51
|
We are what we eat: The role of lipids in metabolic diseases. ADVANCES IN FOOD AND NUTRITION RESEARCH 2023. [PMID: 37516463 DOI: 10.1016/bs.afnr.2022.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Lipids play a fundamental role, both structurally and functionally, for the correct functioning of the organism. In the last two decades, they have evolved from molecules involved only in energy storage to compounds that play an important role as components of cell membranes and signaling molecules that regulate cell homeostasis. For this reason, their interest as compounds involved in human health has been gaining weight. Indeed, lipids derived from dietary sources and endogenous biosynthesis are relevant for the pathophysiology of numerous diseases. There exist pathological conditions that are characterized by alterations in lipid metabolism. This is particularly true for metabolic diseases, such as liver steatosis, type 2 diabetes, cancer and cardiovascular diseases. The main issue to be considered is lipid homeostasis. A precise control of fat homeostasis is required for a correct regulation of metabolic pathways and safe and efficient energy storage in adipocytes. When this fails, a deregulation occurs in the maintenance of systemic metabolism. This happens because an increased concentrations of lipids impair cellular homeostasis and disrupt tissue function, giving rise to lipotoxicity. Fat accumulation results in many alterations in the physiology of the affected organs, mainly in metabolic tissues. These alterations include the activation of oxidative and endoplasmic reticulum stress, mitochondrial dysfunction, increased inflammation, accumulation of bioactive molecules and modification of gene expression. In this chapter, we review the main metabolic diseases in which alterations in lipid homeostasis are involved and discuss their pathogenic mechanisms.
Collapse
|
52
|
Sequeira IR, Yip W, Lu LW, Jiang Y, Murphy R, Plank LD, Cooper GJS, Peters CN, Aribsala BS, Hollingsworth KG, Poppitt SD. Exploring the relationship between pancreatic fat and insulin secretion in overweight or obese women without type 2 diabetes mellitus: A preliminary investigation of the TOFI_Asia cohort. PLoS One 2022; 17:e0279085. [PMID: 36584200 PMCID: PMC9803309 DOI: 10.1371/journal.pone.0279085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 10/02/2022] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE While there is an emerging role of pancreatic fat in the aetiology of type 2 diabetes mellitus (T2DM), its impact on the associated decrease in insulin secretion remains controversial. We aimed to determine whether pancreatic fat negatively affects β-cell function and insulin secretion in women with overweight or obesity but without T2DM. METHODS 20 women, with normo- or dysglycaemia based on fasting plasma glucose levels, and low (< 4.5%) vs high (≥ 4.5%) magnetic resonance (MR) quantified pancreatic fat, completed a 1-hr intravenous glucose tolerance test (ivGTT) which included two consecutive 30-min square-wave steps of hyperglycaemia generated by using 25% dextrose. Plasma glucose, insulin and C-peptide were measured, and insulin secretion rate (ISR) calculated using regularisation deconvolution method from C-peptide kinetics. Repeated measures linear mixed models, adjusted for ethnicity and baseline analyte concentrations, were used to compare changes during the ivGTT between high and low percentage pancreatic fat (PPF) groups. RESULTS No ethnic differences in anthropomorphic variables, body composition, visceral adipose tissue (MR-VAT) or PPF were measured and hence data were combined. Nine women (47%) were identified as having high PPF values. PPF was significantly associated with baseline C-peptide (p = 0.04) and ISR (p = 0.04) in all. During the 1-hr ivGTT, plasma glucose (p<0.0001), insulin (p<0.0001) and ISR (p = 0.02) increased significantly from baseline in both high and low PPF groups but did not differ between the two groups at any given time during the test (PPF x time, p > 0.05). Notably, the incremental areas under the curves for both first and second phase ISR were 0.04 units lower in the high than low PPF groups, but this was not significant (p > 0.05). CONCLUSION In women with overweight or obesity but without T2DM, PPF did not modify β-cell function as determined by ivGTT-assessed ISR. However, the salient feature in biphasic insulin secretion in those with ≥4.5% PPF may be of clinical importance, particularly in early stages of dysglycaemia may warrant further investigation.
Collapse
Affiliation(s)
- Ivana R. Sequeira
- Human Nutrition Unit, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- * E-mail:
| | - Wilson Yip
- Human Nutrition Unit, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Louise W. Lu
- Human Nutrition Unit, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
| | - Yannan Jiang
- Department of Statistics, Faculty of Science, University of Auckland, Auckland, New Zealand
| | - Rinki Murphy
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Auckland District Health Board, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| | - Lindsay D. Plank
- Department of Surgery, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Garth J. S. Cooper
- Division of Cardiovascular Sciences, Centre for Advanced Discovery and Experimental Therapeutics (CADET), Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
- School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- Division of Medical Sciences, Department of Pharmacology, University of Oxford, Oxford, United Kingdom
| | - Carl N. Peters
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Waitemata District Health Board, Auckland, New Zealand
| | - Benjamin S. Aribsala
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
- Department of Computer Science, Faculty of Science, Lagos State University, Lagos, Nigeria
| | - Kieren G. Hollingsworth
- Newcastle Magnetic Resonance Centre, Translational and Clinical Research Institute, Faculty of Medical Science, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Sally D. Poppitt
- Human Nutrition Unit, School of Biological Sciences, Faculty of Science, University of Auckland, Auckland, New Zealand
- High-Value Nutrition National Science Challenge, Auckland, New Zealand
- Department of Medicine, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
- Riddet Centre of Research Excellence (CoRE) for Food and Nutrition, Palmerston North, New Zealand
| |
Collapse
|
53
|
Njoku DB, Schilling JD, Finck BN. Mechanisms of nonalcoholic steatohepatitis-associated cardiomyopathy: key roles for liver-heart crosstalk. Curr Opin Lipidol 2022; 33:295-299. [PMID: 35942818 DOI: 10.1097/mol.0000000000000845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
PURPOSE OF REVIEW Nonalcoholic steatohepatitis (NASH) is a multisystem disease that affects not only the liver but also heart, pancreas, and kidney. We currently lack a comprehensive understanding of mechanisms responsible for the development of NASH-associated cardiomyopathy or the influence of sex on pathophysiology. There is a critical need to address these gaps in knowledge in order to accelerate translation of knowledge into clinical practice. RECENT FINDINGS NASH and cardiovascular disease share common risk factors such as chronic inflammation, hyperlipidemia, and insulin resistance. Early cardiac dysfunction in NASH that is independent of obesity or other cardiometabolic risk factors suggests roles for liver-heart crosstalk in disease pathogenesis. Inflammation is a driving force in the pathogenesis of NASH, and it is likely that 'spill over' of NASH inflammation contributes to the development of cardiomyopathy. However, molecular and cellular mechanisms that mediate NASH-associated cardiomyopathy remain unclear because of inherent limitations of experimental models. Even so, recent studies implicate inflammatory, metabolic, and physiologic mechanisms that enhance our understanding of NASH-associated cardiomyopathy and the role of liver-heart crosstalk. SUMMARY An innovative, detailed, and mechanistic understanding of NASH-associated cardiomyopathy is relevant to public health and will be fundamental for the comprehensive care of these patients.
Collapse
Affiliation(s)
- Dolores B Njoku
- Division of Pediatric Anesthesiology, Department of Anesthesiology
- Department of Pathology and Immunology
| | | | - Brian N Finck
- Division of Geriatrics and Nutritional Sciences, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri, USA
| |
Collapse
|
54
|
De Paoli M, Wood DW, Bohn MK, Pandey AK, Borowitz DK, Fang S, Patel Z, Venegas-Pino DE, Shi Y, Werstuck GH. Investigating the protective effects of estrogen on β-cell health and the progression of hyperglycemia-induced atherosclerosis. Am J Physiol Endocrinol Metab 2022; 323:E254-E266. [PMID: 35830687 DOI: 10.1152/ajpendo.00353.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Sex differences in the prevalence and development of diabetes and associated cardiometabolic complications are well established. The objective of this study was to analyze the effects of estrogen on the maintenance of β-cell health/function and atherosclerosis progression, using a mouse model of hyperglycemia-induced atherosclerosis, the ApoE-/-:Ins2+/Akita mouse. ApoE-/-:Ins2+/Akita mice exhibit sexual dimorphism in the control of blood glucose levels. Male ApoE-/-:Ins2+/Akita mice are chronically hyperglycemic due to a significant reduction in pancreatic β-cell mass. Female mice are only transiently hyperglycemic, maintain β-cell mass, and blood glucose levels normalize at 35 ± 1 days of age. To determine the effects of estrogen on pancreatic β-cell health and function, ovariectomies and estrogen supplementation experiments were performed, and pancreatic health and atherosclerosis were assessed at various time points. Ovariectomized ApoE-/-:Ins2+/Akita mice developed chronic hyperglycemia with significantly reduced β-cell mass. To determine whether the observed effects on ovariectomized ApoE-/-:Ins2+/Akita mice were due to a lack of estrogens, slow-releasing estradiol pellets were inserted subcutaneously. Ovariectomized ApoE-/-:Ins2+/Akita mice treated with exogenous estradiol showed normalized blood glucose levels and maintained β-cell mass. Exogenous estradiol significantly reduced atherosclerosis in both ovariectomized female and male ApoE-/-:Ins2+/Akita mice relative to controls. Together, these findings suggest that estradiol confers significant protection to pancreatic β-cell health and can directly and indirectly slow the progression of atherosclerosis.NEW & NOTEWORTHY This study examines the effect(s) of estrogen on β cell and cardiometabolic health/function in a novel mouse model of hyperglycemia-induced atherosclerosis (ApoE-/-:Ins2+/Akita). Using a combination of estrogen deprivation (ovariectomy) and supplementation strategies, we quantify effects on glucose homeostasis and atherogenesis. Our results clearly show a protective role for estrogen on pancreatic β-cell health and function and glucose homeostasis. Furthermore, estrogen supplementation dramatically reduces atherosclerosis progression in both male and female mice.
Collapse
Affiliation(s)
- Monica De Paoli
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Dempsey W Wood
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Mary K Bohn
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Arjun K Pandey
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Dana K Borowitz
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Susanna Fang
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Zinal Patel
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Daniel E Venegas-Pino
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Yuanyuan Shi
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
| | - Geoff H Werstuck
- Thrombosis and Atherosclerosis Research Institute, Hamilton, Ontario, Canada
- Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
55
|
Guevara-Olaya L, Chimal-Vega B, Castañeda-Sánchez CY, López-Cossio LY, Pulido-Capiz A, Galindo-Hernández O, Díaz-Molina R, Ruiz Esparza-Cisneros J, García-González V. LDL Promotes Disorders in β-Cell Cholesterol Metabolism, Implications on Insulin Cellular Communication Mediated by EVs. Metabolites 2022; 12:754. [PMID: 36005626 PMCID: PMC9415214 DOI: 10.3390/metabo12080754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/05/2022] [Accepted: 08/08/2022] [Indexed: 12/01/2022] Open
Abstract
Dyslipidemia is described as a hallmark of metabolic syndrome, promoting a stage of metabolic inflammation (metainflammation) that could lead to misbalances in energetic metabolism, contributing to insulin resistance, and modifying intracellular cholesterol pathways and the renin-angiotensin system (RAS) in pancreatic islets. Low-density lipoprotein (LDL) hypercholesterolemia could disrupt the tissue communication between Langerhans β-cells and hepatocytes, wherein extracellular vesicles (EVs) are secreted by β-cells, and exposition to LDL can impair these phenomena. β-cells activate compensatory mechanisms to maintain insulin and metabolic homeostasis; therefore, the work aimed to characterize the impact of LDL on β-cell cholesterol metabolism and the implication on insulin secretion, connected with the regulation of cellular communication mediated by EVs on hepatocytes. Our results suggest that β-cells can endocytose LDL, promoting an increase in de novo cholesterol synthesis targets. Notably, LDL treatment increased mRNA levels and insulin secretion; this hyperinsulinism condition was associated with the transcription factor PDX-1. However, a compensatory response that maintains basal levels of intracellular calcium was described, mediated by the overexpression of calcium targets PMCA1/4, SERCA2, and NCX1, together with the upregulation of the unfolded protein response (UPR) through the activation of IRE1 and PERK arms to maintain protein homeostasis. The LDL treatment induced metainflammation by IL-6, NF-κB, and COX-2 overexpression. Furthermore, LDL endocytosis triggered an imbalance of the RAS components. LDL treatment increased the intracellular levels of cholesterol on lipid droplets; the adaptive β-cell response was portrayed by the overexpression of cholesterol transporters ABCA1 and ABCG1. Therefore, lipotoxicity and hyperinsulinism induced by LDL were regulated by the natural compound auraptene, a geranyloxyn coumarin modulator of cholesterol-esterification by ACAT1 enzyme inhibition. EVs isolated from β-cells impaired insulin signaling via mTOR/p70S6Kα in hepatocytes, a phenomenon regulated by auraptene. Our results show that LDL overload plays a novel role in hyperinsulinism, mechanisms associated with a dysregulation of intracellular cholesterol, lipotoxicity, and the adaptive UPR, which may be regulated by coumarin-auraptene; these conditions explain the affectations that occur during the initial stages of insulin resistance.
