SARS-CoV-2 is a coronavirus responsible for one of the most serious, modern worldwide pandemics, with lasting and multifaceted effects. By late 2021, SARS-CoV-2 has infected more than 180 million people and has killed more than 3 million. The virus gains entrance to human cells through binding to ACE2 via its surface spike protein and causes a complex disease of the respiratory system, termed COVID-19. Vaccination efforts are being made to hinder the viral spread, and therapeutics are currently under development. Toward this goal, scientific attention is shifting toward variants and SNPs that affect factors of the disease such as susceptibility and severity. This genomic grammar, tightly related to the dark part of our genome, can be explored through the use of modern methods such as natural language processing. We present a semantic analysis of SARS-CoV-2-related publications, which yielded a repertoire of SNPs, genes, and disease ontologies. Population data from the 1000 Genomes Project were subsequently integrated into the pipeline. Data mining approaches of this scale have the potential to elucidate the complex interaction between COVID-19 pathogenesis and host genetic variation; the resulting knowledge can facilitate the management of high-risk groups and aid the efforts toward precision medicine.
Collapse
Affiliation(s)
- Louis Papageorgiou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Eleni Papakonstantinou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Io Diakou
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Katerina Pierouli
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Konstantina Dragoumani
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Flora Bacopoulou
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece
| | - Elias Eliopoulos
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece
| | - Dimitrios Vlachakis
- Laboratory of Genetics, Department of Biotechnology, School of Applied Biology and Biotechnology, Agricultural University of Athens, Athens, Greece.
- University Research Institute of Maternal and Child Health & Precision Medicine, National and Kapodistrian University of Athens, "Aghia Sophia" Children's Hospital, Athens, Greece.
- Division of Endocrinology and Metabolism, Center of Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|