51
|
High-Level Globin Gene Expression Mediated by a Recombinant Adeno-Associated Virus Genome That Contains the 3′ γ Globin Gene Regulatory Element and Integrates as Tandem Copies in Erythroid Cells. Blood 1997. [DOI: 10.1182/blood.v89.6.2167] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
AbstractRecombinant adeno-associated virus (rAAV) vectors are being evaluated for gene therapy applications. Using purified rAAV containing a mutationally marked globin gene (Aγ*) and sites 2, 3, and 4 from the locus control region (rHS432Aγ*), but lacking a drug-resistance gene, we investigated the relationship between multiplicity of infection (MOI), gene expression, and unselected genome integration in erythroid cells. Most primary erythroid progenitors were transduced as reflected by Aγ* mRNA in mature colonies but only at an MOI of greater than 5 × 107. Using immortalized erythroleukemia cells as a model, we found that fewer than one half of the colonies that contained the Aγ* transcript had an integrated, intact rHS432Aγ* genome. rHS432Aγ* integrated as a single copy with expression at approximately 50% the level of an endogenous γ globin gene. A second vector, rHS32Aγ*3′RE, containing the regulatory element (RE) from 3′ to the chromosomal Aγ globin gene, integrated as an intact, tandem head to tail concatamer with a median copy number of 6 with variable expression per copy ranging from approximately onefold to threefold that of an endogenous γ globin gene. These results establish that purified rAAV can be used to achieve integration and functional expression of a globin gene in erythroid cells, but only when high MOIs are used.
Collapse
|
52
|
Ellis J, Pasceri P, Tan-Un KC, Wu X, Harper A, Fraser P, Grosveld F. Evaluation of beta-globin gene therapy constructs in single copy transgenic mice. Nucleic Acids Res 1997; 25:1296-302. [PMID: 9092642 PMCID: PMC146564 DOI: 10.1093/nar/25.6.1296] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Effective gene therapy constructs based on retrovirus or adeno-associated virus vectors will require regulatory elements that direct expression of genes transduced at single copy. Most beta-globin constructs designed for therapy of beta-thalassemias are regulated by the 5'HS2 component of the locus control region (LCR). Here we show that a human beta-globin gene flanked by two small 5'HS2 core elements or flanked by a 5'HS3 (footprints 1-3) core and a 5'HS2 core are not reproducibly expressed in single copy transgenic mice. In addition, low copy transgene concatamers that contain only dimer 5'HS2 cores fail to express, whereas those that contain monomer 5'HS2 cores express at 14% per copy. These data suggest that spacing between HS cores is crucial for LCR activity. We therefore constructed a novel 3.0 kb LCR cassette in which the 5'HS2, 5'HS3 and 5'HS4 cores are each separated by approximately 700 bp. When linked to the 815 bp beta-globin promoter this LCR directs 45% levels of expression from four independent single copy transgenes. However, the 3.0 kb LCR linked to the 265 bp promoter expresses variable levels, averaging 18%, from three single copy transgenes. Our findings suggest that sequences in the distal promoter play a role in single copy transgene activation and that larger LCR and promoter elements are most suitable for gene therapy applications.
Collapse
Affiliation(s)
- J Ellis
- Department of Genetics, Blood Gene Therapy Program and Program in Developmental Biology, Hospital for Sick Children, 555 University Avenue, Toronto, Ontario M5G1X8, Canada.
