51
|
Terpe K. Overview of thermostable DNA polymerases for classical PCR applications: from molecular and biochemical fundamentals to commercial systems. Appl Microbiol Biotechnol 2013; 97:10243-54. [DOI: 10.1007/s00253-013-5290-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/20/2013] [Accepted: 09/22/2013] [Indexed: 11/29/2022]
|
52
|
Ameta S, Winz ML, Previti C, Jäschke A. Next-generation sequencing reveals how RNA catalysts evolve from random space. Nucleic Acids Res 2013; 42:1303-10. [PMID: 24157838 PMCID: PMC3902939 DOI: 10.1093/nar/gkt949] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Catalytic RNAs are attractive objects for studying molecular evolution. To understand how RNA libraries can evolve from randomness toward highly active catalysts, we analyze the original samples that led to the discovery of Diels-Alderase ribozymes by next-generation sequencing. Known structure-activity relationships are used to correlate abundance with catalytic performance. We find that efficient catalysts arose not just from selection for reactivity among the members of the starting library, but from improvement of less potent precursors by mutations. We observe changes in the ribozyme population in response to increasing selection pressure. Surprisingly, even after many rounds of enrichment, the libraries are highly diverse, suggesting that potential catalysts are more abundant in random space than generally thought. To highlight the use of next-generation sequencing as a tool for in vitro selections, we also apply this technique to a recent, less characterized ribozyme selection. Making use of the correlation between sequence evolution and catalytic activity, we predict mutations that improve ribozyme activity and validate them biochemically. Our study reveals principles underlying ribozyme in vitro selections and provides guidelines to render future selections more efficient, as well as to predict the conservation of key structural elements, allowing the rational improvement of catalysts.
Collapse
Affiliation(s)
- Sandeep Ameta
- Institute of Pharmacy and Molecular Biotechnology (IPMB), Heidelberg University, 69120-Heidelberg, Germany and High Throughput Sequencing Core Facility, German Cancer Research Center (DKFZ), 69120-Heidelberg, Germany
| | | | | | | |
Collapse
|
53
|
Kalle E, Gulevich A, Rensing C. External and semi-internal controls for PCR amplification of homologous sequences in mixed templates. J Microbiol Methods 2013; 95:285-94. [PMID: 24076226 DOI: 10.1016/j.mimet.2013.09.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 09/10/2013] [Accepted: 09/12/2013] [Indexed: 11/30/2022]
Abstract
In a mixed template, the presence of homologous target DNA sequences creates environments that almost inevitably give rise to artifacts and biases during PCR. Heteroduplexes, chimeras, and skewed template-to-product ratios are the exclusive attributes of mixed template PCR and never occur in a single template assay. Yet, multi-template PCR has been used without appropriate attention to quality control and assay validation, in spite of the fact that such practice diminishes the reliability of results. External and internal amplification controls became obligatory elements of good laboratory practice in different PCR assays. We propose the inclusion of an analogous approach as a quality control system for multi-template PCR applications. The amplification controls must take into account the characteristics of multi-template PCR and be able to effectively monitor particular assay performance. This study demonstrated the efficiency of a model mixed template as an adequate external amplification control for a particular PCR application. The conditions of multi-template PCR do not allow implementation of a classic internal control; therefore we developed a convenient semi-internal control as an acceptable alternative. In order to evaluate the effects of inhibitors, a model multi-template mix was amplified in a mixture with DNAse-treated sample. Semi-internal control allowed establishment of intervals for robust PCR performance for different samples, thus enabling correct comparison of the samples. The complexity of the external and semi-internal amplification controls must be comparable with the assumed complexity of the samples. We also emphasize that amplification controls should be applied in multi-template PCR regardless of the post-assay method used to analyze products.
Collapse
Affiliation(s)
- Elena Kalle
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Allmas alle 5, 75007 Uppsala, Sweden.
| | | | | |
Collapse
|
54
|
Gómez-Raja J, Larriba G. Reprint of Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 95:448-54. [PMID: 24055541 DOI: 10.1016/j.mimet.2013.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/30/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
55
|
Kaji T, Furukawa K, Ishige A, Toyokura I, Nomura M, Okada M, Takahashi Y, Shimoda M, Takemori T. Both mutated and unmutated memory B cells accumulate mutations in the course of the secondary response and develop a new antibody repertoire optimally adapted to the secondary stimulus. Int Immunol 2013; 25:683-95. [PMID: 24021876 DOI: 10.1093/intimm/dxt030] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
High-affinity memory B cells are preferentially selected during secondary responses and rapidly differentiate into antibody-producing cells. However, it remains unknown whether only high-affinity, mutated memory B cells simply expand to dominate the secondary response or if in fact memory B cells with a diverse VH repertoire, including those with no mutations, accumulate somatic mutations to create a new repertoire through the process of affinity maturation. In this report, we took a new approach to address this question by analyzing the VH gene repertoire of IgG1(+) memory B cells before and after antigen re-exposure in a host unable to generate IgG(+) B cells. We show here that both mutated and unmutated IgG1(+) memory B cells respond to secondary challenge and expand while accumulating somatic mutations in their VH genes in a stepwise manner. Both types of memory cells subsequently established a VH gene repertoire dominated by two major clonotypes, which are distinct from the original repertoire before antigen re-exposure. In addition, heavily mutated memory B cells were excluded from the secondary repertoire. Thus, both mutated and unmutated IgG1(+) memory cells equally contribute to establish a new antibody repertoire through a dynamic process of mutation and selection, becoming optimally adapted to the recall challenge.
Collapse
Affiliation(s)
- Tomohiro Kaji
- Laboratory for Immunological Memory, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, 230-0045, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Description of an unusual Neisseria meningitidis isolate containing and expressing Neisseria gonorrhoeae-Specific 16S rRNA gene sequences. J Clin Microbiol 2013; 51:3199-206. [PMID: 23863567 DOI: 10.1128/jcm.00309-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
An apparently rare Neisseria meningitidis isolate containing one copy of a Neisseria gonorrhoeae 16S rRNA gene is described herein. This isolate was identified as N. meningitidis by biochemical identification methods but generated a positive signal with Gen-Probe Aptima assays for the detection of Neisseria gonorrhoeae. Direct 16S rRNA gene sequencing of the purified isolate revealed mixed bases in signature regions that allow for discrimination between N. meningitidis and N. gonorrhoeae. The mixed bases were resolved by sequencing individually PCR-amplified single copies of the genomic 16S rRNA gene. A total of 121 discrete sequences were obtained; 92 (76%) were N. meningitidis sequences, and 29 (24%) were N. gonorrhoeae sequences. Based on the ratio of species-specific sequences, the N. meningitidis strain seems to have replaced one of its four intrinsic 16S rRNA genes with the gonococcal gene. Fluorescence in situ hybridization (FISH) probes specific for meningococcal and gonococcal rRNA were used to demonstrate the expression of the rRNA genes. Interestingly, the clinical isolate described here expresses both N. meningitidis and N. gonorrhoeae 16S rRNA genes, as shown by positive FISH signals with both probes. This explains why the probes for N. gonorrhoeae in the Gen-Probe Aptima assays cross-react with this N. meningitidis isolate. The N. meningitidis isolate described must have obtained N. gonorrhoeae-specific DNA through interspecies recombination.