Collapse
Affiliation(s)
- Lizbeth Guevara-Olaya
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Brenda Chimal-Vega
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - César Yahel Castañeda-Sánchez
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Leslie Y. López-Cossio
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Angel Pulido-Capiz
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio de Biología Molecular, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
| | - Octavio Galindo-Hernández
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | - Raúl Díaz-Molina
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| | | | - Victor García-González
- Departamento de Bioquímica, Facultad de Medicina Mexicali, Universidad Autónoma de Baja California, Mexicali 21000, BC, Mexico
- Laboratorio Multidisciplinario de Estudios Metabólicos y Cáncer, Facultad de Medicina Mexicali, Universidad Autónoma de BC, Mexicali 21000, BC, Mexico
| |
Collapse
|
56
|
Taye H, Kabthymer RH, Hailu S, Meshesha MD, Gebremeskel Kanno G, Bayisa Y, Molla W. Previous adverse pregnancy events as a predictor of gestational diabetes mellitus in Southern Ethiopia: a case control study. Curr Med Res Opin 2022; 38:1259-1266. [PMID: 35621150 DOI: 10.1080/03007995.2022.2083399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Gestational diabetes mellitus is a type of glucose intolerance that first manifests itself during pregnancy. A pregnant woman and her unborn child are at an increased risk of pregnancy complications and poor neonatal outcomes. Pregnancy diabetes affects one out of every 200 women. Therefore, this study aims to identify the determinants of gestational diabetes mellitus among pregnant women attending an antenatal care service in Gedeo Zone, Ethiopia. METHODS A facility-based case-control study design was employed from 25 January 2020 through 25 April 2020. The study included 80 cases and 240 control groups of pregnant women. Face-to-face interviews with structured questionnaires were used to collect data. For analyses, data was entered into Epidata version 3.1 and exported to the Statistical Package for the Social Sciences (SPSS) version 23.0. Variables with p .25 or lower in bivariate analysis were fitted to multivariable analysis. A multivariable logistic regression model with a 95% confidence interval and a p-Value of .05 was used. RESULTS Family history of diabetes mellitus [AOR 1.837; 95% CI (1.06-3.18)], history of spontaneous abortion [AOR 2.39; 95% CI 1.33-4.31), history of still birth [AOR 2.240 (1.222-4.105)], and history of delivery of a macrocosmic baby in the previous pregnancy [AOR 1.99 (1.157-3.43)] were found to be predictors of GDM. CONCLUSION Previous adverse pregnancy outcomes were found to be the main predictors of GDM. Women with gestational diabetes mellitus should be followed after delivery in order to monitor hyper-glycemic status.
Collapse
Affiliation(s)
- Hailu Taye
- School of Public Health, Dilla University, Dilla, Ethopia
| | | | - Samrawit Hailu
- School of Public Health, Dilla University, Dilla, Ethopia
| | | | | | | | | |
Collapse
|
57
|
Liu L, Hou X, Song A, Guan Y, Tian P, Wang C, Ren L, Tang Y, Gao L, Xing X, Song G. Oral fat tolerance testing identifies abnormal pancreatic β-cell function and insulin resistance in individuals with normal glucose tolerance. J Diabetes Investig 2022; 13:1805-1813. [PMID: 35678496 DOI: 10.1111/jdi.13867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 05/05/2022] [Accepted: 06/03/2022] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Insulin sensitivity and β-cell function are affected by lipid metabolism disorders, even before the onset of type 2 diabetes. People are in the postprandial state most of the time. Therefore, identifying postprandial hyperlipemia is important. This study aimed to assess patients with abnormalities in lipid metabolism, but with normal glucose tolerance, using oral fat tolerance testing (OFTT) to identify defects in insulin sensitivity and β-cell function. MATERIALS AND METHODS We included 248 volunteers with normal glucose tolerance who underwent OFTT. They were divided into three groups in accordance with their fasting and 4-h postprandial triglyceride (TG) concentrations. Their lipid concentrations during OFTT were compared. The disposition index (DI) was applied to estimate β-cell function, and the Matsuda insulin sensitivity index (ISIM ) was used to assess insulin sensitivity. We used multiple linear regression analysis to estimate the relationships of fasting and postprandial TG concentrations with β-cell function and insulin sensitivity . RESULTS The changes in TG concentrations during OFTT were more marked than those in low-density lipoprotein-cholesterol, high-density lipoprotein-cholesterol or total cholesterol concentrations. As lipid metabolism deteriorated, the ISIM and the DI gradually decreased. Multiple linear regression analysis showed that fasting and 4-h postprandial TG concentrations affected LnISIM and LnDI. CONCLUSIONS In individuals with normal glucose tolerance, β-cell function and insulin sensitivity gradually decrease with a deterioration in the lipid profile. Not only fasting TG, but also postprandial TG concentrations are independent risk factors for impaired β-cell function and insulin resistance.
Collapse
Affiliation(s)
- Lifang Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China.,Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - An Song
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Peipei Tian
- Department of Endocrinology, Cangzhou Central Hospital, Cangzhou, China
| | - Chao Wang
- Hebei Key Laboratory of Metabolic Diseases, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Luping Ren
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Yong Tang
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| | - Ling Gao
- Department of Endocrinology and Metabolism, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xiaoping Xing
- Key Laboratory of Endocrinology, Ministry of Health, Department of Endocrinology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Beijing, China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, China.,Department of Endocrinology, Hebei General Hospital, Shijiazhuang, Hebei, China
| |
Collapse
|
58
|
Prospective dietary radical scavengers: Boon in Pharmacokinetics, overcome insulin obstruction via signaling cascade for absorption during impediments in metabolic disorder like Diabetic Mellitus. J Diabetes Metab Disord 2022; 21:1149-1169. [PMID: 35673468 PMCID: PMC9167351 DOI: 10.1007/s40200-022-01038-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/01/2022] [Indexed: 10/18/2022]
Abstract
Diabetes mellitus is a metabolic disorder which is characterized based on the blood glucose level. This can be due to the lack of efficiency of utilizing insulin or lack of production of insulin. There are numerous therapies and medications which are available for the treatment of this disease which can reduce the risk of diabetes. But there is no permanent cure found. Nutritional antioxidants show a foremost role in sustaining the homeostasis of the oxidative equilibrium. They have imparted their electron donor efficacy in preventing aging and in cancer. Vitamin C, E, β-carotene, carotenoids, polyphenols and selenium have been appraised as antioxidant constituents in the human diet nourishment. This paper emphasizes on the role of antioxidants which help in reducing or maintaining the level of glucose in the body. Antioxidants are substances that reduces the damages to the cells caused by free radicals. The available treatment and medications and how the supplementation of antioxidants is different from them is also discussed. Different type of antioxidants and their treatment in curing the disease is further focused in this paper. Graphical abstract
Collapse
|
59
|
Biondi G, Marrano N, Borrelli A, Rella M, Palma G, Calderoni I, Siciliano E, Lops P, Giorgino F, Natalicchio A. Adipose Tissue Secretion Pattern Influences β-Cell Wellness in the Transition from Obesity to Type 2 Diabetes. Int J Mol Sci 2022; 23:ijms23105522. [PMID: 35628332 PMCID: PMC9143684 DOI: 10.3390/ijms23105522] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 12/10/2022] Open
Abstract
The dysregulation of the β-cell functional mass, which is a reduction in the number of β-cells and their ability to secure adequate insulin secretion, represents a key mechanistic factor leading to the onset of type 2 diabetes (T2D). Obesity is recognised as a leading cause of β-cell loss and dysfunction and a risk factor for T2D. The natural history of β-cell failure in obesity-induced T2D can be divided into three steps: (1) β-cell compensatory hyperplasia and insulin hypersecretion, (2) insulin secretory dysfunction, and (3) loss of β-cell mass. Adipose tissue (AT) secretes many hormones/cytokines (adipokines) and fatty acids that can directly influence β-cell function and viability. As this secretory pattern is altered in obese and diabetic patients, it is expected that the cross-talk between AT and pancreatic β-cells could drive the maintenance of the β-cell integrity under physiological conditions and contribute to the reduction in the β-cell functional mass in a dysmetabolic state. In the current review, we summarise the evidence of the ability of the AT secretome to influence each step of β-cell failure, and attempt to draw a timeline of the alterations in the adipokine secretion pattern in the transition from obesity to T2D that reflects the progressive deterioration of the β-cell functional mass.
Collapse
|
60
|
Plin5, a New Target in Diabetic Cardiomyopathy. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2122856. [PMID: 35509833 PMCID: PMC9060988 DOI: 10.1155/2022/2122856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/14/2022] [Accepted: 04/06/2022] [Indexed: 02/07/2023]
Abstract
Abnormal lipid accumulation is commonly observed in diabetic cardiomyopathy (DC), which can create a lipotoxic microenvironment and damage cardiomyocytes. Lipid toxicity is an important pathogenic factor due to abnormal lipid accumulation in DC. As a lipid droplet (LD) decomposition barrier, Plin5 can protect LDs from lipase decomposition and regulate lipid metabolism, which is involved in the occurrence and development of cardiovascular diseases. In recent years, studies have shown that Plin5 expression is involved in the pathogenesis of DC lipid toxicity, such as oxidative stress, mitochondrial dysfunction, endoplasmic reticulum (ER) stress, and insulin resistance (IR) and has become a key target of DC research. Therefore, understanding the relationship between Plin5 and DC progression as well as the mechanism of this process is crucial for developing new therapeutic approaches and exploring new therapeutic targets. This review is aimed at exploring the latest findings and roles of Plin5 in lipid metabolism and DC-related pathogenesis, to explore possible clinical intervention approaches.
Collapse
|
61
|
Long-Term Diabetes Improvement After Duodenal Exclusion in Zucker Diabetic Fatty Rats Is Associated with Prevention of Strain-Specific Pancreatic Remodeling and Increased Beta Cell Proliferation. Obes Surg 2022; 32:1980-1989. [PMID: 35384574 PMCID: PMC9072278 DOI: 10.1007/s11695-022-06040-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 03/20/2022] [Accepted: 03/22/2022] [Indexed: 11/06/2022]
Abstract
Background Response to metabolic surgery is heterogeneous and the metabolic states that underpin weight loss and metabolic improvement are still unclear. In this study, we investigate parameters of post-bariatric fasting glucoregulation and leverage artificial intelligence-assisted whole-slide image analyses to characterize associated immunohistologic features of the pancreas. Materials and Methods We performed either loop duodeno-jejunostomy (DJOS) with exclusion of 1/3 of total intestinal length, loop duodeno-ileostomy with exclusion of 2/3 of total intestinal length (DiOS), or a sham operation on 8-week-old male obese ZDF rats. Six months post-operative, we measured blood metabolites and hormones. Subsequently, pancreatic and intestinal tissue was removed, formalin fixed, and paraffin embedded. Immunohistologic (IHC) analyses included proliferating cell nuclear antigen (PCNA) to visualize the proliferation fraction and pancreatic and duodenal homeobox 1 (PDX 1) as a measure of pancreatic cell differentiation. For IHC quantification, all slides were digitalized and analyzed using QuPath. All analyzed slides were reviewed by two independent pathologists for correctness. Results DJOS and DiOS were associated with preserved fasting insulin production compared to sham. Histopathologic evaluation showed significantly higher numbers of beta cells and specifically of clustered cell organization in DJOS and DiOS compared to sham. Cell proliferation (PCNA) was significantly elevated in DJOS and DiOS compared to sham. Conclusion In this interventional model of bariatric surgery in severe genetic diabetes, we demonstrate post-operative histologic and immunohistologic features of the pancreas associated with improved fasting glucose homeostasis. Graphical abstract ![]()
Collapse
|
62
|
Scorletti E, Carr RM. A new perspective on NAFLD: Focusing on lipid droplets. J Hepatol 2022; 76:934-945. [PMID: 34793866 DOI: 10.1016/j.jhep.2021.11.009] [Citation(s) in RCA: 192] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/13/2021] [Accepted: 11/06/2021] [Indexed: 02/07/2023]
Abstract
Lipid droplets (LDs) are complex and metabolically active organelles. They are composed of a neutral lipid core surrounded by a monolayer of phospholipids and proteins. LD accumulation in hepatocytes is the distinctive characteristic of non-alcoholic fatty liver disease (NAFLD), which is a chronic, heterogeneous liver condition that can progress to liver fibrosis and hepatocellular carcinoma. Though recent research has improved our understanding of the mechanisms linking LD accumulation to NAFLD progression, numerous aspects of LD biology are either poorly understood or unknown. In this review, we provide a description of several key mechanisms that contribute to LD accumulation in hepatocytes, favouring NAFLD progression. First, we highlight the importance of LD architecture and describe how the dysregulation of LD biogenesis leads to endoplasmic reticulum stress and inflammation. This is followed by an analysis of the causal nexus that exists between LD proteome composition and LD degradation. Finally, we describe how the increase in size of LDs causes activation of hepatic stellate cells, leading to liver fibrosis and hepatocellular carcinoma. We conclude that acquiring a more sophisticated understanding of LD biology will provide crucial insights into the heterogeneity of NAFLD and assist in the development of therapeutic approaches for this liver disease.