| | | | | | | | | | | | | |
Collapse
|
53
|
Fisher KJ, Jooss K, Alston J, Yang Y, Haecker SE, High K, Pathak R, Raper SE, Wilson JM. Recombinant adeno-associated virus for muscle directed gene therapy. Nat Med 1997; 3:306-12. [PMID: 9055858 DOI: 10.1038/nm0397-306] [Citation(s) in RCA: 507] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Although gene transfer with adeno-associated virus (AAV) vectors has typically been low, transduction can be enhanced in the presence of adenovirus gene products through the formation of double stranded, non-integrated AAV genomes. We describe the unexpected finding of high level and stable transgene expression in mice following intramuscular injection of purified recombinant AAV (rAAV). The rAAV genome is efficiently incorporated into nuclei of differentiated muscle fibers where it persists as head-to-tail concatamers. Fluorescent in situ hybridization of muscle tissue suggests single integration sites. Neutralizing antibody against AAV capsid proteins does not prevent readministration of vector. Remarkably, no humoral or cellular immune responses are elicited to the neoantigenic transgene product E. coli beta-galactosidase. The favorable biology of rAAV in muscle-directed gene therapy described in this study expands the potential of this vector for the treatment of inherited and acquired diseases.
Collapse
Affiliation(s)
- K J Fisher
- Institute for Human Gene Therapy, University of Pennsylvania Health System, Philadelphia 19104, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
54
|
Malik P, McQuiston SA, Yu XJ, Pepper KA, Krall WJ, Podsakoff GM, Kurtzman GJ, Kohn DB. Recombinant adeno-associated virus mediates a high level of gene transfer but less efficient integration in the K562 human hematopoietic cell line. J Virol 1997; 71:1776-83. [PMID: 9032306 PMCID: PMC191246 DOI: 10.1128/jvi.71.3.1776-1783.1997] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We tested the ability of a recombinant adeno-associated virus (rAAV) vector to express and integrate exogenous DNA into human hematopoietic cells in the absence of selection. We developed an rAAV vector, AAV-tNGFR, carrying a truncated rat nerve growth factor receptor (tNGFR) cDNA as a cell surface reporter under the control of the Moloney murine leukemia virus (MoMuLV) long terminal repeat. An analogous MoMuLV-based retroviral vector (L-tNGFR) was used in parallel, and gene transfer and expression in human hematopoietic cells were assessed by flow cytometry and DNA analyses. Following gene transfer into K562 cells with AAV-tNGFR at a multiplicity of infection (MOI) of 13 infectious units (IU), 26 to 38% of cells expressed tNGFR on the surface early after transduction, but the proportion of tNGFR expressing cells steadily declined to 3.0 to 3.5% over 1 month of culture. At an MOI of 130 IU, nearly all cells expressed tNGFR immediately posttransduction, but the proportion of cells expressing tNGFR declined to 62% over 2 months of culture. The decline in the proportion of AAV-tNGFR-expressing cells was associated with ongoing losses of vector genomes. In contrast, K562 cells transduced with the retroviral vector L-tNGFR expressed tNGFR in a constant fraction. Integration analyses on clones showed that integration occurred at different sites. Integration frequencies were estimated at about 49% at an MOI of 130 and 2% at an MOI of 1.3. Transduction of primary human CD34+ progenitor cells by AAV-tNGFR was less efficient than with K562 cells and showed a declining percentage of cells expressing tNGFR over 2 weeks of culture. Thus, purified rAAV caused very high gene transfer and expression in human hematopoietic cells early after transduction, which steadily declined during cell passage in the absence of selection. Although the efficiency of integration was low, overall integration was markedly improved at a high MOI. While prolonged episomal persistence may be adequate for gene therapy of nondividing cells, a very high MOI or improvements in basic aspects of AAV-based vectors may be necessary to improve integration frequency in the rapidly dividing hematopoietic cell population.