Collapse
|
57
|
Harrigan RJ, Mazza ME, Sorenson MD. Computation vs. cloning: evaluation of two methods for haplotype determination. Mol Ecol Resour 2013; 8:1239-48. [PMID: 21586011 DOI: 10.1111/j.1755-0998.2008.02241.x] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nuclear sequence data, often from multiple loci, are increasingly being employed in analyses of population structure and history, yet there has been relatively little evaluation of methods for accurately and efficiently separating the alleles or haplotypes in heterozygous individuals. We compared the performance of a computational method of haplotype reconstruction and standard cloning methods using a highly variable intron (ornithine decarboxylase, intron 6) in three closely related species of dabbling ducks (genus Anas). Cloned sequences from 32 individuals were compared to results obtained from phase 2.1.1 . phase correctly identified haplotypes in 28 of 30 heterozygous individuals when the underlying model assumed no recombination. Haplotypes of the remaining two individuals were also inferred correctly except for unique polymorphisms, the phase of which was appropriately indicated as uncertain (phase probability = 0.5). For a larger set of 232 individuals, results were essentially identical regardless of the recombination model used and haplotypes for all 30 of the tested heterozygotes were correctly inferred, with the exception of uncertain phase for unique polymorphisms in one individual. In contrast, initial sequences of one clone per sample yielded accurate haplotype determination in only 26 of 30 individuals; polymerase chain reaction (PCR)/cloning errors resulting from misincorporation of individual nucleotides could be recognized and avoided by comparison to direct sequences, but errors due to PCR recombination resulted in incorrect haplotype reconstruction in four individuals. The accuracy of haplotypes reconstructed by phase, even when dealing with a relatively small number of samples and numerous variable sites, suggests broad utility of computational approaches for reducing the cost and improving the efficiency of data collection from nuclear sequence loci.
Collapse
Affiliation(s)
- Ryan J Harrigan
- Department of Biology, Boston University, 5 Cummington St., Boston, MA 02215, USA
| | | | | |
Collapse
|
58
|
Ross MG, Russ C, Costello M, Hollinger A, Lennon NJ, Hegarty R, Nusbaum C, Jaffe DB. Characterizing and measuring bias in sequence data. Genome Biol 2013; 14:R51. [PMID: 23718773 PMCID: PMC4053816 DOI: 10.1186/gb-2013-14-5-r51] [Citation(s) in RCA: 541] [Impact Index Per Article: 45.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 05/29/2013] [Indexed: 02/06/2023] Open
Abstract
Background DNA sequencing technologies deviate from the ideal uniform distribution of reads. These biases impair scientific and medical applications. Accordingly, we have developed computational methods for discovering, describing and measuring bias. Results We applied these methods to the Illumina, Ion Torrent, Pacific Biosciences and Complete Genomics sequencing platforms, using data from human and from a set of microbes with diverse base compositions. As in previous work, library construction conditions significantly influence sequencing bias. Pacific Biosciences coverage levels are the least biased, followed by Illumina, although all technologies exhibit error-rate biases in high- and low-GC regions and at long homopolymer runs. The GC-rich regions prone to low coverage include a number of human promoters, so we therefore catalog 1,000 that were exceptionally resistant to sequencing. Our results indicate that combining data from two technologies can reduce coverage bias if the biases in the component technologies are complementary and of similar magnitude. Analysis of Illumina data representing 120-fold coverage of a well-studied human sample reveals that 0.20% of the autosomal genome was covered at less than 10% of the genome-wide average. Excluding locations that were similar to known bias motifs or likely due to sample-reference variations left only 0.045% of the autosomal genome with unexplained poor coverage. Conclusions The assays presented in this paper provide a comprehensive view of sequencing bias, which can be used to drive laboratory improvements and to monitor production processes. Development guided by these assays should result in improved genome assemblies and better coverage of biologically important loci.
Collapse
|
59
|
Gómez-Raja J, Larriba G. Comparison of two approaches for identification of haplotypes and point mutations in Candida albicans and Saccharomyces cerevisiae. J Microbiol Methods 2013; 94:47-53. [PMID: 23631908 DOI: 10.1016/j.mimet.2013.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Revised: 04/04/2013] [Accepted: 04/22/2013] [Indexed: 11/25/2022]
Abstract
The human fungal pathogen Candida albicans displays a very high degree of plasticity, including the types of genomic changes frequently observed with cancer cells, such as gross chromosomal rearrangements, aneuploidy, and loss of heterozygosity. Despite its relevance to every aspect of genetics and evolution of this pathogen, our understanding of the mutation process and its bearing on organismal fitness remains quite limited. Here, we have evaluated and compared two approaches to estimate the mutation frequency at three ORFs/regions (HIS4, CEN4 and EST2) of the C. albicans genome. Sequencing of individual DNA molecules (clone-by-clone sequencing) identified de novo mutations at these DNA regions, whose frequency was similar to that observed for S. cerevisiae at homolog sites following the same approach. However, mutations were not detected when the same regions were directly sequenced from the pooled DNA. In addition, in the absence of the homologous recombination protein Rad52, mutation frequency within these sites remained unaltered. The use of an alternative polymerase also found mutations. These results suggest that at least some mutations are artifacts caused by the polymerase used, advising that post-PCR procedures might generate mutations which may become undistinguishable from the genuine mutations and thus may interfere with mutational analysis. Furthermore, we recommend that new mutations found in the sequences of cloned alleles used for the determination of haplotypes should be contrasted with the sequence yielded by the pooled DNA.
Collapse
Affiliation(s)
- Jonathan Gómez-Raja
- Departamento de Ciencias Biomédicas, Área Microbiología, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain
| | | |
Collapse
|
60
|
Zanoli LM, Spoto G. Isothermal amplification methods for the detection of nucleic acids in microfluidic devices. BIOSENSORS 2013; 3:18-43. [PMID: 25587397 PMCID: PMC4263587 DOI: 10.3390/bios3010018] [Citation(s) in RCA: 165] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/07/2012] [Accepted: 12/24/2012] [Indexed: 12/05/2022]
Abstract
Diagnostic tools for biomolecular detection need to fulfill specific requirements in terms of sensitivity, selectivity and high-throughput in order to widen their applicability and to minimize the cost of the assay. The nucleic acid amplification is a key step in DNA detection assays. It contributes to improving the assay sensitivity by enabling the detection of a limited number of target molecules. The use of microfluidic devices to miniaturize amplification protocols reduces the required sample volume and the analysis times and offers new possibilities for the process automation and integration in one single device. The vast majority of miniaturized systems for nucleic acid analysis exploit the polymerase chain reaction (PCR) amplification method, which requires repeated cycles of three or two temperature-dependent steps during the amplification of the nucleic acid target sequence. In contrast, low temperature isothermal amplification methods have no need for thermal cycling thus requiring simplified microfluidic device features. Here, the use of miniaturized analysis systems using isothermal amplification reactions for the nucleic acid amplification will be discussed.
Collapse
Affiliation(s)
- Laura Maria Zanoli
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail:
| | - Giuseppe Spoto
- Istituto Biostrutture e Bioimmagini, CNR, Viale A. Doria 6, Catania, Italy; E-Mail: ; Dipartimento di Scienze Chimiche, Università di Catania, Viale Andrea Doria 6, I-95125 Catania, Italy
| |
Collapse
|
61
|
RNA editing of hepatitis B virus transcripts by activation-induced cytidine deaminase. Proc Natl Acad Sci U S A 2013; 110:2246-51. [PMID: 23341589 DOI: 10.1073/pnas.1221921110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activation-induced cytidine deaminase (AID) is essential for the somatic hypermutation (SHM) and class-switch recombination (CSR) of Ig genes. The mechanism by which AID triggers SHM and CSR has been explained by two distinct models. In the DNA deamination model, AID converts cytidine bases in DNA into uridine. The uridine is recognized by the DNA repair system, which produces DNA strand breakages and point mutations. In the alternative model, RNA edited by AID is responsible for triggering CSR and SHM. However, RNA deamination by AID has not been demonstrated. Here we found that C-to-T and G-to-A mutations accumulated in hepatitis B virus (HBV) nucleocapsid DNA when AID was expressed in HBV-replicating hepatic cell lines. AID expression caused C-to-T mutations in the nucleocapsid DNA of RNase H-defective HBV, which does not produce plus-strand viral DNA. Furthermore, the RT-PCR products of nucleocapsid viral RNA from AID-expressing cells exhibited significant C-to-T mutations, whereas viral RNAs outside the nucleocapsid did not accumulate C-to-U mutations. Moreover, AID was packaged within the nucleocapsid by forming a ribonucleoprotein complex with HBV RNA and the HBV polymerase protein. The encapsidation of the AID protein with viral RNA and DNA provides an efficient environment for evaluating AID's RNA and DNA deamination activities. A bona fide RNA-editing enzyme, apolipoprotein B mRNA editing catalytic polypeptide 1, induced a similar level of C-to-U mutations in nucleocapsid RNA as AID. Taken together, the results indicate that AID can deaminate the nucleocapsid RNA of HBV.