Collapse
Affiliation(s)
- Eleonora Scorletti
- Division of Translational Medicine and Human Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Human Development and Health, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Rotonya M Carr
- Division of Gastroenterology, University of Washington, Seattle, WA 98195-6424, United States.
| |
Collapse
|
63
|
Petrov MS, Taylor R. Intra-pancreatic fat deposition: bringing hidden fat to the fore. Nat Rev Gastroenterol Hepatol 2022; 19:153-168. [PMID: 34880411 DOI: 10.1038/s41575-021-00551-0] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 02/07/2023]
Abstract
Development of advanced modalities for detection of fat within the pancreas has transformed understanding of the role of intra-pancreatic fat deposition (IPFD) in health and disease. There is now strong evidence for the presence of minimal (but not negligible) IPFD in healthy human pancreas. Diffuse excess IPFD, or fatty pancreas disease (FPD), is more frequent than type 2 diabetes mellitus (T2DM) (the most common disease of the endocrine pancreas) and acute pancreatitis (the most common disease of the exocrine pancreas) combined. FPD is not strictly a function of high BMI; it can result from the excess deposition of fat in the islets of Langerhans, acinar cells, inter-lobular stroma, acinar-to-adipocyte trans-differentiation or replacement of apoptotic acinar cells. This process leads to a wide array of diseases characterized by excess IPFD, including but not limited to acute pancreatitis, chronic pancreatitis, pancreatic cancer, T2DM, diabetes of the exocrine pancreas. There is ample evidence for FPD being potentially reversible. Weight loss-induced decrease of intra-pancreatic fat is tightly associated with remission of T2DM and its re-deposition with recurrence of the disease. Reversing FPD will open up opportunities for preventing or intercepting progression of major diseases of the exocrine pancreas in the future.
Collapse
Affiliation(s)
- Maxim S Petrov
- School of Medicine, University of Auckland, Auckland, New Zealand.
| | - Roy Taylor
- Magnetic Resonance Centre, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
64
|
Lipke K, Kubis-Kubiak A, Piwowar A. Molecular Mechanism of Lipotoxicity as an Interesting Aspect in the Development of Pathological States-Current View of Knowledge. Cells 2022; 11:cells11050844. [PMID: 35269467 PMCID: PMC8909283 DOI: 10.3390/cells11050844] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/22/2022] [Accepted: 02/25/2022] [Indexed: 02/06/2023] Open
Abstract
Free fatty acids (FFAs) play numerous vital roles in the organism, such as contribution to energy generation and reserve, serving as an essential component of the cell membrane, or as ligands for nuclear receptors. However, the disturbance in fatty acid homeostasis, such as inefficient metabolism or intensified release from the site of storage, may result in increased serum FFA levels and eventually result in ectopic fat deposition, which is unfavorable for the organism. The cells are adjusted for the accumulation of FFA to a limited extent and so prolonged exposure to elevated FFA levels results in deleterious effects referred to as lipotoxicity. Lipotoxicity contributes to the development of diseases such as insulin resistance, diabetes, cardiovascular diseases, metabolic syndrome, and inflammation. The nonobvious organs recognized as the main lipotoxic goal of action are the pancreas, liver, skeletal muscles, cardiac muscle, and kidneys. However, lipotoxic effects to a significant extent are not organ-specific but affect fundamental cellular processes occurring in most cells. Therefore, the wider perception of cellular lipotoxic mechanisms and their interrelation may be beneficial for a better understanding of various diseases’ pathogenesis and seeking new pharmacological treatment approaches.
Collapse
|
65
|
Markovič R, Grubelnik V, Vošner HB, Kokol P, Završnik M, Janša K, Zupet M, Završnik J, Marhl M. Age-Related Changes in Lipid and Glucose Levels Associated with Drug Use and Mortality: An Observational Study. J Pers Med 2022; 12:jpm12020280. [PMID: 35207767 PMCID: PMC8876997 DOI: 10.3390/jpm12020280] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/11/2022] [Indexed: 02/01/2023] Open
Abstract
Background: The pathogenesis of type 2 diabetes mellitus is complex and still unclear in some details. The main feature of diabetes mellitus is high serum glucose, and the question arises of whether there are other statistically observable dysregulations in laboratory measurements before the state of hyperglycemia becomes severe. In the present study, we aim to examine glucose and lipid profiles in the context of age, sex, medication use, and mortality. Methods: We conducted an observational study by analyzing laboratory data from 506,083 anonymized laboratory tests from 63,606 different patients performed by a regional laboratory in Slovenia between 2008 and 2019. Laboratory data-based results were evaluated in the context of medication use and mortality. The medication use database contains anonymized records of 1,632,441 patients from 2013 to 2018, and mortality data were obtained for the entire Slovenian population. Results: We show that the highest percentage of the population with elevated glucose levels occurs approximately 20 years later than the highest percentage with lipid dysregulation. Remarkably, two distinct inflection points were observed in these laboratory results. The first inflection point occurs at ages 55 to 59 years, corresponding to the greatest increase in medication use, and the second coincides with the sharp increase in mortality at ages 75 to 79 years. Conclusions: Our results suggest that medications and mortality are important factors affecting population statistics and must be considered when studying metabolic disorders such as dyslipidemia and hyperglycemia using laboratory data.
Collapse
Affiliation(s)
- Rene Markovič
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.G.); (P.K.)
| | - Vladimir Grubelnik
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.G.); (P.K.)
| | - Helena Blažun Vošner
- Community Healthcare Center Dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia;
- Faculty of Health and Social Sciences, 2380 Slovenj Gradec, Slovenia
- Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
| | - Peter Kokol
- Faculty of Electrical Engineering and Computer Science, University of Maribor, 2000 Maribor, Slovenia; (V.G.); (P.K.)
| | - Matej Završnik
- Department of Endocrinology and Diabetology, University Medical Center Maribor, Ljubljanska ulica 5, 2000 Maribor, Slovenia;
| | - Karmen Janša
- The Health Insurance Institute of Slovenia, Miklošičeva cesta 24, 1507 Ljubljana, Slovenia; (K.J.); (M.Z.)
| | - Marjeta Zupet
- The Health Insurance Institute of Slovenia, Miklošičeva cesta 24, 1507 Ljubljana, Slovenia; (K.J.); (M.Z.)
| | - Jernej Završnik
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Community Healthcare Center Dr. Adolf Drolc Maribor, 2000 Maribor, Slovenia;
- Alma Mater Europaea—ECM, 2000 Maribor, Slovenia
- Science and Research Center Koper, 6000 Koper, Slovenia
- Correspondence: (J.Z.); (M.M.)
| | - Marko Marhl
- Faculty of Natural Sciences and Mathematics, University of Maribor, 2000 Maribor, Slovenia;
- Faculty of Education, University of Maribor, 2000 Maribor, Slovenia
- Faculty of Medicine, University of Maribor, 2000 Maribor, Slovenia
- Correspondence: (J.Z.); (M.M.)
| |
Collapse
|
66
|
Römer A, Rawat D, Linn T, Petry SF. Preparation of fatty acid solutions exerts significant impact on experimental outcomes in cell culture models of lipotoxicity. Biol Methods Protoc 2022; 7:bpab023. [PMID: 35036572 PMCID: PMC8754478 DOI: 10.1093/biomethods/bpab023] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/14/2022] Open
Abstract
Free fatty acids are essentially involved in the pathogenesis of chronic diseases such as diabetes mellitus, non-alcoholic fatty liver disease, and cardiovascular disease. They promote mitochondrial dysfunction, oxidative stress, respiratory chain uncoupling, and endoplasmic reticulum stress and modulate stress-sensitive pathways. These detrimental biological effects summarized as lipotoxicity mainly depend on fatty acid carbon chain length, degree of unsaturation, concentration, and treatment time. Preparation of fatty acid solutions involves dissolving and complexing. Solvent toxicity and concentration, amount of bovine serum albumin (BSA), and ratio of albumin to fatty acids can vary significantly between equal concentrations, mediating considerable harmful effects and/or interference with certain assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT). Herein, we studied the impact of commonly used solvents ethanol and dimethyl sulfoxide and varying concentrations of BSA directly and in solution with oleic acid on MTT to formazan conversion, adenosine triphosphate level, and insulin content and secretion of murine β-cell line MIN6 employing different treatment duration. Our data show that experimental outcomes and assay readouts can be significantly affected by mere preparation of fatty acid solutions and should thus be carefully considered and described in detail to ensure comparability and distinct evaluation of data.
Collapse
Affiliation(s)
- Axel Römer
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Divya Rawat
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Thomas Linn
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| | - Sebastian F Petry
- Clinical Research Unit, Center of Internal Medicine, Justus Liebig University Giessen, 35392 Giessen, Germany
| |
Collapse
|
67
|
Wang Q, Xie T, Zhang T, Deng Y, Zhang Y, Wu Q, Dong M, Luo X. The Role of Changes in Cumulative Lipid Parameter Burden in the Pathogenesis of Type 2 Diabetes Mellitus: A Cohort Study of People Aged 35-65 Years in Rural China. Diabetes Metab Syndr Obes 2022; 15:1831-1843. [PMID: 35733642 PMCID: PMC9208634 DOI: 10.2147/dmso.s363692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 06/03/2022] [Indexed: 11/23/2022] Open
Abstract
PURPOSE The main purpose of this study was to examine the effect of the cumulative exposure of blood lipid parameters on type 2 diabetes mellitus (T2DM). Another purpose was to explore whether the cumulative burden of blood lipid parameters plays a certain role in the pathogenesis of diet affecting T2DM. PATIENTS AND METHODS A total of 63 cases of diabetes occurred from 2017 to 2020, with an incidence density of 3.71 person-years. The dietary intake of the residents was obtained by using a dietary frequency questionnaire (FFQ). Cumulative lipid parameter burden was calculated according to the number of years (2016-2020) multiplied by total cholesterol (TC), high density lipoprotein (HDL), low density lipoprotein (LDL) and triglyceride (TG). A Cox proportional hazard model was used to estimate the effect of cumulative lipid burden on T2DM. A mediating analysis of accelerated failure time (AFT) was used to investigate the mediating effects of certain foods, the cumulative lipid parameter burden and T2DM. RESULTS A higher cumulative TG load corresponded to a higher risk of T2DM onset (Ptrend =0.021). After adjusting for covariates, the highest quartile cumulative TG burden had a 3.462 times higher risk of T2DM than that in the lowest quartile (HR=3.462, 95% CI: 1.297-9.243). Moreover, a higher cumulative HDL load corresponded to a lower risk of T2DM onset (Ptrend =0.006). After adjusting for covariates, the risk of T2DM was 0.314-fold lower in the highest quartile of cumulative HDL burden than that in the lowest quartile (HR=0.314, 95% CI: 0.131-0.753). Cumulative TG burden partially mediated the association between red meat and T2DM. CONCLUSION The increase in cumulative HDL burden and the decrease in cumulative HDL burden are related to the incidence of T2DM. Cumulative TG burden was shown to play a partial mediating role in the pathogenesis of red meat and diabetes.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Tao Xie
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Ting Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuanjia Deng
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Yuying Zhang
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Qingfeng Wu
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Minghua Dong
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
| | - Xiaoting Luo
- Key Laboratory of Cardio Cerebrovascular Diseases, Ministry of Education, Gannan Medical University, Ganzhou, People’s Republic of China
- School of Public Health and Health Management, Gannan Medical University, Ganzhou, People’s Republic of China
- School of General Medicine, Gannan Medical University, Ganzhou, People’s Republic of China
- Correspondence: Xiaoting Luo, Tel +86 13677975578, Fax +86 0797-8169600, Email
| |
Collapse
|
68
|
You S, Zheng J, Chen Y, Huang H. Research progress on the mechanism of beta-cell apoptosis in type 2 diabetes mellitus. Front Endocrinol (Lausanne) 2022; 13:976465. [PMID: 36060972 PMCID: PMC9434279 DOI: 10.3389/fendo.2022.976465] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 11/23/2022] Open
Abstract
Type 2 diabetes mellitus(T2DM) is regarded as one of the most severe chronic metabolic diseases worldwide, which poses a great threat to human safety and health. The main feature of T2DM is the deterioration of pancreatic beta-cell function. More and more studies have shown that the decline of pancreatic beta-cell function in T2DM can be attributable to beta-cell apoptosis, but the exact mechanisms of beta-cell apoptosis in T2DM are not yet fully clarified. Therefore, in this review, we will focus on the current status and progress of research on the mechanism of pancreatic beta-cell apoptosis in T2DM, to provide new ideas for T2DM treatment strategies.
