51
|
A20 regulates canonical wnt-signaling through an interaction with RIPK4. PLoS One 2018; 13:e0195893. [PMID: 29718933 PMCID: PMC5931457 DOI: 10.1371/journal.pone.0195893] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 04/02/2018] [Indexed: 01/06/2023] Open
Abstract
A20 is a ubiquitin-editing enzyme that is known to regulate inflammatory signaling and cell death. However, A20 mutations are also frequently found in multiple malignancies suggesting a potential role as a tumor suppressor as well. We recently described a novel role for A20 in regulating the wnt-beta-catenin signaling pathway and suppressing colonic tumor development in mice. The underlying mechanisms for this phenomenon are unclear. To study this, we first generated A20 knockout cell lines by genome-editing techniques. Using these cells, we show that loss of A20 causes dysregulation of wnt-dependent gene expression by RNAseq. Mechanistically, A20 interacts with a proximal signaling component of the wnt-signaling pathway, receptor interacting protein kinase 4 (RIPK4), and regulation of wnt-signaling by A20 occurs through RIPK4. Finally, similar to the mechanism by which A20 regulates other members of the receptor interacting protein kinase family, A20 modifies ubiquitin chains on RIPK4 suggesting a possible molecular mechanism for A20’s control over the wnt-signaling pathway.
Collapse
|
52
|
Dorn S, Schoergenhofer C, Krainer M, Müller M, Jilma B. LUBAC and ABIN-1 Modulate TRAIL-Based NF-κB Induction in Human Embryonic Kidney 293 Cells. Biores Open Access 2018; 7:81-89. [PMID: 29862142 PMCID: PMC5982153 DOI: 10.1089/biores.2018.0006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) is known to activate the canonical NF-κB pathway similar to TNF. The exact mechanism of the entire signaling cascade is still under investigation. The involvement of linear ubiquitylation as upregulating component has already been shown recently in some cell lines, but not in human embryonic kidney 293 (HEK293) cells. The downregulating function of the ABIN-1 (A20 binding and inhibitor of NF-κB) as linear ubiquitylation antagonist has been shown in combination with some NF-κB-inducing pathways, but not with TRAIL. We performed luciferase and western blot assays using HEK293 cells stimulated with either TRAIL (or TNF as a control) to analyze the involvement of linear ubiquitin chain assembly complex (LUBAC) components and the impact of ABIN-1 and ABIN-1-MAD (truncated form without A20 binding site) on NF-κB signaling. For overexpression experiments, we added plasmids of ABIN-1 and ABIN-1-MAD or LUBAC components HOIP, HOIL-1, or SHARPIN (single and combinations). For downregulation experiments five pairs of either SHARPIN, HOIL-1, or HOIP targeting miRNAs or one miRNA for ABIN-1 were designed and added. ABIN-1 and its truncated form ABIN-1-MAD reduced the NF-κB induction significantly indicating its involvement as antagonist (independent of deubiquitinase A20) of linear ubiquitylation in TRAIL-induced NF-κB signaling. In opposition, knockdown of ABIN-1 using a specific ABIN-1 miRNA led a clear increase of NF-κB signaling. Addition of single LUBAC components or combinations (except for SHARPIN with HOIL-1) resulted in clearly stronger NF-κB inductions. MiRNAs targeting LUBAC components significantly reduced NF-κB activation. Thus, in HEK293 cells linear ubiquitylation by LUBAC critically upregulates and ABIN-1 downregulates TRAIL-induced NF-κB signaling and may be interesting targets for future pathological therapies.
Collapse
Affiliation(s)
- Sebastian Dorn
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | | | - Michael Krainer
- Clinical Division of Oncology, Department of Internal Medicine I, Medical University of Vienna, Vienna, Austria
| | - Markus Müller
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Bernd Jilma
- Department of Clinical Pharmacology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
53
|
Liu J, Zhao Y, Ge W, Zhang P, Liu X, Zhang W, Hao Y, Yu S, Li L, Chu M, Min L, Zhang H, Shen W. Oocyte exposure to ZnO nanoparticles inhibits early embryonic development through the γ-H2AX and NF-κB signaling pathways. Oncotarget 2018; 8:42673-42692. [PMID: 28487501 PMCID: PMC5522097 DOI: 10.18632/oncotarget.17349] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 04/11/2017] [Indexed: 01/01/2023] Open
Abstract
The impacts of zinc oxide nanoparticles on embryonic development following oocyte stage exposure are unknown and the underlying mechanisms are sparsely understood. In the current investigation, intact nanoparticles were detected in ovarian tissue in vivo and cultured cells in vitro under zinc oxide nanoparticles treatment. Zinc oxide nanoparticles exposure during the oocyte stage inhibited embryonic development. Notably, in vitro culture data closely matched in vivo embryonic data, in that the impairments caused by Zinc oxide nanoparticles treatment passed through cell generations; and both gamma-H2AX and NF-kappaB pathways were involved in zinc oxide nanoparticles caused embryo-toxicity. Copper oxide and silicon dioxide nanoparticles have been used to confirm that particles are important for the toxicity of zinc oxide nanoparticles. The toxic effects of zinc oxide nanoparticles emanate from both intact nanoparticles and Zn2+. Our investigation along with others suggests that zinc oxide nanoparticles are toxic to the female reproductive system [ovaries (oocytes)] and subsequently embryo-toxic and that precaution should be taken regarding human exposure to their everyday use.
Collapse
Affiliation(s)
- Jing Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,Core Laboratories of Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yong Zhao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China.,State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Ge
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Pengfei Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Xinqi Liu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Weidong Zhang
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Yanan Hao
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Shuai Yu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lan Li
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Meiqiang Chu
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Lingjiang Min
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, P. R. China
| | - Wei Shen
- Key Laboratory of Animal Reproduction and Germplasm Enhancement in Universities of Shandong, Qingdao Agricultural University, Qingdao 266109, P. R. China
| |
Collapse
|
54
|
Miraghazadeh B, Cook MC. Nuclear Factor-kappaB in Autoimmunity: Man and Mouse. Front Immunol 2018; 9:613. [PMID: 29686669 PMCID: PMC5900062 DOI: 10.3389/fimmu.2018.00613] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/12/2018] [Indexed: 12/21/2022] Open
Abstract
NF-κB (nuclear factor-kappa B) is a transcription complex crucial for host defense mediated by innate and adaptive immunity, where canonical NF-κB signaling, mediated by nuclear translocation of RelA, c-Rel, and p50, is important for immune cell activation, differentiation, and survival. Non-canonical signaling mediated by nuclear translocation of p52 and RelB contributes to lymphocyte maturation and survival and is also crucial for lymphoid organogenesis. We outline NF-κB signaling and regulation, then summarize important molecular contributions of NF-κB to mechanisms of self-tolerance. We relate these mechanisms to autoimmune phenotypes described in what is now a substantial catalog of immune defects conferred by mutations in NF-κB pathways in mouse models. Finally, we describe Mendelian autoimmune syndromes arising from human NF-κB mutations, and speculate on implications for understanding sporadic autoimmune disease.
Collapse
Affiliation(s)
- Bahar Miraghazadeh
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
| | - Matthew C. Cook
- Centre for Personalised Immunology, John Curtin School of Medical Research, Australian National University, Acton, ACT, Australia
- Translational Research Unit, Canberra Hospital, Acton, ACT, Australia
- Department of Immunology, Canberra Hospital, Acton, ACT, Australia
- *Correspondence: Matthew C. Cook,
| |
Collapse
|
55
|
Yang C, Zang W, Tang Z, Ji Y, Xu R, Yang Y, Luo A, Hu B, Zhang Z, Liu Z, Zheng X. A20/TNFAIP3 Regulates the DNA Damage Response and Mediates Tumor Cell Resistance to DNA-Damaging Therapy. Cancer Res 2017; 78:1069-1082. [DOI: 10.1158/0008-5472.can-17-2143] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 11/02/2017] [Accepted: 12/01/2017] [Indexed: 11/16/2022]
|
56
|
Hou J, Jiang S, Zhao J, Zhu D, Zhao X, Cai JC, Zhang SQ. N-Myc-Interacting Protein Negatively Regulates TNF-α-Induced NF-κB Transcriptional Activity by Sequestering NF-κB/p65 in the Cytoplasm. Sci Rep 2017; 7:14579. [PMID: 29109532 PMCID: PMC5674077 DOI: 10.1038/s41598-017-15074-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 10/20/2017] [Indexed: 12/18/2022] Open
Abstract
NF-κB is a major regulator of gene transcription involved in immune, inflammation, apoptosis and stress responses. However, the regulation of NF-κB is not completely understood. Here, we report that the N-Myc and STATs Interactor (NMI), an IFN-inducible protein, is an important negative regulator of NF-κB activity. We found that NMI negatively regulates TNF-α-induced IL-6 and IL-1β production in HeLa cells. Overexpression of NMI inhibits NF-κB transcriptional activity, in contrast, depletion of NMI by shRNA increases NF-κB transcriptional activity. Mechanistically, NMI associates with NF-κB/p65 and inhibits NF-κB/p65 nuclear translocation and thereby negatively regulates NF-κB/p65 transcriptional activity. Taken together, our results demonstrate that NMI modulates the NF-κB signaling pathway by sequestering NF-κB/p65 in the cytoplasm, resulting in reduced IL-6 and IL-1β production after TNF-α stimulation. Treatment with IFNα in the presence of NMI leads to increased apoptosis in tumor cells. These findings reveal a novel mechanism by which NMI regulates NF-κB activity.
Collapse
Affiliation(s)
- Jingjing Hou
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Shihao Jiang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jiabao Zhao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Dong Zhu
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xinmeng Zhao
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Jian-Chun Cai
- Institute of Gastrointestinal Oncology, Medical College of Xiamen University, Xiamen, Fujian, 361004, China
- Department of Gastrointestinal Surgery, Zhongshan Hospital of Xiamen University, Xiamen, Fujian, 361004, China
| | - Si Qing Zhang
- State Key Laboratory of Cellular Stress Biology and School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China.
| |
Collapse
|
57
|
Azpilikueta A, Bolaños E, Lang V, Labiano S, Aznar MA, Etxeberria I, Teijeira A, Rodriguez-Ruiz ME, Perez-Gracia JL, Jure-Kunkel M, Zapata JM, Rodriguez MS, Melero I. Deubiquitinases A20 and CYLD modulate costimulatory signaling via CD137 (4-1BB). Oncoimmunology 2017; 7:e1368605. [PMID: 29296520 DOI: 10.1080/2162402x.2017.1368605] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Revised: 07/25/2017] [Accepted: 08/12/2017] [Indexed: 01/25/2023] Open
Abstract
TRAF2 dependent K63-polyubiquitinations have been recently shown to connect CD137 (4-1BB) stimulation to NF-κB activation. In a search of deubiquitinase enzymes (DUBs) that could regulate such a signaling route, A20 and CYLD were found to coimmunoprecipitate with CD137 and TRAF2 complexes. Indeed, overexpression of A20 or CYLD downregulated CD137-elicited ubiquitination of TRAF2 and TAK1 upon stimulation with agonist monoclonal antibodies. Moreover, overexpression of A20 or CYLD downregulated CD137-induced NF-κB activation in cultured cells and in gene-transferred hepatocytes in vivo, while silencing these deubiquitinases enhanced CD137 costimulation of primary human CD8 T cells. Therefore A20 and CYLD directly downregulate the signaling from a T and NK-cell costimulatory receptor under exploitation for cancer immunotherapy in clinical trials.