Collapse
|
62
|
Chambers PA, Stead LF, Morgan JE, Carr IM, Sutton KM, Watson CM, Crowe V, Dickinson H, Roberts P, Mulatero C, Seymour M, Markham AF, Waring PM, Quirke P, Taylor GR. Mutation detection by clonal sequencing of PCR amplicons and grouped read typing is applicable to clinical diagnostics. Hum Mutat 2012; 34:248-54. [PMID: 22915446 DOI: 10.1002/humu.22207] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2012] [Accepted: 08/14/2012] [Indexed: 01/17/2023]
Abstract
We describe a sensitive technique for mutation detection using clonal sequencing. We analyzed DNA extracted from 13 cancer cell lines and 35 tumor samples and applied a novel approach to identify disease-associated somatic mutations. By matching reads against an index of known variants, noise can be dramatically reduced, enabling the detection and quantification of those variants, even when they are present at less than 1% of the total sequenced population; this is comparable to, or better than, current diagnostic methods. Following the identification or exclusion of known variants, unmatched reads are grouped for BLAST searching to identify novel variants or contaminants. Known variants, novel variants, and contaminants were readily identified in tumor tissue using this approach. Our approach also enables an estimation of the per-base sequencing error rate, providing a confidence threshold for interpretation of the results in the clinic. This novel approach has immediate applicability to clinical testing for disease-associated genetic variants.
Collapse
|
63
|
Zamft BM, Marblestone AH, Kording K, Schmidt D, Martin-Alarcon D, Tyo K, Boyden ES, Church G. Measuring cation dependent DNA polymerase fidelity landscapes by deep sequencing. PLoS One 2012; 7:e43876. [PMID: 22928047 PMCID: PMC3425509 DOI: 10.1371/journal.pone.0043876] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Accepted: 07/30/2012] [Indexed: 11/19/2022] Open
Abstract
High-throughput recording of signals embedded within inaccessible micro-environments is a technological challenge. The ideal recording device would be a nanoscale machine capable of quantitatively transducing a wide range of variables into a molecular recording medium suitable for long-term storage and facile readout in the form of digital data. We have recently proposed such a device, in which cation concentrations modulate the misincorporation rate of a DNA polymerase (DNAP) on a known template, allowing DNA sequences to encode information about the local cation concentration. In this work we quantify the cation sensitivity of DNAP misincorporation rates, making possible the indirect readout of cation concentration by DNA sequencing. Using multiplexed deep sequencing, we quantify the misincorporation properties of two DNA polymerases – Dpo4 and Klenow exo− – obtaining the probability and base selectivity of misincorporation at all positions within the template. We find that Dpo4 acts as a DNA recording device for Mn2+ with a misincorporation rate gain of ∼2%/mM. This modulation of misincorporation rate is selective to the template base: the probability of misincorporation on template T by Dpo4 increases >50-fold over the range tested, while the other template bases are affected less strongly. Furthermore, cation concentrations act as scaling factors for misincorporation: on a given template base, Mn2+ and Mg2+ change the overall misincorporation rate but do not alter the relative frequencies of incoming misincorporated nucleotides. Characterization of the ion dependence of DNAP misincorporation serves as the first step towards repurposing it as a molecular recording device.
Collapse
Affiliation(s)
- Bradley Michael Zamft
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Adam H. Marblestone
- Biophysics Program, Harvard University, Boston, Massachusetts, United States of America
- Wyss Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Konrad Kording
- Northwestern University, Departments of Physical Medicine and Rehabilitation, Physiology, and Applied Mathematics, Chicago, Illinois, United States of America
- The Rehabilitation Institute of Chicago, Chicago, Illinois, United States of America
| | - Daniel Schmidt
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Daniel Martin-Alarcon
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Keith Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Edward S. Boyden
- Media Lab, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - George Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts, United States of America
- Biophysics Program, Harvard University, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
64
|
High-throughput discovery of mutations in tef semi-dwarfing genes by next-generation sequencing analysis. Genetics 2012; 192:819-29. [PMID: 22904035 DOI: 10.1534/genetics.112.144436] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Tef (Eragrostis tef) is a major cereal crop in Ethiopia. Lodging is the primary constraint to increasing productivity in this allotetraploid species, accounting for losses of ∼15-45% in yield each year. As a first step toward identifying semi-dwarf varieties that might have improved lodging resistance, an ∼6× fosmid library was constructed and used to identify both homeologues of the dw3 semi-dwarfing gene of Sorghum bicolor. An EMS mutagenized population, consisting of ∼21,210 tef plants, was planted and leaf materials were collected into 23 superpools. Two dwarfing candidate genes, homeologues of dw3 of sorghum and rht1 of wheat, were sequenced directly from each superpool with 454 technology, and 120 candidate mutations were identified. Out of 10 candidates tested, six independent mutations were validated by Sanger sequencing, including two predicted detrimental mutations in both dw3 homeologues with a potential to improve lodging resistance in tef through further breeding. This study demonstrates that high-throughput sequencing can identify potentially valuable mutations in under-studied plant species like tef and has provided mutant lines that can now be combined and tested in breeding programs for improved lodging resistance.
Collapse
|
65
|
Warsame A, Delabie J, Malecka A, Wang J, Trøen G, Tierens A. Monocytoid B cells: an enigmatic B cell subset showing evidence of extrafollicular immunoglobulin gene somatic hypermutation. Scand J Immunol 2012; 75:500-9. [PMID: 22486786 DOI: 10.1111/j.1365-3083.2012.02688.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Monocytoid B cells are IgM(+) , IgD(-/+) , CD27(-) B cells, localized in the perisinusoidal area of the lymph node. These cells are especially prominent in infections such as those caused by toxoplasma and HIV. The ontogeny of monocytoid B cells with respect to B cell maturation is incompletely known. We analysed clonal expansion, somatic hypermutation and expression of activation-induced cytidine deaminase (AID) in monocytoid B cells. Sequence analysis of the rearranged immunoglobulin heavy chain genes amplified from microdissected monocytoid B cell zones with a high proportion of proliferating cells reveals the presence of multiple clones with low-level ongoing mutations (mean frequency: 0.46 × 10(-2) per bp). Mutation analysis of these ongoing mutations reveals strand bias, a preference of transitions over transversions as well as the occurrence of small deletions, as observed for somatically mutated immunoglobulin genes in the human germinal centre. Proliferation, ongoing mutation as well as expression of AID, combined, is evidence that monocytoid B cells acquire the mutations in the extrafollicular perisinusoidal area of the lymph node and pleads against a postgerminal centre B cell origin.
Collapse
Affiliation(s)
- A Warsame
- Department of Pathology, the Norwegian Radiumhospital, University of Oslo, Oslo, Norway.
| | | | | | | | | | | |
Collapse
|
66
|
Isolation and optimization of murine IL-10 receptor blocking oligonucleotide aptamers using high-throughput sequencing. Mol Ther 2012; 20:1242-50. [PMID: 22434135 DOI: 10.1038/mt.2012.18] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Interleukin-10 (IL-10) is a key suppressor of inflammation in chronic infections and in cancer. In mice, the inability of the immune system to clear viral infections or inhibit tumor growth can be reversed by antibody-mediated blockade of IL-10 action. We used a modified selection protocol to isolate RNA-based, nuclease-resistant, aptamers that bind to the murine IL-10 receptor. After 5 rounds of selection high-throughput sequencing (HTS) was used to analyze the library. Using distribution statistics on about 11 million sequences, aptamers were identified which bound to IL-10 receptor in solution with low K(d). After 12 rounds of selection the predominant IL-10 receptor-binding aptamer identified in the earlier rounds remained, whereas other high-affinity aptamers were not detected. Prevalence of certain nucleotide (nt) substitutions in the sequence of a high-affinity aptamer present in round 5 was used to deduce its secondary structure and guide the truncation of the aptamer resulting in a shortened 48-nt long aptamer with increased affinity. The aptamer also bound to IL-10 receptor on the cell surface and blocked IL-10 function in vitro. Systemic administration of the truncated aptamer was capable of inhibiting tumor growth in mice to an extent comparable to that of an anti- IL-10 receptor antibody.
