51
|
Zhang C, Gao C, Kawauchi J, Hashimoto Y, Tsuchida N, Kitajima S. Transcriptional activation of the human stress-inducible transcriptional repressor ATF3 gene promoter by p53. Biochem Biophys Res Commun 2002; 297:1302-10. [PMID: 12372430 DOI: 10.1016/s0006-291x(02)02382-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Activating transcription factor 3 (ATF3) is an immediate early response gene that is induced in cells exposed to a variety of stress stimuli. In this report, upon exposure of cells to ultraviolet (UV) or proteasome inhibitor MG132, ATF3 protein was induced more efficiently in cells with intact p53 allele than in those with null mutant p53 allele. In Saos-2 cells harboring the temperature-sensitive mutant p53(Val-138), the expression of ATF3 gene was more significant at permissive temperature of 32.5 degrees C than at non-permissive 37.5 degrees C. Reporter assay of the human ATF3 gene promoter identified two p53-responsive elements at -379 to -370 and -351 to -342 from the transcriptional start site. These elements were capable of conferring p53 responsiveness to a heterologous promoter and specifically bound p53 protein in electrophoretic mobility shift assay. Furthermore, ATF3 gene promoter was more significantly activated by UV in cells with wild p53 allele. These results clearly show that the human ATF3 gene is one of the target genes directly activated by p53 and may suggest a functional link between stress-inducible transcriptional repressor ATF3 and p53.
Collapse
Affiliation(s)
- Chun Zhang
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, 113-8510, Bunkyo-ku, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
52
|
Kawauchi J, Zhang C, Nobori K, Hashimoto Y, Adachi MT, Noda A, Sunamori M, Kitajima S. Transcriptional repressor activating transcription factor 3 protects human umbilical vein endothelial cells from tumor necrosis factor-alpha-induced apoptosis through down-regulation of p53 transcription. J Biol Chem 2002; 277:39025-34. [PMID: 12161427 DOI: 10.1074/jbc.m202974200] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a transcriptional repressor that is rapidly induced in cells exposed to a wide range of stress stimuli. To clarify the role of ATF3 in determining cell fate, we overexpressed it in human umbilical vein endothelial cells (HUVECs) by adenovirus-mediated gene transfer. ATF3 protected these cells from tumor necrosis factor (TNF)-alpha-induced apoptosis, as measured by flow cytometric analysis, trypan blue exclusion assay, and cleavage of procaspase 3 and poly(ADP-ribose) polymerase. Northern blot and nuclear run on assay showed that the transcription of tumor suppressor gene p53 was down-regulated in the ATF3-overexpressing cells. In the transient expression assay, ATF3 suppressed the p53 gene promoter activity through its specific binding to an atypical AP-1 element, PF-1 site, in the p53 gene promoter. Furthermore, the cell-protecting effect of ATF3 was remarkably reduced in p53-deficient cells. These results demonstrate that overexpression of ATF3 suppresses TNF-alpha-induced cell death of HUVECs, at least in part, through down-regulating the transcription of p53 gene. ATF3 may function as a cell survival factor of endothelial cells during vascular inflammation and atherogenesis.
Collapse
Affiliation(s)
- Junya Kawauchi
- Department of Biochemical Genetics, Medical Research Institute, the Department of Cardiothoracic Surgery, Graduate School of Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
53
|
Nobori K, Ito H, Tamamori-Adachi M, Adachi S, Ono Y, Kawauchi J, Kitajima S, Marumo F, Isobe M. ATF3 inhibits doxorubicin-induced apoptosis in cardiac myocytes: a novel cardioprotective role of ATF3. J Mol Cell Cardiol 2002; 34:1387-97. [PMID: 12392999 DOI: 10.1006/jmcc.2002.2091] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Activating transcription factor (ATF) 3, a member of the ATF/cyclic adenosine monophosphate (cAMP)-responsive element binding protein (ATF/CREB) family of transcription factors, is induced by a wide range of stress stimuli. Although the ATF3 homodimer is known to repress transcription of several genes, its precise biological roles are still unclear. In this study, we investigated the functional role of ATF3 in doxorubicin (DOX=adriamycin)-treated neonatal rat cardiac myocytes. DOX rapidly activated JNK and c-Jun and induced ATF3 at both mRNA and protein level. Adenovirus-mediated expression of ATF3 protected cardiomyocytes from DOX-induced apoptosis, as determined by flow cytometry, cell viability, and TUNEL assay. It was further shown that p53, one of the apoptosis-inducing transcription factors, was downregulated in the ATF3-overexpressing cardiomyocytes. These results strongly suggest that ATF3 may function as a cytoprotective transcription factor in DOX-treated cardiac myocytes, at least in part, owing to downregulation of p53. ATF3 may be a novel therapeutic target that protects cardiac myocytes from DOX-induced apoptosis.
Collapse
Affiliation(s)
- Kiyoshi Nobori
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8519, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Hashimoto Y, Zhang C, Kawauchi J, Imoto I, Adachi MT, Inazawa J, Amagasa T, Hai T, Kitajima S. An alternatively spliced isoform of transcriptional repressor ATF3 and its induction by stress stimuli. Nucleic Acids Res 2002; 30:2398-406. [PMID: 12034827 PMCID: PMC117192 DOI: 10.1093/nar/30.11.2398] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a member of the ATF/CREB family of transcription factors and its expression is increased by various pathophysiological conditions and in several cancer cells. In this study, we describe two alternatively spliced ATF3DeltaZip mRNAs: ATF3DeltaZip2a and ATF3DeltaZip2b. Both variants encoded the same truncated protein of 135 amino acids, which lacked the leucine zipper domain and was incapable of binding to the ATF/CRE motif. The ATF3DeltaZip2 protein was shown to be localized in the nuclei and counteracted the transcriptional repression by the full-length ATF3. Western blot analysis showed that ATF3DeltaZip2 was expressed in cells exposed to A23187. Further study showed that, similar to the full-length ATF3, the expression of ATF3DeltaZip2 was induced by a wide range of stress stimuli. However, its expression was not detectable in cancer cells that constitutively over-expressed ATF3. Taken together, our results suggest that ATF3DeltaZip2, a protein derived from alternatively spliced mRNAs, is induced by various stress signals and may modulate the activity of the full-length ATF3 protein during stress response.
Collapse
Affiliation(s)
- Yoshinori Hashimoto
- Department of Biochemical Genetics, Medical Research Institute and Graduate School, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T. The roles of ATF3 in liver dysfunction and the regulation of phosphoenolpyruvate carboxykinase gene expression. J Biol Chem 2002; 277:20020-5. [PMID: 11916968 DOI: 10.1074/jbc.m200727200] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activating transcription factor 3 (ATF3), a member of the ATF/cAMP-responsive element-binding protein family of transcription factors, is a transcriptional repressor, and the expression of its corresponding gene, ATF3, is induced by many stress signals. In this report, we demonstrate that transgenic mice expressing ATF3 in the liver had symptoms of liver dysfunction such as high levels of serum bilirubin, alkaline phosphatase, alanine transaminase, aspartate transaminase, and bile acids. In addition, these mice had physiological responses consistent with hypoglycemia including a low insulin:glucagon ratio in the serum and reduced adipose tissue mass. Electrophoretic mobility shift assays indicated that ATF3 bound to the ATF/cAMP-responsvie element site derived from the promoter of the gene encoding the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK). Furthermore, transient transfection assays indicated that ATF3 repressed the activity of the PEPCK promoter. Taken together, our results are consistent with the model that the expression of ATF3 in the liver results in defects in glucose homeostasis by repressing gluconeogenesis. Because ATF3 is a stress-inducible gene, these mice may provide a model to investigate the molecular mechanisms of some stress-associated liver diseases.
Collapse
Affiliation(s)
- Amy E Allen-Jennings
- Department of Molecular and Cellular Biochemistry, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
56
|
Nawa T, Nawa MT, Adachi MT, Uchimura I, Shimokawa R, Fujisawa K, Tanaka A, Numano F, Kitajima S. Expression of transcriptional repressor ATF3/LRF1 in human atherosclerosis: colocalization and possible involvement in cell death of vascular endothelial cells. Atherosclerosis 2002; 161:281-91. [PMID: 11888510 DOI: 10.1016/s0021-9150(01)00639-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Vascular endothelial cell death contributes to the progression of atherosclerotic lesion, and several transcriptional regulators are involved in the process. Activating transcription factor 3/liver regenerating factor-1 (ATF3/LRF-1), a stress-inducible transcriptional repressor, was shown to be highly expressed in vascular endothelial cells and macrophages of human atherosclerotic lesions by immunohistological assay. The expression was colocalized in these cells which were positive for TdT-mediated dUTP nick-end labeling (TUNEL) and annexin V. Treatment of human umbilical vein endothelial cells (HUVECs) by tumor necrosis factor (TNF)-alpha, oxidized low density lipoprotein (oxLDL), and lysophosphatidylcholine (LPC) rapidly induced ATF3/LRF-1, which showed an increased DNA binding to the consensus ATF/CRE sequence by supershift of gel shift assay. Flow cytometry analysis and immunostaining analysis with TUNEL assay showed that ATF3/LRF-1 was highly expressed in cell death induced by these agents. Moreover, antisense ATF3/LRF-1 cDNA partly suppressed the cell death induced by TNF-alpha, oxLDL, and LPC. From these results, it is indicated that ATF3/LRF-1 is one of the immediate early response genes in vascular endothelial cells in response to atherogenic stimuli, and may play a role in the endothelial cell death associated with atherogenesis.