Collapse
Affiliation(s)
- Arantza Azpilikueta
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Valerie Lang
- Inbiomed Fundation, Fundation for Stem Cell Research, Mesechymal Stem Cell Laboratory, San Sebastian, Spain
| | - Sara Labiano
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maria A Aznar
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Alvaro Teijeira
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Jose L Perez-Gracia
- University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | | | - Juan M Zapata
- Instituto de Investigaciones Biomédicas Alberto Sols, CSIC-UAM, Madrid, Spain
| | - Manuel S Rodriguez
- Institut des Technologies Avancées en sciences du Vivant (ITAV), Institut de Pharmacologie et de Biologie Structurale (IPBS), Université de Toulouse, CNRS, UPS, Tolouse, France
| | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra and Instituto de Investigacion Sanitaria de Navarra (IdISNA), Pamplona, Spain.,Centro de Investigación Biomedica en Red (CIBERONC), Madrid, Spain
| |
Collapse
|
58
|
Hasanpourghadi M, Pandurangan AK, Mustafa MR. Modulation of oncogenic transcription factors by bioactive natural products in breast cancer. Pharmacol Res 2017; 128:376-388. [PMID: 28923544 DOI: 10.1016/j.phrs.2017.09.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 12/17/2022]
Abstract
Carcinogenesis, a multi-step phenomenon, characterized by alterations at genetic level and affecting the main intracellular pathways controlling cell growth and development. There are growing number of evidences linking oncogenes to the induction of malignancies, especially breast cancer. Modulations of oncogenes lead to gain-of-function signals in the cells and contribute to the tumorigenic phenotype. These signals yield a large number of proteins that cause cell growth and inhibit apoptosis. Transcription factors such as STAT, p53, NF-κB, c-JUN and FOXM1, are proteins that are conserved among species, accumulate in the nucleus, bind to DNA and regulate the specific genes targets. Oncogenic transcription factors resulting from the mutation or overexpression following aberrant gene expression relay the signals in the nucleus and disrupt the transcription pattern. Activation of oncogenic transcription factors is associated with control of cell cycle, apoptosis, migration and cell differentiation. Among different cancer types, breast cancer is one of top ten cancers worldwide. There are different subtypes of breast cancer cell-lines such as non-aggressive MCF-7 and aggressive and metastatic MDA-MB-231 cells, which are identified with distinct molecular profile and different levels of oncogenic transcription factor. For instance, MDA-MB-231 carries mutated and overexpressed p53 with its abnormal, uncontrolled downstream signalling pathway that account for resistance to several anticancer drugs compared to MCF-7 cells with wild-type p53. Appropriate enough, inhibition of oncogenic transcription factors has become a potential target in discovery and development of anti-tumour drugs against breast cancer. Plants produce diverse amount of organic metabolites. Universally, these metabolites with biological activities are known as "natural products". The chemical structure and function of natural products have been studied since 1850s. Investigating these properties leaded to recognition of their molecular effects as anticancer drugs. Numerous natural products extracted from plants, fruits, mushrooms and mycelia, show potential inhibitory effects against several oncogenic transcription factors in breast cancer. Natural compounds that target oncogenic transcription factors have increased the number of candidate therapeutic agents. This review summarizes the current findings of natural products in targeting specific oncogenic transcription factors in breast cancer.
Collapse
Affiliation(s)
- Mohadeseh Hasanpourghadi
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Ashok Kumar Pandurangan
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Mohd Rais Mustafa
- Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia; Centre for Natural Products Research and Drug Discovery, Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
59
|
InanlooRahatloo K, Liang G, Vo D, Ebert A, Nguyen I, Nguyen PK. Sex-based differences in myocardial gene expression in recently deceased organ donors with no prior cardiovascular disease. PLoS One 2017; 12:e0183874. [PMID: 28850583 PMCID: PMC5574577 DOI: 10.1371/journal.pone.0183874] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 08/12/2017] [Indexed: 02/08/2023] Open
Abstract
Sex differences in the development of the normal heart and the prevalence of cardiomyopathies have been reported. The molecular basis of these differences remains unclear. Sex differences in the human heart might be related to patterns of gene expression. Recent studies have shown that sex specific differences in gene expression in tissues including the brain, kidney, skeletal muscle, and liver. Similar data is limited for the heart. Herein we address this issue by analyzing donor and post-mortem adult human heart samples originating from 46 control individuals to study whole-genome gene expression in the human left ventricle. Using data from the genotype tissue expression (GTEx) project, we compared the transcriptome expression profiles of male and female hearts. We found that genes located on sex chromosomes were the most abundant ones among the sexually dimorphic genes. The majority of differentially expressed autosomal genes were those involved in the regulation of inflammation, which has been found to be an important contributor to left ventricular remodeling. Specifically, genes on autosomal chromosomes encoding chemokines with inflammatory functions (e.g. CCL4, CX3CL1, TNFAIP3) and a gene that regulates adhesion of immune cells to the endothelium (e.g., VCAM1) were identified with sex-specific expression levels. This study underlines the relevance of sex as an important modifier of cardiac gene expression. These results have important implications in the understanding of the differences in the physiology of the male and female heart transcriptome and how they may lead to different sex specific difference in human cardiac health and its control.
Collapse
Affiliation(s)
- Kolsoum InanlooRahatloo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Genetics, Genetic Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Grace Liang
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Davis Vo
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Antje Ebert
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ivy Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
| | - Patricia K. Nguyen
- Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Cardiology, Stanford University School of Medicine, Stanford, California, United States of America
- Institute of Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Medicine, Division of Cardiovascular Medicine, Stanford University and Veterans Affairs Palo Alto, Palo Alto, California, United States of America
- * E-mail: ,
| |
Collapse
|
60
|
Geng J, Ito Y, Shi L, Amin P, Chu J, Ouchida AT, Mookhtiar AK, Zhao H, Xu D, Shan B, Najafov A, Gao G, Akira S, Yuan J. Regulation of RIPK1 activation by TAK1-mediated phosphorylation dictates apoptosis and necroptosis. Nat Commun 2017; 8:359. [PMID: 28842570 PMCID: PMC5572456 DOI: 10.1038/s41467-017-00406-w] [Citation(s) in RCA: 236] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2016] [Accepted: 06/27/2017] [Indexed: 01/24/2023] Open
Abstract
Stimulation of TNFR1 by TNFα can promote three distinct alternative mechanisms of cell death: necroptosis, RIPK1-independent and -dependent apoptosis. How cells decide which way to die is unclear. Here, we report that TNFα-induced phosphorylation of RIPK1 in the intermediate domain by TAK1 plays a key role in regulating this critical decision. Using phospho-Ser321 as a marker, we show that the transient phosphorylation of RIPK1 intermediate domain induced by TNFα leads to RIPK1-independent apoptosis when NF-κB activation is inhibited by cycloheximide. On the other hand, blocking Ser321 phosphorylation promotes RIPK1 activation and its interaction with FADD to mediate RIPK1-dependent apoptosis (RDA). Finally, sustained phosphorylation of RIPK1 intermediate domain at multiple sites by TAK1 promotes its interaction with RIPK3 and necroptosis. Thus, absent, transient and sustained levels of TAK1-mediated RIPK1 phosphorylation may represent distinct states in TNF-RSC to dictate the activation of three alternative cell death mechanisms, RDA, RIPK1-independent apoptosis and necroptosis. TNFα can promote three distinct mechanisms of cell death: necroptosis, RIPK1-independent and dependent apoptosis. Here the authors show that TNFα-induced phosphorylation of RIPK1 in the intermediate domain by TAK1 plays a key role in regulating this decision.
Collapse
Affiliation(s)
- Jiefei Geng
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Yasushi Ito
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Linyu Shi
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd, PuDong District, Shanghai, 201210, China
| | - Palak Amin
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Jiachen Chu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Amanda Tomie Ouchida
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Adnan Kasim Mookhtiar
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Heng Zhao
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Daichao Xu
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Bing Shan
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd, PuDong District, Shanghai, 201210, China
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA
| | - Guangping Gao
- Horae Gene Therapy Center and Vector Core, and Department of Physiological Systems, University of Massachusetts Medical School, 368 Plantation Street, AS6-2049, Worcester, MA, 01605, USA
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center (IFReC), Osaka University, 3-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave, Boston, MA, 02115, USA. .,Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 26 Qiuyue Rd, PuDong District, Shanghai, 201210, China.
| |
Collapse
|
61
|
Wang F, Qu N, Peng J, Yue C, Yuan L, Yuan Y. CagA promotes proliferation and inhibits apoptosis of GES-1 cells by upregulating TRAF1/4-1BB. Mol Med Rep 2017; 16:1262-1268. [PMID: 28627614 PMCID: PMC5561785 DOI: 10.3892/mmr.2017.6757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 03/30/2017] [Indexed: 02/06/2023] Open
Abstract
Cytotoxin-associated gene A (CagA) is one of the most important virulence factors of Helicobacter pylori, and serves a role in H. pylori‑mediated tumorigenesis in gastric cancer. However, the underlying molecular mechanism remains to be elucidated. The present study aimed to investigate the effects of CagA on the proliferation and apoptosis of GES‑1 cells, and the underlying mechanism. A CagA eukaryotic expression plasmid was constructed and transfected into GES‑1 cells. The mRNA and protein levels of CagA, tumor necrosis factor receptor‑associated factor 1 (TRAF1) and tumor necrosis factor receptor superfamily member 9 (4‑1BB) were determined using the reverse transcription‑quantitative polymerase chain reaction and western blot analysis, respectively. Western blot and ELISA analysis was used to detect the release of interleukin (IL)‑8. An MTT assay and flow cytometric analysis was used to assess cell viability and apoptosis, respectively. Ectopic expression of CagA markedly increased TRAF1 and 4‑1BB mRNA and protein levels in GES‑1 cells. CagA increased the expression and release of IL‑8 in GES‑1 cells. The expression of CagA significantly promoted the proliferation (P<0.05) and inhibited the apoptosis (P<0.05) of GES‑1 cells. In conclusion, CagA upregulated TRAF1/4‑1BB, thereby promoting the proliferation and inhibiting the apoptosis of GES-1 cells.
Collapse
Affiliation(s)
- Fen Wang
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Nanfang Qu
- Department of Gastroenterology, The Affiliated Hospital of Guilin Medical College, Guilin, Guangxi 541001, P.R. China
| | - Jin Peng
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Chun Yue
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Lingzhi Yuan
- Department of Gastroenterology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yi Yuan
- Department of Neurology, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
62
|
Baker PJ, De Nardo D, Moghaddas F, Tran LS, Bachem A, Nguyen T, Hayman T, Tye H, Vince JE, Bedoui S, Ferrero RL, Masters SL. Posttranslational Modification as a Critical Determinant of Cytoplasmic Innate Immune Recognition. Physiol Rev 2017; 97:1165-1209. [DOI: 10.1152/physrev.00026.2016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/21/2022] Open
Abstract
Cell surface innate immune receptors can directly detect a variety of extracellular pathogens to which cytoplasmic innate immune sensors are rarely exposed. Instead, within the cytoplasm, the environment is rife with cellular machinery and signaling pathways that are indirectly perturbed by pathogenic microbes to activate intracellular sensors, such as pyrin, NLRP1, NLRP3, or NLRC4. Therefore, subtle changes in key intracellular processes such as phosphorylation, ubiquitination, and other pathways leading to posttranslational protein modification are key determinants of innate immune recognition in the cytoplasm. This concept is critical to establish the “guard hypothesis” whereby otherwise homeostatic pathways that keep innate immune sensors at bay are released in response to alterations in their posttranslational modification status. Originally identified in plants, evidence that a similar guardlike mechanism exists in humans has recently been identified, whereby a mutation that prevents phosphorylation of the innate immune sensor pyrin triggers a dominantly inherited autoinflammatory disease. It is also noteworthy that even when a cytoplasmic innate immune sensor has a direct ligand, such as bacterial peptidoglycan (NOD1 or NOD2), RNA (RIG-I or MDA5), or DNA (cGAS or IFI16), it can still be influenced by posttranslational modification to dramatically alter its response. Therefore, due to their existence in the cytoplasmic milieu, posttranslational modification is a key determinant of intracellular innate immune receptor functionality.