Collapse
|
67
|
Henry-Halldin CN, Nadesakumaran K, Keven JB, Zimmerman AM, Siba P, Mueller I, Hetzel MW, Kazura JW, Thomsen E, Reimer LJ, Zimmerman PA. Multiplex assay for species identification and monitoring of insecticide resistance in Anopheles punctulatus group populations of Papua New Guinea. Am J Trop Med Hyg 2012; 86:140-51. [PMID: 22232465 PMCID: PMC3247123 DOI: 10.4269/ajtmh.2012.11-0503] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/24/2011] [Indexed: 11/07/2022] Open
Abstract
Anopheles punctulatus sibling species (An. punctulatus s.s., Anopheles koliensis, and Anopheles farauti species complex [eight cryptic species]) are principal vectors of malaria and filariasis in the Southwest Pacific. Given significant effort to reduce malaria and filariasis transmission through insecticide-treated net distribution in the region, effective strategies to monitor evolution of insecticide resistance among An. punctulatus sibling species is essential. Mutations in the voltage-gated sodium channel (VGSC) gene have been associated with knock-down resistance (kdr) to pyrethroids and DDT in malarious regions. By examining VGSC sequence polymorphism we developed a multiplex assay to differentiate wild-type versus kdr alleles and query intron-based polymorphisms that enable simultaneous species identification. A survey including mosquitoes from seven Papua New Guinea Provinces detected no kdr alleles in any An. punctulatus species. Absence of VGSC sequence introgression between species and evidence of geographic separation within species suggests that kdr must be monitored in each An. punctulatus species independently.
Collapse
Affiliation(s)
- Cara N. Henry-Halldin
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, MADANG, Papua New Guinea; Papua New Guinea Institute of Medical Research, Goroka, EASTERN HIGHLANDS, Papua New Guinea; School of Population Health, University of Queensland, Brisbane, Australia
| | - Kogulan Nadesakumaran
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, MADANG, Papua New Guinea; Papua New Guinea Institute of Medical Research, Goroka, EASTERN HIGHLANDS, Papua New Guinea; School of Population Health, University of Queensland, Brisbane, Australia
| | | | | | | | | | | | | | | | | | - Peter A. Zimmerman
- Center for Global Health and Diseases, Case Western Reserve University School of Medicine, Cleveland, Ohio; Papua New Guinea Institute of Medical Research, Madang, MADANG, Papua New Guinea; Papua New Guinea Institute of Medical Research, Goroka, EASTERN HIGHLANDS, Papua New Guinea; School of Population Health, University of Queensland, Brisbane, Australia
| |
Collapse
|
68
|
A new method for random mutagenesis by error-prone polymerase chain reaction using heavy water. J Biotechnol 2012; 157:71-4. [DOI: 10.1016/j.jbiotec.2011.09.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 08/19/2011] [Accepted: 09/07/2011] [Indexed: 11/19/2022]
|
69
|
Promerová M, Babik W, Bryja J, Albrecht T, Stuglik M, Radwan J. Evaluation of two approaches to genotyping major histocompatibility complex class I in a passerine-CE-SSCP and 454 pyrosequencing. Mol Ecol Resour 2011; 12:285-92. [PMID: 22018268 DOI: 10.1111/j.1755-0998.2011.03082.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genes of the highly dynamic major histocompatibility complex (MHC) are directly linked to individual fitness and are of high interest in evolutionary ecology and conservation genetics. Gene duplication and positive selection usually lead to high levels of polymorphism in the MHC region, making genotyping of MHC a challenging task. Here, we compare the performance of two methods for MHC class I genotyping in a passerine with highly duplicated MHC class I genes: capillary electrophoresis-single-strand conformation polymorphism (CE-SSCP) analysis and 454 GS FLX Titanium pyrosequencing. According to our findings, the number of MHC variants (called alleles for simplicity) detected by CE-SSCP is significantly lower than detected by 454. To resolve discrepancies between the two methods, we cloned and Sanger sequenced a MHC class I amplicon for an individual with high number of alleles. We found a perfect congruence between cloning/Sanger sequencing results and 454. Thus, in case of multi-locus amplification, CE-SSCP considerably underestimates individual MHC diversity. However, numbers of alleles detected by both methods are significantly correlated, although the correlation is weak (r = 0.32). Thus, in systems with highly duplicated MHC, 454 provides more reliable information on individual diversity than CE-SSCP.
Collapse
Affiliation(s)
- Marta Promerová
- Institute of Vertebrate Biology, Academy of Sciences of the Czech Republic, Květná 8, 60365 Brno, Czech Republic.
| | | | | | | | | | | |
Collapse
|
70
|
Zhang X, Ryu SH, Xu Y, Elbaz T, Zekri ARN, Abdelaziz AO, Abdel-Hamid M, Thiers V, Elena SF, Fan X, Di Bisceglie AM. The Core/E1 domain of hepatitis C virus genotype 4a in Egypt does not contain viral mutations or strains specific for hepatocellular carcinoma. J Clin Virol 2011; 52:333-8. [PMID: 21925935 DOI: 10.1016/j.jcv.2011.08.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2011] [Revised: 07/16/2011] [Accepted: 08/22/2011] [Indexed: 12/17/2022]
Abstract
BACKGROUND Hepatitis C virus (HCV) infection is a well-documented etiological factor for hepatocellular carcinoma (HCC). As HCV shows remarkable genetic diversity, an interesting and important issue is whether such a high viral genetic diversity plays a role in the incidence of HCC. Prior data on this subject are conflicting. OBJECTIVES Potential association between HCV genetic mutations or strain variability and HCC incidence has been examined through a comparative genetic analysis merely focused on a single HCV subtype (genotype 4a) in a single country (Egypt). STUDY DESIGN The study focused on three HCV sequence datasets with explicit sampling dates and disease patterns. An overlapping HCV Core/E1 domain from three datasets was used as the target for comparative analysis through genetic and phylogenetic approaches. RESULTS Based on partial Core/E1 domain (387 bp), genetic and phylogenetic analysis did not identify any HCC-specific viral mutations and strains, respectively. CONCLUSIONS The Core/E1 domain of HCV genotype 4a in Egypt does not contain HCC-specific mutations or strains. Additionally, sequence errors resulting from the polymerase chain reaction, together with a strong evolutionary pressure on HCV in patients with end-stage liver disease, have significant potential to bias data generation and interpretation.
Collapse
Affiliation(s)
- Xiaoan Zhang
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Kinde I, Wu J, Papadopoulos N, Kinzler KW, Vogelstein B. Detection and quantification of rare mutations with massively parallel sequencing. Proc Natl Acad Sci U S A 2011; 108:9530-5. [PMID: 21586637 PMCID: PMC3111315 DOI: 10.1073/pnas.1105422108] [Citation(s) in RCA: 897] [Impact Index Per Article: 64.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The identification of mutations that are present in a small fraction of DNA templates is essential for progress in several areas of biomedical research. Although massively parallel sequencing instruments are in principle well suited to this task, the error rates in such instruments are generally too high to allow confident identification of rare variants. We here describe an approach that can substantially increase the sensitivity of massively parallel sequencing instruments for this purpose. The keys to this approach, called the Safe-Sequencing System ("Safe-SeqS"), are (i) assignment of a unique identifier (UID) to each template molecule, (ii) amplification of each uniquely tagged template molecule to create UID families, and (iii) redundant sequencing of the amplification products. PCR fragments with the same UID are considered mutant ("supermutants") only if ≥95% of them contain the identical mutation. We illustrate the utility of this approach for determining the fidelity of a polymerase, the accuracy of oligonucleotides synthesized in vitro, and the prevalence of mutations in the nuclear and mitochondrial genomes of normal cells.