Collapse
Affiliation(s)
- Tigre Nawa
- Department of Biochemical Genetics, Medical Research Institute, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Allan AL, Albanese C, Pestell RG, LaMarre J. Activating transcription factor 3 induces DNA synthesis and expression of cyclin D1 in hepatocytes. J Biol Chem 2001; 276:27272-80. [PMID: 11375399 DOI: 10.1074/jbc.m103196200] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is an early response gene that is induced rapidly during in vivo situations of cellular growth such as liver regeneration. However, neither the physiological function nor the potential target genes of this transcription factor related to cellular proliferation have been identified in the liver or other tissues. We demonstrate here that endogenous ATF3 mRNA expression is rapidly induced up to 4-fold upon mitogenic stimulation of quiescent Hepa 1-6 mouse hepatoma cells. Overexpression of exogenous ATF3 results in a significant, dose-dependent increase in DNA synthesis of up to 140% over control cells. ATF3-transfected cells also display significantly higher rates of [(3)H]thymidine incorporation in comparison with nontransfected controls in the presence of serum. Northern blot analysis and co-transfection experiments demonstrate that overexpression of ATF3 enhances cyclin D1 mRNA expression and activates the cyclin D1 promoter 2.5-fold when activating protein-1 (AP-1) and cyclic AMP response element (CRE) sites within the promoter are intact. ATF3-mediated promoter activation is reduced to 1.3-fold and 1.6-fold respectively when the AP-1 or CRE sites are mutated, and mutation of both sites simultaneously leads to the complete abrogation of promoter activation. Furthermore, DNA-binding studies demonstrate that ATF3 binds directly to the AP-1 site within the cyclin D1 promoter. These results indicate that ATF3 expression stimulates hepatocellular proliferation, suggesting that this effect is mediated, at least in part, by the ATF3-dependent activation of cyclin D1 transcription.
Collapse
Affiliation(s)
- A L Allan
- Department of Biomedical Sciences, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
58
|
Allen-Jennings AE, Hartman MG, Kociba GJ, Hai T. The roles of ATF3 in glucose homeostasis. A transgenic mouse model with liver dysfunction and defects in endocrine pancreas. J Biol Chem 2001; 276:29507-14. [PMID: 11371557 DOI: 10.1074/jbc.m100986200] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Activating transcription factor 3 (ATF3) is a member of the ATF/cAMP-response element-binding protein family of transcription factors. It is a transcriptional repressor, and the expression of its corresponding gene is induced by stress signals in a variety of tissues, including the liver. In this report, we demonstrate that ATF3 is induced in the pancreas by partial pancreatectomy, streptozotocin treatment, and ischemia coupled with reperfusion. Furthermore, ATF3 is induced in cultured islet cells by oxidative stress. Interestingly, transgenic mice expressing ATF3 in the liver and pancreas under the control of the transthyretin promoter have defects in glucose homeostasis and perinatal lethality. We present evidence that expression of ATF3 in the liver represses the expression of genes encoding gluconeogenic enzymes. Furthermore, expression of ATF3 in the pancreas leads to abnormal endocrine pancreas and reduced numbers of hormone-producing cells. Analyses of embryos indicated that the ATF3 transgene is expressed in the ductal epithelium in the developing pancreas, and the transgenic pancreas has fewer mitotic cells than the non-transgenic counterpart, providing a potential explanation for the reduction of endocrine cells. Because ATF3 is a stress-inducible gene, these mice may represent a model to investigate the molecular mechanisms for some stress-associated diseases.
Collapse
Affiliation(s)
- A E Allen-Jennings
- Department of Molecular and Cellular Biochemistry, Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | |
Collapse
|
59
|
Abstract
Jun : Fos and Jun : ATF complexes represent two classes of AP-1 dimers that (1) preferentially bind to either heptameric or octameric AP-1 binding sites, and (2) are differently regulated by cellular signaling pathways and oncogene products. To discriminate between the functions of Jun : Fos, Jun : ATF and Jun : Jun, mutants were developed that restrict the ability of Jun to dimerize either to itself, or to Fos(-like) or ATF(-like) partners. Introduction of these mutants in chicken embryo fibroblasts shows that Jun : Fra2 and Jun : ATF2 dimers play distinct, complementary roles in in vitro oncogenesis by inducing either anchorage independence or growth factor independence, respectively. v-Jun : ATF2 rather than v-Jun : Fra2 triggers the development of primary fibrosarcomas in the chicken wing. Genes encoding extracellular matrix components seem to constitute an important subset of v-Jun : ATF2-target genes. Repression of the matrix component SPARC by Jun is essential for the induction of fibrosarcomas. Avian primary cells transformed by either Jun : Fra2 or Jun : ATF2 thus provide powerful tools for the investigation of the downstream pathways involved in oncogenesis. Further genetic studies with Jun dimerization mutants will be required to be precise and extend the specific roles of the Jun : Fos and Jun : ATF dimers during cancer progression in avian and mammalian systems.
Collapse
Affiliation(s)
- H van Dam
- Department of Molecular Cell Biology, Leiden University Medical Center, Sylvius Laboratories, PO Box 9503, 2300 RA Leiden, The Netherlands
| | | |
Collapse
|
60
|
Perez S, Vial E, van Dam H, Castellazzi M. Transcription factor ATF3 partially transforms chick embryo fibroblasts by promoting growth factor-independent proliferation. Oncogene 2001; 20:1135-41. [PMID: 11314051 DOI: 10.1038/sj.onc.1204200] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2000] [Revised: 12/07/2000] [Accepted: 12/19/2000] [Indexed: 11/08/2022]
Abstract
Activating Transcription Factor 3 (ATF3) is a member of the bZip family of transcription factors. Previous studies in mammalian cells suggested that like other bZip family members e.g. Jun and Fos, ATF3 might play a role in the control of cell proliferation and participate in oncogenic transformation. To investigate this putative ATF3 function directly, the rat ATF3 protein was compared with v-Jun for its ability to transform primary cultures of chick embryo fibroblasts (CEFs). Like CEFs accumulating v-Jun, CEFs accumulating the ATF3 protein displayed a typical, fusiform morphology, associated with an enhanced capacity to grow in medium with reduced amount of serum. However, in contrast to v-Jun-transformed CEFs, the ATF3 overexpressing cells could not promote colony formation from single cells in agar. Partial transformation induced by ATF3 was found to be associated with repression of multiple cellular genes that are also down-regulated by v-Jun, including those coding for the extracellular components fibronectin, decorin, thrombospondin 2, and the pro-apoptotic protein Par-4. These data demonstrate that, at least in primary avian cells, rat ATF3 possesses an intrinsic oncogenic potential. Moreover, the results suggest that ATF3 might induce growth factor independence by down-regulating a subset of the genes repressed by v-Jun.
Collapse
Affiliation(s)
- S Perez
- Unité de Virologie Humaine, Institut National de la Santé et de la Recherche Médicale (INSERM-U412), Ecole Normale Supérieure, 46 allée d'Italie, 69364 Lyon Cedex 07, France
| | | | | | | |
Collapse
|
61
|
Jin C, Ugai H, Song J, Murata T, Nili F, Sun K, Horikoshi M, Yokoyama KK. Identification of mouse Jun dimerization protein 2 as a novel repressor of ATF-2. FEBS Lett 2001; 489:34-41. [PMID: 11231009 DOI: 10.1016/s0014-5793(00)02387-5] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A mouse cDNA that encodes a DNA-binding protein was identified by yeast two-hybrid screening, using activating transcription factor-2 (ATF-2) as the bait. The protein contained a bZIP (basic amino acid-leucine zipper region) domain and its amino acid sequence was almost identical to that of rat Jun dimerization protein 2 (JDP2). Mouse JDP2 interacted with ATF-2 both in vitro and in vivo via its bZIP domain. It was encoded by a single gene and various transcripts were expressed in all tested tissues of adult mice, as well as in embryos, albeit at different levels in various tissues. Furthermore, mouse JDP2 bound to the cAMP-response element (CRE) as a homodimer or as a heterodimer with ATF-2, and repressed CRE-dependent transcription that was mediated by ATF-2. JDP2 was identified as a novel repressor protein that affects ATF-2-mediated transcription.
Collapse
Affiliation(s)
- C Jin
- RIKEN, The Institute of Physical and Chemical Research, Tsukuba Institute, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
62
|
Xu W, Wang S, Wang G, Wei H, He F, Yang X. Identification and characterization of differentially expressed genes in the early response phase during liver regeneration. Biochem Biophys Res Commun 2000; 278:318-25. [PMID: 11097837 DOI: 10.1006/bbrc.2000.3792] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It has been suggested that the early response was a critical regulator of the remaining quiescent liver cells reentering the cell cycle after partial hepatectomy. The identification of genetic factors and function important in the early response phase during liver regeneration after partial hepatectomy will help in understanding the underlying molecular mechanisms of hepatic injuries. Through the application of complementary DNA representational difference analysis (RDA), we have identified genes that are up-regulated in early response phase during liver regeneration. Results from slot blot and Northern blot analysis confirmed that the RDA products were truly differentially expressed. In addition to well-characterized up-regulated genes during liver regeneration, including IGFBP-1, LRF-1, and metallothionein, we demonstrate the differential expression of at least 6 genes previously not known to be associated with liver regeneration. PC3 and TEC genes were identified as immediate-early response genes and were dramatically increased following partial hepatectomy. Ribosomal protein L6, ribosomal protein S7, chaperonin 10, and cytochrome oxidase I were identified to be up-regulated 4- to 5-fold after 70% partial hepatectomy. In addition to the known genes, 7 novel genes were isolated. Among them, two genes showed their up-regulation in liver regeneration by Northern blot analysis. One was exclusively expressed in liver, and no expression was observed in other tissues. Peak expression, 30-fold above baseline, occurred 60 min after 70% hepatectomy. Cycloheximide pretreatment could not suppress the induction of this gene, indicating that this gene as a novel immediate-early response gene following partial hepatectomy. The novel gene, which was represented three times in the differential clones, may be one of the highly up-expressed genes in regenerating liver. Its transcript is undetectable in normal liver; its level of mRNA increased by 0.5 h after 2/3 partial hepatectomy, reaching a maximum at 2 h. This gene is similar to human alpha-1-beta-glycoprotein (40%). These results suggest a role of these genes in the early response phase of liver regeneration.