Collapse
Affiliation(s)
- Paul J. Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Dominic De Nardo
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Fiona Moghaddas
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Le Son Tran
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Annabell Bachem
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Tan Nguyen
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Thomas Hayman
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Hazel Tye
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - James E. Vince
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Sammy Bedoui
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Richard L. Ferrero
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| | - Seth L. Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia; Hudson Institute of Medical Research, Monash University, Centre for Innate Immunity and Infectious Diseases, Clayton, Victoria, Australia; The Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia; and Departments of Medical Biology and of Microbiology and Immunology, The University of Melbourne, Parkville, Australia
| |
Collapse
|
63
|
Yuan J, Najafov A, Py BF. Roles of Caspases in Necrotic Cell Death. Cell 2017; 167:1693-1704. [PMID: 27984721 DOI: 10.1016/j.cell.2016.11.047] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/13/2016] [Accepted: 11/23/2016] [Indexed: 12/15/2022]
Abstract
Caspases were originally identified as important mediators of inflammatory response and apoptosis. Recent discoveries, however, have unveiled their roles in mediating and suppressing two regulated forms of necrotic cell death, termed pyroptosis and necroptosis, respectively. These recent advances have significantly expanded our understanding of the roles of caspases in regulating development, adult homeostasis, and host defense response.
Collapse
Affiliation(s)
- Junying Yuan
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA.
| | - Ayaz Najafov
- Department of Cell Biology, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA; Ludwig Cancer Center, Harvard Medical School, 240 Longwood Ave., Boston, MA 02115, USA
| | - Bénédicte F Py
- CIRI, Inserm U1111, Université Claude Bernard Lyon 1, CNRS UMR5308, École Normale Supérieure de Lyon, Université de Lyon, 69007 Lyon, France
| |
Collapse
|
64
|
Bastos P, Ferreira R, Manadas B, Moreira PI, Vitorino R. Insights into the human brain proteome: Disclosing the biological meaning of protein networks in cerebrospinal fluid. Crit Rev Clin Lab Sci 2017; 54:185-204. [PMID: 28393582 DOI: 10.1080/10408363.2017.1299682] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cerebrospinal fluid (CSF) is an excellent source of biological information regarding the nervous system, once it is in close contact and accurately reflects alterations in this system. Several studies have analyzed differential protein profiles of CSF samples between healthy and diseased human subjects. However, the pathophysiological mechanisms and how CSF proteins relate to diseases are still poorly known. By applying bioinformatics tools, we attempted to provide new insights on the biological and functional meaning of proteomics data envisioning the identification of putative disease biomarkers. Bioinformatics analysis of data retrieved from 99 mass spectrometry (MS)-based studies on CSF profiling highlighted 1985 differentially expressed proteins across 49 diseases. A large percentage of the modulated proteins originate from exosome vesicles, and the majority are involved in either neuronal cell growth, development, maturation, migration, or neurotransmitter-mediated cellular communication. Nevertheless, some diseases present a unique CSF proteome profile, which were critically analyzed in the present study. For instance, 48 proteins were found exclusively upregulated in the CSF of patients with Alzheimer's disease and are mainly involved in steroid esterification and protein activation cascade processes. A higher number of exclusively upregulated proteins were found in the CSF of patients with multiple sclerosis (76 proteins) and with bacterial meningitis (70 proteins). Whereas in multiple sclerosis, these proteins are mostly involved in the regulation of RNA metabolism and apoptosis, in bacterial meningitis the exclusively upregulated proteins participate in inflammation and antibacterial humoral response, reflecting disease pathogenesis. The exploration of the contribution of exclusively upregulated proteins to disease pathogenesis will certainly help to envision potential biomarkers in the CSF for the clinical management of nervous system diseases.
Collapse
Affiliation(s)
- Paulo Bastos
- a Department of Chemistry , University of Aveiro , Aveiro , Portugal.,b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal
| | - Rita Ferreira
- c QOPNA, Department of Chemistry , University of Aveiro , Aveiro , Portugal
| | - Bruno Manadas
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal
| | - Paula I Moreira
- d CNC, Center for Neuroscience and Cell Biology, University of Coimbra , Coimbra , Portugal.,e Laboratory of Physiology, Faculty of Medicine , University of Coimbra , Coimbra , Portugal
| | - Rui Vitorino
- b Department of Medical Sciences , Institute for Biomedicine - iBiMED, University of Aveiro , Aveiro , Portugal.,f Departmento de Cirurgia e Fisiologia, Faculdade de Medicina , Unidade de Investigação Cardiovascular, Universidade do Porto , Porto , Portugal
| |
Collapse
|
65
|
Zur Bruegge J, Einspanier R, Sharbati S. A Long Journey Ahead: Long Non-coding RNAs in Bacterial Infections. Front Cell Infect Microbiol 2017; 7:95. [PMID: 28401065 PMCID: PMC5368183 DOI: 10.3389/fcimb.2017.00095] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 03/13/2017] [Indexed: 12/24/2022] Open
Abstract
Bacterial pathogens have coevolved with their hosts and acquired strategies to circumvent defense mechanisms of host cells. It was shown that bacteria interfere with the expression of mammalian microRNAs to modify immune signaling, autophagy, or the apoptotic machinery. Recently, a new class of regulatory RNAs, long non-coding RNAs (lncRNAs), was reported to have a pivotal role in the regulation of eukaryotic gene expression. A growing body of literature reports on specific involvement of lncRNAs in the host cell response toward bacterial infections. This mini review summarizes recent data that focuses on lncRNA function in host cells during bacterial infection and provides a perspective where future research in this regard may be going.
Collapse
Affiliation(s)
- Jennifer Zur Bruegge
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Ralf Einspanier
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin Berlin, Germany
| | - Soroush Sharbati
- Department of Veterinary Medicine, Institute of Veterinary Biochemistry, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
66
|
Hadisaputri YE, Miyazaki T, Yokobori T, Sohda M, Sakai M, Ozawa D, Hara K, Honjo H, Kumakura Y, Kuwano H. TNFAIP3 overexpression is an independent factor for poor survival in esophageal squamous cell carcinoma. Int J Oncol 2017; 50:1002-1010. [PMID: 28197630 DOI: 10.3892/ijo.2017.3869] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/24/2017] [Indexed: 11/06/2022] Open
Abstract
Tumor necrosis factor α induced protein 3 (TNFAIP3) is a protein that is induced by TNF-mediated NF-κB activation and has a dual function in regulating NF-κB. TNFAIP3 is associated with inflammatory carcinogenesis in many cancer types. However, the clinical significance of TNFAIP3 expression and function in esophageal squamous cell carcinoma (ESCC) has not yet been reported. We examined 149 ESCC tissue specimens to determine the clinical significance of TNFAIP3 by immunohistochemistry. Western blot analyses were used to detect TNFAIP3 expression in TE-1, TE-8, TE-15 and KYSE-70 ESCC cells and in Het-1A, a non-cancerous esophageal cell line. TNFAIP3 protein knockdown was conducted using small-interfering RNA to investigate its impact on cell proliferation, migration and invasion. Significant correlations between TNFAIP3 expression and differentiation (P=0.04) among clinicopathological characteristics of ESCC patients were demonstrated, and high TNFAIP3 expression was associated with poor survival (P=0.02). Moreover, multivariate analysis result showed that high TNFAIP3 expression was an independent factor for poor survival (P=0.04). In vitro analysis showed high expression of TNFAIP3 protein in TE-15 cells and low expression in Het-1A cells. Furthermore, the proliferation, migration and invasion of TE-15 cells after TNFAIP3 suppression by siRNA were significantly reduced. These findings suggest that TNFAIP3 protein may be an independent prognostic marker for poor survival, and a promising target for ESCC therapy.
Collapse
Affiliation(s)
- Yuni Elsa Hadisaputri
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Tatsuya Miyazaki
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takehiko Yokobori
- Department of Molecular and Cellular Pharmacology, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sohda
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Makoto Sakai
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Daigo Ozawa
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Keigo Hara
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroaki Honjo
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Yuji Kumakura
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Hiroyuki Kuwano
- Department of General Surgical Science, Gunma University, Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| |
Collapse
|
67
|
Zeng P, Ma J, Yang R, Liu YC. Immune Regulation by Ubiquitin Tagging as Checkpoint Code. Curr Top Microbiol Immunol 2017; 410:215-248. [PMID: 28929193 DOI: 10.1007/82_2017_64] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The immune system is equipped with effective machinery to mobilize its activation to defend invading microorganisms, and at the same time, to refrain from attacking its own tissues to maintain immune tolerance. The balance of activation and tolerance is tightly controlled by diverse mechanisms, since breakdown of tolerance could result in disastrous consequences such as the development of autoimmune diseases. One of the mechanisms is by the means of protein ubiquitination, which involves the process of tagging a small peptide ubiquitin to protein substrates. E3 ubiquitin ligases are responsible for catalyzing the final step of ubiquitin-substrate conjugation by specifically recognizing substrates to determine their fates of degradation or functional modification. The ubiquitination process is reversible, which is carried out by deubiquitinating enzymes to release the ubiquitin molecule from the conjugated substrates. Protein ubiquitination and deubiquitination serve as checkpoint codes in many key steps of lymphocyte regulation including the development, activation, differentiation, and tolerance induction. In this chapter, we will discuss a few E3 ligases and deubiquitinating enzymes that are important in controlling immune responses, with emphasis on their roles in T cells.
Collapse
Affiliation(s)
- Peng Zeng
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Jieyu Ma
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Runqing Yang
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China
| | - Yun-Cai Liu
- Institute for Immunology, Tsinghua-Peking Center for Life Sciences, School of Medicine, Tsinghua University, Beijing, 100084, China. .,Division of Cell Biology, La Jolla Institute for Allergy and Immunology, La Jolla, CA, 92037, USA.
| |
Collapse
|
68
|
Abstract
Nearly 60 CCCH zinc finger proteins have been identified in humans and mice. These proteins are involved in the regulation of multiple steps of RNA metabolism, including mRNA splicing, polyadenylation, transportation, translation and decay. Several CCCH zinc finger proteins, such as tristetraprolin (TTP), roquin 1 and MCPIP1 (also known as regnase 1), are crucial for many aspects of immune regulation by targeting mRNAs for degradation and modulation of signalling pathways. In this Review, we focus on the emerging roles of CCCH zinc finger proteins in the regulation of immune responses through their effects on cytokine production, immune cell activation and immune homeostasis.
Collapse
|
69
|
Lin B, Xu D, Leaman DW. X-linked inhibitor of apoptosis-associated factor 1 regulates TNF receptor 1 complex stability. FEBS Lett 2016; 590:4381-4392. [PMID: 27768232 DOI: 10.1002/1873-3468.12467] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/17/2016] [Accepted: 08/30/2016] [Indexed: 11/06/2022]
Abstract
X-linked inhibitor of apoptosis (XIAP)-associated factor 1 (XAF1) is a cytokine-regulated, tumor necrosis factor (TNF) receptor-associated factor (TRAF) domain-containing protein that has a poorly defined cellular function. Here, we show that ectopically expressed XAF1 inhibits TNF-ɑ-induced NF-κB activation, whereas shRNA silencing of endogenous XAF1 augments it. Our data suggest that XAF1 may inhibit TNF-ɑ-induced NF-κB activation by disrupting the assembly of the TRADD/TRAF2/RIP1 complex (complex I) downstream of TNF receptor activation. XAF1 interacts with TRAF2 and inhibits TRAF2-dependent NF-κB activation, in part, by blocking TRAF2 polyubiquitination. Our findings also indicate that although XAF1 does not directly inhibit RIP1-dependent NF-κB activation, it binds RIP1 and disrupts RIP1/TRADD association. Our data suggest that XAF1 acts as a feedback regulator of the TNF receptor signaling pathway to suppress NF-κB activation.