Collapse
Affiliation(s)
- Isaac Kinde
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Jian Wu
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Nick Papadopoulos
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Kenneth W. Kinzler
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| | - Bert Vogelstein
- The Ludwig Center for Cancer Genetics and Therapeutics and The Howard Hughes Medical Institute, Johns Hopkins Kimmel Cancer Center, Baltimore, MD 21231
| |
Collapse
|
72
|
Zhu D, Vaishampayan PA, Venkateswaran K, Fox GE. STITCH: algorithm to splice, trim, identify, track, and capture the uniqueness of 16S rRNAs sequence pairs using public or in-house database. MICROBIAL ECOLOGY 2011; 61:669-675. [PMID: 21113709 DOI: 10.1007/s00248-010-9779-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 11/13/2010] [Indexed: 05/30/2023]
Abstract
A comparison of variable regions within the 16S rRNA gene is widely used to characterize relationships between bacteria and to identify phylogenetic affiliation of unknown bacteria. In environmental studies, polymerase chain reaction amplification of 16S rRNA followed by cloning and sequencing of numerous individual clones is an extensively used molecular method for elucidating microbial diversity. The sequencing process typically utilizes a forward and reverse primer pair to produce two partial reads (~700 to 800 base pairs each) that overlap and in total cover a large region of the full 16S rRNA sequence (~1.5 k base). In a typical application, this approach rapidly generates very large numbers of 16S rRNA datasets that can overwhelm manual processing efforts leading to both delays and errors. In particular, the approach presents two computational challenges: (1) the assembly of a composite sequence from the two partial reads and (2) the subsequent appropriate identification of the organism represented by the newly sequenced clones. Herein, we describe a software package, search, trim, identify, track, and capture the uniqueness of 16S rRNAs using public and in-house database (STITCH), which offers automated sequence pair splicing and genetic identification, thus simplifying the computationally intensive analysis of large sequencing libraries. The STITCH software is freely accessible over the Internet at: http://prion.bchs.uh.edu/stitch/.
Collapse
Affiliation(s)
- Dianhui Zhu
- Department of Biology and Biochemistry, University of Houston, Houston, TX, 77204-5001, USA
| | | | | | | |
Collapse
|
73
|
Dawson K, Thorpe RS, Malhotra A. Estimating genetic variability in non-model taxa: a general procedure for discriminating sequence errors from actual variation. PLoS One 2010; 5:e15204. [PMID: 21151906 PMCID: PMC2997787 DOI: 10.1371/journal.pone.0015204] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 11/01/2010] [Indexed: 11/18/2022] Open
Abstract
Genetic variation is the driving force of evolution and as such is of central interest for biologists. However, inadequate discrimination of errors from true genetic variation could lead to incorrect estimates of gene copy number, population genetic parameters, phylogenetic relationships and the deposition of gene and protein sequences in databases that are not actually present in any organism. Misincorporation errors in multi-template PCR cloning methods, still commonly used for obtaining novel gene sequences in non-model species, are difficult to detect, as no previous information may be available about the number of expected copies of genes belonging to multi-gene families. However, studies employing these techniques rarely describe in any great detail how errors arising in the amplification process were detected and accounted for. Here, we estimated the rate of base misincorporation of a widely-used PCR-cloning method, using a single copy mitochondrial gene from a single individual to minimise variation in the template DNA, as 1.62×10(-3) errors per site, or 9.26×10(-5) per site per duplication. The distribution of errors among sequences closely matched that predicted by a binomial distribution function. The empirically estimated error rate was applied to data, obtained using the same methods, from the Phospholipase A(2) toxin family from the pitviper Ovophis monticola. The distribution of differences detected closely matched the expected distribution of errors and we conclude that, when undertaking gene discovery or assessment of genetic diversity using this error-prone method, it will be informative to empirically determine the rate of base misincorporation.
Collapse
Affiliation(s)
- Karen Dawson
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Roger S. Thorpe
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Anita Malhotra
- School of Biological Sciences, College of Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- * E-mail:
| |
Collapse
|
74
|
SHEPARD GC, LAWSON HL, HAWKINS GA, OWEN J. BsaXI/RFLP analysis of initial or selectively reamplified PCR product is unreliable in detecting the V617F mutation in JAK2. Int J Lab Hematol 2010; 33:267-71. [DOI: 10.1111/j.1751-553x.2010.01282.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
75
|
Abstract
The polymerase chain reaction (PCR) has found wide application in biochemistry and molecular biology such as gene expression studies, mutation detection, forensic analysis and pathogen detection. Increasingly quantitative real time PCR is used to assess copy numbers from overall yield. In this study the yield is analyzed as a function of several processes: (1) thermal damage of the template and polymerase occurs during the denaturing step, (2) competition exists between primers and templates to either anneal or form dsDNA, (3) polymerase binding to annealed products (primer/ssDNA) to form ternary complexes and (4) extension of ternary complexes. Explicit expressions are provided for the efficiency of each process, therefore reaction conditions can be directly linked to the overall yield. Examples are provided where different processes play the yield-limiting role. The analysis will give researchers a unique understanding of the factors that control the reaction and will aid in the interpretation of experimental results.
Collapse
|
76
|
Leifer I, Hoffmann B, Höper D, Bruun Rasmussen T, Blome S, Strebelow G, Höreth-Böntgen D, Staubach C, Beer M. Molecular epidemiology of current classical swine fever virus isolates of wild boar in Germany. J Gen Virol 2010; 91:2687-97. [PMID: 20660149 DOI: 10.1099/vir.0.023200-0] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Classical swine fever (CSF) has caused significant economic losses in industrialized pig production, and is still present in some European countries. Recent CSF outbreaks in Europe were mainly associated with strains of genogroup 2 (subgroup 2.3). Although there are extensive datasets regarding 2.3 strains, there is very little information available on longer fragments or whole classical swine fever virus (CSFV) genomes. Furthermore, there are no detailed analyses of the molecular epidemiology of CSFV wild boar isolates available. Nevertheless, complete genome sequences are supportive in phylogenetic analyses, especially in affected wild boar populations. Here, German CSFV strains of subgroup 2.3 were fully sequenced using two different approaches: (i) a universal panel of CSFV primers that were developed to amplify the complete genome in overlapping fragments for chain-terminator sequencing; and (ii) generation of a single full-length amplicon of the CSFV genome obtained by long-range RT-PCR for deep sequencing with next-generation sequencing technology. In total, five different strains of CSFV subgroup 2.3 were completely sequenced using these newly developed protocols. The approach was used to study virus spread and evolutionary history in German wild boar. For the first time, the results of our study clearly argue for the possibility of a long-term persistence of genotype 2.3 CSFV strains in affected regions at an almost undetectable level, even after long-term oral vaccination campaigns with intensive monitoring. Hence, regional persistence in wild boar populations has to be taken into account as an important factor in the continual outbreaks in affected areas.
Collapse
Affiliation(s)
- Immanuel Leifer
- Institute of Diagnostic Virology, Friedrich-Loeffler-Institut, Südufer 10, D-17493 Greifswald-Insel Riems, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Alaeddini R, Walsh SJ, Abbas A. Forensic implications of genetic analyses from degraded DNA--a review. Forensic Sci Int Genet 2009; 4:148-57. [PMID: 20215026 DOI: 10.1016/j.fsigen.2009.09.007] [Citation(s) in RCA: 195] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 08/30/2009] [Accepted: 09/11/2009] [Indexed: 10/20/2022]
Abstract
Forensic DNA identification techniques are principally based on determination of the size or sequence of desired PCR products. The fragmentation of DNA templates or the structural modifications that can occur during the decomposition process can impact the outcomes of the analytical procedures. This study reviews the pathways involved in cell death and DNA decomposition and the subsequent difficulties these present in DNA analysis of degraded samples.