Collapse
Affiliation(s)
- P Malik
- Division of Research Immunology/Bone Marrow Transplantation, Childrens Hospital Los Angeles, University of Southern California School of Medicine, USA
| | | | | | | | | | | | | | | |
Collapse
|
55
|
Xiao X, Li J, McCown TJ, Samulski RJ. Gene transfer by adeno-associated virus vectors into the central nervous system. Exp Neurol 1997; 144:113-24. [PMID: 9126160 DOI: 10.1006/exnr.1996.6396] [Citation(s) in RCA: 140] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Adeno-associated virus (AAV) vectors are derived from a nonpathogenic and defective human parvovirus. Although currently unable to display the integration specificity featured by its wild-type parent, the recombinant AAV (rAAV) system has continued to attract enormous interest primarily due to its unique features such as safety, high titers, broad host range, transduction of quiescent cells, and vector integration. Recently, rAAV-mediated in vivo gene transfers have demonstrated efficient long-term transduction (from 3 months to more than 1.5 years) and lack of cytotoxicity and cellular immune responses in the target tissues, especially in the CNS. Alternative approaches using rAAV plasmid DNA in nonviral gene delivery systems also generated promising results. Propelled by various efforts to improve the system, rAAV vectors will provide numerous opportunities to explore the potential therapeutic applications in humans.
Collapse
Affiliation(s)
- X Xiao
- Gene Therapy Center, University of North Carolina at Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
56
|
Kaplitt MG, Xiao X, Samulski RJ, Li J, Ojamaa K, Klein IL, Makimura H, Kaplitt MJ, Strumpf RK, Diethrich EB. Long-term gene transfer in porcine myocardium after coronary infusion of an adeno-associated virus vector. Ann Thorac Surg 1996; 62:1669-76. [PMID: 8957370 DOI: 10.1016/s0003-4975(96)00946-0] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
BACKGROUND Viral vector-mediated gene transfer into the heart represents a potentially powerful tool for studying both cardiac physiology as well as gene therapy of cardiac disease. We report here the use of a defective viral vector, which expresses no viral gene products, for gene transfer into the mammalian heart. Previous studies have used recombinant viral vectors, which retained viral genes and yielded mostly short-term expression, often with significant inflammation. METHODS An adeno-associated virus vector was used that contains no viral genes and is completely free of contaminating helper viruses. The adeno-associated virus vector was applied to rat hearts by direct intramuscular injection; adeno-associated virus was also infused into pig hearts in vivo via percutaneous intraarterial infusion into the coronary vasculature using routine catheterization techniques. RESULTS Gene transfer into rat heart yielded no apparent inflammation, and expression was observed for at least 2 months after injection. Infusion into pig circumflex coronary arteries resulted in successful transfer and expression of the reporter gene in cardiac myocytes without apparent toxicity or inflammation; gene expression was observed for at least 6 months after infusion. CONCLUSIONS We report the use of adeno-associated virus vectors in the cardiovascular system as well as successful myocardial gene transfer after percutaneous coronary artery infusion of viral vectors in a large, clinically relevant mammalian model. These results suggest that safe and stable gene transfer can be achieved in the heart using standard outpatient cardiac catheterization techniques.
Collapse
Affiliation(s)
- M G Kaplitt
- Department of Surgery, New York Hospital-Cornell University Medical College, New York, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Bertran J, Miller JL, Yang Y, Fenimore-Justman A, Rueda F, Vanin EF, Nienhuis AW. Recombinant adeno-associated virus-mediated high-efficiency, transient expression of the murine cationic amino acid transporter (ecotropic retroviral receptor) permits stable transduction of human HeLa cells by ecotropic retroviral vectors. J Virol 1996; 70:6759-66. [PMID: 8794313 PMCID: PMC190719 DOI: 10.1128/jvi.70.10.6759-6766.1996] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Adeno-associated virus has a broad host range, is nonpathogenic, and integrates into a preferred location on chromosome 19, features that have fostered development of recombinant adeno-associated viruses (rAAV) as gene transfer vectors for therapeutic applications. We have used an rAAV to transfer and express the murine cationic amino acid transporter which functions as the ecotropic retroviral receptor, thereby rendering human cells conditionally susceptible to infection by an ecotropic retroviral vector. The proportion of human HeLa cells expressing the receptor at 60 h varied as a function of the multiplicity of infection (MOI) with the rAAV. Cells expressing the ecotropic receptor were efficiently transduced with an ecotropic retroviral vector encoding a nucleus-localized form of beta-galactosidase. Cells coexpressing the ecotropic receptor and nucleus-localized beta-galactosidase were isolated by fluorescence-activated cell sorting, and cell lines were recovered by cloning at limiting dilution. After growth in culture, all clones contained the retroviral vector genome, but fewer than 10% (3 of 47) contained the rAAV genome and continued to express the ecotropic receptor. The ecotropic receptor coding sequences in the rAAV genome were under the control of a tetracycline-modulated promoter. In the presence of tetracycline, receptor expression was low and the proportion of cells transduced by the ecotropic retroviral vector was decreased. Modulation of receptor expression was achieved with both an episomal and an integrated form of the rAAV genome. These data establish that functional gene expression from an rAAV genome can occur transiently without genome integration.