Collapse
Affiliation(s)
- W Xu
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, China
| | | | | | | | | | | |
Collapse
|
63
|
Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH2-terminal kinase and promoter response element. Blood 2000. [DOI: 10.1182/blood.v96.6.2140] [Citation(s) in RCA: 133] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractActivating transcription factor (ATF) 3 is a member of ATF/cyclic adenosine monophosphate (cAMP)–responsive element binding protein (ATF/CREB) family of transcription factors and functions as a stress-inducible transcriptional repressor. To understand the stress-induced gene regulation by homocysteine, we investigated activation of the ATF3 gene in human endothelial cells. Homocysteine caused a rapid induction of ATF3 at the transcriptional level. This induction was preceded by a rapid and sustained activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK), and dominant negative mitogen-activated protein kinase kinase 4 and 7 abolished these effects. The effect of homocysteine appeared to be specific, because cysteine or homocystine had no appreciable effect, but it was mimicked by dithiothreitol and β-mercaptoethanol as well as tunicamycin. The homocysteine effect was not inhibited by an active oxygen scavenger. Deletion analysis of the 5′ flanking sequence of the ATF3 gene promoter revealed that one of the major elements responsible for the induction by homocysteine is an ATF/cAMP responsive element (CRE) located at −92 to −85 relative to the transcriptional start site. Gel shift, immunoprecipitation, and cotransfection assays demonstrated that a complex (or complexes) containing ATF2, c-Jun, and ATF3 increased binding to the ATF/CRE site in the homocysteine-treated cells and activated the ATF3 gene expression, while ATF3 appeared to repress its own promoter. These data together suggested a novel pathway by which homocysteine causes the activation of JNK/SAPK and subsequent ATF3 expression through its reductive stress. Activation of JNK/SAPK and ATF3 expression in response to homocysteine may have a functional role in homocysteinemia-associated endothelial dysfunction.
Collapse
|
64
|
Homocysteine-responsive ATF3 gene expression in human vascular endothelial cells: activation of c-Jun NH2-terminal kinase and promoter response element. Blood 2000. [DOI: 10.1182/blood.v96.6.2140.h8002140_2140_2148] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activating transcription factor (ATF) 3 is a member of ATF/cyclic adenosine monophosphate (cAMP)–responsive element binding protein (ATF/CREB) family of transcription factors and functions as a stress-inducible transcriptional repressor. To understand the stress-induced gene regulation by homocysteine, we investigated activation of the ATF3 gene in human endothelial cells. Homocysteine caused a rapid induction of ATF3 at the transcriptional level. This induction was preceded by a rapid and sustained activation of c-Jun NH2-terminal kinase/stress-activated protein kinase (JNK/SAPK), and dominant negative mitogen-activated protein kinase kinase 4 and 7 abolished these effects. The effect of homocysteine appeared to be specific, because cysteine or homocystine had no appreciable effect, but it was mimicked by dithiothreitol and β-mercaptoethanol as well as tunicamycin. The homocysteine effect was not inhibited by an active oxygen scavenger. Deletion analysis of the 5′ flanking sequence of the ATF3 gene promoter revealed that one of the major elements responsible for the induction by homocysteine is an ATF/cAMP responsive element (CRE) located at −92 to −85 relative to the transcriptional start site. Gel shift, immunoprecipitation, and cotransfection assays demonstrated that a complex (or complexes) containing ATF2, c-Jun, and ATF3 increased binding to the ATF/CRE site in the homocysteine-treated cells and activated the ATF3 gene expression, while ATF3 appeared to repress its own promoter. These data together suggested a novel pathway by which homocysteine causes the activation of JNK/SAPK and subsequent ATF3 expression through its reductive stress. Activation of JNK/SAPK and ATF3 expression in response to homocysteine may have a functional role in homocysteinemia-associated endothelial dysfunction.
Collapse
|
65
|
Nawa T, Nawa MT, Cai Y, Zhang C, Uchimura I, Narumi S, Numano F, Kitajima S. Repression of TNF-alpha-induced E-selectin expression by PPAR activators: involvement of transcriptional repressor LRF-1/ATF3. Biochem Biophys Res Commun 2000; 275:406-11. [PMID: 10964678 DOI: 10.1006/bbrc.2000.3332] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peroxisome proliferator-activated receptor (PPAR) activators were shown to inhibit the expression of E-selectin of human vascular endothelial cells in response to tumor necrosis factor-alpha (TNF-alpha). Troglitazone, pioglitazone, alpha-clofibrate, and 15-deoxy-Delta12,14-prostaglandin J2 all inhibited the TNF-alpha-stimulated E-selectin gene transcription in reporter assay. To further clarify the underlying transcriptional regulation, nuclear factor(s) that binds to the nuclear factor-endothelial leukocyte adhesion molecule 1 (NF-ELAM1) site of the E-selectin gene promoter was investigated. The activators caused a significant induction of liver regenerating factor 1 (LRF1)/activating transcription factor 3 (ATF3), which bound to the NF-ELAM1 site and repressed the TNF-alpha-induced E-selectin gene expression. From these data, the effect of PPAR activators was mediated, in part, through the induction of LRF1/ATF3. This might provide a novel molecular mechanism of anti-inflammatory effect of PPAR activators.
Collapse
Affiliation(s)
- T Nawa
- Department of Biochemical Genetics, Faculty of Medicine, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45, Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Hara H, Uchida S, Yoshimura H, Aoki M, Toyoda Y, Sakai Y, Morimoto S, Fukamachi H, Shiokawa K, Hanada K. Isolation and characterization of a novel liver-specific gene, hepassocin, upregulated during liver regeneration. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1492:31-44. [PMID: 11004478 DOI: 10.1016/s0167-4781(00)00056-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
By differential cDNA cloning coupled with Xenopus oocyte expression screening, we isolated a cDNA encoding a novel protein, termed 'hepassocin', the expression of which is upregulated in the regenerating rat liver. The cDNA contained a single open reading frame encoding a protein of 314 amino acids (ca. 34 kDa), including 24 amino acids of signal sequence. The protein expressed from the cDNA in Verots cells had activity to stimulate DNA synthesis in primary rat hepatocytes and was of 66 kDa or 34 kDa, under non-reducing or reducing conditions, respectively. Using an affinity column conjugated with the antibody raised against a peptide in a hydrophilic region, we purified hepassocin from the rat liver: it had a DNA synthesis-stimulating activity in hepatocytes. The hepassocin obtained here was 66 kDa, and the 34 kDa protein obtained under reducing conditions contained five cysteine residues, indicating that hepassocin is active as a homodimer. Northern blot analysis revealed that hepassocin mRNA (1.4 kb in length) occurred only in the liver, and in situ hybridization studies revealed its presence in parenchymal hepatocytes but not in endothelial cells. Furthermore, the expression of hepassocin mRNA was upregulated during compensatory hyperplasia after partial hepatectomy and regeneration after galactosamine treatment in the rat liver. These results suggest that hepassocin plays an important role in stimulating liver cell growth, through an autocrine mechanism.
Collapse
Affiliation(s)
- H Hara
- Medicinal Research Laboratories, Taisho Pharmaceutical Co., Ohmiya, Saitama 330-8530, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Wolfgang CD, Liang G, Okamoto Y, Allen AE, Hai T. Transcriptional autorepression of the stress-inducible gene ATF3. J Biol Chem 2000; 275:16865-70. [PMID: 10748147 DOI: 10.1074/jbc.m909637199] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Previously, we demonstrated that ATF3 (activating transcription factor-3) is a stress-inducible gene, and the protein it encodes is a transcriptional repressor. In this report, we present evidence suggesting that ATF3 represses the transcription of its own gene. Interestingly, efficient repression requires a consensus ATF/cAMP-responsive element site in the promoter and a previously unidentified ATF3-binding site immediately downstream from the TATA box. Although this new site resembles the known ATF/cAMP-responsive element sequences at the flanking sequence, it differs from them at the center key residues. These observations indicate that ATF3 can tolerate variations in the center of the binding sites if the flanking sequences are favorable. The repression of the ATF3 promoter by its own gene product provides a mechanistic explanation, at least in part, for the transient expression pattern of the ATF3 gene upon stress induction.