Collapse
Affiliation(s)
- Reza Alaeddini
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, Australia
| | | | | |
Collapse
|
78
|
Ahn JH, Kim YJ, Kim T, Song HG, Kang C, Ka JO. Quantitative improvement of 16S rDNA DGGE analysis for soil bacterial community using real-time PCR. J Microbiol Methods 2009; 78:216-22. [DOI: 10.1016/j.mimet.2009.06.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2009] [Revised: 06/01/2009] [Accepted: 06/02/2009] [Indexed: 11/24/2022]
|
79
|
Abstract
Fungal spores can account for large proportions of air particulate matter, and they may potentially influence the hydrological cycle and climate as nuclei for water droplets and ice crystals in clouds, fog, and precipitation. Moreover, some fungi are major pathogens and allergens. The diversity of airborne fungi is, however, not well-known. By DNA analysis we found pronounced differences in the relative abundance and seasonal cycles of various groups of fungi in coarse and fine particulate matter, with more plant pathogens in the coarse fraction and more human pathogens and allergens in the respirable fine particle fraction (<3 microm). Moreover, the ratio of Basidiomycota to Ascomycota was found to be much higher than previously assumed, which might also apply to the biosphere.
Collapse
|
80
|
Koutroumpa FA, Lieutier F, Roux-Morabito G. Incorporation of mitochondrial fragments in the nuclear genome (Numts) of the longhorned beetleMonochamus galloprovincialis(Coleoptera, Cerambycidae). J ZOOL SYST EVOL RES 2009. [DOI: 10.1111/j.1439-0469.2008.00492.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
81
|
|
82
|
Korchagina (Morozova) EV, Vasyliev VA, Korchagin VI, Movsessian SO, Semyenova SK. Polymorphism and structural features of two noncoding regions of the liver fluke Fasciola hepatica (Plathelminthes: Trematoda) mitochondrial genome. Mol Biol 2009. [DOI: 10.1134/s0026893309010038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
83
|
Abstract
The advent of next-generation sequencing technologies has spurred remarkable progress in the field of genomics. Whereas traditional Sanger sequencing has yielded the first complete human genome sequence, next-generation methods have been able to resequence several human genomes. In this manner, next-generation approaches have powerful capabilities for understanding human variation. The throughput for these approaches is often measured in billions of base pairs per run, astounding numbers when compared with the millions of base pairs per day generated by automated capillary DNA sequencers. However, unlike traditional Sanger dideoxy sequencing, these methods have lower accuracy and shorter read lengths than the dideoxy gold standard. Are these limitations offset by the higher throughputs? An in-depth look at the single read and composite accuracy of these methods is presented. The stringent requirements for single nucleotide polymorphism (SNP) discovery utilizing these approaches is discussed along with a review of studies that have successfully employed next-generation sequencing methods for large-scale SNP discovery. Ultimately, the application of these ultra-high-throughput sequencing methods for SNP discovery will open up new horizons for understanding human genomic variation.
Collapse
|
84
|
Polymerase Chain Reaction and Reverse Transcription-Polymerase Chain Reaction. MOLECULAR PATHOLOGY LIBRARY 2009. [DOI: 10.1007/978-0-387-89626-7_9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
85
|
Beatriz Zayas-Rivera, Lifang Zhang,. Mutational spectrum of N-hydroxy-N-acetyl-4-aminobiphenyl at exon 3 of the HPRT gene. Biomarkers 2008; 6:262-73. [DOI: 10.1080/13547500010017367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
86
|
Verkler TL, Delongchamp RR, Miller BJ, Webb PJ, Howard PC, Parsons BL. Simulated solar light‐inducedp53mutagenesis in SKH‐1 mouse skin: A dose–response assessment. Mol Carcinog 2008; 47:599-607. [DOI: 10.1002/mc.20415] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
87
|
Kamiya M, West JA. ORIGIN OF APOMICTIC RED ALGAE: OUTCROSSING STUDIES OF DIFFERENT STRAINS IN CALOGLOSSA MONOSTICHA (CERAMIALES, RHODOPHYTA)(1). JOURNAL OF PHYCOLOGY 2008; 44:977-984. [PMID: 27041616 DOI: 10.1111/j.1529-8817.2008.00551.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Various red algae lack sexual reproduction and propagate by spore recycling, but it is still unknown how apomixis originates. In previous crossing experiments, we obtained an unusual hybrid of Caloglossa monosticha M. Kamiya through the outcrossing between a male from Australia and a female from Indonesia. This hybrid was morphologically identical to a normal tetrasporophyte, but its tetraspores grew into tetrasporophytes and repeated tetraspore recycling. During 5 years of culture, no sexual reproductive structures have formed on the tetrasporelings from this hybrid or its progenies. Further hybridization experiments revealed that all the five female strains from Indonesia successfully crossed with the male strain from the East Alligator River, Australia, and most of the F1 sporophytes demonstrated tetraspore recycling, though the germination rates of these tetraspores were quite low. The ploidy level of the hybrid tetrasporophyte was similar to the normal tetrasporophyte, rather than the parental gametophyte, based on the comparison of relative DNA contents of their nuclei. Single strand conformation polymorphism (SSCP) and sequence analyses of the internal transcribed spacer 1 (ITS1) region indicated that the alleles from both parents were present in all the hybrid tetrasporophytes examined. These results suggest that this hybrid does not carry out meiosis during sporogenesis, and heterozygous diploid sporophytes arose from tetraspores. Therefore, we believe that obligate apomixis was generated through outcrossing between genetically different entities of C. monosticha.
Collapse
Affiliation(s)
- Mitsunobu Kamiya
- Department of Marine Bioscience, Faculty of Biotechnology, Fukui Prefectural University, Gakuencho, Obama, Fukui, 917-0003 JapanSchool of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| | - John A West
- Department of Marine Bioscience, Faculty of Biotechnology, Fukui Prefectural University, Gakuencho, Obama, Fukui, 917-0003 JapanSchool of Botany, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
88
|
Zhou H, Hickford J. Clonal polymerase chain reaction–single-strand conformational polymorphism analysis: An effective approach for identifying cloned sequences. Anal Biochem 2008; 378:111-2. [DOI: 10.1016/j.ab.2008.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2008] [Revised: 04/03/2008] [Accepted: 04/03/2008] [Indexed: 11/29/2022]
|
89
|
Abstract
Ectomycorrhizal fungi (EMF), a phylogenetically and physiologically diverse guild, form symbiotic associations with many trees and greatly enhance their uptake of nutrients and water. Elevated CO2, which increases plant carbon supply and demand for mineral nutrients, may change the composition of the EMF community, possibly altering nutrient uptake and ultimately forest productivity. To assess CO2 effects on EMF communities, we sampled mycorrhizae from the FACTS-I (Forest-Atmosphere Carbon Transfer and Storage) research site in Duke Forest, Orange County, North Carolina, USA, where Pinus taeda forest plots are maintained at either ambient or elevated CO2 (200 ppm above ambient) concentrations. Mycorrhizae were identified by DNA sequence similarity of the internal transcribed spacer ribosomal RNA gene region. EMF richness was very high; 72 distinct phylotypes were detected from 411 mycorrhizal samples. Overall EMF richness and diversity were not affected by elevated CO2, but increased CO2 concentrations altered the relative abundances of particular EMF taxa colonizing fine roots, increased prevalence of unique EMF species, and led to greater EMF community dissimilarity among individual study plots. Natural variation among plots in mean potential net nitrogen (N) mineralization rates was a key determinant of EMF community structure; increasing net N mineralization rate was negatively correlated with EMF richness and had differential effects on the abundance of particular EMF taxa. Our results predict that, at CO2 concentrations comparable to that predicted for the year 2050, EMF community composition and structure will change, but diversity will be maintained. In contrast, high soil N concentrations can negatively affect EMF diversity; this underscores the importance of considering CO2 effects on forest ecosystems in the context of background soil chemical parameters and other environmental perturbations such as acid deposition or fertilizer runoff.