Collapse
Affiliation(s)
- SuFang You
- The Second Clinical Medical College of Fujian Medical University, Quanzhou, China
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - JingYi Zheng
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - YuPing Chen
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - HuiBin Huang
- Department of Endocrinology, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
- *Correspondence: HuiBin Huang,
| |
Collapse
|
69
|
Horii T, Kozawa J, Fujita Y, Kawata S, Ozawa H, Ishibashi C, Yoneda S, Nammo T, Miyagawa JI, Eguchi H, Shimomura I. Lipid droplet accumulation in β cells in patients with type 2 diabetes is associated with insulin resistance, hyperglycemia and β cell dysfunction involving decreased insulin granules. Front Endocrinol (Lausanne) 2022; 13:996716. [PMID: 36204103 PMCID: PMC9530467 DOI: 10.3389/fendo.2022.996716] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/05/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND OBJECTIVE Pancreatic fat is a form of ectopic fat. Lipid droplets (LDs) are also observed in β cells; however, the pathophysiological significance, especially for β cell function, has not been elucidated. Our aim was to assess LD accumulation in β cells in various stages of glucose intolerance and to clarify its relationship with clinical and histological parameters. METHODS We examined 42 Japanese patients who underwent pancreatectomy. The BODIPY493/503-positive (BODIPY-positive) area in β cells was measured in pancreatic sections from 32 patients. The insulin granule numbers were counted in an additional 10 patients using electron microscopy. RESULTS The BODIPY-positive area in β cells in preexisting type 2 diabetes patients was higher than that in normal glucose tolerance patients (p = 0.031). The BODIPY-positive area in β cells was positively correlated with age (r = 0.45, p = 0.0097), HbA1c (r = 0.38, p = 0.0302), fasting plasma glucose (r = 0.37, p = 0.045), and homeostasis model assessment insulin resistance (r = 0.41, p = 0.049) and negatively correlated with an increase in the C-peptide immunoreactivity level by the glucagon test (r = -0.59, p = 0.018). The ratio of mature insulin granule number to total insulin granule number was reduced in the patients with rich LD accumulation in β cells (p = 0.039). CONCLUSIONS Type 2 diabetes patients had high LD accumulation in β cells, which was associated with insulin resistance, hyperglycemia, aging and β cell dysfunction involving decreased mature insulin granules.
Collapse
Affiliation(s)
- Tomomi Horii
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Junji Kozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- *Correspondence: Junji Kozawa,
| | - Yukari Fujita
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Community Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Satoshi Kawata
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Harutoshi Ozawa
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Lifestyle Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Chisaki Ishibashi
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Sho Yoneda
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Yoneda Clinic, Osaka, Japan
| | - Takao Nammo
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
- Department of Diabetes Care Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| | | | - Hidetoshi Eguchi
- Department of Gastroenterological Surgery, Graduate School of Medicine, Osaka University, Suita, Japan
| | - Iichiro Shimomura
- Department of Metabolic Medicine, Graduate School of Medicine, Osaka University, Suita, Japan
| |
Collapse
|
70
|
Abstract
Pancreatic islets are the body's central rheostat that regulates glucose homeostasis through the production of different hormones, including β cell-derived insulin. During obesity-induced type 2 diabetes (T2D), islet β cells become dysfunctional and inadequate insulin secretion no longer ensures glycemic control. T2D is associated with a chronic low-grade inflammation that manifests in several metabolic organs including the pancreatic islets. Growing evidence suggests that components of the innate immune system, and especially macrophages, play a crucial role in regulating islet homeostasis. Yet, the phenotypes and functions of islet macrophages in physiology and during T2D have only started to attract attention and remain unclear. In this review, the current knowledge about islet inflammation and macrophages will be summarized in humans and rodent models. Recent findings on the cellular and molecular mechanisms involved in islet remodeling and β cell function during obesity and T2D will be discussed.
Collapse
Affiliation(s)
- Joyceline Cuenco
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France
| | - Elise Dalmas
- Centre de Recherche des Cordeliers, INSERM, IMMEDIAB Laboratory, Sorbonne Université, Université de Paris, Paris, France.
| |
Collapse
|
71
|
Tripathi A, Fanning S, Dettmer U. Lipotoxicity Downstream of α-Synuclein Imbalance: A Relevant Pathomechanism in Synucleinopathies? Biomolecules 2021; 12:40. [PMID: 35053188 PMCID: PMC8774010 DOI: 10.3390/biom12010040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 12/16/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
Neuronal loss in Parkinson's disease and related brain diseases has been firmly linked to the abundant neuronal protein α-synuclein (αS). However, we have gained surprisingly little insight into how exactly αS exerts toxicity in these diseases. Hypotheses of proteotoxicity, disturbed vesicle trafficking, mitochondrial dysfunction and other toxicity mechanisms have been proposed, and it seems possible that a combination of different mechanisms may drive pathology. A toxicity mechanism that has caught increased attention in the recent years is αS-related lipotoxicity. Lipotoxicity typically occurs in a cell when fatty acids exceed the metabolic needs, triggering a flux into harmful pathways of non-oxidative metabolism. Genetic and experimental approaches have revealed a significant overlap between lipid storage disorders, most notably Gaucher's disease, and synucleinopathies. There is accumulating evidence for lipid aberrations causing synuclein misfolding as well as for αS excess and misfolding causing lipid aberration. Does that mean the key problem in synucleinopathies is lipotoxicity, the accumulation of harmful lipid species or alteration in lipid equilibrium? Here, we review the existing literature in an attempt to get closer to an answer.
Collapse
Affiliation(s)
- Arati Tripathi
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| | | | - Ulf Dettmer
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA;
| |
Collapse
|
72
|
Xu L, Liu W, Bai F, Xu Y, Liang X, Ma C, Gao L. Hepatic Macrophage as a Key Player in Fatty Liver Disease. Front Immunol 2021; 12:708978. [PMID: 34956171 PMCID: PMC8696173 DOI: 10.3389/fimmu.2021.708978] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 11/16/2021] [Indexed: 12/13/2022] Open
Abstract
Fatty liver disease, characterized by excessive inflammation and lipid deposition, is becoming one of the most prevalent liver metabolic diseases worldwide owing to the increasing global incidence of obesity. However, the underlying mechanisms of fatty liver disease are poorly understood. Accumulating evidence suggests that hepatic macrophages, specifically Kupffer cells (KCs), act as key players in the progression of fatty liver disease. Thus, it is essential to examine the current evidence of the roles of hepatic macrophages (both KCs and monocyte-derived macrophages). In this review, we primarily address the heterogeneities and multiple patterns of hepatic macrophages participating in the pathogenesis of fatty liver disease, including Toll-like receptors (TLRs), NLRP3 inflammasome, lipotoxicity, glucotoxicity, metabolic reprogramming, interaction with surrounding cells in the liver, and iron poisoning. A better understanding of the diverse roles of hepatic macrophages in the development of fatty liver disease may provide a more specific and promising macrophage-targeting therapeutic strategy for inflammatory liver diseases.
Collapse
Affiliation(s)
- Liyun Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Cell and Molecular Biology Laboratory, Zhoushan Hospital, Zhoushan, China
| | - Wen Liu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Institute of Basic Medicine Sciences, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Fuxiang Bai
- Laboratory for Tissue Engineering and Regeneration, School of Stomatology, Shandong University, Jinan, China
| | - Yong Xu
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Department of Laboratory, Yueyang Hospital, Hunan Normal University, Yueyang, China
| | - Xiaohong Liang
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chunhong Ma
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lifen Gao
- Key Laboratory for Experimental Teratology of Ministry of Education, Shandong Key Laboratory of Infection and Immunity and Department of Immunology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
73
|
Baba-Ahmed F, Guedri K, Trea F, Ouali K. Protective role of a melon superoxide dismutase combined with gliadin (GliSODin) on the status of lipid peroxidation and antioxidant defense against azoxymethane-induced experimental colon carcinogenesis. J Cancer Res Ther 2021; 17:1445-1453. [PMID: 34916376 DOI: 10.4103/jcrt.jcrt_175_19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Background Azoxymethane (AOM) is a potent carcinogenic agent commonly used to induce colon cancer in rats and mice, with the cytotoxicity of AOM mediated by oxidative stress. Aim of Study This study investigated the protective effect of a natural antioxidant (GliSODin) against AOM-induced oxidative stress and carcinogenesis in rat colon. Methods Twenty male Wistar rats were randomly divided into four groups (five rats/group). The control group was fed a basal diet. AOM-treated group (AOM) was fed a basal diet and received intraperitoneal injections of AOM for 2 weeks at a dose of 15 mg/kg. The GliSODin treatment group (superoxide dismutase [SOD]) received oral supplementation of GliSODin (300 mg/kg) for 3 months, and the fourth combined group received AOM and GliSODin (AOM + SOD). All animals were continuously fed ad libitum until the age of 16 weeks when all rats were sacrificed. The colon tissues were examined microscopically for pathological changes and aberrant crypt foci (ACF) development, oxidant status (lipid peroxidation-LPO), and enzyme antioxidant system (glutathione [GSH], GSH-S-transferase, catalase, and SOD). Results Our results showed that AOM induced ACF development and oxidative stress (GSH depletion and lipid peroxidation) in rat colonic cells. The concomitant treatment of AOM with GliSODin significantly ameliorated the cytotoxic effects of AOM. Conclusion The results of this study provide in vivo evidence that GliSODin reduced the AOM-induced colon cancer in rats, through their potent antioxidant activities.
Collapse
Affiliation(s)
- Fedia Baba-Ahmed
- Department of Biology University El hadj Lakhder-Batna, University El Hadj Lakhder-Batna, Batna, Algeria
| | - Kamilia Guedri
- Department of Biology, University of Tebessa, University Larbi Tebessi, Tebessa, Algeria
| | - Fouzia Trea
- Department of Animal Biology University, University of Badji Mokhtar Annaba, Laboratory of Environmental Bio Surveillance, University of Badji Mokhtar-Annaba, Annaba, Algeria
| | - Kheireddine Ouali
- Department of Animal Biology University, University of Badji Mokhtar Annaba, Laboratory of Environmental Bio Surveillance, University of Badji Mokhtar-Annaba, Annaba, Algeria
| |
Collapse
|
74
|
Tippetts TS, Holland WL, Summers SA. Cholesterol - the devil you know; ceramide - the devil you don't. Trends Pharmacol Sci 2021; 42:1082-1095. [PMID: 34750017 PMCID: PMC8595778 DOI: 10.1016/j.tips.2021.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 01/20/2023]
Abstract
Ectopic lipids play a key role in numerous pathologies, including heart disease, stroke, and diabetes. Of all the lipids studied, perhaps the most well understood is cholesterol, a widely used clinical biomarker of cardiovascular disease and a target of pharmacological interventions (e.g., statins). Thousands of studies have interrogated the regulation and action of this disease-causing sterol. As a growing body of literature indicates, a new class of lipid-based therapies may be on the horizon. Ceramides are cholesterol-independent biomarkers of heart disease and diabetes in humans. Studies in rodents suggest that they are causative agents of disease, as lowering ceramides through genetic or pharmacological interventions prevents cardiovascular disease and diabetes. Herein, we discuss the evidence supporting the potential of therapeutics targeting ceramides to treat cardiometabolic disease, contrasting it with the robust datasets that drove the creation of cholesterol-lowering pharmaceuticals.