Collapse
Affiliation(s)
- Boren Lin
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Da Xu
- Department of Biological Sciences, The University of Toledo, OH, USA
| | - Douglas W Leaman
- Department of Biological Sciences, The University of Toledo, OH, USA
| |
Collapse
|
70
|
Blewett MM, Xie J, Zaro BW, Backus KM, Altman A, Teijaro JR, Cravatt BF. Chemical proteomic map of dimethyl fumarate-sensitive cysteines in primary human T cells. Sci Signal 2016; 9:rs10. [PMID: 27625306 DOI: 10.1126/scisignal.aaf7694] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimethyl fumarate (DMF) is an electrophilic drug that is used to treat autoimmune conditions, including multiple sclerosis and psoriasis. The mechanism of action of DMF is unclear but may involve the covalent modification of proteins or DMF serving as a prodrug that is converted to monomethyl fumarate (MMF). We found that DMF, but not MMF, blocked the activation of primary human and mouse T cells. Using a quantitative, site-specific chemical proteomic platform, we determined the DMF sensitivity of >2400 cysteine residues in human T cells. Cysteines sensitive to DMF, but not MMF, were identified in several proteins with established biochemical or genetic links to T cell function, including protein kinase Cθ (PKCθ). DMF blocked the association of PKCθ with the costimulatory receptor CD28 by perturbing a CXXC motif in the C2 domain of this kinase. Mutation of these DMF-sensitive cysteines also impaired PKCθ-CD28 interactions and T cell activation, designating the C2 domain of PKCθ as a key functional, electrophile-sensing module important for T cell biology.
Collapse
Affiliation(s)
- Megan M Blewett
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Jiji Xie
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - Balyn W Zaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Keriann M Backus
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Amnon Altman
- Division of Cell Biology, La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA
| | - John R Teijaro
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA. Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Benjamin F Cravatt
- Department of Chemical Physiology and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
71
|
Garyu JW, Meffre E, Cotsapas C, Herold KC. Progress and challenges for treating Type 1 diabetes. J Autoimmun 2016; 71:1-9. [PMID: 27210268 PMCID: PMC4903889 DOI: 10.1016/j.jaut.2016.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 04/24/2016] [Indexed: 02/09/2023]
Abstract
It has been more than 30 years since the initial trials of Cyclosporin A to treat patients with new onset Type 1 diabetes (T1D). Since that time, there have been insights into genetic predisposition to the disease, the failures of immune tolerance, and mechanisms that cause the immune mediated β cell destruction. The genetic loci associated affect lymphocyte development and tolerance mechanisms. Discoveries related to the roles of specific immune responses gene such as the major histocompatibility complex, PTPN22, CTLA-4, IL-2RA, as well as the mechanisms of antigen presentation in the thymus have suggested ways in which autoreactivity may follow changes in the functions of these genes that are associated with risk. Antigens that are recognized by the immune system in patients with T1D have been identified. With this information, insights into the novel cellular mechanisms leading to the initiation and orchestration of β cell killing have been developed such as the presentation of unique antigens within the islets. Clinical trials have been performed, some of which have shown efficacy in improving β cell function but none have been able to permanently prevent loss of insulin secretion. The reasons for the lack of long term success are not clear but may include the heterogeneity of the immune response and in individual responses to immune therapies, recurrence of autoimmunity after the initial effects of the therapies, or even intrinsic mechanisms of β cell death that proceeds independently of immune attack after initiation of the disease. In this review, we cover developments that have led to new therapeutics and characteristics of patients who may show the most benefits from therapies. We also identify areas of incomplete understanding that might be addressed to develop more effective therapeutic strategies.
Collapse
Affiliation(s)
- Justin W Garyu
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Eric Meffre
- Department of Immunobiology, Yale University, New Haven, CT, USA
| | - Chris Cotsapas
- Department of Neurology, Yale University, New Haven, CT, USA
| | - Kevan C Herold
- Department of Immunobiology, Yale University, New Haven, CT, USA; Department of Internal Medicine, Yale University, New Haven, CT, USA
| |
Collapse
|
72
|
Kim CM, Choi JY, Bhat EA, Jeong JH, Son YJ, Kim S, Park HH. Crystal structure of TRAF1 TRAF domain and its implications in the TRAF1-mediated intracellular signaling pathway. Sci Rep 2016; 6:25526. [PMID: 27151821 PMCID: PMC4858697 DOI: 10.1038/srep25526] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/14/2016] [Indexed: 01/08/2023] Open
Abstract
TNF-receptor associated factor (TRAF) proteins are key adaptor molecules containing E3 ubiquitin ligase activity that play a critical role in immune cell signaling. TRAF1 is a unique family of TRAF lacking the N-terminal RING finger domain. TRAF1 is an important scaffold protein that participates in TNFR2 signaling in T cells as a negative or positive regulator via direct interaction with TRAF2, which has recently been identified as a pro-apoptotic regulator in neuronal cell death. Here, we report the first crystal structure of the TRAF1 TRAF domain containing both the TRAF-N coiled-coil domain and the TRAF-C domain. Our structure reveals both similarities and differences with other TRAF family members, which may be functionally relevant to TRAFs. We also found that the TRAF-N coiled-coil domain of TRAF1 is critical for the trimer formation and stability of the protein. Finally, we found that conserved surface residues on the TRAF1 TRAF domain that might be binding hot spots that are critical for interaction with signaling molecules.
Collapse
Affiliation(s)
- Chang Min Kim
- Department of Biochemistry, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Jae Young Choi
- Department of Biochemistry, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Eijaz Ahmed Bhat
- Department of Biochemistry, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Jae-Hee Jeong
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, 790-784, South Korea
| | - Young-Jin Son
- New Drug Development Center, Daegu-Gyungpook Medical Innovation Foundation, Daegu, 701-310, South Korea
| | - Sunghwan Kim
- New Drug Development Center, Daegu-Gyungpook Medical Innovation Foundation, Daegu, 701-310, South Korea
| | - Hyun Ho Park
- Department of Biochemistry, Yeungnam University, Gyeongsan, 712-749, South Korea
| |
Collapse
|
73
|
Börnigen D, Tyekucheva S, Wang X, Rider JR, Lee GS, Mucci LA, Sweeney C, Huttenhower C. Computational Reconstruction of NFκB Pathway Interaction Mechanisms during Prostate Cancer. PLoS Comput Biol 2016; 12:e1004820. [PMID: 27078000 PMCID: PMC4831844 DOI: 10.1371/journal.pcbi.1004820] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 02/19/2016] [Indexed: 12/21/2022] Open
Abstract
Molecular research in cancer is one of the largest areas of bioinformatic investigation, but it remains a challenge to understand biomolecular mechanisms in cancer-related pathways from high-throughput genomic data. This includes the Nuclear-factor-kappa-B (NFκB) pathway, which is central to the inflammatory response and cell proliferation in prostate cancer development and progression. Despite close scrutiny and a deep understanding of many of its members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. Here, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for ATF3, CXCL2, DUSP5, JUNB, NEDD9, SELE, TRIB1, and ZFP36 in this pathway, in addition to new mechanistic interactions between these genes and 10 known NFκB pathway members. A newly predicted interaction between NEDD9 and ZFP36 in particular was validated by co-immunoprecipitation, as was NEDD9's potential biological role in prostate cancer cell growth regulation. We combined 651 gene expression datasets with 1.4M gene product interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction among pathway members were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in a total of 112 interactions in the fully reconstructed NFκB pathway: 13 (11%) previously known, 29 (26%) supported by existing literature, and 70 (63%) novel. This method is generalizable to other tissue types, cancers, and organisms, and this new information about the NFκB pathway will allow us to further understand prostate cancer and to develop more effective prevention and treatment strategies. In molecular research in cancer it remains challenging to uncover biomolecular mechanisms in cancer-related pathways from high-throughput genomic data, including the Nuclear-factor-kappa-B (NFκB) pathway. Despite close scrutiny and a deep understanding of many of the NFκB pathway members’ biomolecular activities, the current list of pathway members and a systems-level understanding of their interactions remains incomplete. In this study, we provide the first steps toward computational reconstruction of interaction mechanisms of the NFκB pathway in prostate cancer. We identified novel roles for 8 genes in this pathway and new mechanistic interactions between these genes and 10 known pathway members. We combined 651 gene expression datasets with 1.4M interactions to predict the inclusion of 40 additional genes in the pathway. Molecular mechanisms of interaction were inferred using recent advances in Bayesian data integration to simultaneously provide information specific to biological contexts and individual biomolecular activities, resulting in 112 interactions in the fully reconstructed NFκB pathway. This method is generalizable, and this new information about the NFκB pathway will allow us to further understand prostate cancer.
Collapse
Affiliation(s)
- Daniela Börnigen
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| | - Svitlana Tyekucheva
- Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, United States of America
| | - Xiaodong Wang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jennifer R Rider
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Gwo-Shu Lee
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Lorelei A Mucci
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America
| | - Christopher Sweeney
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Curtis Huttenhower
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts, United States of America.,The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
| |
Collapse
|
74
|
Lee GJ, Lee HM, Kim TS, Kim JK, Sohn KM, Jo EK. Mycobacterium fortuitum induces A20 expression that impairs macrophage inflammatory responses. Pathog Dis 2016; 74:ftw015. [PMID: 26940588 DOI: 10.1093/femspd/ftw015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2016] [Indexed: 12/30/2022] Open
Abstract
Mycobacterium fortuitum is a rapidly growing mycobacterium that has been regarded as an etiological agent of a variety of human infections. However, little is known about the host inflammatory responses and the molecular mechanisms by which MF-induced inflammation is regulated in macrophages. In this study, we report that MF infection leads to the induction of an anti-inflammatory molecule, A20 (also known as TNFAIP3), which is essential for the regulation of MF-induced inflammatory responses in murine bone marrow-derived macrophages (BMDMs). MF triggered the expression of tumor necrosis factor-α and interleukin-6 in BMDMs through signaling of the Toll-like receptor 2 (TLR2)-myeloid differentiation primary response gene 88. Additionally, MF rapidly induced the expression of A20, which inhibited proinflammatory cytokine expression and nuclear factor (NF)-κB reporter gene activities in BMDMs. Notably, MF-induced activation of NF-κB signaling was required for A20 expression and proinflammatory responses in BMDMs. Furthermore, the rough morphotype of the MF clinical strain induced a higher level of proinflammatory signaling activation, but less A20 induction in BMDMs, compared to the smooth morphotype. Taken together, these results suggest that MF-induced activation of host proinflammatory responses is negatively regulated through TLR2-dependent A20 expression.
Collapse
Affiliation(s)
- Gippeum Joy Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Hye-Mi Lee
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Tae Sung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Jin Kyung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| | - Kyung Mok Sohn
- Division of Infectious Diseases, Chungnam National University Hospital, Daejeon 35015, South Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea Infection Signaling Network Research Center, College of Medicine, Chungnam National University, Daejeon 301-747, South Korea
| |
Collapse
|
75
|
Sanchez-Paulete AR, Labiano S, Rodriguez-Ruiz ME, Azpilikueta A, Etxeberria I, Bolaños E, Lang V, Rodriguez M, Aznar MA, Jure-Kunkel M, Melero I. Deciphering CD137 (4-1BB) signaling in T-cell costimulation for translation into successful cancer immunotherapy. Eur J Immunol 2016; 46:513-22. [PMID: 26773716 DOI: 10.1002/eji.201445388] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/29/2015] [Accepted: 01/11/2016] [Indexed: 01/22/2023]
Abstract
CD137 (4-1BB, TNF-receptor superfamily 9) is a surface glycoprotein of the TNFR family which can be induced on a variety of leukocyte subsets. On T and NK cells, CD137 is expressed following activation and, if ligated by its natural ligand (CD137L), conveys polyubiquitination-mediated signals via TNF receptor associated factor 2 that inhibit apoptosis, while enhancing proliferation and effector functions. CD137 thus behaves as a bona fide inducible costimulatory molecule. These functional properties of CD137 can be exploited in cancer immunotherapy by systemic administration of agonist monoclonal antibodies, which increase anticancer CTLs and enhance NK-cell-mediated antibody-dependent cell-mediated cytotoxicity. Reportedly, anti-CD137 mAb and adoptive T-cell therapy strongly synergize, since (i) CD137 expression can be used to select the T cells endowed with the best activities against the tumor, (ii) costimulation of the lymphocyte cultures to be used in adoptive T-cell therapy can be done with CD137 agonist antibodies or CD137L, and (iii) synergistic effects upon coadministration of T cells and antibodies are readily observed in mouse models. Furthermore, the signaling cytoplasmic tail of CD137 is a key component of anti-CD19 chimeric antigen receptors that are used to redirect T cells against leukemia and lymphoma in the clinic. Ongoing phase II clinical trials with agonist antibodies and the presence of CD137 sequence in these successful chimeric antigen receptors highlight the importance of CD137 in oncoimmunology.