Collapse
Affiliation(s)
- C D Wolfgang
- Department of Medical Biochemistry, Ohio State Neurobiotechnology Center and the Ohio State Biochemistry Program, Ohio State University, Columbus, Ohio 43210, USA
| | | | | | | | | |
Collapse
|
68
|
Echlin DR, Tae HJ, Mitin N, Taparowsky EJ. B-ATF functions as a negative regulator of AP-1 mediated transcription and blocks cellular transformation by Ras and Fos. Oncogene 2000; 19:1752-63. [PMID: 10777209 DOI: 10.1038/sj.onc.1203491] [Citation(s) in RCA: 87] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
B-ATF is a nuclear basic leucine zipper protein that belongs to the AP-1/ATF superfamily of transcription factors. Northern blot analysis reveals that the human B-ATF gene is expressed most highly in hematopoietic tissues. Interaction studies in vitro and in vivo show that the leucine zipper of B-ATF mediates dimerization with members of the Jun family of proteins. Chimeric proteins consisting of portions of B-ATF and the DNA binding domain of the yeast activator GAL4 do not stimulate reporter gene expression in mammalian cells, indicating that B-ATF does not contain a conventional transcription activation domain. Jun/B-ATF dimers display similar DNA binding profiles as Jun/Fos dimers, with a bias toward binding TRE (12-O-tetradecanolyphorbol-13-acetate-response element) over CRE (cyclic AMP-response element) DNA sites. B-ATF inhibits transcriptional activation of a reporter gene containing TRE sites in a dose-dependent manner, presumably by competing with Fos for Jun and forming transcriptionally inert Jun/B-ATF heterodimers. Stable expression of B-ATF in C3H10T1/2 cells does not reduce cell viability, but does result in a reduced cellular growth rate when compared to controls. This effect is dominant in the presence of the growth promoting effects of the H-Ras or the v-Fos oncoproteins, since expression of B-ATF restricts the efficiency of focus formation by these transforming agents. These findings demonstrate that B-ATF is a tissue-specific transcription factor with the potential to function as a dominant-negative to AP-1.
Collapse
Affiliation(s)
- D R Echlin
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907-1392, USA
| | | | | | | |
Collapse
|
69
|
Tsujino H, Kondo E, Fukuoka T, Dai Y, Tokunaga A, Miki K, Yonenobu K, Ochi T, Noguchi K. Activating transcription factor 3 (ATF3) induction by axotomy in sensory and motoneurons: A novel neuronal marker of nerve injury. Mol Cell Neurosci 2000; 15:170-82. [PMID: 10673325 DOI: 10.1006/mcne.1999.0814] [Citation(s) in RCA: 631] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activating transcription factor 3 (ATF3), a member of ATF/CREB family of transcription factors, is induced in a variety of stressed tissue. ATF3 regulates transcription by binding to DNA sites as a homodimer or heterodimer with Jun proteins. The purpose of this study was to examine the expression and regulation of ATF3 after axonal injury in neurons in dorsal root ganglia (DRG) and spinal cord. In naive rats, ATF3 was not expressed in the DRG and spinal cord. Following the cut of peripheral nerve, ATF3 was immediately induced in virtually all DRG neurons and motoneurons that were axotomized, and the time course of induction was dependent on the distance between the injury site and the cell body. Double labeling using immunohistochemistry revealed that the population of DRG neurons expressing ATF3 included those expressing c-jun, and in motoneurons ATF3 and c-jun were concurrently expressed after axotomy. In contrast to c-jun, ATF3 was not induced transsynaptically in spinal dorsal horn neurons. We conclude that ATF3 is specifically induced in sensory and motoneurons in the spinal cord following nerve injury and should be regarded as an unique neuronal marker of nerve injury in the nervous system.
Collapse
Affiliation(s)
- H Tsujino
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo, 663-8501, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Mayumi-Matsuda K, Kojima S, Nakayama T, Suzuki H, Sakata T. Scanning gene expression during neuronal cell death evoked by nerve growth factor depletion. BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1489:293-302. [PMID: 10673030 DOI: 10.1016/s0167-4781(99)00204-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Depletion of nerve growth factor (NGF) from differentiated, neuronal PC12 cells causes a form of programmed cell death that stems from the attenuation of NGF receptor signaling and the resultant expression of certain genes required for cell death. To better understand the associated molecular events, we surveyed the changes in gene expression in PC6-3 cells, a subline of PC12, caused by depletion of NGF. Using restriction landmark cDNA scanning, we assessed the expression patterns of as many as 15,000 gene species, and 30 genes were isolated whose expression was altered in the absence of NGF. Of the 20 genes up-regulated in the absence of NGF, including transcription factor LRF-1/ATF3, most were also up-regulated during the programmed death of cortical neurons caused by Ca2+ ionophore. Their function may thus be a general feature of programmed neuronal cell death. In contrast, with one exception, expression of down-regulated genes was NGF-dependent and therefore diminished in the absence of NGF but unaffected by Ca2+ ionophore. These findings confirm that global investigation of the features of up- and down-regulated genes should add substantially to our understanding of the regulation of programmed neuronal cell death and the mechanisms involved.
Collapse
Affiliation(s)
- K Mayumi-Matsuda
- Shionogi Institute for Medical Science, Shionogi and Co., Ltd., Osaka, Japan
| | | | | | | | | |
Collapse
|
71
|
Hai T, Wolfgang CD, Marsee DK, Allen AE, Sivaprasad U. ATF3 and stress responses. Gene Expr 1999; 7:321-35. [PMID: 10440233 PMCID: PMC6174666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
The purpose of this review is to discuss ATF3, a member of the ATF/CREB family of transcription factors, and its roles in stress responses. In the introduction, we briefly describe the ATF/CREB family, which contains more than 10 proteins with the basic region-leucine zipper (bZip) DNA binding domain. We summarize their DNA binding and heterodimer formation with other bZip proteins, and discuss the nomenclature of these proteins. Over the years, identical or homologous cDNA clones have been isolated by different laboratories and given different names. We group these proteins into subgroups according to their amino acid similarity; we also list the alternative names for each member, and clarify some potential confusion in the nomenclature of this family of proteins. We then focus on ATF3 and its potential roles in stress responses. We review the evidence that the mRNA level of ATF3 greatly increases when the cells are exposed to stress signals. In animal experiments, the signals include ischemia, ischemia coupled with reperfusion, wounding, axotomy, toxicity, and seizure; in cultured cells, the signals include serum factors, cytokines, genotoxic agents, cell death-inducing agents, and the adenoviral protein E1A. Despite the overwhelming evidence for its induction by stress signals, not much else is known about ATF3. Preliminary results suggest that the JNK/SAPK pathway is involved in the induction of ATF3 by stress signals; in addition, IL-6 and p53 have been demonstrated to be required for the induction of ATF3 under certain conditions. The consequences of inducing ATF3 during stress responses are not clear. Transient transfection and in vitro transcription assays indicate that ATF3 represses transcription as a homodimer; however, ATF3 can activate transcription when coexpressed with its heterodimeric partners or other proteins. Therefore, it is possible that, when induced during stress responses, ATF3 activates some target genes but represses others, depending on the promoter context and cellular context. Even less is understood about the physiological significance of inducing ATF3. We will discuss our preliminary results and some reports by other investigators in this regard.
Collapse
Affiliation(s)
- T Hai
- Department of Medical Biochemistry, Ohio State University, Columbus 43210, USA.
| | | | | | | | | |
Collapse
|
72
|
Sok J, Wang XZ, Batchvarova N, Kuroda M, Harding H, Ron D. CHOP-Dependent stress-inducible expression of a novel form of carbonic anhydrase VI. Mol Cell Biol 1999; 19:495-504. [PMID: 9858573 PMCID: PMC83907 DOI: 10.1128/mcb.19.1.495] [Citation(s) in RCA: 114] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/1998] [Accepted: 09/10/1998] [Indexed: 11/20/2022] Open
Abstract
CHOP (also called GADD153) is a stress-inducible nuclear protein that dimerizes with members of the C/EBP family of transcription factors and was initially identified as an inhibitor of C/EBP binding to classic C/EBP target genes. Subsequent experiments suggested a role for CHOP-C/EBP heterodimers in positively regulating gene expression; however, direct evidence that this is the case has so far not been uncovered. Here we describe the identification of a positively regulated direct CHOP-C/EBP target gene, that encoding murine carbonic anhydrase VI (CA-VI). The stress-inducible form of the gene is expressed from an internal promoter and encodes a novel intracellular form of what is normally a secreted protein. Stress-induced expression of CA-VI is both CHOP and C/EBPbeta dependent in that it does not occur in cells deficient in either gene. A CHOP-responsive element was mapped to the inducible CA-VI promoter, and in vitro footprinting revealed binding of CHOP-C/EBP heterodimers to that site. Rescue of CA-VI expression in c/ebpbeta-/- cells by exogenous C/EBPbeta and a shorter, normally inhibitory isoform of the protein known as LIP suggests that the role of the C/EBP partner is limited to targeting the CHOP-containing heterodimer to the response element and points to a preeminent role for CHOP in CA-VI induction during stress.
Collapse
Affiliation(s)
- J Sok
- Skirball Institute of Biomolecular Medicine, Departments of Medicine and Cell Biology, and Kaplan Cancer Center, New York University Medical Center, New York, New York 10016, USA
| | | | | | | | | | | |
Collapse
|
73
|
Rhodes K, Oshima RG. A regulatory element of the human keratin 18 gene with AP-1-dependent promoter activity. J Biol Chem 1998; 273:26534-42. [PMID: 9756890 DOI: 10.1074/jbc.273.41.26534] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The human keratin 18 (K18) gene is expressed in a restricted but diverse subset of differentiated epithelial tissues and carcinomas. The 10-kilobase pair K18 gene contains all of the genetic information necessary for tissue-specific, copy number-dependent and integration site-independent expression in transgenic mice. We identified a 100-base pair regulatory element that activates the K18 proximal promoter in the presence of the previously identified first intron enhancer. Deletion of the element greatly diminished K18 expression. This regulatory element also has cryptic, AP-1-dependent promoter activity in the absence of the normal promoter, which results in 10-40-fold higher levels of K18 RNA expression in transgenic mice. The high activity of this cryptic promoter is dependent upon the first intron enhancer. These experiments define interactive regulatory regions of the K18 gene that modulate expression in diverse epithelial cell types and identify an unusual regulatory element with promoter activity that may be useful for high level heterologous gene expression in transgenic animals.