Collapse
Affiliation(s)
| | | | - Scott A. Summers
- Correspondence should be addressed to: Scott A. Summers, Department of Nutrition and Integrative Physiology, University of Utah College of Health, 15N, 2030 East, Rm 3110, Salt Lake City Utah 84112, , Tel: 801-585-9359
| |
Collapse
|
75
|
Takahashi K, Mizukami H, Osonoi S, Takeuchi Y, Kudoh K, Sasaki T, Daimon M, Yagihashi S. Islet microangiopathy and augmented β-cell loss in Japanese non-obese type 2 diabetes patients who died of acute myocardial infarction. J Diabetes Investig 2021; 12:2149-2161. [PMID: 34032392 PMCID: PMC8668063 DOI: 10.1111/jdi.13601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/30/2022] Open
Abstract
AIMS/INTRODUCTION Islets have microvessels that might develop pathological alterations similar to microangiopathy in type 2 diabetes patients. It remains unclear, however, whether the changes correlate with endocrine cell deficits or whether the presence of macroangiopathy influences the islet microvasculature in Japanese type 2 diabetes patients. In this study, we characterized changes of the islet microvessels and endocrine cells in Japanese non-obese patients with type 2 diabetes who died of acute myocardial infarction (AMI). MATERIALS AND METHODS Clinical profiles and islet pathology were examined for 35 diabetes patients who died of AMI (DM + AMI) and 13 diabetes patients who were free from AMI (DM). A total of 13 age-matched, individuals without diabetes who died of AMI and 16 individuals without diabetes who were free from AMI were also studied. Pancreata were subjected to morphometric evaluation of islets, including microvascular alterations of immunostained sections. RESULTS Body mass index in DM + AMI was comparable to those in DM. Compared with DM, DM + AMI showed greater glycated hemoglobin levels, higher prevalence of renal failure, hypertension, smaller β-cell volume density and greater amyloid area. DM + AMI showed an increased microvascular area and density compared with other groups. There was a significant increase in vascular basement membrane thickness and loss of pericytes in DM and DM + AMI compared with individuals without diabetes in each group, and the extent of thickening was correlated with the amyloid area and occurrence of β-cell loss in DM + AMI. CONCLUSIONS Islet microangiopathy was associated with augmented β-cell loss and amyloid deposition in non-obese Japanese type 2 diabetes patients who died of AMI.
Collapse
Affiliation(s)
- Kazuhisa Takahashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Hiroki Mizukami
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Sho Osonoi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Yuki Takeuchi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Kazuhiro Kudoh
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Takanori Sasaki
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Makoto Daimon
- Department of Endocrinology and MetabolismHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| | - Soroku Yagihashi
- Department of Pathology and Molecular MedicineHirosaki University Graduate School of MedicineHirosaki, AomoriJapan
| |
Collapse
|
76
|
Obesity and Pancreatic Cancer: Insight into Mechanisms. Cancers (Basel) 2021; 13:cancers13205067. [PMID: 34680216 PMCID: PMC8534007 DOI: 10.3390/cancers13205067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 10/06/2021] [Accepted: 10/08/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Obesity is recognized as a chronic progressive disease and risk factor for many human diseases. The high and increasing number of obese people may underlie the expected increase in pancreatic cancer cases in the United States. There are several pathways discussed that link obesity with pancreatic cancer. Adipose tissue and adipose tissue-released factors may thereby play an important role. This review discusses selected mechanisms that may accelerate pancreatic cancer development in obesity. Abstract The prevalence of obesity in adults and children has dramatically increased over the past decades. Obesity has been declared a chronic progressive disease and is a risk factor for a number of metabolic, inflammatory, and neoplastic diseases. There is clear epidemiologic and preclinical evidence that obesity is a risk factor for pancreatic cancer. Among various potential mechanisms linking obesity with pancreatic cancer, the adipose tissue and obesity-associated adipose tissue inflammation play a central role. The current review discusses selected topics and mechanisms that attracted recent interest and that may underlie the promoting effects of obesity in pancreatic cancer. These topics include the impact of obesity on KRAS activity, the role of visceral adipose tissue, intrapancreatic fat, adipose tissue inflammation, and adipokines on pancreatic cancer development. Current research on lipocalin-2, fibroblast growth factor 21, and Wnt5a is discussed. Furthermore, the significance of obesity-associated insulin resistance with hyperinsulinemia and obesity-induced gut dysbiosis with metabolic endotoxemia is reviewed. Given the central role that is occupied by the adipose tissue in obesity-promoted pancreatic cancer development, preventive and interceptive strategies should be aimed at attenuating obesity-associated adipose tissue inflammation and/or at targeting specific molecules that mechanistically link adipose tissue with pancreatic cancer in obese patients.
Collapse
|
77
|
Sánchez-Archidona AR, Cruciani-Guglielmacci C, Roujeau C, Wigger L, Lallement J, Denom J, Barovic M, Kassis N, Mehl F, Weitz J, Distler M, Klose C, Simons K, Ibberson M, Solimena M, Magnan C, Thorens B. Plasma triacylglycerols are biomarkers of β-cell function in mice and humans. Mol Metab 2021; 54:101355. [PMID: 34634522 PMCID: PMC8602044 DOI: 10.1016/j.molmet.2021.101355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 09/27/2021] [Accepted: 10/06/2021] [Indexed: 12/13/2022] Open
Abstract
Objectives To find plasma biomarkers prognostic of type 2 diabetes, which could also inform on pancreatic β-cell deregulations or defects in the function of insulin target tissues. Methods We conducted a systems biology approach to characterize the plasma lipidomes of C57Bl/6J, DBA/2J, and BALB/cJ mice under different nutritional conditions, as well as their pancreatic islet and liver transcriptomes. We searched for correlations between plasma lipids and tissue gene expression modules. Results We identified strong correlation between plasma triacylglycerols (TAGs) and islet gene modules that comprise key regulators of glucose- and lipid-regulated insulin secretion and of the insulin signaling pathway, the two top hits were Gck and Abhd6 for negative and positive correlations, respectively. Correlations were also found between sphingomyelins and islet gene modules that overlapped in part with the gene modules correlated with TAGs. In the liver, the gene module most strongly correlated with plasma TAGs was enriched in mRNAs encoding fatty acid and carnitine transporters as well as multiple enzymes of the β-oxidation pathway. In humans, plasma TAGs also correlated with the expression of several of the same key regulators of insulin secretion and the insulin signaling pathway identified in mice. This cross-species comparative analysis further led to the identification of PITPNC1 as a candidate regulator of glucose-stimulated insulin secretion. Conclusion TAGs emerge as biomarkers of a liver-to-β-cell axis that links hepatic β-oxidation to β-cell functional mass and insulin secretion. Plasma triacylglycerols correlated with genes controlling β-cell mass and function. Plasma triacylglycerols correlated with genes controlling liver β-oxidation. In humans, triacylglycerols also correlated with key regulators of insulin secretion. Mouse and human data identified PITPNC1 as a candidate regulator of insulin secretion. Triacylglycerols are biomarkers of the liver-to-β-cell axis and β-cell function.
Collapse
Affiliation(s)
- Ana Rodríguez Sánchez-Archidona
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland; Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | | | - Clara Roujeau
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| | - Leonore Wigger
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | | | - Jessica Denom
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | - Marko Barovic
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
| | - Nadim Kassis
- Université de Paris, BFA, UMR 8251, CNRS, F-75013 Paris, France.
| | - Florence Mehl
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | - Jurgen Weitz
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital, TU Dresden, Dresden, Germany.
| | - Marius Distler
- Department of Visceral, Thoracic and Vascular Surgery, University Hospital, TU Dresden, Dresden, Germany.
| | | | | | - Mark Ibberson
- Vital-IT Group, SIB Swiss Institute for Bioinformatics, 1015 Lausanne, Switzerland.
| | - Michele Solimena
- Department of Molecular Diabetology, University Hospital and Faculty of Medicine, TU Dresden, Dresden, Germany.
| | | | - Bernard Thorens
- Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
78
|
Yoon H, Shaw JL, Haigis MC, Greka A. Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell 2021; 81:3708-3730. [PMID: 34547235 PMCID: PMC8620413 DOI: 10.1016/j.molcel.2021.08.027] [Citation(s) in RCA: 236] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022]
Abstract
Lipids play crucial roles in signal transduction, contribute to the structural integrity of cellular membranes, and regulate energy metabolism. Questions remain as to which lipid species maintain metabolic homeostasis and which disrupt essential cellular functions, leading to metabolic disorders. Here, we discuss recent advances in understanding lipid metabolism with a focus on catabolism, synthesis, and signaling. Technical advances, including functional genomics, metabolomics, lipidomics, lipid-protein interaction maps, and advances in mass spectrometry, have uncovered new ways to prioritize molecular mechanisms mediating lipid function. By reviewing what is known about the distinct effects of specific lipid species in physiological pathways, we provide a framework for understanding newly identified targets regulating lipid homeostasis with implications for ameliorating metabolic diseases.
Collapse
Affiliation(s)
- Haejin Yoon
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA
| | - Jillian L Shaw
- Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Marcia C Haigis
- Department of Cell Biology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA; Ludwig Center for Cancer Research at Harvard, Boston, MA 02115, USA.
| | - Anna Greka
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA; Kidney Disease Initiative, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
79
|
Abdalla MMI. Salivary resistin level and its association with insulin resistance in obese individuals. World J Diabetes 2021; 12:1507-1517. [PMID: 34630903 PMCID: PMC8472494 DOI: 10.4239/wjd.v12.i9.1507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 05/11/2021] [Accepted: 07/15/2021] [Indexed: 02/06/2023] Open
Abstract
The escalating global burden of type 2 diabetes mellitus necessitates the implementation of strategies that are both more reliable and faster in order to improve the early identification of insulin resistance (IR) in high-risk groups, including overweight and obese individuals. The use of salivary biomarkers offers a promising alternative to serum collection because it is safer, more comfortable, and less painful to obtain saliva samples. As obesity is the foremost contributory factor in IR development, the adipocytokines such as leptin, adiponectin, resistin, and visfatin secreted from the adipose tissue have been studied as potential reliable biomarkers for IR. Measurement of salivary adipokines as predictors for IR has attracted widespread attention because of the strong correlation between their blood and salivary concentrations. One of the adipokines that is closely related to IR is resistin. However, there are conflicting findings on resistin's potential role as an etiological link between obesity and IR and the reliability of measuring salivary resistin as a biomarker for IR. Hence this study reviewed the available evidence on the potential use of salivary resistin as a biomarker for IR in order to attempt to gain a better understanding of the role of resistin in the development of IR in obese individuals.
Collapse
|
80
|
Perspectives on Mitochondria-ER and Mitochondria-Lipid Droplet Contact in Hepatocytes and Hepatic Lipid Metabolism. Cells 2021; 10:cells10092273. [PMID: 34571924 PMCID: PMC8472694 DOI: 10.3390/cells10092273] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 08/27/2021] [Accepted: 08/31/2021] [Indexed: 12/11/2022] Open
Abstract
Emerging evidence suggests that mitochondrion–endoplasmic reticulum (ER) and mitochondrion–lipid droplet (LD) contact sites are critical in regulating lipid metabolism in cells. It is well established that intracellular organelles communicate with each other continuously through membrane contact sites to maintain organelle function and cellular homeostasis. The accumulation of LDs in hepatocytes is an early indicator of non-alcoholic fatty liver disease (NAFLD) and alcohol-related liver disease (ALD), which may indicate a breakdown in proper inter-organelle communication. In this review, we discuss previous findings in mitochondrion–ER and mitochondrion–LD contact, focusing on their roles in lipid metabolism in hepatocytes. We also present evidence of a unique mitochondrion–LD contact structure in hepatocytes under various physiological and pathological conditions and propose a working hypothesis to speculate about the role of these structures in regulating the functions of mitochondria and LDs and their implications in NAFLD and ALD.