Collapse
Affiliation(s)
- Jeri Lynn Parrent
- Biology Department, Duke University, Box 90338, Durham, North Carolina 27708-0338, USA.
| | | | | |
Collapse
|
90
|
Siemer D, Kurth J, Lang S, Lehnerdt G, Stanelle J, Küppers R. EBV transformation overrides gene expression patterns of B cell differentiation stages. Mol Immunol 2008; 45:3133-41. [PMID: 18430472 DOI: 10.1016/j.molimm.2008.03.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 03/03/2008] [Accepted: 03/06/2008] [Indexed: 01/25/2023]
Abstract
EBV-associated Hodgkin lymphoma (HL) and some post-transplant lymphoproliferative disease (PTLD) cases originate from pro-apoptotic germinal center (GC) B cells that have acquired destructive somatic Ig V gene mutations and were presumably rescued from apoptosis by EBV. To find out whether B cell receptor-crippled GC B cells acquire features of HL and/or PTLD cells upon EBV-infection and to reveal the impact of EBV on expression of B cell differentiation markers, we compared lymphoblastoid cell lines (LCLs) from GC B cells (including BCR-crippled GC-LCLs) to monoclonal LCLs from naïve B cells (N-LCLs). In addition, we analyzed the controversially discussed effect of EBV-infection on the GC B-cell-specific process of somatic hypermutation in vitro. Irrespective of their cellular origin, LCLs expressed CD20, CD30, CD38, AID, Pu.1, and with one exception Syk, but lacked expression of the GC B cell marker BCL-6. Interestingly, the T cell transcription factor GATA-3 that is aberrantly expressed in HL was induced in most GC-LCLs and the memory B cell marker CD27 was activated in N-LCLs. Remarkably, only 4 of 24 GC-LCLs showed significant somatic hypermutation activity, demonstrating that EBV usually silences hypermutation upon infection of GC B cells. Notably, one of three N-LCL showed a low level of intraclonal diversification. Thus, EBV-infection deregulates multiple differentiation factors and processes in B cells, leading to a largely homogenous phenotype of EBV-infected B cells in latency III.
Collapse
Affiliation(s)
- Dörte Siemer
- University of Duisburg-Essen, Medical School, Institute for Cell Biology (Tumor Research), Virchowst. 173, 45122 Essen, Germany.
| | | | | | | | | | | |
Collapse
|
91
|
In Vitro Direct Repeats-mediated Deletion During PCR Amplification. Mol Biotechnol 2008; 40:39-45. [DOI: 10.1007/s12033-008-9059-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2007] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
|
92
|
Ekstrøm PO, Khrapko K, Li-Sucholeiki XC, Hunter IW, Thilly WG. Analysis of mutational spectra by denaturing capillary electrophoresis. Nat Protoc 2008; 3:1153-66. [PMID: 18600220 PMCID: PMC2742298 DOI: 10.1038/nprot.2008.79] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The point mutational spectrum over nearly any 75- to 250-bp DNA sequence isolated from cells, tissues or large populations may be discovered using denaturing capillary electrophoresis (DCE). A modification of the standard DCE method that uses cycling temperature (e.g., +/-5 degrees C), CyDCE, permits optimal resolution of mutant sequences using computer-defined target sequences without preliminary optimization experiments. The protocol consists of three steps: computer design of target sequence including polymerase chain reaction (PCR) primers, high-fidelity DNA amplification by PCR and mutant sequence separation by CyDCE and takes about 6 h. DCE and CyDCE have been used to define quantitative point mutational spectra relating to errors of DNA polymerases, human cells in development and carcinogenesis, common gene-disease associations and microbial populations. Detection limits are about 5 x 10(-3) (mutants copies/total copies) but can be as low as 10(-6) (mutants copies/total copies) when DCE is used in combination with fraction collection for mutant enrichment. No other technological approach for unknown mutant detection and enumeration offers the sensitivity, generality and efficiency of the approach described herein.
Collapse
Affiliation(s)
- Per O Ekstrøm
- Department of Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA. or
| | | | | | | | | |
Collapse
|
93
|
Luo R, Zhang D. Partial strands synthesizing leads to inevitable aborting and complicated products in consecutive polymerase chain reactions (PCRs). ACTA ACUST UNITED AC 2007; 50:548-56. [PMID: 17653678 DOI: 10.1007/s11427-007-0043-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2006] [Accepted: 06/30/2006] [Indexed: 11/26/2022]
Abstract
Various abnormal phenomena have been observed during PCR so far. The present study performed a series of consecutive PCRs (including many rounds of re-amplification continuously) and found that the abortion of re-amplification was inevitable as long as a variety of complicated product appeared. The aborting stages varied, according to the lengths of targets. Longer targets reached the abortion earlier than the shorter ones, marked by appearance of the complex that was immobile in electrophoresis. Denatured gel-electrophoresis revealed that the complex was mainly made up of shorter or partially synthesized strands, together with small amounts of full-length ones. Able to be digested by S1 nuclease but unable by restriction endonucleases (REs), the complex was proved to consist of both single regions and double-helix regions that kept the complex stable thermodynamically. Simulations gave evidence that partial strands, even at lower concentration, could disturb re-amplification effectively and lead to the abortion of re-amplifications finally. It was pointed out that the partial strands formed chiefly via polymerase's infidelity, and hence the solution to lighten the abnormality was also proposed.
Collapse
Affiliation(s)
- Rui Luo
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | | |
Collapse
|
94
|
Abstract
It has been 40 years since Spiegelman and co-workers demonstrated how RNA molecules can be evolved in the test tube. This result established Darwinian evolution as a chemical process and paved the way for the many directed evolution experiments that followed. Chemists can benefit from reflecting on Spiegelman's studies and the subsequent advances, which have taken the field to the brink of the generation of life itself in the laboratory. This Review summarizes the concepts and methods for the directed evolution of RNA molecules in vitro.
Collapse
Affiliation(s)
- Gerald F Joyce
- Department of Chemistry and Molecular Biology, La Jolla, CA 92037, USA.
| |
Collapse
|
95
|
|
96
|
Tong Z, Kong F, Wang B, Zeng X, Gilbert GL. A practical method for subtyping of Streptococcus agalactiae serotype III, of human origin, using rolling circle amplification. J Microbiol Methods 2007; 70:39-44. [PMID: 17467090 DOI: 10.1016/j.mimet.2007.03.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2007] [Revised: 03/12/2007] [Accepted: 03/16/2007] [Indexed: 10/23/2022]
Abstract
Group B streptococcus (GBS; Streptococcus agalactiae) serotype III is one of the most common and virulent serotypes of the species. It can be divided into several subtypes, which vary in their distribution among invasive isolates from different patient groups. In this study, we used 91 well-characterized GBS serotype III isolates to compare three subtyping methods, and developed a novel padlock probe and rolling circle amplification (RCA) method to identify informative single nucleotide polymorphisms (SNPs) that define the major subtypes. There was good agreement between partial sequencing of the capsule polysaccharide synthesis (cps) gene cluster, a 3-set genotyping system and multilocus sequence typing (MLST). Serosubtype III-2/multilocus sequence type (ST)-17 represents a virulent clone which is significantly associated with late onset GBS neonatal infections. RCA provides a simple, reproducible method for rapid identification of the two most common GBS serotype III subtypes (III-1/ST-19 and III-2/ST-17).