Collapse
Affiliation(s)
- J Bertran
- Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | |
Collapse
|
58
|
Cole-Strauss A, Yoon K, Xiang Y, Byrne BC, Rice MC, Gryn J, Holloman WK, Kmiec EB. Correction of the mutation responsible for sickle cell anemia by an RNA-DNA oligonucleotide. Science 1996; 273:1386-9. [PMID: 8703073 DOI: 10.1126/science.273.5280.1386] [Citation(s) in RCA: 240] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A chimeric oligonucleotide composed of DNA and modified RNA residues was used to direct correction of the mutation in the hemoglobin betaS allele. After introduction of the chimeric molecule into lymphoblastoid cells homozygous for the betaS mutation, there was a detectable level of gene conversion of the mutant allele to the normal sequence. The efficient and specific conversion directed by chimeric molecules may hold promise as a therapeutic method for the treatment of genetic diseases.
Collapse
Affiliation(s)
- A Cole-Strauss
- Department of Pharmacology, Kimmel Cancer Center, Thomas Jefferson University, 233 South 10th Street, Philadelphia, PA 19107, USA
| | | | | | | | | | | | | | | |
Collapse
|
59
|
|
60
|
Candotti F, Blaese RM. THE USE OF GENE THERAPY FOR IMMUNODEFICIENCY DISEASE. Radiol Clin North Am 1996. [DOI: 10.1016/s0033-8389(22)00235-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
61
|
Anderson SM, Yu G, Giattina M, Miller JL. Intercellular transfer of a glycosylphosphatidylinositol (GPI)-linked protein: release and uptake of CD4-GPI from recombinant adeno-associated virus-transduced HeLa cells. Proc Natl Acad Sci U S A 1996; 93:5894-8. [PMID: 8650189 PMCID: PMC39158 DOI: 10.1073/pnas.93.12.5894] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A diverse group of GPI-anchored protein structures are ubiquitously expressed on the external cell membranes of eukaryotes. Whereas the physiological role for these structures is usually defined by their protein component, the precise biological significance of the glycolipid anchors remains vague. In the course of producing a HeLa cell line (JM88) that contained a recombinant adeno-associated virus genome expressing a GPI-anchored CD4-GPI fusion protein on the surface of the cells, we noted the transfer of CD4-GPI to native HeLa cells. Transfer occurred after direct cell contact or exposure to JM88 cell supernatants. The magnitude of contact-mediated CD4-GPI transfer correlated with temperature. Supernatant CD4-GPI also attached to human red blood cells and could be cleaved with phosphatidylinositol-specific phospholipase C. The attached CD4-GPI remained biologically active after transfer and permitted the formation of syncytium when coated HeLa cells were incubated with glycoprotein 160 expressing H9 cells. JM88 cells provide a model for the production, release, and reattachment of CD4-GPI and may furnish insight into a physiologic role of naturally occurring GPI-anchored proteins. This approach may also allow the production of other recombinant GPI-anchored proteins for laboratory and clinical investigation.