Collapse
|
81
|
Sletten AC, Davidson JW, Yagabasan B, Moores S, Schwaiger-Haber M, Fujiwara H, Gale S, Jiang X, Sidhu R, Gelman SJ, Zhao S, Patti GJ, Ory DS, Schaffer JE. Loss of SNORA73 reprograms cellular metabolism and protects against steatohepatitis. Nat Commun 2021; 12:5214. [PMID: 34471131 PMCID: PMC8410784 DOI: 10.1038/s41467-021-25457-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 08/06/2021] [Indexed: 02/07/2023] Open
Abstract
Dyslipidemia and resulting lipotoxicity are pathologic signatures of metabolic syndrome and type 2 diabetes. Excess lipid causes cell dysfunction and induces cell death through pleiotropic mechanisms that link to oxidative stress. However, pathways that regulate the response to metabolic stress are not well understood. Herein, we show that disruption of the box H/ACA SNORA73 small nucleolar RNAs encoded within the small nucleolar RNA hosting gene 3 (Snhg3) causes resistance to lipid-induced cell death and general oxidative stress in cultured cells. This protection from metabolic stress is associated with broad reprogramming of oxidative metabolism that is dependent on the mammalian target of rapamycin signaling axis. Furthermore, we show that knockdown of SNORA73 in vivo protects against hepatic steatosis and lipid-induced oxidative stress and inflammation. Our findings demonstrate a role for SNORA73 in the regulation of metabolism and lipotoxicity.
Collapse
Affiliation(s)
- Arthur C Sletten
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | | | - Busra Yagabasan
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Samantha Moores
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | | | - Hideji Fujiwara
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah Gale
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Xuntian Jiang
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Rohini Sidhu
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Susan J Gelman
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Shuang Zhao
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Gary J Patti
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, USA
| | - Daniel S Ory
- Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| | - Jean E Schaffer
- Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
82
|
Guan H, Guo Y, Zhu L, Jiao Y, Liu X. Peroxisome Deficiency Dysregulates Fatty Acid Oxidization and Exacerbates Lipotoxicity in β Cells. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7726058. [PMID: 34471469 PMCID: PMC8405300 DOI: 10.1155/2021/7726058] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 08/01/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022]
Abstract
An adverse intrauterine environment impairs the development of pancreatic islets in the fetus and leads to insufficient β cell mass and β cell dysfunction. We previously reported that Pex14, a peroxin protein involved in the biogenesis and degradation of peroxisomes, is markedly reduced in the pancreas of an intrauterine growth restriction fetus and last into adulthood. Peroxisomes function in a wide range of metabolic processes including fatty acid oxidization, ROS detoxification, and anti-inflammatory responses. To elucidate the impact of downregulation of the Pex14 gene on β cell, Pex14 was knocked down by siRNA in INS-1 cells. Pex14 knockdown disturbed peroxisomal biogenesis and dysregulated fatty acid metabolism and lipid storage capability, thereby increased ROS level and blunted insulin secretion. Moreover, Pex14 knockdown upregulated inflammation factors and regulators of endoplasmic reticulum stress. The lipotoxicity of fatty acid (including palmitic acid and linoleic acid) in β cells was exacerbated by knockdown of Pex14, as indicated by H2O2 accumulation and increased programmed cell death. The present results demonstrate the vital role of Pex14 in maintaining normal peroxisome function and β cell viability and highlight the importance of a functional peroxisomal metabolism for the detoxification of excess FAs in β cells.
Collapse
Affiliation(s)
- Hongbo Guan
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yanyan Guo
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Liangliang Zhu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yisheng Jiao
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Xiaomei Liu
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110004, China
| |
Collapse
|
83
|
Wang W, Zhang C. Targeting β-cell dedifferentiation and transdifferentiation: opportunities and challenges. Endocr Connect 2021; 10:R213-R228. [PMID: 34289444 PMCID: PMC8428079 DOI: 10.1530/ec-21-0260] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 07/21/2021] [Indexed: 12/02/2022]
Abstract
The most distinctive pathological characteristics of diabetes mellitus induced by various stressors or immune-mediated injuries are reductions of pancreatic islet β-cell populations and activity. Existing treatment strategies cannot slow disease progression; consequently, research to genetically engineer β-cell mimetics through bi-directional plasticity is ongoing. The current consensus implicates β-cell dedifferentiation as the primary etiology of reduced β-cell mass and activity. This review aims to summarize the etiology and proposed mechanisms of β-cell dedifferentiation and to explore the possibility that there might be a time interval from the onset of β-cell dysfunction caused by dedifferentiation to the development of diabetes, which may offer a therapeutic window to reduce β-cell injury and to stabilize functionality. In addition, to investigate β-cell plasticity, we review strategies for β-cell regeneration utilizing genetic programming, small molecules, cytokines, and bioengineering to transdifferentiate other cell types into β-cells; the development of biomimetic acellular constructs to generate fully functional β-cell-mimetics. However, the maturation of regenerated β-cells is currently limited. Further studies are needed to develop simple and efficient reprogramming methods for assembling perfectly functional β-cells. Future investigations are necessary to transform diabetes into a potentially curable disease.
Collapse
Affiliation(s)
- Wenrui Wang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
| | - Chuan Zhang
- Department of Endocrinology, The Second Hospital of Jilin University, Changchun, People’s Republic of China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
84
|
Melentev PA, Ryabova EV, Surina NV, Zhmujdina DR, Komissarov AE, Ivanova EA, Boltneva NP, Makhaeva GF, Sliusarenko MI, Yatsenko AS, Mohylyak II, Matiytsiv NP, Shcherbata HR, Sarantseva SV. Loss of swiss cheese in Neurons Contributes to Neurodegeneration with Mitochondria Abnormalities, Reactive Oxygen Species Acceleration and Accumulation of Lipid Droplets in Drosophila Brain. Int J Mol Sci 2021; 22:8275. [PMID: 34361042 PMCID: PMC8347196 DOI: 10.3390/ijms22158275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/23/2021] [Accepted: 07/27/2021] [Indexed: 12/17/2022] Open
Abstract
Various neurodegenerative disorders are associated with human NTE/PNPLA6 dysfunction. Mechanisms of neuropathogenesis in these diseases are far from clearly elucidated. Hereditary spastic paraplegia belongs to a type of neurodegeneration associated with NTE/PNLPLA6 and is implicated in neuron death. In this study, we used Drosophila melanogaster to investigate the consequences of neuronal knockdown of swiss cheese (sws)-the evolutionarily conserved ortholog of human NTE/PNPLA6-in vivo. Adult flies with the knockdown show longevity decline, locomotor and memory deficits, severe neurodegeneration progression in the brain, reactive oxygen species level acceleration, mitochondria abnormalities and lipid droplet accumulation. Our results suggest that SWS/NTE/PNPLA6 dysfunction in neurons induces oxidative stress and lipid metabolism alterations, involving mitochondria dynamics and lipid droplet turnover in neurodegeneration pathogenesis. We propose that there is a complex mechanism in neurological diseases such as hereditary spastic paraplegia, which includes a stress reaction, engaging mitochondria, lipid droplets and endoplasmic reticulum interplay.
Collapse
Affiliation(s)
- Pavel A. Melentev
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Elena V. Ryabova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Nina V. Surina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Darya R. Zhmujdina
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Artem E. Komissarov
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Ekaterina A. Ivanova
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| | - Natalia P. Boltneva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Galina F. Makhaeva
- Institute of Physiologically Active Compounds Russian Academy of Sciences, 142432 Chernogolovka, Russia; (N.P.B.); (G.F.M.)
| | - Mariana I. Sliusarenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Andriy S. Yatsenko
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Iryna I. Mohylyak
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Nataliya P. Matiytsiv
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 79005 Lviv, Ukraine; (I.I.M.); (N.P.M.)
| | - Halyna R. Shcherbata
- Institute of Cell Biochemistry, Hannover Medical School, 30625 Hannover, Germany; (M.I.S.); (A.S.Y.); (H.R.S.)
| | - Svetlana V. Sarantseva
- Petersburg Nuclear Physics Institute Named by B.P. Konstantinov of NRC «Kurchatov Institute», 188300 Gatchina, Russia; (P.A.M.); (E.V.R.); (N.V.S.); (D.R.Z.); (A.E.K.); (E.A.I.)
| |
Collapse
|
85
|
Chan JY, Bensellam M, Lin RCY, Liang C, Lee K, Jonas JC, Laybutt DR. Transcriptome analysis of islets from diabetes-resistant and diabetes-prone obese mice reveals novel gene regulatory networks involved in beta-cell compensation and failure. FASEB J 2021; 35:e21608. [PMID: 33977593 DOI: 10.1096/fj.202100009r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/23/2021] [Accepted: 04/05/2021] [Indexed: 01/02/2023]
Abstract
The mechanisms underpinning beta-cell compensation for obesity-associated insulin resistance and beta-cell failure in type 2 diabetes remain poorly understood. We used a large-scale strategy to determine the time-dependent transcriptomic changes in islets of diabetes-prone db/db and diabetes-resistant ob/ob mice at 6 and 16 weeks of age. Differentially expressed genes were subjected to cluster, gene ontology, pathway and gene set enrichment analyses. A distinctive gene expression pattern was observed in 16 week db/db islets in comparison to the other groups with alterations in transcriptional regulators of islet cell identity, upregulation of glucose/lipid metabolism, and various stress response genes, and downregulation of specific amino acid transport and metabolism genes. In contrast, ob/ob islets displayed a coordinated downregulation of metabolic and stress response genes at 6 weeks of age, suggestive of a preemptive reconfiguration in these islets to lower the threshold of metabolic activation in response to increased insulin demand thereby preserving beta-cell function and preventing cellular stress. In addition, amino acid transport and metabolism genes were upregulated in ob/ob islets, suggesting an important role of glutamate metabolism in beta-cell compensation. Gene set enrichment analysis of differentially expressed genes identified the enrichment of binding motifs for transcription factors, FOXO4, NFATC1, and MAZ. siRNA-mediated knockdown of these genes in MIN6 cells altered cell death, insulin secretion, and stress gene expression. In conclusion, these data revealed novel gene regulatory networks involved in beta-cell compensation and failure. Preemptive metabolic reconfiguration in diabetes-resistant islets may dampen metabolic activation and cellular stress during obesity.
Collapse
Affiliation(s)
- Jeng Yie Chan
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Mohammed Bensellam
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - Ruby C Y Lin
- School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia.,Centre for Infectious Diseases and Microbiology, Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Cassandra Liang
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Kailun Lee
- Garvan Institute of Medical Research, Sydney, NSW, Australia
| | - Jean-Christophe Jonas
- Pôle D'endocrinologie, Diabète et Nutrition, Institut de Recherche Expérimentale et Clinique, Université Catholique de Louvain, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical Research, Sydney, NSW, Australia.,School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
86
|
Scolymus hispanicus (Golden Thistle) Ameliorates Hepatic Steatosis and Metabolic Syndrome by Reducing Lipid Accumulation, Oxidative Stress, and Inflammation in Rats under Hyperfatty Diet. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:5588382. [PMID: 34335826 PMCID: PMC8289590 DOI: 10.1155/2021/5588382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 06/22/2021] [Accepted: 07/03/2021] [Indexed: 11/18/2022]
Abstract
Background Lipotoxicity is characterized by a metabolic disturbance leading to the development of nonalcoholic fatty liver disease (NAFLD). Some medicinal plant extracts exert hepatoprotective activity by modulating oxidative stress, inflammation, and metabolic disorders. Scolymus hispanicus or the golden thistle can be considered an important natural source of antioxidants. In traditional medicine, the consumption of this plant is recommended for diseases of the liver and intestines. Objective In this study, we aimed to determine the effects of Scolymus hispanicus on a hyperfatty diet- (HFD-) induced metabolic disorders, oxidative stress, and inflammation. Materials and Methods Our experiment focused on the administration of an HFD (40%) in Rattus norvegicus for 2 months and treatment with the aqueous extract of Scolymus hispanicus at a rate of 100 mg/kg during the last eight days of experimentation. In this context, several aspects were studied: the evaluation of blood biochemical parameters, liver function such as lipids and glycogen, markers of oxidative stress (TBARS, carbonyl proteins, advanced oxidation proteins, catalase, and SOD) and inflammation (NO and NFkB), morphological study of hepatocytes in primary culture, and histological study of the liver. Results Lipotoxicity induced metabolic disorders, both serum and tissue. HFD induced an increase in the total lipids and a decrease in glycogen reserve and an alteration in the oxidant-antioxidant balance. HFD induced an increase in markers of liver damage, which resulted in NAFLD, confirmed by histological study and hepatocytes cell culture. Scolymus appears to have lipid-lowering, hypoglycemic, anti-inflammatory and antioxidant properties. It improved glucose tolerance and the condition of fatty liver disease. Conclusion Golden thistle improves glucose tolerance and hyperlipidemia and ameliorates hepatic steatosis by reducing oxidative stress, inflammation, and lipid accumulation. Its incorporation into a dietary program or as an aliment supplement would prevent hepatic complications associated with an HFD.