Collapse
Affiliation(s)
- Alfonso R Sanchez-Paulete
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Sara Labiano
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Iñaki Etxeberria
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Elixabet Bolaños
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain
| | - Valérie Lang
- Ubiquitylation and Cancer Molecular Biology Laboratory, Foundation for Stem Cell Research, Fundación Inbiomed, San Sebastián, Spain
| | - Manuel Rodriguez
- Advanced Technology Institute in Life Sciences (ITAV), CNRS-USR3505, Toulouse, France.,University of Toulouse III-Paul Sabatier, Toulouse, France.,Institut de Pharmacologie et de Biologie Structurale (IPBS), CNRS-UMR5089, Toulouse, France
| | - M Angela Aznar
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | | | - Ignacio Melero
- Division of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain.,Instituto de Investigación Sanitaria de Navarra (IdISNA), Pamplona, Spain.,University Clinic, University of Navarra, Pamplona, Spain
| |
Collapse
|
76
|
The production of multi-transgenic pigs: update and perspectives for xenotransplantation. Transgenic Res 2016; 25:361-74. [PMID: 26820415 DOI: 10.1007/s11248-016-9934-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 01/06/2016] [Indexed: 12/11/2022]
Abstract
The domestic pig shares many genetic, anatomical and physiological similarities to humans and is thus considered to be a suitable organ donor for xenotransplantation. However, prior to clinical application of porcine xenografts, three major hurdles have to be overcome: (1) various immunological rejection responses, (2) physiological incompatibilities between the porcine organ and the human recipient and (3) the risk of transmitting zoonotic pathogens from pig to humans. With the introduction of genetically engineered pigs expressing high levels of human complement regulatory proteins or lacking expression of α-Gal epitopes, the HAR can be consistently overcome. However, none of the transgenic porcine organs available to date was fully protected against the binding of anti-non-Gal xenoreactive natural antibodies. The present view is that long-term survival of xenografts after transplantation into primates requires additional modifications of the porcine genome and a specifically tailored immunosuppression regimen compliant with current clinical standards. This requires the production and characterization of multi-transgenic pigs to control HAR, AVR and DXR. The recent emergence of new sophisticated molecular tools such as Zinc-Finger nucleases, Transcription-activator like endonucleases, and the CRISPR/Cas9 system has significantly increased efficiency and precision of the production of genetically modified pigs for xenotransplantation. Several candidate genes, incl. hTM, hHO-1, hA20, CTLA4Ig, have been explored in their ability to improve long-term survival of porcine xenografts after transplantation into non-human primates. This review provides an update on the current status in the production of multi-transgenic pigs for xenotransplantation which could bring porcine xenografts closer to clinical application.
Collapse
|
77
|
Thaiss CA, Levy M, Itav S, Elinav E. Integration of Innate Immune Signaling. Trends Immunol 2016; 37:84-101. [PMID: 26755064 DOI: 10.1016/j.it.2015.12.003] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 12/07/2015] [Accepted: 12/08/2015] [Indexed: 12/21/2022]
Abstract
The last decades of research in innate immunology have revealed a multitude of sensing receptors that evaluate the presence of microorganisms or cellular damage in tissues. In the context of a complex tissue, many such sensing events occur simultaneously. Thus, the downstream pathways need to be integrated to launch an appropriate cellular response, to tailor the magnitude of the reaction to the inciting event, and to terminate it in a manner that avoids immunopathology. Here, we provide a conceptual overview of the crosstalk between innate immune receptors in the initiation of a concerted immune reaction to microbial and endogenous triggers. We classify the known interactions into categories of communication and provide examples of their importance in pathogenic infection.
Collapse
Affiliation(s)
| | - Maayan Levy
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Shlomik Itav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel
| | - Eran Elinav
- Immunology Department, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
78
|
Hong JY, Bae WJ, Yi JK, Kim GT, Kim EC. Anti-inflammatory and anti-osteoclastogenic effects of zinc finger protein A20 overexpression in human periodontal ligament cells. J Periodontal Res 2015; 51:529-39. [PMID: 26548452 DOI: 10.1111/jre.12332] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/10/2015] [Indexed: 01/21/2023]
Abstract
BACKGROUND AND OBJECTIVE Although overexpression of the nuclear factor κB inhibitory and ubiquitin-editing enzyme A20 is thought to be involved in the pathogenesis of inflammatory diseases, its function in periodontal disease remains unknown. The aims of the present study were to evaluate A20 expression in patients with periodontitis and to study the effects of A20 overexpression, using a recombinant adenovirus encoding A20 (Ad-A20), on the inflammatory response and on osteoclastic differentiation in lipopolysaccharide (LPS)- and nicotine-stimulated human periodontal ligament cells (hPDLCs). MATERIAL AND METHODS The concentration of prostaglandin E2 was measured by radioimmunoassay. Reverse transcription-polymerase chain reactions and western blot analyses were used to measure mRNA and protein levels, respectively. Osteoclastic differentiation was assessed in mouse bone marrow-derived macrophages using conditioned medium from LPS- and nicotine-treated hPDLCs. RESULTS A20 was upregulated in the gingival tissues and neutrophils from patients with periodontitis and in LPS- and nicotine-exposed hPDLCs. Pretreatment with A20 overexpression by Ad-A20 markedly attenuated LPS- and nicotine-induced production of prostaglandin E2 , as well as expression of cyclooxygenase-2 and proinflammatory cytokines. Moreover, A20 overexpression inhibited the number and size of tartrate-resistant acid phosphatase-stained osteoclasts, and downregulated osteoclast-specific gene expression. LPS- and nicotine-induced p38 phosphorylation and nuclear factor κB activation were blocked by Ad-A20. Ad-A20 inhibited the effects of nicotine and LPS on the activation of pan-protein kinase C, Akt, GSK-3β and protein kinase Cα. CONCLUSIONS This study is the first to demonstrate that A20 overexpression has anti-inflammatory effects and blocks osteoclastic differentiation in a nicotine- and LPS-stimulated hPDLC model. Thus, A20 overexpression may be a potential therapeutic target in inflammatory bone loss diseases, such as periodontal disease.
Collapse
Affiliation(s)
- J-Y Hong
- Department of Periodontology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - W-J Bae
- Department of Oral and Maxillofacial Pathology & Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| | - J-K Yi
- Department of Conservative Dentistry, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - G-T Kim
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kyung Hee University, Seoul, Korea
| | - E-C Kim
- Department of Oral and Maxillofacial Pathology & Research Center for Tooth and Periodontal Tissue Regeneration (MRC), School of Dentistry, Kyung Hee University, Seoul, Korea
| |
Collapse
|
79
|
Messemaker TC, Huizinga TW, Kurreeman F. Immunogenetics of rheumatoid arthritis: Understanding functional implications. J Autoimmun 2015. [DOI: 10.1016/j.jaut.2015.07.007] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
80
|
The first whole genome and transcriptome of the cinereous vulture reveals adaptation in the gastric and immune defense systems and possible convergent evolution between the Old and New World vultures. Genome Biol 2015; 16:215. [PMID: 26486310 PMCID: PMC4618389 DOI: 10.1186/s13059-015-0780-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/15/2015] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The cinereous vulture, Aegypius monachus, is the largest bird of prey and plays a key role in the ecosystem by removing carcasses, thus preventing the spread of diseases. Its feeding habits force it to cope with constant exposure to pathogens, making this species an interesting target for discovering functionally selected genetic variants. Furthermore, the presence of two independently evolved vulture groups, Old World and New World vultures, provides a natural experiment in which to investigate convergent evolution due to obligate scavenging. RESULTS We sequenced the genome of a cinereous vulture, and mapped it to the bald eagle reference genome, a close relative with a divergence time of 18 million years. By comparing the cinereous vulture to other avian genomes, we find positively selected genetic variations in this species associated with respiration, likely linked to their ability of immune defense responses and gastric acid secretion, consistent with their ability to digest carcasses. Comparisons between the Old World and New World vulture groups suggest convergent gene evolution. We assemble the cinereous vulture blood transcriptome from a second individual, and annotate genes. Finally, we infer the demographic history of the cinereous vulture which shows marked fluctuations in effective population size during the late Pleistocene. CONCLUSIONS We present the first genome and transcriptome analyses of the cinereous vulture compared to other avian genomes and transcriptomes, revealing genetic signatures of dietary and environmental adaptations accompanied by possible convergent evolution between the Old World and New World vultures.
Collapse
|
81
|
Sato M, Kuroda S, Mansjur KQ, Khaliunaa G, Nagata K, Horiuchi S, Inubushi T, Yamamura Y, Azuma M, Tanaka E. Low-intensity pulsed ultrasound rescues insufficient salivary secretion in autoimmune sialadenitis. Arthritis Res Ther 2015; 17:278. [PMID: 26445930 PMCID: PMC4596462 DOI: 10.1186/s13075-015-0798-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/24/2015] [Indexed: 11/17/2022] Open
Abstract
Introduction Low-intensity pulsed ultrasound (LIPUS) has been known to promote bone healing by nonthermal effects. In recent studies, LIPUS has been shown to reduce inflammation in injured soft tissues. Xerostomia is one of the most common symptoms in Sjögren syndrome (SS). It is caused by a decrease in the quantity or quality of saliva. The successful treatment of xerostomia is still difficult to achieve and often unsatisfactory. The aim of this study is to clarify the therapeutic effects of LIPUS on xerostomia in SS. Methods Human salivary gland acinar (NS-SV-AC) and ductal (NS-SV-DC) cells were cultured with or without tumor necrosis factor-α (TNF-α; 10 ng/ml) before LIPUS or sham exposure. The pulsed ultrasound signal was transmitted at a frequency of 1.5 MHz or 3 MHz with a spatial average intensity of 30 mW/cm2 and a pulse rate of 20 %. Cell number, net fluid secretion rate, and expression of aquaporin 5 (AQP5) and TNF-α were subsequently analyzed. Inhibitory effects of LIPUS on the nuclear factor κB (NF-κB) pathway were determined by Western blot analysis. The effectiveness of LIPUS in recovering salivary secretion was also examined in a MRL/MpJ/lpr/lpr (MRL/lpr) mouse model of SS with autoimmune sialadenitis. Results TNF-α stimulation of NS-SV-AC and NS-SV-DC cells resulted in a significant decrease in cell number and net fluid secretion rate (p < 0.01), whereas LIPUS treatment abolished them (p < 0.05). The expression changes of AQP5 and TNF-α were also inhibited in LIPUS treatment by blocking the NF-κB pathway. Furthermore, we found that mRNA expression of A20, a negative feedback regulator, was significantly increased by LIPUS treatment after TNF-α or interleukin 1β stimulation (NS-SV-AC, p < 0.01; NS-SV-DC, p < 0.05). In vivo LIPUS exposure to MRL/lpr mice exhibited a significant increase in both salivary flow and AQP5 expression by reducing inflammation in salivary glands (p < 0.01). Conclusions These results suggest that LIPUS upregulates expression of AQP5 and inhibits TNF-α production. Thus, LIPUS may restore secretion by inflamed salivary glands. It may synergistically activate negative feedback of NF-κB signaling in response to inflammatory stimulation. Collectively, LIPUS might be a new strategic therapy for xerostomia in autoimmune sialadenitis with SS. Electronic supplementary material The online version of this article (doi:10.1186/s13075-015-0798-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Minami Sato
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Shingo Kuroda
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Karima Qurnia Mansjur
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Ganzorig Khaliunaa
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Kumiko Nagata
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Shinya Horiuchi
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Toshihiro Inubushi
- Genetic Disease Program, Sanford Children's Health Research Center, Sanford-Burnham Medical Research Institute, La Jolla, CA, USA.