Collapse
Affiliation(s)
- S M Anderson
- Laboratory of Chemical Biology, National Institute of Diabetes and Digestive and Kidney Diseases,National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
62
|
Ferrari FK, Samulski T, Shenk T, Samulski RJ. Second-strand synthesis is a rate-limiting step for efficient transduction by recombinant adeno-associated virus vectors. J Virol 1996; 70:3227-34. [PMID: 8627803 PMCID: PMC190186 DOI: 10.1128/jvi.70.5.3227-3234.1996] [Citation(s) in RCA: 583] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The ability of recombinant adeno-associated virus (AAV) to transduce cells with a marker gene in vitro was found to be substantially increased by the presence of adenovirus. Transfection experiments with adenovirus genomic DNA suggest that this increase is not facilitated by adenovirus-mediated viral uptake but is instead dependent on adenovirus gene expression. Using various adenovirus mutants, we were able to map this function to early-region E4 open reading frame 6. Plasmid expression of open reading frame 6 protein in cells infected with recombinant AAV increased transduction between 100- and 1,000-fold. The increase in transduction was not dependent on the recombinant AAV gene cassette but instead appeared to involve an immediate early step of the AAV life cycle. Chemical and physical agents that have been shown to induce helper-free replication of wild-type AAV were also able to stimulate recombinant AAV transduction, suggesting that the phenomenon might affect AAV DNA replication. Further experiments showed that viral uncoating was not affected and that the rate-limiting step involved synthesis of a second strand on the single-stranded genomic AAV DNA. These data suggest that the adenovirus E4 region, as well as chemical and physical agents, can play an essential role in an immediate-early step of the AAV life cycle, specifically in second-strand synthesis, and have important implications for the use of AAV vectors in gene therapy protocols.
Collapse
Affiliation(s)
- F K Ferrari
- Gene Therapy Center, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
63
|
Abstract
An increased understanding of the molecular mechanisms of cancer and the ability to introduce exogenous genes into mammalian cells has led to the development of oncologic treatment strategies based upon gene transfer. Preclinical animal models have suggested a variety of approaches which are now being tested in pediatric trials. Studies using marker genes to trace cell origin have already generated important information regarding autologous bone marrow transplantation for pediatric cancers. A variety of therapeutic genes are also being clinically tested. Trials are underway to determine if introduction of immunostimulatory genes into cancer cells can be used to enhance host antitumor immunity. Treatment of primary brain tumors with insertion of drug sensitization genes is a promising new therapy that is also being clinically evaluated. Other strategies such as insertion of drug resistance genes into hematopoietic cells, anti-oncogene therapy, and tumor suppressor gene replacement are being tested in adults and may find use in pediatric cancer treatment. Although gene transfer offers promising new approaches for the therapy of pediatric cancer, many technical problems remain which limit efficacy and widespread use. Further basic research in the molecular biology of cancer and in vector development will be required to realize the full potential of gene therapy strategies.
Collapse
Affiliation(s)
- E Benaim
- Department of Hematology/Oncology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
64
|
Stoeckert CJ, Cheng H. Partial repression of human gamma-globin genes by LCR element HS3 when linked to beta-globin genes and LCR element HS2 in MEL cells. Am J Hematol 1996; 51:220-8. [PMID: 8619403 DOI: 10.1002/(sici)1096-8652(199603)51:3<220::aid-ajh7>3.0.co;2-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Clues for overcoming fetal (gamma-) globin gene repression in adult human erythroid cells may come from understanding why repression of isolated gamma-globin genes has not previously been achieved in the adult erythroid environment of mouse erythroleukemia cells (MEL). Repression of human gamma-globin genes has been demonstrated in MEL cells when transferred as part of the entire beta-globin gene cluster packaged in chromatin. Major differences in these approaches are prior packaging into chromatin and the presence of additional sequences, notably from the locus control region (LCR). In this report we focus on the contribution to gamma-globin gene repression that multiple elements of the LCR may have. We first show preferential activation of beta-globin genes over gamma-globin genes in MEL cells when linked to each other and to LCR sequences containing the core elements of DNase I hypersensitive sites 4, 3, and 2. Removal of the HS4 element had no effect, however, removal of the 225 bp HS3 core element resulted in a five-fold increase in gamma-globin gene expression. The enhancer 3' to the A gamma-globin gene also had no apparent effect on gamma-globin gene expression. These results provide first evidence of gamma-globin gene repression involving the core region of HS3 in the presence of the core region of HS2 and a beta-globin gene. A mechanism for repression involving sequestration of the gamma-promoter away from the strong enhancer activity of HS2 is proposed.