Collapse
Affiliation(s)
- Zhongsheng Tong
- Centre for Infectious Diseases and Microbiology-Public Health, Institute of Clinical Pathology and Medical Research, Westmead Hospital, Darcy Road, Westmead, New South Wales, 2145 Australia
| | | | | | | | | |
Collapse
|
97
|
Morgenthaler S, Thilly WG. A strategy to discover genes that carry multi-allelic or mono-allelic risk for common diseases: a cohort allelic sums test (CAST). Mutat Res 2006; 615:28-56. [PMID: 17101154 DOI: 10.1016/j.mrfmmm.2006.09.003] [Citation(s) in RCA: 381] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Revised: 09/26/2006] [Accepted: 09/27/2006] [Indexed: 11/28/2022]
Abstract
A method is described to discover if a gene carries one or more allelic mutations that confer risk for any specified common disease. The method does not depend upon genetic linkage of risk-conferring mutations to high frequency genetic markers such as single nucleotide polymorphisms. Instead, the sums of allelic mutation frequencies in case and control cohorts are determined and a statistical test is applied to discover if the difference in these sums is greater than would be expected by chance. A statistical model is presented that defines the ability of such tests to detect significant gene-disease relationships as a function of case and control cohort sizes and key confounding variables: zygosity and genicity, environmental risk factors, errors in diagnosis, limits to mutant detection, linkage of neutral and risk-conferring mutations, ethnic diversity in the general population and the expectation that among all exonic mutants in the human genome greater than 90% will be neutral with regard to any effect on disease risk. Means to test the null hypothesis for, and determine the statistical power of, each test are provided. For this "cohort allelic sums test" or "CAST", the statistical model and test are provided as an Excel program, CASTAT(c) at . Based on genetics, technology and statistics, a strategy of enumerating the mutant alleles carried in the exons and splice sites of the estimated approximately 25,000 human genes in case cohort samples of 10,000 persons for each of 100 common diseases is proposed and evaluated: A wide range of possible conditions of multi-allelic or mono-allelic and monogenic, multigenic or polygenic (including epistatic) risk are found to be detectable using the statistical criteria of 1 or 10 "false positive" gene associations approximately 25,000 gene-disease pair-wise trials and a statistical power of >0.8. Using estimates of the distribution of both neutral and gene-inactivating nondeleterious mutations in humans and the sensitivity of the test to multigenic or multicausal risk, it is estimated that about 80% of nullizygous, heterozygous and functionally dominant gene-common disease associations may be discovered. Limitations include relative insensitivity of CAST to about 60% of possible associations given homozygous (wild type) risk and, more rarely, other stochastic limits when the frequency of mutations in the case cohort approaches that of the control cohort and biases such as absence of genetic risk masked by risk derived from a shared cultural environment.
Collapse
|
98
|
Zahn RC, Schelp I, Utermöhlen O, von Laer D. A-to-G hypermutation in the genome of lymphocytic choriomeningitis virus. J Virol 2006; 81:457-64. [PMID: 17020943 PMCID: PMC1797460 DOI: 10.1128/jvi.00067-06] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The interferon-inducible adenosine deaminase that acts on double-stranded RNA (ADAR1-L) has been proposed to be one of the antiviral effector proteins within the complex innate immune response. Here, the potential role of ADAR1-L in the innate immune response to lymphocytic choriomeningitis virus (LCMV), a widely used virus model, was studied. Infection with LCMV clearly upregulated ADAR1-L expression and activity. The editing activity of ADAR1-L on an RNA substrate was not inhibited by LCMV replication. Accordingly, an adenosine-to-guanosine (A-to-G) and uracil-to-cytidine (U-to-C) hypermutation pattern was found in the LCMV genomic RNA in infected cell lines and in mice. In addition, two hypermutated clones with a high level of A-to-G or U-to-C mutations within a short stretch of the viral genome were isolated. Analysis of the functionality of viral glycoprotein revealed that A-to-G- and U-to-C-mutated LCMV genomes coded for nonfunctional glycoprotein at a surprisingly high frequency. Approximately half the GP clones with an amino acid mutation lacked functionality. These results suggest that ADAR1-L-induced mutations in the viral RNA lead to a loss of viral protein function and reduced viral infectivity. This study therefore provides strong support for the contribution of ADAR1-L to the innate antiviral immune response.
Collapse
Affiliation(s)
- Roland C Zahn
- Georg-Speyer-Haus, Paul-Ehrlich-Str. 42-44, 60596 Frankfurt, Germany
| | | | | | | |
Collapse
|
99
|
Nakazawa H, Aguelon AM, Yamasaki H. Relationship between chemically induced Ha-ras mutation and transformation of BALB/c 3T3 cells: evidence for chemical-specific activation and cell type-specific recruitment of oncogene in transformation. Mol Carcinog 2006; 3:202-9. [PMID: 2119594 DOI: 10.1002/mc.2940030407] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BALB/c 3T3 cells were exposed to 7,12-dimethylbenz[a]anthracene (DMBA) and resultant transformed foci were analyzed for the presence of A182----T mutation at codon 61 of Ha-ras (a mutation found in many DMBA-induced animal tumors). None of the 30 independently cloned transformed cell lines contained such a mutation. In order to see whether DMBA is able to induce this mutation in BALB/c 3T3 cells, we developed a method sensitive enough to detect this specific mutation at the frequency of 10(-6). Employing this assay, we found time- and dose-dependent induction by DMBA of Ha-ras A182----T mutation in BALB/c 3T3 cells; for example, 2 wk after exposure to 100 micrograms/mL DMBA, 1.4 in 1 X 10(4) cells contained this specific mutation. On the other hand, other agents that also induce BALB/c 3T3 cell transformation, such as 3-methylcholanthrene (MCA), 12-O-tetradecanoylphorbol-13-acetate (TPA), N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), or ultraviolet light, did not induce the mutation at detectable frequency (less than 10(-6)). These results suggest that DMBA efficiently induces Ha-ras mutation in BALB/c 3T3 cells but that this mutation is not recruited in the process of cell transformation. A hypothesis of carcinogen-specific mutation of Ha-ras gene and its tissue (cell type)-specific recruitment in carcinogenesis is proposed.
Collapse
Affiliation(s)
- H Nakazawa
- International Agency for Research on Cancer, Lyon, France
| | | | | |
Collapse
|
100
|
Andréasson U, Flicker S, Lindstedt M, Valenta R, Greiff L, Korsgren M, Borrebaeck CAK, Ohlin M. The human IgE-encoding transcriptome to assess antibody repertoires and repertoire evolution. J Mol Biol 2006; 362:212-27. [PMID: 16905150 DOI: 10.1016/j.jmb.2006.06.062] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/01/2006] [Accepted: 06/05/2006] [Indexed: 11/30/2022]
Abstract
Upon encounter with antigen, the B lymphocyte population responds by producing a diverse set of antigen-specific antibodies of various isotypes. The vast size of the responding populations makes it very difficult to study clonal evolution and repertoire composition occurring during these processes in humans. Here, we have explored an approach utilizing the H-EPSILON-encoding transcriptome to investigate aspects of repertoire diversity during the season of antigen exposure. We show through sequencing of randomly picked transcripts that the sizes of patients' repertoires are relatively small. This specific aspect of the transcriptome allows us to construct evolutionary trees pinpointing features of somatic hypermutation as it occurs in humans. Despite the small size of the repertoires, they are highly diverse with respect to VDJ gene usage, suggesting that the H-EPSILON-encoding transcriptome is a faithful mimic of other class-switched isotypes. Importantly, it is possible to use antibody library and selection technologies to define the specificity of clonotypes identified by random sequencing. The small size of the H-EPSILON-encoding transcriptome of peripheral blood B cells, the simple identification of clonally related sets of genes in this population, and the power of library and selection technologies ensure that this approach will allow us to investigate antibody evolution in human B lymphocytes of known specificity. As H-EPSILON repertoires show many of the hallmarks of repertoires encoding other isotypes, we suggest that studies of this type will have an impact on our understanding of human antibody evolution even beyond that occurring in the IgE-producing B cell population.
Collapse
|