Collapse
|
87
|
Hashiesh HM, Sharma C, Goyal SN, Sadek B, Jha NK, Kaabi JA, Ojha S. A focused review on CB2 receptor-selective pharmacological properties and therapeutic potential of β-caryophyllene, a dietary cannabinoid. Biomed Pharmacother 2021; 140:111639. [PMID: 34091179 DOI: 10.1016/j.biopha.2021.111639] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/12/2021] [Accepted: 04/19/2021] [Indexed: 02/06/2023] Open
Abstract
The endocannabinoid system (ECS), a conserved physiological system emerged as a novel pharmacological target for its significant role and potential therapeutic benefits ranging from neurological diseases to cancer. Among both, CB1 and CB2R types, CB2R have received attention for its pharmacological effects as antioxidant, anti-inflammatory, immunomodulatory and antiapoptotic that can be achieved without causing psychotropic adverse effects through CB1R. The ligands activate CB2R are of endogenous, synthetic and plant origin. In recent years, β-caryophyllene (BCP), a natural bicyclic sesquiterpene in cannabis as well as non-cannabis plants, has received attention due to its selective agonist property on CB2R. BCP has been well studied in a variety of pathological conditions mediating CB2R selective agonist property. The focus of the present manuscript is to represent the CB2R selective agonist mediated pharmacological mechanisms and therapeutic potential of BCP. The present narrative review summarizes insights into the CB2R-selective pharmacological properties and therapeutic potential of BCP such as cardioprotective, hepatoprotective, neuroprotective, nephroprotective, gastroprotective, chemopreventive, antioxidant, anti-inflammatory, and immunomodulator. The available evidences suggest that BCP, can be an important candidate of plant origin endowed with CB2R selective properties that may provide a pharmacological rationale for its pharmacotherapeutic application and pharmaceutical development like a drug. Additionally, given the wide availability in edible plants and dietary use, with safety, and no toxicity, BCP can be promoted as a nutraceutical and functional food for general health and well-being. Further, studies are needed to explore pharmacological and pharmaceutical opportunities for therapeutic and preventive applications of use of BCP in human diseases.
Collapse
Affiliation(s)
- Hebaallah Mamdouh Hashiesh
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Charu Sharma
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Sameer N Goyal
- Shri Vile Parle Kelvani Mandal's Institute of Pharmacy, Dhule 424001, Maharashtra, India
| | - Bassem Sadek
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering & Technology, Sharda University, Greater Noida, Uttar Pradesh 201310, India
| | - Juma Al Kaabi
- Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates
| | - Shreesh Ojha
- Department of Pharmacology and Therapeutics, College of Medicine and Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates; Zayed Bin Sultan Al Nahyan Center for Health Sciences, United Arab Emirates University, P.O. Box 17666, Al Ain, United Arab Emirates.
| |
Collapse
|
88
|
Taylor R. Type 2 diabetes and remission: practical management guided by pathophysiology. J Intern Med 2021; 289:754-770. [PMID: 33289165 PMCID: PMC8247294 DOI: 10.1111/joim.13214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 09/10/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022]
Abstract
The twin cycle hypothesis postulated that type 2 diabetes was a result of excess liver fat causing excess supply of fat to the pancreas with resulting dysfunction of both organs. If this was so, the condition should be able to be returned to normal by calorie restriction. The Counterpoint study tested this prediction in short-duration type 2 diabetes and showed that liver glucose handling returned to normal within 7 days and that beta-cell function returned close to normal over 8 weeks. Subsequent studies have demonstrated the durability of remission from type 2 diabetes. Remarkably, during the first 12 months of remission, the maximum functional beta-cell mass returns completely to normal and remains so for at least 24 months, consistent with regain of insulin secretory function of beta cells which had dedifferentiated in the face of chronic nutrient oversupply. The likelihood of achieving remission after 15% weight loss has been shown to be mainly determined by the duration of diabetes, with responders having better beta-cell function at baseline. Remission is independent of BMI, underscoring the personal fat threshold concept that type 2 diabetes develops when an individual acquires more fat than can be individually tolerated even at a BMI which in the nonobese range. Observations on people of South Asian or Afro-American ethnicity confirm that substantial weight loss achieves remission in the same way as in the largely White Europeans studied in detail. Diagnosis of type 2 diabetes can now be regarded as an urgent signal that weight loss must be achieved to avoid a progressive decline of health.
Collapse
Affiliation(s)
- Roy Taylor
- Magnetic Resonance CentreInstitute of Cellular MedicineNewcastle UniversityNewcastleUK
| |
Collapse
|
89
|
Miller C, Lim E. The risk of diabetes after giving birth to a macrosomic infant: data from the NHANES cohort. Matern Health Neonatol Perinatol 2021; 7:12. [PMID: 33980302 PMCID: PMC8114492 DOI: 10.1186/s40748-021-00132-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 04/28/2021] [Indexed: 12/02/2022] Open
Abstract
Aims Gestational diabetes (GDM) increases the risk of developing type 2 diabetes and thus warrants earlier and more frequent screening. Women who give birth to a macrosomic infant, as defined as a birthweight greater than 9 lbs. (or approximately 4000 g), are encouraged to also get early type 2 diabetes screening, as macrosomia may be a surrogate marker for GDM. This study investigates whether a macrosomic infant, as defined as 9lbs, apart from GDM, increases the risk for diabetes later in life. Methods Data on parous women from the National Health and Nutrition Examination Survey (NHANES) 2007–2016 were utilized. Rates of diabetes were compared in those with and without macrosomic infants in Rao-Scott’s chi-square test. Multiple logistic regression was used to test the independent effect of macrosomia on type 2 diabetes controlling for the confounding covariates and adjusting for the complex sampling design. To investigate how onset time affects diabetes, we implemented Cox proportional hazard regressions on time to have diabetes. Results Among 10,089 parous women, macrosomia significantly increased the risk of maternal diabetes later in life in the chi-square test and logistic regression. Independent of GDM, women who deliver a macrosomic infant have a 20% higher chance of developing diabetes compared to women who did not. The expected hazards of having type 2 diabetes is 1.66 times higher in a woman with macrosomic infant compared to counterparts. Conclusions Women who gave birth to a macrosomic infant in the absence of GDM should be offered earlier and more frequent screening for type 2 diabetes.
Collapse
Affiliation(s)
- Corrie Miller
- Department of Obstetrics, Gynecology and Women's Health, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA.
| | - Eunjung Lim
- Department of Quantitative Health Sciences, John A. Burns School of Medicine, University of Hawaii, Honolulu, USA
| |
Collapse
|
90
|
Verkerke ARP, Kajimura S. Oil does more than light the lamp: The multifaceted role of lipids in thermogenic fat. Dev Cell 2021; 56:1408-1416. [PMID: 34004150 DOI: 10.1016/j.devcel.2021.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/25/2021] [Accepted: 04/16/2021] [Indexed: 01/23/2023]
Abstract
Brown and beige adipocytes, or thermogenic fat, were initially thought to be merely a thermogenic organ. However, emerging evidence suggests its multifaceted roles in the regulation of systemic glucose and lipid homeostasis that go beyond enhancing thermogenesis. One of the important functions of thermogenic fat is as a "metabolic sink" for glucose, fatty acids, and amino acids, which profoundly impacts metabolite clearance and oxidation. Importantly, lipids are not only the predominant fuel source used for thermogenesis but are also essential molecules for development, cellular signaling, and structural components. Here, we review the multifaceted role of lipids in thermogenic adipocytes.
Collapse
Affiliation(s)
- Anthony R P Verkerke
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
91
|
Abstract
Leptin is a pluripotent peptide hormone produced mainly by adipocytes, as well as by other tissues such as the stomach. Leptin primarily acts on the central nervous system, particularly the hypothalamus, where this hormone regulates energy homeostasis and neuroendocrine function. Owing to this, disruption of leptin signaling has been linked with numerous pathological conditions. Recent studies have also highlighted the diverse roles of leptin in the digestive system including immune regulation, cell proliferation, tissue healing, and glucose metabolism. Of note, leptin acts differently under physiological and pathological conditions. Here, we review the current knowledge on the functions of leptin and its downstream signaling in the gastrointestinal tract and accessory digestive organs, with an emphasis on its physiological and pathological implications. We also discuss the current therapeutic uses of recombinant leptin, as well as its limitations.
Collapse
Affiliation(s)
- Min-Hyun Kim
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, United States
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei University, Seoul, Korea
| |
Collapse
|
92
|
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common liver pathology worldwide due to the rising prevalence of obesity. This term includes changes from simple steatosis to steatohepatitis and fibrosis. It was previously thought to be a hepatic manifestation of metabolic syndrome, but recent literature describes this relation as much more complex and bi-directional. Development of NAFLD is associated with other metabolic syndrome components but it can also exacerbate insulin resistance and increase cardiovascular risk. Recently a lot of attention is brought to the role of lipids and lipotoxicity in pathogenesis and progression of non-alcoholic fatty disease. It seems that some lipid classes can be protective against liver injury while others are harmful in excessive amounts. This study presents an overview of the main lipids involved in the pathogenesis of non-alcoholic fatty liver disease and summarizes their association with lipotoxicity, insulin resistance, oxidative stress and other processes responsible for its progression.
Collapse
|
93
|
Sexual hormones and diabetes: The impact of estradiol in pancreatic β cell. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021. [PMID: 33832654 DOI: 10.1016/bs.ircmb.2021.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/13/2023]
Abstract
Diabetes is one of the most prevalent metabolic diseases and its incidence is increasing throughout the world. Data from World Health Organization (WHO) point-out that diabetes is a major cause of blindness, kidney failure, heart attacks, stroke and lower limb amputation and estimated 1.6 million deaths were directly caused by it in 2016. Population studies show that the incidence of this disease increases in women after menopause, when the production of estrogen is decreasing in them. Knowing the impact that estrogenic signaling has on insulin-secreting β cells is key to prevention and design of new therapeutic targets. This chapter explores the role of estrogen and their receptors in the regulation of insulin secretion and biosynthesis, proliferation, regeneration and survival in pancreatic β cells. In addition, delves into the genetic animal models developed and its application for the specific study of the different estrogen signaling pathways. Finally, discusses the impact of menopause and hormone replacement therapy on pancreatic β cell function.
Collapse
|
94
|
Benito-Vicente A, Jebari-Benslaiman S, Galicia-Garcia U, Larrea-Sebal A, Uribe KB, Martin C. Molecular mechanisms of lipotoxicity-induced pancreatic β-cell dysfunction. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2021; 359:357-402. [PMID: 33832653 DOI: 10.1016/bs.ircmb.2021.02.013] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Type 2 diabetes (T2D), a heterogeneous disorder derived from metabolic dysfunctions, leads to a glucose overflow in the circulation due to both defective insulin secretion and peripheral insulin resistance. One of the critical risk factor for T2D is obesity, which represents a global epidemic that has nearly tripled since 1975. Obesity is characterized by chronically elevated free fatty acid (FFA) levels, which cause deleterious effects on glucose homeostasis referred to as lipotoxicity. Here, we review the physiological FFA roles onto glucose-stimulated insulin secretion (GSIS) and the pathological ones affecting many steps of the mechanisms and modulation of GSIS. We also describe in vitro and in vivo experimental evidences addressing lipotoxicity in β-cells and the role of saturation and chain length of FFA on the potency of GSIS stimulation. The molecular mechanisms underpinning lipotoxic-β-cell dysfunction are also reviewed. Among them, endoplasmic reticulum stress, oxidative stress and mitochondrial dysfunction, inflammation, impaired autophagy and β-cell dedifferentiation. Finally therapeutic strategies for the β-cells dysfunctions such as the use of metformin, glucagon-like peptide 1, thiazolidinediones, anti-inflammatory drugs, chemical chaperones and weight are discussed.