Collapse
Affiliation(s)
- K Rhodes
- The Burnham Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
74
|
Bot G, Chahl LA. Fos-like immunoreactivity in tyrosine hydroxylase and substance P-like immunoreactive neurones in guinea-pig brain following intracerebroventricular injection of morphine and U50,488H. Addict Biol 1998; 3:435-45. [PMID: 26735118 DOI: 10.1080/13556219871976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Opioid drugs such as morphine have powerful reinforcing effects which lead to drug-seeking behaviour. Both dopamine- and substance P-containing neurones have been implicated in reward. In the present study twocolour immunohistochemistry was used to investigate whether Fos protein was induced in dopaminergic (tyrosine hydroxylase) and substance P-containing neurones of guinea-pig brain following intracerebroventricular administration of the predominantly mu-receptor agonist, morphine, and the kappa-receptor agonist, U50,488H, which have been reported to produce rewarding and aversive effects, respectively. The present study has shown that of the large number of neurones showing Fos-like immunoreactivity following a single injection of morphine or U50,488H, few were tyrosine hydroxylase-positive (dopaminergic) but a larger number were substance Plike immunoreactive. These results support the proposal that substance P plays a role in reward and reinforcement.
Collapse
|
75
|
Kokura K, Nakadai T, Kishimoto T, Makino Y, Muramatsu M, Tamura TA. Gene expression in hepatomas. J Gastroenterol Hepatol 1998; 13:S132-S141. [PMID: 28976702 DOI: 10.1111/jgh.1998.13.s1.132] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
Gene expression changes in accordance with cell growth, differentiation and carcinogenesis. To elucidate the molecular mechanisms for hepatocarcinogenesis as well as maintenance of normal hepatocytes, it is important to identify the genes that have altered expression with carcinogenesis. We established a new and efficient cDNA subtraction method via two cDNA populations. By using this method along with rat hepatomas made by the Soh-Farber protocol, we identified a number of genes, some of which are activated in hepatocellular carcinoma (HCC). These genes include ones which code for a transcription factor and a metabolic enzyme. One particular gene can be used as a tumour marker. Our method is beneficial for the isolation of a wide range of HCC-related genes in rats which, in turn, enables easy identification of their human counterparts. In this review, we describe details of our method and the isolated genes. We also briefly describe transcription factors in the liver.
Collapse
Affiliation(s)
- Kenji Kokura
- Department of Biology, Faculty of Science, Chiba University, Chiba
| | | | | | - Yasutaka Makino
- Department of Biology, Faculty of Science, Chiba University, Chiba
| | - Masami Muramatsu
- Department of Biochemistry, Saitama Medical School, Saitama, Japan
| | - Taka-Aki Tamura
- Department of Biology, Faculty of Science, Chiba University, Chiba
| |
Collapse
|
76
|
Zinszner H, Kuroda M, Wang X, Batchvarova N, Lightfoot RT, Remotti H, Stevens JL, Ron D. CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes Dev 1998; 12:982-95. [PMID: 9531536 PMCID: PMC316680 DOI: 10.1101/gad.12.7.982] [Citation(s) in RCA: 1648] [Impact Index Per Article: 61.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1997] [Accepted: 02/05/1998] [Indexed: 02/07/2023]
Abstract
Cellular stress, particularly in response to toxic and metabolic insults that perturb function of the endoplasmic reticulum (ER stress), is a powerful inducer of the transcription factor CHOP. The role of CHOP in the response of cells to injury associated with ER stress was examined in a murine deficiency model obtained by homologous recombination at the chop gene. Compared with the wild type, mouse embryonic fibroblasts (MEFs) derived from chop -/- animals exhibited significantly less programmed cell death when challenged with agents that perturb ER function. A similar deficit in programmed cells death in response to ER stress was also observed in MEFs that lack CHOP's major dimerization partner, C/EBPbeta, implicating the CHOP-C/EBP pathway in programmed cell death. An animal model for studying the effects of chop on the response to ER stress was developed. It entailed exposing mice with defined chop genotypes to a single sublethal intraperitoneal injection of tunicamycin and resulted in a severe illness characterized by transient renal insufficiency. In chop +/+ and chop +/- mice this was associated with the early expression of CHOP in the proximal tubules followed by the development of a histological picture similar to the human condition known as acute tubular necrosis, a process that resolved by cellular regeneration. In the chop -/- animals, in spite of the severe impairment in renal function, evidence of cellular death in the kidney was reduced compared with the wild type. The proximal tubule epithelium of chop -/- animals exhibited fourfold lower levels of TUNEL-positive cells (a marker for programmed cell death), and significantly less evidence for subsequent regeneration. CHOP therefore has a role in the induction of cell death under conditions associated with malfunction of the ER and may also have a role in cellular regeneration under such circumstances.
Collapse
Affiliation(s)
- H Zinszner
- Skirball Institute of Biomolecular Medicine, the Departments of Medicine, Cell Biology, and the Kaplan Cancer Center, New York University (NYU) Medical Center, New York, New York 10016 USA
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Hevroni D, Rattner A, Bundman M, Lederfein D, Gabarah A, Mangelus M, Silverman MA, Kedar H, Naor C, Kornuc M, Hanoch T, Seger R, Theill LE, Nedivi E, Richter-Levin G, Citri Y. Hippocampal plasticity involves extensive gene induction and multiple cellular mechanisms. J Mol Neurosci 1998; 10:75-98. [PMID: 9699150 DOI: 10.1007/bf02737120] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Long-term plasticity of the central nervous system (CNS) involves induction of a set of genes whose identity is incompletely characterized. To identify candidate plasticity-related genes (CPGs), we conducted an exhaustive screen for genes that undergo induction or downregulation in the hippocampus dentate gyrus (DG) following animal treatment with the potent glutamate analog, kainate. The screen yielded 362 upregulated CPGs and 41 downregulated transcripts (dCPGs). Of these, 66 CPGs and 5 dCPGs are known genes that encode for a variety of signal transduction proteins, transcription factors, and structural proteins. Seven novel CPGs predict the following putative functions: cpg2--a dystrophin-like cytoskeletal protein; cpg4--a heat-shock protein: cpg16--a protein kinase; cpg20--a transcription factor; cpg21--a dual-specificity MAP-kinase phosphatase; and cpg30 and cpg38--two new seven-transmembrane domain receptors. Experiments performed in vitro and with cultured hippocampal cells confirmed the ability of the cpg-21 product to inactivate the MAP-kinase. To test relevance to neural plasticity, 66 CPGs were tested for induction by stimuli producing long-term potentiation (LTP). Approximately one-fourth of the genes examined were upregulated by LTP. These results indicate that an extensive genetic response is induced in mammalian brain after glutamate receptor activation, and imply that a significant proportion of this activity is coinduced by LTP. Based on the identified CPGs, it is conceivable that multiple cellular mechanisms underlie long-term plasticity of the nervous system.
Collapse
Affiliation(s)
- D Hevroni
- Department of Hormone Research, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Ishiguro T, Naito M, Hanaoka K, Nagawa H, Muto T, Tsuruo T. Enhanced metastasis of B16 melanoma cells by unexpected elevated expression of the metastasis-associated TI-241 (LRF-1-, Jun-Fos-related) gene treated with antisense oligonucleotide. Clin Exp Metastasis 1998; 16:179-83. [PMID: 9514099 DOI: 10.1023/a:1006528422244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
B16-F10 is a B16 mouse melanoma subline that preferentially metastasizes to the lung following intravenous injection. Previously we isolated TI-241 (LRF-1 homologue related to Jun-Fos) gene that was expressed higher in the high metastatic clone B16-F10 than the low metastatic clone F1. Transfection of TI-241 into F1 converted it into a high-metastatic cell. We studied the effect of antisense oligonucleotide designed to reduce the expression of TI-241 in B16-F10 cells, and observed an unexpected increase in the TI-241 level. The increase in the expression was maximal at 30 h, then it decreased during further culture with or without TI-241 antisense oligonucleotide. This increased TI-241 expression by antisense oligonucleotide was also observed in B16-F1 cells whereas sense oligonucleotide did not affect the expression. B16-F10 cells cultured with TI-241 antisense oligonucleotide showed enhanced experimental metastatic potential to the mouse lungs compared with untreated B16-F10 and B16-F10 cultured with TI-241 sense oligonucleotide.
Collapse
Affiliation(s)
- T Ishiguro
- First Department of Surgery, Institute of Molecular and Cellular Biosciences, The University of Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
79
|
Affiliation(s)
- B T Kren
- Department of Medicine, University of Minnesota Medical School, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
80
|
Aronheim A, Zandi E, Hennemann H, Elledge SJ, Karin M. Isolation of an AP-1 repressor by a novel method for detecting protein-protein interactions. Mol Cell Biol 1997; 17:3094-102. [PMID: 9154808 PMCID: PMC232162 DOI: 10.1128/mcb.17.6.3094] [Citation(s) in RCA: 376] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Transcription factor AP-1 transduces environmental signals to the transcriptional machinery. To ensure a quick response yet maintain tight control over AP-1 target genes, AP-1 activity is likely to be negatively regulated in nonstimulated cells. To identify proteins that interact with the Jun subunits of AP-1 and repress its activity, we developed a novel screen for detecting protein-protein interactions that is not based on a transcriptional readout. In this system, the mammalian guanyl nucleotide exchange factor (GEF) Sos is recruited to the Saccharomyces cerevisiae plasma membrane harboring a temperature-sensitive Ras GEF, Cdc25-2, allowing growth at the nonpermissive temperature. Using the Sos recruitment system, we identified new c-Jun-interacting proteins. One of these, JDP2, heterodimerizes with c-Jun in nonstimulated cells and represses AP-1-mediated activation.