| | - Yoshiko Yamamura
- Department of Oral Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Masayuki Azuma
- Department of Oral Medicine, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan.
| | - Eiji Tanaka
- Department of Orthodontics and Dentofacial Orthopedics, Institute of Biomedical Sciences, Tokushima University Graduate School, Tokushima, Japan. .,Department of Orthodontics, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia.
| |
Collapse
|
82
|
Kim TK, Bheda-Malge A, Lin Y, Sreekrishna K, Adams R, Robinson MK, Bascom CC, Tiesman JP, Isfort RJ, Gelinas R. A systems approach to understanding human rhinovirus and influenza virus infection. Virology 2015; 486:146-57. [PMID: 26437235 PMCID: PMC7111289 DOI: 10.1016/j.virol.2015.08.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 07/28/2015] [Accepted: 08/13/2015] [Indexed: 01/11/2023]
Abstract
Human rhinovirus and influenza virus infections of the upper airway lead to colds and the flu and can trigger exacerbations of lower airway diseases including asthma and chronic obstructive pulmonary disease. Novel diagnostic and therapeutic targets are still needed to differentiate between the cold and the flu, since the clinical course of influenza can be severe while that of rhinovirus is usually more mild. In our investigation of influenza and rhinovirus infection of human respiratory epithelial cells, we used a systems approach to identify the temporally changing patterns of host gene expression from these viruses. After infection of human bronchial epithelial cells (BEAS-2B) with rhinovirus, influenza virus or co-infection with both viruses, we studied the time-course of host gene expression changes over three days. We modeled host responses to these viral infections with time and documented the qualitative and quantitative differences in innate immune activation and regulation. Human bronchial epithelial cells (BEAS-2B) were infected with rhinovirus (RV16), influenza A virus (H1N1) or both viruses. Steady-state RNA was profiled from five biological replicate samples by microarray hybridization at multiple times over three days. The changing patterns of key biological processes for each virus or both viruses together were analyzed. The data reveal similarities and differences in innate immune responses, cytokine activation, regulation of apoptosis as well as other processes that have implications for host recovery from viral infection.
Collapse
Affiliation(s)
- Taek-Kyun Kim
- The Institute for Systems Biology, Seattle, WA 98109, USA.
| | | | - Yakang Lin
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | - Rachel Adams
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | | | - Jay P Tiesman
- The Procter & Gamble Company, Cincinnati, OH 45202, USA.
| | | | | |
Collapse
|
83
|
Yamamoto K, Ito S, Hanafusa H, Shimizu K, Ouchida M. Uncovering Direct Targets of MiR-19a Involved in Lung Cancer Progression. PLoS One 2015; 10:e0137887. [PMID: 26367773 PMCID: PMC4569347 DOI: 10.1371/journal.pone.0137887] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 08/24/2015] [Indexed: 12/31/2022] Open
Abstract
Micro RNAs (miRNAs) regulate the expression of target genes posttranscriptionally by pairing incompletely with mRNA in a sequence-specific manner. About 30% of human genes are regulated by miRNAs, and a single miRNA is capable of reducing the production of hundreds of proteins by means of incomplete pairing upon miRNA-mRNA binding. Lately, evidence implicating miRNAs in the development of lung cancers has been emerging. In particular, miR-19a, which is highly expressed in malignant lung cancer cells, is considered the key miRNA for tumorigenesis. However, its direct targets remain underreported. In the present study, we focused on six potential miR-19a target genes selected by miRNA target prediction software. To evaluate these genes as direct miR-19a target genes, we performed luciferase, pull-down, and western blot assays. The luciferase activity of plasmids with each miR-19a-binding site was observed to decrease, while increased luciferase activity was observed in the presence of anti-miR-19a locked nucleic acid (LNA). The pull-down assay showed biotinylated miR-19a to bind to AGO2 protein and to four of six potential target mRNAs. Western blot analysis showed that the expression levels of the four genes changed depending on treatment with miR-19a mimic or anti-miR-19a-LNA. Finally, FOXP1, TP53INP1, TNFAIP3, and TUSC2 were identified as miR-19a targets. To examine the function of these four target genes in lung cancer cells, LK79 (which has high miR-19a expression) and A549 (which has low miR-19a expression) were used. The expression of the four target proteins was higher in A549 than in LK79 cells. The four miR-19a target cDNA expression vectors suppressed cell viability, colony formation, migration, and invasion of A549 and LK79 cells, but LK79 cells transfected with FOXP1 and TP53INP1 cDNAs showed no difference compared to the control cells in the invasion assay.
Collapse
Affiliation(s)
- Kumiko Yamamoto
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Sachio Ito
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Hiroko Hanafusa
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Kenji Shimizu
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
| | - Mamoru Ouchida
- Department of Molecular Genetics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, Japan
- * E-mail:
| |
Collapse
|
84
|
Tayubi IA, Firoz A, Barukab OM, Malik A. Identification of hub genes and their SNP analysis in West Nile virus infection for designing therapeutic methodologies using RNA-Seq data. Genes Genomics 2015. [DOI: 10.1007/s13258-015-0297-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
85
|
Kidneys From α1,3-Galactosyltransferase Knockout/Human Heme Oxygenase-1/Human A20 Transgenic Pigs Are Protected From Rejection During Ex Vivo Perfusion With Human Blood. Transplant Direct 2015; 1:e23. [PMID: 27500225 PMCID: PMC4946468 DOI: 10.1097/txd.0000000000000533] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 06/12/2015] [Indexed: 01/16/2023] Open
Abstract
Supplemental digital content is available in the text. Multiple modifications of the porcine genome are required to prevent rejection after pig-to-primate xenotransplantation. Here, we produced pigs with a knockout of the α1,3-galactosyltransferase gene (GGTA1-KO) combined with transgenic expression of the human anti-apoptotic/anti-inflammatory molecules heme oxygenase-1 and A20, and investigated their xenoprotective properties.
Collapse
|
86
|
Xu Y, Hu J, Wang X, Xuan L, Lai J, Xu L, Chen S, Yang L, Luo G, Zhu K, Wu X, Li Y. Overexpression of MALT1-A20-NF-κB in adult B-cell acute lymphoblastic leukemia. Cancer Cell Int 2015. [PMID: 26213496 PMCID: PMC4514975 DOI: 10.1186/s12935-015-0222-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Background A20 is a dual inhibitor of NF-κB activation and apoptosis in the tumor necrosis factor receptor 1 signaling pathway, and both are related to tumorigenesis. A20 is frequently inactivated by deletions and/or mutations in several B and T cell lymphoma subtypes; however, knowledge of the role of A20 in B-cell acute lymphoblastic leukemia (B-ALL) remains limited. In this study, we characterized the A20 gene expression pattern, the expression level of its upstream regulating factor MALT1, and its downstream target NF-κB in adult B-ALL. Methods The expression level of MALT1, A20 and NF-κB1 was detected in peripheral blood mononuclear cells (PBMCs) from 20 patients with adult B-ALL (including 12 de novo B-ALL and 8 refractory/relapse B-ALL cases), and nine patients with B-ALL in complete remission (CR) using real-time PCR. Sixteen healthy individuals served as controls. Results Significant A20 overexpression was found in the B-ALL (median: 13.489) compared with B-ALL CR (median: 3.755) (P = 0.003) patients and healthy individuals (median: 8.748) (P = 0.002), while there was no significant difference in A20 expression between B-ALL CR patients and healthy individuals (P = 0.107). Interestingly, the A20 expression level in the B-ALL samples was relatively different with approximately 50% of the B-ALL cases showing a relatively high A20 expression level, while the remaining 50% cases demonstrated slight upregulation or a similar expression level as the healthy controls. However, there was no significant difference in the A20 expression level between de novo B-ALL (median 12.252) and refractory/relapse B-ALL patients (median 21.342) (P = 0.616). Similarly, a significantly higher expression level of NF-κB1 was found in the B-ALL (median 1.062) patients compared with healthy individuals (median 0.335) (P < 0.0001), while the NF-κB1 expression level was downregulated in the B-ALL CR group (median 0.339), which was significantly lower than that in those with B-ALL (P = 0.001). Moreover, the MALT1 expression level in B-ALL was upregulated (median 1.938) and significantly higher than that in healthy individuals (median 0.677) (P = 0.002) and B-ALL CR patients (median 0.153) (P = 0.008). The correlation of the expression levels of all three genes was lost in B-ALL. Conclusions We found that MALT1-A20-NF-κB is overexpressed in adult B-ALL, which may be related to the pathogenesis of B-ALL, and this pathway may be considered a potentially attractive target for the development of B-ALL therapeutics. Electronic supplementary material The online version of this article (doi:10.1186/s12935-015-0222-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi Xu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Junyan Hu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China.,Department of Emergency, Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510150 China
| | - Xu Wang
- Institute of Hematology, Jinan University, Guangzhou, 510632 China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 China
| | - Li Xuan
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515 China
| | - Jing Lai
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Ling Xu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Shaohua Chen
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Lijian Yang
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Gengxin Luo
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Kanger Zhu
- Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Xiuli Wu
- Institute of Hematology, Jinan University, Guangzhou, 510632 China
| | - Yangqiu Li
- Institute of Hematology, Jinan University, Guangzhou, 510632 China.,Key Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632 China.,Department of Hematology, First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| |
Collapse
|
87
|
Park ES, Choi S, Shin B, Yu J, Yu J, Hwang JM, Yun H, Chung YH, Choi JS, Choi Y, Rho J. Tumor necrosis factor (TNF) receptor-associated factor (TRAF)-interacting protein (TRIP) negatively regulates the TRAF2 ubiquitin-dependent pathway by suppressing the TRAF2-sphingosine 1-phosphate (S1P) interaction. J Biol Chem 2015; 290:9660-73. [PMID: 25716317 DOI: 10.1074/jbc.m114.609685] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Indexed: 11/06/2022] Open
Abstract
The signaling pathway downstream of TNF receptor (TNFR) is involved in the induction of a wide range of cellular processes, including cell proliferation, activation, differentiation, and apoptosis. TNFR-associated factor 2 (TRAF2) is a key adaptor molecule in TNFR signaling complexes that promotes downstream signaling cascades, such as nuclear factor-κB (NF-κB) and mitogen-activated protein kinase activation. TRAF-interacting protein (TRIP) is a known cellular binding partner of TRAF2 and inhibits TNF-induced NF-κB activation. Recent findings that TRIP plays a multifunctional role in antiviral response, cell proliferation, apoptosis, and embryonic development have increased our interest in exploring how TRIP can affect the TNFR-signaling pathway on a molecular level. In our current study, we demonstrated that TRIP is negatively involved in the TNF-induced inflammatory response through the down-regulation of proinflammatory cytokine production. Here, we demonstrated that the TRAF2-TRIP interaction inhibits Lys(63)-linked TRAF2 ubiquitination by inhibiting TRAF2 E3 ubiquitin (Ub) ligase activity. The TRAF2-TRIP interaction inhibited the binding of sphingosine 1-phosphate, which is a cofactor of TRAF2 E3 Ub ligase, to the TRAF2 RING domain. Finally, we demonstrated that TRIP functions as a negative regulator of proinflammatory cytokine production by inhibiting TNF-induced NF-κB activation. These results indicate that TRIP is an important cellular regulator of the TNF-induced inflammatory response.