Collapse
Affiliation(s)
- Asier Benito-Vicente
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Shifa Jebari-Benslaiman
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Unai Galicia-Garcia
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Asier Larrea-Sebal
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Molecular Biophysics, Fundación Biofísica Bizkaia, Leioa, Spain
| | - Kepa B Uribe
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Donostia San Sebastián, Spain
| | - Cesar Martin
- Department of Molecular Biophysics, Biofisika Institute (University of Basque Country and Consejo Superior de Investigaciones Científicas (UPV/EHU, CSIC)), Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| |
Collapse
|
95
|
Ladwa M, Bello O, Hakim O, Shojaee-Moradie F, Boselli ML, Charles-Edwards G, Peacock J, Umpleby AM, Amiel SA, Bonadonna RC, Goff LM. Ethnic differences in beta cell function occur independently of insulin sensitivity and pancreatic fat in black and white men. BMJ Open Diabetes Res Care 2021; 9:9/1/e002034. [PMID: 33762314 PMCID: PMC7993168 DOI: 10.1136/bmjdrc-2020-002034] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 01/21/2021] [Accepted: 02/11/2021] [Indexed: 12/12/2022] Open
Abstract
INTRODUCTION It is increasingly recognized that type 2 diabetes (T2D) is a heterogenous disease with ethnic variations. Differences in insulin secretion, insulin resistance and ectopic fat are thought to contribute to these variations. Therefore, we aimed to compare postprandial insulin secretion and the relationships between insulin secretion, insulin sensitivity and pancreatic fat in men of black West African (BA) and white European (WE) ancestry. RESEARCH DESIGN AND METHODS A cross-sectional, observational study in which 23 WE and 23 BA men with normal glucose tolerance, matched for body mass index, underwent a mixed meal tolerance test with C peptide modeling to measure beta cell insulin secretion, an MRI to quantify intrapancreatic lipid (IPL), and a hyperinsulinemic-euglycemic clamp to measure whole-body insulin sensitivity. RESULTS Postprandial insulin secretion was lower in BA versus WE men following adjustment for insulin sensitivity (estimated marginal means, BA vs WE: 40.5 (95% CI 31.8 to 49.2) × 103 vs 56.4 (95% CI 48.9 to 63.8) × 103 pmol/m2 body surface area × 180 min, p=0.008). There was a significantly different relationship by ethnicity between IPL and insulin secretion, with a stronger relationship in WE than in BA (r=0.59 vs r=0.39, interaction p=0.036); however, IPL was not a predictor of insulin secretion in either ethnic group following adjustment for insulin sensitivity. CONCLUSIONS Ethnicity is an independent determinant of beta cell function in black and white men. In response to a meal, healthy BA men exhibit lower insulin secretion compared with their WE counterparts for their given insulin sensitivity. Ethnic differences in beta cell function may contribute to the greater risk of T2D in populations of African ancestry.
Collapse
Affiliation(s)
- Meera Ladwa
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Oluwatoyosi Bello
- Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Olah Hakim
- Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - Geoff Charles-Edwards
- School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Janet Peacock
- Department of Epidemiology, Dartmouth College Geisel School of Medicine, Hanover, New Hampshire, USA
| | - A Margot Umpleby
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey, UK
| | - Stephanie A Amiel
- Department of Diabetes, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Riccardo C Bonadonna
- Department of Medicine and Surgery, University of Parma, Parma, Italy
- Endocrinologia e Malattie del Metabolismo, Azienda Ospedaliero-Universitaria di Parma, Parma, Italy
| | - Louise M Goff
- Diabetes and Nutritional Sciences Division, Faculty of Life Sciences and Medicine, King's College London, London, UK
| |
Collapse
|
96
|
Moriyama K, Kishimoto N, Shiina Y, Urata N, Masuda Y, Oda K, Yamada C, Takashimizu S, Kubo A, Nishizaki Y. Oleic acid to stearic acid ratio might be a potential marker for insulin resistance in non-obese Japanese. J Clin Biochem Nutr 2021; 68:164-168. [PMID: 33879968 PMCID: PMC8045998 DOI: 10.3164/jcbn.20-95] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 06/17/2020] [Indexed: 11/22/2022] Open
Abstract
Results from a recent study indicate that a higher level of oleic acid/stearic acid ratio was associated with metabolically unhealthy obesity. This was further validated in cross-sectional and interventional studies; however, this was not extensively studied in a non-obese population. We recruited 260 Japanese subjects with serum free fatty acid profiles undergoing anti-aging health examinations. The determinants for oleic acid/stearic acid ratio were investigated using multiple regression analyses. To compare different markers, the subjects were classified based on oleic acid/stearic acid ratio and the combination of oleic acid/stearic acid ratio and triglyceride levels. The oleic acid/stearic acid ratio exhibited a positive correlation with the logmatic transformed triglyceride/high-density lipoprotein cholesterol ratio and the fasting triglycerides-glucose index, both of which were used as markers for insulin resistance. Multiple regression analyses revealed that the triglyceride/high-density lipoprotein cholesterol ratio and fasting triglyceride-glucose index were positively associated with the oleic acid/stearic acid ratio. Most markers were the worst in the highest triglyceride group in both oleic acid/stearic acid groups. In addition, most markers were worse in high oleic acid/stearic acid ratio group than low group. In conclusion, oleic acid/stearic acid ratio might be a useful marker for insulin resistance in non-obese Japanese subjects.
Collapse
Affiliation(s)
- Kengo Moriyama
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hachioji Hospital, 1838 Ishikawa-machi, Hachioji, Tokyo 192-0032, Japan
| | - Noriaki Kishimoto
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
- Tokai University Tokyo Hospital, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Yutaka Shiina
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Nana Urata
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
- Tokai University Tokyo Hospital, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Yumi Masuda
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Kanae Oda
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
- Tokai University Tokyo Hospital, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Chizumi Yamada
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
- Tokai University Tokyo Hospital, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Shinji Takashimizu
- Department of Clinical Health Science, Tokai University School of Medicine, Tokai University Hospital, 143 Shimokasuya, Isehara, Kanagawa 259-1193, Japan
| | - Akira Kubo
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
- Tokai University Tokyo Hospital, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| | - Yasuhiro Nishizaki
- Department of Clinical Health Science, Tokai University School of Medicine, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
- Tokai University Tokyo Hospital, 1-2-5 Yoyogi, Shibuya-ku, Tokyo 151-0053, Japan
| |
Collapse
|
97
|
Al-Mrabeh A. β-Cell Dysfunction, Hepatic Lipid Metabolism, and Cardiovascular Health in Type 2 Diabetes: New Directions of Research and Novel Therapeutic Strategies. Biomedicines 2021; 9:226. [PMID: 33672162 PMCID: PMC7927138 DOI: 10.3390/biomedicines9020226] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/09/2021] [Accepted: 02/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) remains a major problem for people with type 2 diabetes mellitus (T2DM), and dyslipidemia is one of the main drivers for both metabolic diseases. In this review, the major pathophysiological and molecular mechanisms of β-cell dysfunction and recovery in T2DM are discussed in the context of abnormal hepatic lipid metabolism and cardiovascular health. (i) In normal health, continuous exposure of the pancreas to nutrient stimulus increases the demand on β-cells. In the long term, this will not only stress β-cells and decrease their insulin secretory capacity, but also will blunt the cellular response to insulin. (ii) At the pre-diabetes stage, β-cells compensate for insulin resistance through hypersecretion of insulin. This increases the metabolic burden on the stressed β-cells and changes hepatic lipoprotein metabolism and adipose tissue function. (iii) If this lipotoxic hyperinsulinemic environment is not removed, β-cells start to lose function, and CVD risk rises due to lower lipoprotein clearance. (iv) Once developed, T2DM can be reversed by weight loss, a process described recently as remission. However, the precise mechanism(s) by which calorie restriction causes normalization of lipoprotein metabolism and restores β-cell function are not fully established. Understanding the pathophysiological and molecular basis of β-cell failure and recovery during remission is critical to reduce β-cell burden and loss of function. The aim of this review is to highlight the link between lipoprotein export and lipid-driven β-cell dysfunction in T2DM and how this is related to cardiovascular health. A second aim is to understand the mechanisms of β-cell recovery after weight loss, and to explore new areas of research for developing more targeted future therapies to prevent T2DM and the associated CVD events.
Collapse
Affiliation(s)
- Ahmad Al-Mrabeh
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Magnetic Resonance Centre, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| |
Collapse
|
98
|
Awasthi A, Singh SK, Kumar B, Gulati M, Kumar R, Wadhwa S, Khursheed R, Corrie L, Kr A, Kumar R, Patni P, Kaur J, Vishwas S, Yadav A. Treatment Strategies Against Diabetic Foot Ulcer: Success so Far and the Road Ahead. Curr Diabetes Rev 2021; 17:421-436. [PMID: 33143613 DOI: 10.2174/1573399816999201102125537] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 10/15/2020] [Accepted: 10/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Diabetic foot ulcer (DFU) is one of the leading complications of type-2 diabetes mellitus. It is associated with neuropathy and peripheral arterial disease of the lower limb in patients with diabetes. There are four stages of wound healing, namely hemostasis phase, inflammatory phase, proliferative phase and maturation phase. In the case of DFU, all these stages are disturbed which lead to delay in healing and consequently to lower limb amputation. Conventional dosage forms like tablets, creams, ointments, gels and capsules have been used for the treatment of diabetic foot ulcer for many years. INTRODUCTION In this review, the global prevalence as well as etiopathogenesis related to diabetic foot ulcer have been discussed. The potential role of various synthetic and herbal drugs, as well as their conventional dosage forms in the effective management of DFU have been discussed in detail. METHODS Structured search of bibliographic databases from previously published peer-reviewed research papers was explored and data has been represented in terms of various approaches that are used for the treatment of DFU. RESULTS About 148 papers, including both research and review articles, were included in this review to produce a comprehensive as well as a readily understandable article. A series of herbal and synthetic drugs have been discussed along with their current status of treatment in terms of dose and mechanism of action. CONCLUSION DFU has become one of the most common complications in patients having diabetes for more than ten years. Hence, understanding the root cause and its successful treatment is a big challenge because it depends upon multiple factors such as the judicious selection of drugs as well as proper control of blood sugar level. Most of the drugs that have been used so far either belong to the category of antibiotics, antihyperglycaemic or they have been repositioned. In clinical practice, much focus has been given to dressings that have been used to cover the ulcer. The complete treatment of DFU is still a farfetched dream to be achieved and it is expected that combination therapy of herbal and synthetic drugs with multiple treatment pathways could be able to offer better management of DFU.
Collapse
Affiliation(s)
- Ankit Awasthi
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Bimlesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rajesh Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sheetu Wadhwa
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rubiya Khursheed
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Arya Kr
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Rajan Kumar
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Pooja Patni
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Jaskiran Kaur
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| | - Ankit Yadav
- School of Pharmaceutical Sciences, Lovely Professional University Phagwara, 144411, Punjab, India
| |
Collapse
|
99
|
Summers SA. Editorial: The Role of Ceramides in Diabetes and Cardiovascular Disease. Front Endocrinol (Lausanne) 2021; 12:667885. [PMID: 33776946 PMCID: PMC7994593 DOI: 10.3389/fendo.2021.667885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 02/17/2021] [Indexed: 11/13/2022] Open
|
100
|
Beta-Cell Mass in Obesity and Type 2 Diabetes, and Its Relation to Pancreas Fat: A Mini-Review. Nutrients 2020; 12:nu12123846. [PMID: 33339276 PMCID: PMC7766247 DOI: 10.3390/nu12123846] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 12/11/2022] Open
Abstract
Type 2 diabetes (T2DM) is characterized by insulin resistance and beta-cell dysfunction. Although insulin resistance is assumed to be a main pathophysiological feature of the development of T2DM, recent studies have revealed that a deficit of functional beta-cell mass is an essential factor for the pathophysiology of T2DM. Pancreatic fat contents increase with obesity and are suggested to cause beta-cell dysfunction. Since the beta-cell dysfunction induced by obesity or progressive decline with disease duration results in a worsening glycemic control, and treatment failure, preserving beta-cell mass is an important treatment strategy for T2DM. In this mini-review, we summarize the current knowledge on beta-cell mass, beta-cell function, and pancreas fat in obesity and T2DM, and we discuss treatment strategies for T2DM in relation to beta-cell preservation.
Collapse
|