Collapse
Affiliation(s)
- A Aronheim
- Department of Pharmacology, Program in Biomedical Sciences, School of Medicine, University of California, San Diego, La Jolla 92093-0636, USA
| | | | | | | | | |
Collapse
|
81
|
Abstract
Liver regeneration after the loss of hepatic tissue is a fundamental parameter of liver response to injury. Recognized as a phenomenon from mythological times, it is now defined as an orchestrated response induced by specific external stimuli and involving sequential changes in gene expression, growth factor production, and morphologic structure. Many growth factors and cytokines, most notably hepatocyte growth factor, epidermal growth factor, transforming growth factor-alpha, interleukin-6, tumor necrosis factor-alpha, insulin, and norepinephrine, appear to play important roles in this process. This review attempts to integrate the findings of the last three decades and looks toward clues as to the nature of the causes that trigger this fascinating organ and cellular response.
Collapse
Affiliation(s)
- G K Michalopoulos
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | |
Collapse
|
82
|
Abstract
AP-1 (activating protein-1) is a collective term referring to dimeric transcription factors composed of Jun, Fos or ATF (activating transcription factor) subunits that bind to a common DNA site, the AP-1-binding site. As the complexity of our knowledge of AP-1 factors has increased, our understanding of their physiological function has decreased. This trend, however, is beginning to be reversed due to the recent studies of gene-knockout mice and cell lines deficient in specific AP-1 components. Such studies suggest that different AP-1 factors may regulate different target genes and thus execute distinct biological functions. Also, the involvement of AP-1 factors in functions such as cell proliferation and survival has been made somewhat clearer as a result of such studies. In addition, there has been considerable progress in understanding some of the mechanisms and signaling pathways involved in the regulation of AP-1 activity. In addition to regulation by heterodimerization between Jun, Fos and ATF proteins, AP-1 activity is regulated through interactions with specific protein kinases and a variety of transcriptional coactivators.
Collapse
Affiliation(s)
- M Karin
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0636, USA.
| | | | | |
Collapse
|
83
|
Goupil D, Ethier C, Zarnegar R, Gascon-Barré M. Hepatic expression of regeneration marker genes following partial hepatectomy in the rat. Influence of 1,25-dihydroxyvitamin D3 in hypocalcemia. J Hepatol 1997; 26:659-68. [PMID: 9075675 DOI: 10.1016/s0168-8278(97)80433-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
BACKGROUND/AIMS Vitamin D (D) depletion is a common feature of chronic liver diseases. In past years, disturbances in calcium metabolism involving inadequate D and parathyroid hormone status have been reported to significantly impair the hepatic regeneration process following partial hepatectomy in the rat. The purpose of this study was to investigate how hypocalcemia and D deficiency affect specific cell markers of hepatic compensatory growth. METHODS Steady-state mRNA levels of gene markers of the regeneration process were investigated following 2/3 partial hepatectomy. The response of hypocalcemic D-depleted rats was compared to that of animals whose calcium status had been normalized by repletion with the active D hormone 1,25-dihydroxyvitamin D3 (1,25(OH)2D3). RESULTS The transcript for the major hepatic mitogen HGF increased in both groups after partial liver resection but the increase was significantly lower as well as delayed in livers obtained from calcium deficient rats in the prereplicative phase of the regeneration process. TGF alpha mRNA levels were also found to be significantly lower in calcium deficient rats at all time-points following partial hepatectomy, while the relative behavior of the tandem TGF alpha-EGFR indicated an early dominant effect in normocalcemic 1,25(OH)2D3-repleted animals. HGF-c-met mRNA levels also indicated that the 1,25(OH)2D3-repleted animals reacted more promptly to the regeneration stimuli. Indeed, while relative (1,25(OH)2D3/D-Ca- ratio) maximum mRNA levels were observed 12 h following liver resection in 1,25(OH)2D3-treated animals, relative peak levels were only apparent 24 h post-surgery in hypocalcemic rats. Maximum cyclin D1 (a marker of the G1 phase of the cell cycle) mRNA occurred between 8-18 h after partial hepatectomy in 1,25(OH)2D3-repleted animals to return to base-line value thereafter, but in hypocalcemic rats the transcript levels remained significantly below 1,25(OH)2D3-repleted animals during the prereplicative period with increases above initial values between 12-24 h post-surgery. Both cyclin A (an S phase marker) transcripts (1.8 and 2.9 kb) were influenced by the regeneration process. The transcripts significantly and sharply increased in hypocalcemia between 30-36 h following partial hepatectomy to decrease thereafter, while the increase was observed between 24-30 h, and at 48 h (1.8 kb) in 1,25(OH)2D3-repleted animals. Liver weight recovery was also found to be decreased in D-depleted rats over the 48 h period of observation. CONCLUSIONS Our data further confirm the presence of an impaired regeneration process in hypocalcemia of D deficiency which seems to be associated with gene markers indicating an inefficient transit across the G1 phase of the cell cycle.
Collapse
Affiliation(s)
- D Goupil
- Département de Pharmacologie, Faculté de Médecine, Université de Montréal, Canada
| | | | | | | |
Collapse
|
84
|
Chen BP, Wolfgang CD, Hai T. Analysis of ATF3, a transcription factor induced by physiological stresses and modulated by gadd153/Chop10. Mol Cell Biol 1996; 16:1157-68. [PMID: 8622660 PMCID: PMC231098 DOI: 10.1128/mcb.16.3.1157] [Citation(s) in RCA: 258] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
We demonstrate that ATF3, a member of the ATF/CREB family of transcription factors, is induced in a variety of stressed tissues: mechanically injured liver, toxin-injured liver, blood-deprived heart, and postseizure brain. We also demonstrate that an ATF3-interacting protein, gadd153/Chop10, forms a nonfunctional heterodimer with ATF3: the heterodimer, in contrast to the ATF3 homodimer, does not bind to the ATF/cyclic AMP response element consensus site and does not repress transcription. Interestingly, ATF3 and gadd153/Chop10 are expressed in inverse but overlapping manners during the liver's response to carbon tetrachloride (CCl4): the level of gadd153/Chop10 mRNA is high in the normal liver and greatly decreases upon CCl4 treatment; the level of ATF3 mRNA, on the other hand, is low in the normal liver and greatly increases upon CCl4 treatment. We hypothesize that in nonstressed liver, gadd153/Chop10 inhibits the limited amount of ATF3 by forming an inactive heterodimer with it, whereas in CCl4-injured liver, the synthesis of gadd153/Chop10 is repressed, allowing the induced ATF3 to function.
Collapse
Affiliation(s)
- B P Chen
- Ohio State Biochemistry Program, Ohio State University, Columbus, 43210, USA
| | | | | |
Collapse
|
85
|
Hagmeyer BM, Angel P, van Dam H. Modulation of AP-1/ATF transcription factor activity by the adenovirus-E1A oncogene products. Bioessays 1995; 17:621-9. [PMID: 7646484 DOI: 10.1002/bies.950170708] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The proteins encoded by early region 1 A (E1A) of human adenoviruses (Ad) modulate the expression of both adenovirus genes and various host cell genes. With these transcription-regulating properties the E1A proteins redirect the cell's metabolism, which enables them to induce oncogenic transformation in rodent cells. The E1A proteins modulate transcription by interacting both with gene-specific and general cellular transcription factors. Various members of the AP-1 and ATF/CREB families of transcription factors are targets for E1A-dependent regulation, including cJun, the protein product of the c-jun proto-oncogene. The E1A proteins modulate cJun-dependent transcription both positively and negatively, and affect the activity as well as the expression levels of cJun. By increasing the phosphorylation status of cJun, E1A can stimulate transcription regulated by cJun/ATF2 heterodimers. In contrast, E1A inhibits the expression of various metalloproteases by interfering with the DNA-binding capacity of cJun/cJun and cJun/cFos dimers, which might involve the association of E1A with the putative transcriptional coactivator p300. Since the ability of E1A to alter cJun-dependent transcription correlates with its transforming capacity, interference with cJun-dependent transcription may be an essential step in E1A-induced transformation.
Collapse
Affiliation(s)
- B M Hagmeyer
- Laboratory for Molecular Carcinogenesis, University of Leiden, The Netherlands
| | | | | |
Collapse
|
86
|
Livingstone C, Patel G, Jones N. ATF-2 contains a phosphorylation-dependent transcriptional activation domain. EMBO J 1995; 14:1785-97. [PMID: 7737129 PMCID: PMC398272 DOI: 10.1002/j.1460-2075.1995.tb07167.x] [Citation(s) in RCA: 393] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The ATF-2 transcription factor can mediate adenovirus E1A-inducible transcriptional activation. Deletion analysis has indicated that the N-terminal region of ATF-2 is essential for this response. Furthermore, the N-terminus can activate transcription in the absence of E1A when fused to a heterologous DNA binding domain. However, in the intact protein this activation domain is masked. In this report we show that residues in the N-terminus required for activation are also required for mediating E1A stimulation. In particular two threonine residues at positions 69 and 71 are essential. These residues are phosphorylated in vivo and can be efficiently phosphorylated in vitro by the JNK/SAPK subgroup of the MAPK family. ATF-2 can bind to a UV-inducible kinase through a region in the N-terminus that is distinct from the sites of phosphorylation; this binding region is both necessary for phosphorylation by JNK/SAPK in vitro and for transcriptional activation in vivo. The activity of the N-terminus is stimulated by UV irradiation which stimulates the signalling pathway leading to JNK/SAPK. Finally, although ATF-2 binds to the E1A protein, the N-terminal activation domain is not required for this interaction. The results show that ATF-2, like other members of the ATF/CREB family of DNA binding proteins is regulated by specific signalling pathways.