Collapse
Affiliation(s)
- Eui-Soon Park
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Seunga Choi
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Bongjin Shin
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jungeun Yu
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jiyeon Yu
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Jung-Me Hwang
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Hyeongseok Yun
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea
| | - Young-Ho Chung
- the Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea, and
| | - Jong-Soon Choi
- the Division of Life Science, Korea Basic Science Institute, Daejeon 305-333, Korea, and
| | - Yongwon Choi
- the Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Jaerang Rho
- From the Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Korea,
| |
Collapse
|
88
|
Enesa K, Moll HP, Luong L, Ferran C, Evans PC. A20 suppresses vascular inflammation by recruiting proinflammatory signaling molecules to intracellular aggresomes. FASEB J 2015; 29:1869-78. [PMID: 25667218 DOI: 10.1096/fj.14-258533] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 12/24/2014] [Indexed: 12/16/2022]
Abstract
A20 protects against pathologic vascular remodeling by inhibiting the inflammatory transcription factor NF-κB. A20's function has been attributed to ubiquitin editing of receptor-interacting protein 1 (RIP1) to influence activity/stability. The validity of this mechanism was tested using a murine model of transplant vasculopathy and human cells. Mouse C57BL/6 aortae transduced with adenoviruses containing A20 (or β-galactosidase as a control) were allografted into major histocompatibility complex-mismatched BALB/c mice. Primary endothelial cells, smooth muscle cells, or transformed epithelial cells (all human) were transfected with wild-type A20 or with catalytically inactive mutants as a control. NF-κB activity and intracellular localization of RIP1 was monitored by reporter gene assay, immunofluorescent staining, and Western blotting. Native and catalytically inactive versions of A20 had similar inhibitory effects on NF-κB activity (-70% vs. -76%; P > 0.05). A20 promoted localization of RIP1 to insoluble aggresomes in murine vascular allografts and in human cells (53% vs. 0%) without altering RIP1 expression, and this process was increased by the assembly of polyubiquitin chains (87% vs. 28%; P < 0.05). A20 captures polyubiquitinated signaling intermediaries in insoluble aggresomes, thus reducing their bioavailability for downstream NF-κB signaling. This novel mechanism contributes to protection from vasculopathy in transplanted organs treated with exogenous A20.
Collapse
Affiliation(s)
- Karine Enesa
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Herwig P Moll
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Le Luong
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Christiane Ferran
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Paul C Evans
- *British Heart Foundation Cardiovascular Sciences Unit, Imperial College London, London, United Kingdom; Division of Vascular and Endovascular Surgery, Center for Vascular Biology Research and the Transplant Institute, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Cambridge, Massachusetts, USA; and Department of Cardiovascular Sciences and INSIGNEO Institute for In Silico Medicine, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
89
|
Transcriptomic and proteomic analyses reveal key innate immune signatures in the host response to the gastrointestinal pathogen Campylobacter concisus. Infect Immun 2014; 83:832-45. [PMID: 25486993 DOI: 10.1128/iai.03012-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Pathogenic species within the genus Campylobacter are responsible for a considerable burden on global health. Campylobacter concisus is an emergent pathogen that plays a role in acute and chronic gastrointestinal disease. Despite ongoing research on Campylobacter virulence mechanisms, little is known regarding the immunological profile of the host response to Campylobacter infection. In this study, we describe a comprehensive global profile of innate immune responses to C. concisus infection in differentiated THP-1 macrophages infected with an adherent and invasive strain of C. concisus. Using RNA sequencing (RNA-seq), quantitative PCR (qPCR), mass spectrometry, and confocal microscopy, we observed differential expression of pattern recognition receptors and robust upregulation of DNA- and RNA-sensing molecules. In particular, we observed IFI16 inflammasome assembly in C. concisus-infected macrophages. Global profiling of the transcriptome revealed the significant regulation of a total of 8,343 transcripts upon infection with C. concisus, which included the activation of key inflammatory pathways involving CREB1, NF-κB, STAT, and interferon regulatory factor signaling. Thirteen microRNAs and 333 noncoding RNAs were significantly regulated upon infection, including MIR221, which has been associated with colorectal carcinogenesis. This study represents a major advance in our understanding of host recognition and innate immune responses to infection by C. concisus.
Collapse
|
90
|
Qian F, Thakar J, Yuan X, Nolan M, Murray KO, Lee WT, Wong SJ, Meng H, Fikrig E, Kleinstein SH, Montgomery RR. Immune markers associated with host susceptibility to infection with West Nile virus. Viral Immunol 2014; 27:39-47. [PMID: 24605787 DOI: 10.1089/vim.2013.0074] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Infections with West Nile virus (WNV) are typically asymptomatic, but some patients experience severe neurological disease and even death. Over 1500 fatalities have resulted from the more than 37,000 WNV cases in the USA between 1999 and 2012. While it is clear that age is a significant risk factor, markers of immune status associated with susceptibility to severe infections are incompletely defined. We have taken advantage of stable characteristics of individual status to profile immune markers from a stratified cohort of healthy subjects with a history of asymptomatic or severe infection with WNV. We characterized individual variations in antibody and serum cytokine levels and genome-wide transcriptional profiles of peripheral blood cells (PBMCs). While antibody levels were not significantly different between cohorts, we found that subjects with a history of severe infection had significantly lower levels of serum IL-4, and that these changes in IL-4 levels were associated with altered gene expression patterns in PBMCs. In addition, we identified a signature of 105 genes that displayed altered expression levels when comparing subjects with a history of asymptomatic or severe infection. These results suggest that systems-level analysis of immune system status can be used to identify factors relevant for susceptibility to severe infections, and specifically point to an important contribution for IL-4 in resistance to WNV infection.
Collapse
Affiliation(s)
- Feng Qian
- 1 Department of Internal Medicine, Yale School of Medicine , New Haven, Connecticut
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Liu X, He F, Pang R, Zhao D, Qiu W, Shan K, Zhang J, Lu Y, Li Y, Wang Y. Interleukin-17 (IL-17)-induced microRNA 873 (miR-873) contributes to the pathogenesis of experimental autoimmune encephalomyelitis by targeting A20 ubiquitin-editing enzyme. J Biol Chem 2014; 289:28971-86. [PMID: 25183005 DOI: 10.1074/jbc.m114.577429] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Interleukin 17 (IL-17), produced mainly by T helper 17 (Th17) cells, is increasingly recognized as a key regulator in various autoimmune diseases, including human multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Although several microRNAs (miRNAs) with aberrant expression have been shown to contribute to the pathogenesis of MS and EAE, the mechanisms underlying the regulation of abnormal miRNA expression in astrocytes upon IL-17 stimulation remain unclear. In the present study, we detected the changes of miRNA expression profiles both in the brain tissue of EAE mice and in cultured mouse primary astrocytes stimulated with IL-17 and identified miR-873 as one of the co-up-regulated miRNAs in vivo and in vitro. The overexpression of miR-873, demonstrated by targeting A20 (TNFα-induced protein 3, TNFAIP3), remarkably reduced the A20 level and promoted NF-κB activation in vivo and in vitro as well as increasing the production of inflammatory cytokines and chemokines (i.e. IL-6, TNF-α, MIP-2, and MCP-1/5). More importantly, silencing the endogenous miR-873 or A20 gene with lentiviral vector of miR-873 sponge (LV-miR-873 sponge) or short hairpin RNA (shRNA) of A20 (LV-A20 shRNA) in vivo significantly lessened or aggravated inflammation and demyelination in the central nervous system (CNS) of EAE mice, respectively. Taken together, these findings indicate that miR-873 induced by IL-17 stimulation promotes the production of inflammatory cytokines and aggravates the pathological process of EAE mice through the A20/NF-κB pathway, which provides a new insight into the mechanism of inflammatory damage in MS.
Collapse
Affiliation(s)
- Xiaomei Liu
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Fengxia He
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Rongrong Pang
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Dan Zhao
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Wen Qiu
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Kai Shan
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Jing Zhang
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Yanlai Lu
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Yan Li
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| | - Yingwei Wang
- From the Department of Microbiology and Immunology, Nanjing Medical University, Hanzhong Road 140, Nanjing, Jiangsu 210029, China
| |
Collapse
|
92
|
Yamagishi J, Natori A, Tolba MEM, Mongan AE, Sugimoto C, Katayama T, Kawashima S, Makalowski W, Maeda R, Eshita Y, Tuda J, Suzuki Y. Interactive transcriptome analysis of malaria patients and infecting Plasmodium falciparum. Genome Res 2014; 24:1433-44. [PMID: 25091627 PMCID: PMC4158759 DOI: 10.1101/gr.158980.113] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
To understand the molecular mechanisms of parasitism in vivo, it is essential to elucidate how the transcriptomes of the human hosts and the infecting parasites affect one another. Here we report the RNA-seq analysis of 116 Indonesian patients infected with the malaria parasite Plasmodium falciparum (Pf). We extracted RNAs from their peripheral blood as a mixture of host and parasite transcripts and mapped the RNA-seq tags to the human and Pf reference genomes to separate the respective tags. We were thus able to simultaneously analyze expression patterns in both humans and parasites. We identified human and parasite genes and pathways that correlated with various clinical data, which may serve as primary targets for drug developments. Of particular importance, we revealed characteristic expression changes in the human innate immune response pathway genes including TLR2 and TICAM2 that correlated with the severity of the malaria infection. We also found a group of transcription regulatory factors, JUND, for example, and signaling molecules, TNFAIP3, for example, that were strongly correlated in the expression patterns of humans and parasites. We also identified several genetic variations in important anti-malaria drug resistance-related genes. Furthermore, we identified the genetic variations which are potentially associated with severe malaria symptoms both in humans and parasites. The newly generated data should collectively lay a unique foundation for understanding variable behaviors of the field malaria parasites, which are far more complex than those observed under laboratory conditions.
Collapse
Affiliation(s)
- Junya Yamagishi
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Miyagi 980-8579, Japan; Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Anna Natori
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan
| | | | - Arthur E Mongan
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado, 95115, Indonesia
| | - Chihiro Sugimoto
- Research Center for Zoonosis Control, Hokkaido University, Sapporo 001-0020, Japan
| | - Toshiaki Katayama
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), The University of Tokyo Bunkyo-ku, Tokyo 113-0032, Japan
| | - Shuichi Kawashima
- Database Center for Life Science (DBCLS), Research Organization of Information and Systems (ROIS), The University of Tokyo Bunkyo-ku, Tokyo 113-0032, Japan
| | - Wojciech Makalowski
- Institute of Bioinformatics, Faculty of Medicine, University of Muenster, 48149 Munster, Germany
| | - Ryuichiro Maeda
- Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yuki Eshita
- Oita University, School of Medicine, Yufushi, Oita 879-5593, Japan
| | - Josef Tuda
- Department of Medicine, Sam Ratulangi University, Kampus Unsrat, Bahu Manado, 95115, Indonesia
| | - Yutaka Suzuki
- Department of Medical Genome Sciences, University of Tokyo, Kashiwa, Chiba 277-8562, Japan;
| |
Collapse
|
93
|
Fraser B, Maranchuk RA, Foley E. A High-Content RNAi Screen Identifies Ubiquitin Modifiers That Regulate TNF-Dependent Nuclear Accumulation of NF-κB. Front Immunol 2014; 5:322. [PMID: 25071782 PMCID: PMC4094887 DOI: 10.3389/fimmu.2014.00322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 06/25/2014] [Indexed: 12/17/2022] Open
Abstract
The mammalian tumor necrosis factor (TNF) cytokine is a central mediator of inflammatory events. Recent studies revealed a number of complex and sophisticated interactions between the TNF pathway and the enzymatic activities encoded by ubiquitin ligases and deubiquitylation enzymes. However, very little is known about the identity of the ubiquitin pathway members that control the extent of ubiquitylation in TNF responses. To address this deficit, we conducted an unbiased, high-content screen of the human ubiquitin pathway for gene products that control defining features of the cellular response to TNF. In particular, we sought to identify ubiquitin modifying enzymes that alter the ability of TNF to regulate the nuclear accumulation of nuclear factor kappa B. In this screen, we identified and validated several novel regulators of the TNF pathway. We believe these regulators constitute potential targets for pharmacological interventions that manipulate TNF-dependent inflammation.