Collapse
Affiliation(s)
- C J Stoeckert
- Joseph Stokes Jr. Research Institute, The Children's Hospital of Philadelphia, PA 19104-4318, USA
| | | |
Collapse
|
65
|
Tamayose K, Hirai Y, Shimada T. A new strategy for large-scale preparation of high-titer recombinant adeno-associated virus vectors by using packaging cell lines and sulfonated cellulose column chromatography. Hum Gene Ther 1996; 7:507-13. [PMID: 8800745 DOI: 10.1089/hum.1996.7.4-507] [Citation(s) in RCA: 106] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The extensive testing of adeno-associated virus (AAV) as a vector for human gene therapy has been hampered by low efficiency of the current packaging system, which is based on transient transfection with plasmid DNAs and infection with adenovirus in permissive cells. In an effort to resolve this problem, HeLa cell-based packaging cell lines were established. These packaging cells carry multiple copies of the AAV genome lacking the inverted terminal repeat (ITR) sequences. The AAV genes were silent in these cells but inducibly expressed by adenovirus infection. When the AAV vector plasmid containing the neoR gene flanked by the ITRs was also integrated into these cells, efficient production of the recombinant AAV particles occurred after adenovirus infection. AAV vector particles in cell lysates could be concentrated by sulfonated cellulose column chromatography. Using the packaging cells and the column chromatography technique, it is possible to prepare AAV vectors with the titer of higher than 10(8) cfu/ml or 5 x 10(10) particles/ml. This new strategy should be useful for testing AAV vectors in vivo.
Collapse
Affiliation(s)
- K Tamayose
- Department of Biochemistry and Molecular Biology, Nippon Medical School, Tokyo, Japan
| | | | | |
Collapse
|
66
|
Dunbar CE. Gene transfer to hematopoietic stem cells: implications for gene therapy of human disease. Annu Rev Med 1996; 47:11-20. [PMID: 8712765 DOI: 10.1146/annurev.med.47.1.11] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Transfer of new genetic material to hematopoietic stem cells and expression of the gene product in daughter cells of various lineages is an exciting approach to the treatment of congenital and acquired human diseases. This review summarizes the current status of retroviral and adeno-associated viral vectors for gene transfer to human hematopoietic cells, including extensive preclinical data as well as preliminary results from ongoing clinical trials.
Collapse
Affiliation(s)
- C E Dunbar
- Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
67
|
McCarty DM, Samulski RJ. Adeno-associated virus vectors for gene transfer into erythroid cells. Curr Top Microbiol Immunol 1996; 218:75-91. [PMID: 8794247 DOI: 10.1007/978-3-642-80207-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- D M McCarty
- Gene-Therapy Center and Department of Pharmacology, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
68
|
Chatterjee S, Wong KK. Adeno-associated virus vectors for gene therapy of the hematopoietic system. Curr Top Microbiol Immunol 1996; 218:61-73. [PMID: 8794246 DOI: 10.1007/978-3-642-80207-2_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- S Chatterjee
- Division of Pediatrics, City of Hope National Medical Center, Duarte, CA 91010, USA
| | | |
Collapse
|
69
|
Corsini J, Afanasiev B, Maxwell IH, Carlson JO. Autonomous parvovirus and densovirus gene vectors. Adv Virus Res 1996; 47:303-51. [PMID: 8895835 DOI: 10.1016/s0065-3527(08)60738-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J Corsini
- Department of Microbiology, Colorado State University, Fort Collins 80523, USA
| | | | | | | |
Collapse
|
70
|
Affiliation(s)
- J P Trempe
- Department of Biochemistry and Molecular Biology, Medical College of Ohio, Toledo 43699, USA
| |
Collapse
|
71
|
Affiliation(s)
- K I Berns
- Department of Microbiology, Hearst Microbiology Research Center, Cornell University Medical College, New York 10021, USA
| | | |
Collapse
|
72
|