Collapse
Affiliation(s)
- C Livingstone
- Laboratory of Gene Regulation, Imperial Cancer Research Fund, London, UK
| | | | | |
Collapse
|
87
|
Affiliation(s)
- N Jones
- Laboratory of Gene Regulation, Imperial Cancer Research Fund, London, UK
| |
Collapse
|
88
|
Zantema A, van der Eb AJ. Modulation of gene expression by adenovirus transformation. Curr Top Microbiol Immunol 1995; 199 ( Pt 3):1-23. [PMID: 7555072 DOI: 10.1007/978-3-642-79586-2_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- A Zantema
- Department of Molecular Carcinogenesis, Leiden, The Netherlands
| | | |
Collapse
|
89
|
Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element. Mol Cell Biol 1994. [PMID: 7935470 DOI: 10.1128/mcb.14.11.7546] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways.
Collapse
|
90
|
MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 1994. [PMID: 7935473 DOI: 10.1128/mcb.14.11.7581] [Citation(s) in RCA: 141] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified a new member of the maf oncogene family and named it mafB. This gene is expressed in a wide variety of tissues and encodes a protein of 311 amino acids containing a typical bZip motif in its carboxy-terminal region. In the bZip domain, MafB shares extensive homology not only with v-Maf but also with other Maf-related proteins. As expected from its structure, MafB forms a homodimer through its leucine repeat structure and specifically binds Maf-recognition elements (MAREs). In addition, MafB forms heterodimers with v-Maf and Fos through its zipper structure. However, unlike v-Maf, MafB fails to associate with Jun. Transient cotransfection assays revealed that both v-Maf and MafB act as transactivators for a promoter linked to MAREs, although MafB is less potent than v-Maf. As is the case for the c-maf gene, overexpression of the mafB gene induces transformation of chicken embryo fibroblasts in vitro. Through formation of numerous bZip dimers, the Maf family proteins along with the AP-1 components should provide great diversity in transcriptional regulation for a wide variety of genes.
Collapse
|
91
|
Kataoka K, Fujiwara KT, Noda M, Nishizawa M. MafB, a new Maf family transcription activator that can associate with Maf and Fos but not with Jun. Mol Cell Biol 1994; 14:7581-91. [PMID: 7935473 PMCID: PMC359294 DOI: 10.1128/mcb.14.11.7581-7591.1994] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
We have identified a new member of the maf oncogene family and named it mafB. This gene is expressed in a wide variety of tissues and encodes a protein of 311 amino acids containing a typical bZip motif in its carboxy-terminal region. In the bZip domain, MafB shares extensive homology not only with v-Maf but also with other Maf-related proteins. As expected from its structure, MafB forms a homodimer through its leucine repeat structure and specifically binds Maf-recognition elements (MAREs). In addition, MafB forms heterodimers with v-Maf and Fos through its zipper structure. However, unlike v-Maf, MafB fails to associate with Jun. Transient cotransfection assays revealed that both v-Maf and MafB act as transactivators for a promoter linked to MAREs, although MafB is less potent than v-Maf. As is the case for the c-maf gene, overexpression of the mafB gene induces transformation of chicken embryo fibroblasts in vitro. Through formation of numerous bZip dimers, the Maf family proteins along with the AP-1 components should provide great diversity in transcriptional regulation for a wide variety of genes.
Collapse
Affiliation(s)
- K Kataoka
- Department of Viral Oncology, Cancer Institute, Tokyo, Japan
| | | | | | | |
Collapse
|
92
|
Tan Y, Low KG, Boccia C, Grossman J, Comb MJ. Fibroblast growth factor and cyclic AMP (cAMP) synergistically activate gene expression at a cAMP response element. Mol Cell Biol 1994; 14:7546-56. [PMID: 7935470 PMCID: PMC359291 DOI: 10.1128/mcb.14.11.7546-7556.1994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Growth factors and cyclic AMP (cAMP) are known to activate distinct intracellular signaling pathways. Fibroblast growth factor (FGF) activates ras-dependent kinase cascades, resulting in the activation of MAP kinases, whereas cAMP activates protein kinase A. In this study, we report that growth factors and cAMP act synergistically to stimulate proenkephalin gene expression. Positive synergy between growth factor- and cAMP-activated signaling pathways on gene expression has not been previously reported, and we suggest that these synergistic interactions represent a useful model for analyzing interactions between these pathways. Transfection and mutational studies indicate that both FGF-dependent gene activation and cAMP-dependent gene activation require cAMP response element 2 (CRE-2), a previously characterized cAMP-dependent regulatory element. Furthermore, multiple copies of this element are sufficient to confer FGF regulation upon a minimal promoter, indicating that FGF and cAMP signaling converge upon transcription factors acting at CRE-2. Among many different ATF/AP-1 factors tested, two factors, ATF-3 and c-Jun, stimulate proenkephalin transcription in an FGF- or Ras-dependent fashion. Finally, we show that ATF-3 and c-Jun form heterodimeric complexes in SK-N-MC cells and that the levels of both proteins are increased in response to FGF but not cAMP. Together, these results indicate that growth factor- and cAMP-dependent signaling pathways converge at CRE-2 to synergistically stimulate gene expression and that ATF-3 and c-Jun regulate proenkephalin transcription in response to both growth factor- and cAMP-dependent intracellular signaling pathways.
Collapse
Affiliation(s)
- Y Tan
- Laboratory of Molecular Neurobiology, Massachusetts General Hospital, Charlestown 02129
| | | | | | | | | |
Collapse
|
93
|
A novel hepatocytic transcription factor that binds the alpha-fetoprotein promoter-linked coupling element. Mol Cell Biol 1994. [PMID: 7523856 DOI: 10.1128/mcb.14.10.6616] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We recently characterized a promoter-linked coupling element (PCE) in the rat alpha-fetoprotein (AFP) gene required for strong transcriptional stimulation by distant enhancers (P. Wen, N. Crawford, and J. Locker, Nucleic Acids Res. 21:1911-1918, 1993). In this study, oligonucleotide gel retardation and competition experiments defined the PCE as a 12-bp binding site, TGTCCTTGAACA, an imperfect inverted repeat from -166 to -155 near the AFP promoter. A factor that bound this site (PCF) was abundant in HepG2 nuclear extracts and detectable in extracts from several other AFP-producing hepatocarcinoma cell lines and fetal liver. Hepatocytic cell lines that did not express AFP, nonhepatocytic cell lines, adult liver, and fetal brain did not show the factor. Experiments excluded the possibility that PCF activity was due to binding of glucocorticoid receptor or an AP1-like factor that bound overlapping sites. Competition experiments with several mutant oligonucleotides determined that the optimum PCF binding site was TGTCCTTGAAC(A/T). Mutations decreased binding or totally abolished binding activity. In expression plasmids, PCE mutations strongly reduced gene expression. UV cross-linking to a PCE probe identified peptide bands near 34 kDa. PCF was purified by heparin-Sepharose chromatography followed by affinity binding to oligomerized PCE DNA. The product resolved as a complex of three peptides (PCF alpha 1, PCF alpha 2, and PCF beta, 32 to 34 kDa) on sodium dodecyl sulfate-acrylamide gels. The peptide sizes and gel patterns are unlike those of any of the well-described hepatic transcription factors, and the binding site has not been previously reported. PCF thus appears to be a novel transcription factor.
Collapse
|
94
|
Weir E, Chen Q, DeFrances MC, Bell A, Taub R, Zarnegar R. Rapid induction of mRNAs for liver regeneration factor and insulin-like growth factor binding protein-1 in primary cultures of rat hepatocytes by hepatocyte growth factor and epidermal growth factor. Hepatology 1994; 20:955-60. [PMID: 7523267 DOI: 10.1002/hep.1840200426] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Liver regeneration factor belongs to the leucine-zipper family of transcription factors. It was originally cloned and characterized through differential screening of a regenerating rat liver cDNA library. The mRNA for liver regeneration factor-1 is barely detectable in normal rat liver but is dramatically induced after two-thirds hepatectomy, with a peak 1 to 3 hr after surgery. The nature of the signaling molecule(s) for this rapid induction is not known. It has been suggested that the liver regeneration factor-1 protein product, through complex interactions with other transcription factors such as c-Jun and Jun-B, controls expression of genes that are required during the G1 phase of hepatic growth. Hepatocyte growth factor has been shown to be the most potent mitogen for hepatocytes in vitro and in vivo. Plasma levels of hepatocyte growth factor rapidly (within 30 min) increase after loss of hepatic parenchyma induced by partial hepatectomy or carbon tetrachloride treatment. It has been postulated that hepatocyte growth factor plays a crucial role in stimulating the hepatocyte to enter the cell cycle. In this communication, we report that addition of pure hepatocyte growth factor to primary cultures of rat hepatocytes in the absence of serum and insulin results in rapid and transient induction of liver regeneration factor-1 mRNA (more than 20-fold) with a peak of expression 1 hr after treatment. The levels of jun-B and c-fos mRNAs, which are also known to be induced during the early hours of liver regeneration, were also increased after treatment of isolated hepatocytes with hepatocyte growth factor.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- E Weir
- Department of Pathology, University of Pittsburgh, School of Medicine, Pennsylvania 15261
| | | | | | | | | | | |
Collapse
|
95
|
Wen P, Locker J. A novel hepatocytic transcription factor that binds the alpha-fetoprotein promoter-linked coupling element. Mol Cell Biol 1994; 14:6616-26. [PMID: 7523856 PMCID: PMC359191 DOI: 10.1128/mcb.14.10.6616-6626.1994] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
We recently characterized a promoter-linked coupling element (PCE) in the rat alpha-fetoprotein (AFP) gene required for strong transcriptional stimulation by distant enhancers (P. Wen, N. Crawford, and J. Locker, Nucleic Acids Res. 21:1911-1918, 1993). In this study, oligonucleotide gel retardation and competition experiments defined the PCE as a 12-bp binding site, TGTCCTTGAACA, an imperfect inverted repeat from -166 to -155 near the AFP promoter. A factor that bound this site (PCF) was abundant in HepG2 nuclear extracts and detectable in extracts from several other AFP-producing hepatocarcinoma cell lines and fetal liver. Hepatocytic cell lines that did not express AFP, nonhepatocytic cell lines, adult liver, and fetal brain did not show the factor. Experiments excluded the possibility that PCF activity was due to binding of glucocorticoid receptor or an AP1-like factor that bound overlapping sites. Competition experiments with several mutant oligonucleotides determined that the optimum PCF binding site was TGTCCTTGAAC(A/T). Mutations decreased binding or totally abolished binding activity. In expression plasmids, PCE mutations strongly reduced gene expression. UV cross-linking to a PCE probe identified peptide bands near 34 kDa. PCF was purified by heparin-Sepharose chromatography followed by affinity binding to oligomerized PCE DNA. The product resolved as a complex of three peptides (PCF alpha 1, PCF alpha 2, and PCF beta, 32 to 34 kDa) on sodium dodecyl sulfate-acrylamide gels. The peptide sizes and gel patterns are unlike those of any of the well-described hepatic transcription factors, and the binding site has not been previously reported. PCF thus appears to be a novel transcription factor.