Chatterjee S, Lu D, Podsakoff G, Wong KK. Strategies for efficient gene transfer into hematopoietic cells. The use of adeno-associated virus vectors in gene therapy. Ann N Y Acad Sci 1995; 770:79-90. [PMID: 8597384 DOI: 10.1111/j.1749-6632.1995.tb31045.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- S Chatterjee
- Division of Pediatrics, City of Hope National Medical Center, Duarte, California 91010, USA
| | | | | | | |
Collapse
|
73
|
Affiliation(s)
- M Alt
- Department of Virus Research, Max-Planck-Institut fur Biochemie, Martinsried, Germany
| | | |
Collapse
|
74
|
Russell DW, Alexander IE, Miller AD. DNA synthesis and topoisomerase inhibitors increase transduction by adeno-associated virus vectors. Proc Natl Acad Sci U S A 1995; 92:5719-23. [PMID: 7777575 PMCID: PMC41768 DOI: 10.1073/pnas.92.12.5719] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Viral vectors based on adeno-associated virus (AAV) preferentially transduce cells in S phase of the cell cycle. We recently found that DNA-damaging agents increased the transduction of nondividing cells. However, the optimal concentrations were toxic to cells. Here we show that the transduction of normal human fibroblasts by AAV vectors is increased by prior exposure to DNA synthesis inhibitors, such as aphidicolin or hydroxyurea, and topoisomerase inhibitors, such as etoposide or camptothecin. Transduction efficiencies could be increased > 300-fold in stationary cultures at concentrations that did not affect cell viability or proliferative potential. Both S-phase and non-S-phase cells were affected, suggesting that cellular functions other than replicative DNA synthesis may be involved. Applying these methods to gene transfer protocols should improve prospects for gene therapy by AAV vectors.
Collapse
Affiliation(s)
- D W Russell
- Fred Hutchinson Cancer Research Center, Seattle, WA 98104, USA
| | | | | |
Collapse
|
75
|
Dunbar CE, Emmons RV. Gene transfer into hematopoietic progenitor and stem cells: progress and problems. Stem Cells 1994; 12:563-76. [PMID: 7881358 DOI: 10.1002/stem.5530120604] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Gene transfer to hematopoietic cells for the purpose of "gene therapy" is a new and rapidly developing field with clinical trials in progress. A fundamental goal of research in this field is the incorporation of exogenous genes into the chromosomes of the most primitive hematopoietic progenitor cells--stem cells. Recombinantly engineered retroviral vectors are the best characterized and are currently the only vector type in clinical trials directed at the hematopoietic system. High efficiency gene transfer and expression in murine stem cells and their progeny is now routine, but in larger animal models such as dogs or primates and preliminary clinical trials, gene transfer has been less successful. Problems such as retroviral efficiency, gene expression, insertional mutagenesis and helper virus contamination are being addressed. A promising new vector, the adeno-associated virus (AAV), has shown promise and may allow production of high titer, stable, recombinant virions without helper contamination and with potentially better safety parameters. However, the technology for AAV gene transfer is currently underdeveloped, and issues related to the reproducible production of vectors must be addressed. Other non-viral vector systems are being explored, but little data are available on applications to hematopoietic cells. Better preclinical models are needed to study gene targeting and expression in human cells. An overview of recombinant retroviral and adeno-associated viral vector production, preclinical data and preliminary clinical data will be given, and problems needing to be addressed at all stages of development before broad clinical utility can be achieved will be discussed.
Collapse
Affiliation(s)
- C E Dunbar
- Hematology Branch, National Heart, Lung and Blood Institute, Bethesda, MD 20892
| | | |
Collapse
|