Collapse
Affiliation(s)
- P Wen
- Department of Pathology, University of Pittsburgh, Pennsylvania 15261
| | | |
Collapse
|
96
|
Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors. Mol Cell Biol 1994. [PMID: 8065319 DOI: 10.1128/mcb.14.9.5858] [Citation(s) in RCA: 150] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha mRNA and protein as well as C/EBP alpha and C/EBP beta DNA binding activities to the abundant levels present in freshly isolated hepatocytes. These changes are not due merely to growth inhibition, because suppression of hepatocyte proliferation on collagen by epidermal growth factor starvation or addition of transforming growth factor beta does not inhibit AP-1 activity or restore C/EBP alpha DNA binding activity to normal hepatic levels. These data suggest that expression of the normal hepatic phenotype requires that hepatocytes exist in a G0 state of growth arrest, facilitated here by adhesion of cells to the EHS gel, in order to express high levels of hepatic transcription factors such as C/EBP alpha.
Collapse
|
97
|
Rana B, Mischoulon D, Xie Y, Bucher NL, Farmer SR. Cell-extracellular matrix interactions can regulate the switch between growth and differentiation in rat hepatocytes: reciprocal expression of C/EBP alpha and immediate-early growth response transcription factors. Mol Cell Biol 1994; 14:5858-69. [PMID: 8065319 PMCID: PMC359112 DOI: 10.1128/mcb.14.9.5858-5869.1994] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Previous investigations have shown that culture of freshly isolated hepatocytes under conventional conditions, i.e., on dried rat tail collagen in the presence of growth factors, facilitates cell growth but also causes an extensive down-regulation of most liver-specific functions. This dedifferentiation process can be prevented if the cells are cultured on a reconstituted basement membrane gel matrix derived from the Englebreth-Holm-Swarm mouse sarcoma tumor (EHS gel). To gain insight into the mechanisms regulating this response to extracellular matrix, we are analyzing the activities of two families of transcription factors, C/EBP and AP-1, which control the transcription of hepatic and growth-responsive genes, respectively. We demonstrate that isolation of hepatocytes from the normal quiescent rat liver by collagenase perfusion activates the immediate-early growth response program, as indicated by increased expression of c-jun, junB, c-fos, and c-myc mRNAs. Adhesion of these activated cells to dried rat tail collagen augments the elevated levels of these mRNAs for the initial 1 to 2 h postplating; junB and c-myc mRNA levels then drop steeply, with junB returning to normal quiescence and the c-myc level remaining slightly elevated during the 3-day culture period. Levels of c-jun mRNA and AP-1 DNA binding activity, however, remain elevated from the outset, while C/EBP alpha mRNA expression is down-regulated, resulting in a decrease in the steady-state levels of the 42- and 30-kDa C/EBP alpha polypeptides and C/EBP alpha DNA binding activity. In contrast, C/EBP beta mRNA production remains at near-normal hepatic levels for 5 to 8 days of culture, although its DNA binding activity decreases severalfold during this time. Adhesion of hepatocytes to the EHS gel for the same period of time dramatically alters this program: it arrests growth and inhibits AP-1 DNA binding activity and the expression of c-jun, junB, and c-myc mRNAs, but, in addition, it restores C/EBP alpha mRNA and protein as well as C/EBP alpha and C/EBP beta DNA binding activities to the abundant levels present in freshly isolated hepatocytes. These changes are not due merely to growth inhibition, because suppression of hepatocyte proliferation on collagen by epidermal growth factor starvation or addition of transforming growth factor beta does not inhibit AP-1 activity or restore C/EBP alpha DNA binding activity to normal hepatic levels. These data suggest that expression of the normal hepatic phenotype requires that hepatocytes exist in a G0 state of growth arrest, facilitated here by adhesion of cells to the EHS gel, in order to express high levels of hepatic transcription factors such as C/EBP alpha.
Collapse
Affiliation(s)
- B Rana
- Department of Biochemistry, Boston University School of Medicine, Massachusetts 02118
| | | | | | | | | |
Collapse
|
98
|
Chen B, Liang G, Whelan J, Hai T. ATF3 and ATF3 delta Zip. Transcriptional repression versus activation by alternatively spliced isoforms. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)40754-x] [Citation(s) in RCA: 175] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
99
|
Benbrook DM, Jones NC. Different binding specificities and transactivation of variant CRE's by CREB complexes. Nucleic Acids Res 1994; 22:1463-9. [PMID: 8190638 PMCID: PMC308006 DOI: 10.1093/nar/22.8.1463] [Citation(s) in RCA: 126] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The DNA binding specificities of CREB1 and CREB2 homodimers and the CREB2/cJun heterodimer were analyzed with a CASTing technique. All but one of the selected sequences varied from the consensus CRE (TGACGTCA) by three nucleotides or less. The profile of variations selected and the binding affinity for these sequences were unique for each CREB complex. The affinities were not effected by the palindromic nature of the sequences, but were strongly effected by flanking sequences. The strength of DNA binding in vitro correlated with the degree of transactivation observed in JEG-3 cells transfected with reporter plasmids harboring CRE variants, when hybrid CREB proteins fused to the VP16 activation domain were expressed. When native CREB proteins were expressed, the correlation was attenuated by the nature of the variant sequence. A CRE variant (TGACATCA) found in several natural promoters, exhibited the lowest basal transcription rate of the variants and a lower level of induction than expected when compared with the in vitro binding data. These results indicate that transactivation of DNA sequence elements is strongly effected by the strength of transcription factor binding, and that individual sequences can attenuate the level of induction.
Collapse
Affiliation(s)
- D M Benbrook
- Department of Obstetrics and Gynecology, University of Oklahoma Health Sciences Center, Oklahoma City 73190
| | | |
Collapse
|
100
|
Haber BA, Mohn KL, Diamond RH, Taub R. Induction patterns of 70 genes during nine days after hepatectomy define the temporal course of liver regeneration. J Clin Invest 1993; 91:1319-26. [PMID: 8473485 PMCID: PMC288102 DOI: 10.1172/jci116332] [Citation(s) in RCA: 147] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Liver regeneration is an important process that allows for recovery from hepatic injuries caused by viruses, toxins, ischemia, surgery, and transplantation. Previously, we identified > 70 immediate-early genes induced in regenerating liver after hepatectomy, 41 of which were novel. While it is expected that the proteins encoded by these genes may have important roles in regulating progression through the G1 phase of the cell cycle during regeneration, we were surprised to note that many of these "early" genes are expressed for extended periods during the hepatic growth response. Here we define several patterns of expression of immediate-early, delayed-early, and liver-specific genes during the 9-d period after hepatectomy. One pattern of induction parallels the major growth period of the liver that ends at 60-72 h after hepatectomy. A second pattern has two peaks coincident with the first and second G1 phases of the two hepatic cell cycles. A third group, which includes liver-specific genes such as C/EBP alpha, shows maximal expression after the growth period. Although the peak in DNA synthesis in nonparenchymal cells occur 24 h later than in hepatocytes, most of the genes studied demonstrate similar induction in both cell types. This finding suggests that the G0/G1 transition occurs simultaneously in all cells in the liver, but that the G1 phase of nonparenchymal cells may be relatively prolonged. Finally, we examined the expression of > 70 genes in clinical settings that could induce liver regeneration, including after perfusion in a donor liver, hepatic ischemia, and fulminant hepatic failure. We found that a small number of early and liver-specific genes were selectively activated in human livers under these conditions, and we thereby provide a potential means of measuring the caliber of the regenerative response in clinical situations.
Collapse
Affiliation(s)
- B A Haber
- Department of Genetics, University of Pennsylvania, School of Medicine, Philadelphia 19104-6145
| | | | | | | |
Collapse
|