Collapse
Affiliation(s)
- Brittany Fraser
- Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB , Canada ; Institute of Virology, University of Alberta , Edmonton, AB , Canada
| | - Robert A Maranchuk
- Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB , Canada ; Institute of Virology, University of Alberta , Edmonton, AB , Canada
| | - Edan Foley
- Department of Medical Microbiology and Immunology, University of Alberta , Edmonton, AB , Canada ; Institute of Virology, University of Alberta , Edmonton, AB , Canada
| |
Collapse
|
94
|
Abstract
The NF-κB family of inducible transcription factors is activated in response to a variety of stimuli. Amongst the best-characterized inducers of NF-κB are members of the TNF family of cytokines. Research on NF-κB and TNF have been tightly intertwined for more than 25 years. Perhaps the most compelling examples of the interconnectedness of NF-κB and the TNF have come from analysis of knock-out mice that are unable to activate NF-κB. Such mice die embryonically, however, deletion of TNF or TNFR1 can rescue the lethality thereby illustrating the important role of NF-κB as the key regulator of transcriptional responses to TNF. The physiological connections between NF-κB and TNF cytokines are numerous and best explored in articles focusing on a single TNF family member. Instead, in this review, we explore general mechanisms of TNF cytokine signaling, with a focus on the upstream signaling events leading to activation of the so-called canonical and noncanonical NF-κB pathways by TNFR1 and CD40, respectively.
Collapse
Affiliation(s)
- Matthew S Hayden
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA; Department of Dermatology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| | - Sankar Ghosh
- Department of Microbiology and Immunology, Columbia University, College of Physicians & Surgeons, New York, NY 10032, USA.
| |
Collapse
|
95
|
Sokratous K, Hadjisavvas A, Diamandis EP, Kyriacou K. The role of ubiquitin-binding domains in human pathophysiology. Crit Rev Clin Lab Sci 2014; 51:280-90. [PMID: 24901807 DOI: 10.3109/10408363.2014.915287] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Ubiquitination, a fundamental post-translational modification (PTM) resulting in the covalent attachment of ubiquitin (Ub) to a target protein, is currently implicated in several key cellular processes. Although ubiquitination was initially associated with protein degradation, it is becoming increasingly evident that proteins labeled with polyUb chains of specific topology and length are activated in an ever-expanding repertoire of specific cellular processes. In addition to their involvement in the classical protein degradation pathways they are involved in DNA repair, kinase regulation and nuclear factor-κB (NF-κB) signaling. The sorting and processing of distinct Ub signals is mediated by small protein motifs, known as Ub-binding domains (UBDs), which are found in proteins that execute disparate biological functions. The involvement of UBDs in several biological pathways has been revealed by several studies which have highlighted the vital role of UBDs in cellular homeostasis. Importantly, functional impairment of UBDs in key regulatory pathways has been related to the development of pathophysiological conditions, including immune disorders and cancer. In this review, we present an up-to-date account of the crucial role of UBDs and their functions, with a special emphasis on their functional impairment in key biological pathways and the pathogenesis of several human diseases. The still under-investigated topic of Ub-UBD interactions as a target for developing novel therapeutic strategies against many diseases is also discussed.
Collapse
|
96
|
De A, Dainichi T, Rathinam CV, Ghosh S. The deubiquitinase activity of A20 is dispensable for NF-κB signaling. EMBO Rep 2014; 15:775-83. [PMID: 24878851 DOI: 10.15252/embr.201338305] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
A20 has been suggested to limit NF-κB activation by removing regulatory ubiquitin chains from ubiquitinated substrates. A20 is a ubiquitin-editing enzyme that removes K63-linked ubiquitin chains from adaptor proteins, such as RIP1, and then conjugates them to K48-linked polyubiquitin chains to trigger proteasomal degradation. To determine the role of the deubiquitinase function of A20 in downregulating NF-κB signaling, we have generated a knock-in mouse that lacks the deubiquitinase function of A20 (A20-OTU mice). These mice are normal and have no signs of inflammation, have normal proportions of B, T, dendritic, and myeloid cells, respond normally to LPS and TNF, and undergo normal NF-κB activation. Our results thus indicate that the deubiquitinase activity of A20 is dispensable for normal NF-κB signaling.
Collapse
Affiliation(s)
- Arnab De
- Department of Microbiology and Immunology, College of Physicians & Surgeons Columbia University, New York, NY, USA
| | - Teruki Dainichi
- Department of Microbiology and Immunology, College of Physicians & Surgeons Columbia University, New York, NY, USA
| | - Chozha Vendan Rathinam
- Department of Genetics and Development, College of Physicians & Surgeons Columbia University, New York, NY, USA
| | - Sankar Ghosh
- Department of Microbiology and Immunology, College of Physicians & Surgeons Columbia University, New York, NY, USA
| |
Collapse
|
97
|
Alternative expression pattern of MALT1-A20-NF-κB in patients with rheumatoid arthritis. J Immunol Res 2014; 2014:492872. [PMID: 24971370 PMCID: PMC4058209 DOI: 10.1155/2014/492872] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2014] [Accepted: 04/27/2014] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an inflammatory autoimmune disorder; abnormal T cell immunity plays a critical role in the development of RA. Recently, A20 was identified as a key negative regulator for T cell activation and inflammatory signaling and may be involved in RA pathogenesis. In this study, we analyzed the expression level of A20, NF-κB, and A20 regulatory factor mucosa-associated lymphoid tissue lymphoma translocation gene 1 (MALT1) in patients with RA. Real-time PCR was used to determine the expression level of MALT1, MALT-V1, A20, and NF-κB genes in RA and healthy individuals (HI). Significantly lower A20 expression was found in RA patients compared with those in the healthy group, while NF-κB overexpression could be detected in patients with RA. Moreover, the MALT1 and MALT1-V1 expression level was downregulated in RA patients. A positive correlation between MALT1 and A20 and MALT1-V1 and A20 was found in patients with RA, and a tendency towards a negative correlation was found between MALT1 and NF-κB, MALT1-V1 and NF-κB, and A20 and NF-κB. In conclusion, we first characterized the alternative expression pattern of MALT1, A20, and NF-κB in RA, which may be related to abnormal T cell activation.
Collapse
|
98
|
Tseng LC, Zhang C, Cheng CM, Xu H, Hsu CH, Jiang YJ. New classes of mind bomb-interacting proteins identified from yeast two-hybrid screens. PLoS One 2014; 9:e93394. [PMID: 24714733 PMCID: PMC3979679 DOI: 10.1371/journal.pone.0093394] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Abstract
Notch signaling pathway defines an evolutionarily conserved mechanism in cell-fate determination in a broad spectrum of developmental processes through local cell interactions. mind bomb (mib) encodes an E3 ubiquitin ligase that is involved in Notch activation through Delta ubiquitylation and internalization. To further dissect the function of Mib, two yeast two-hybrid screens for zebrafish Mib/Mib2-binding proteins with different strategies have been performed. 81 putative interesting proteins were discovered and classified into six groups: ubiquitin proteasome pathway, cytoskeleton, trafficking, replication/transcription/translation factors, cell signaling and others. Confirmed by coimmunoprecipitation (Co-IP), Mib interacted with four tested proteins: ubiquitin specific protease 1 (Usp1), ubiquitin specific protease 9 (Usp9), tumor-necrosis-factor-receptor-associated factor (TRAF)-binding domain (Trabid)/zinc finger, RAN-binding domain containing 1 (Zranb1) and hypoxia-inducible factor 1, alpha subunit inhibitor (Hif1an)/factor inhibiting HIF 1 (Fih-1). Usp1, Usp9, Trabid and Fih-1 also bound to zebrafish Mib2, a Mib homolog with similar structural domains and functions. Both Mib and Mib2 can ubiquitylate Trabid and Fih-1, indicating a potential regulating role of Mib and Mib2 on Trabid and Fih-1 and, furthermore, the possible involvement of Notch signaling in hypoxia-regulated differentiation, tumorigenesis and NF-κB pathway. Finally, functions of confirmed Mib/Mib2-interacting proteins are collated, summarized and hypothesized, which depicts a regulating network beyond Notch signaling.
Collapse
Affiliation(s)
- Li-Chuan Tseng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Chengjin Zhang
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chun-Mei Cheng
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
| | - Haoying Xu
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
| | - Chia-Hao Hsu
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu, Taiwan
| | - Yun-Jin Jiang
- Institute of Molecular and Genomic Medicine, National Health Research Institutes, Zhunan Town, Miaoli County, Taiwan
- Laboratory of Developmental Signalling and Patterning, Institute of Molecular and Cell Biology, Singapore, Singapore
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- * E-mail:
| |
Collapse
|
99
|
Kasama Y, Mizukami T, Kusunoki H, Peveling-Oberhag J, Nishito Y, Ozawa M, Kohara M, Mizuochi T, Tsukiyama-Kohara K. B-cell-intrinsic hepatitis C virus expression leads to B-cell-lymphomagenesis and induction of NF-κB signalling. PLoS One 2014; 9:e91373. [PMID: 24651473 PMCID: PMC3961254 DOI: 10.1371/journal.pone.0091373] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2013] [Accepted: 02/10/2014] [Indexed: 12/16/2022] Open
Abstract
Hepatitis C virus (HCV) infection leads to the development of hepatic diseases, as well as extrahepatic disorders such as B-cell non-Hodgkin's lymphoma (B-NHL). To reveal the molecular signalling pathways responsible for HCV-associated B-NHL development, we utilised transgenic (Tg) mice that express the full-length HCV genome specifically in B cells and develop non-Hodgkin type B-cell lymphomas (BCLs). The gene expression profiles in B cells from BCL-developing HCV-Tg mice, from BCL-non-developing HCV-Tg mice, and from BCL-non-developing HCV-negative mice were analysed by genome-wide microarray. In BCLs from HCV-Tg mice, the expression of various genes was modified, and for some genes, expression was influenced by the gender of the animals. Markedly modified genes such as Fos, C3, LTβR, A20, NF-κB and miR-26b in BCLs were further characterised using specific assays. We propose that activation of both canonical and alternative NF-κB signalling pathways and down-regulation of miR-26b contribute to the development of HCV-associated B-NHL.
Collapse
Affiliation(s)
- Yuri Kasama
- Department of Experimental Phylaxiology, Faculty of Life Sciences, Kumamoto University, Kumamoto-shi, Kumamoto, Japan
| | - Takuo Mizukami
- Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama-shi, Tokyo, Japan
| | - Hideki Kusunoki
- Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama-shi, Tokyo, Japan
| | | | - Yasumasa Nishito
- Center for Microarray Analysis, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Tokyo, Japan
| | - Makoto Ozawa
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
| | - Michinori Kohara
- Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, Kamikitazawa, Tokyo, Japan
| | - Toshiaki Mizuochi
- Department of Research on Blood and Biological Products, National Institute of Infectious Diseases, Musashi-Murayama-shi, Tokyo, Japan
| | - Kyoko Tsukiyama-Kohara
- Transboundary Animal Diseases Center, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- Laboratory of Animal Hygiene, Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan
- * E-mail:
| |
Collapse
|
100
|
Zhu L, Zhang F, Shen Q, Chen S, Wang X, Wang L, Yang L, Wu X, Huang S, Schmidt CA, Li Y. Characteristics of A20 gene polymorphisms in T-cell acute lymphocytic leukemia. Hematology 2014; 19:448-54. [PMID: 24611736 DOI: 10.1179/1607845414y.0000000160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Affiliation(s)
- Lihua Zhu
- Department of Rheumatism and ImmunologyFirst Hospital Affiliated, Jinan University, Guangzhou, China
- Institute of HematologyJinan University, Guangzhou, China
| | - Fan Zhang
- Institute of HematologyJinan University, Guangzhou, China
| | - Qi Shen
- Institute of HematologyJinan University, Guangzhou, China
| | - Shaohua Chen
- Institute of HematologyJinan University, Guangzhou, China
| | - Xu Wang
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan University, Guangzhou, China
| | - Liang Wang
- Department of OncologyFirst Hospital Affiliated, Jinan University, Guangzhou, China
| | - Lijian Yang
- Institute of HematologyJinan University, Guangzhou, China
| | - Xiuli Wu
- Institute of HematologyJinan University, Guangzhou, China
| | - Suming Huang
- Department of Biochemistry and Molecular BiologyCollege of Medicine, University of Florida, Gainesville, FL, USA
| | - Christian A. Schmidt
- Department of Hematology and OncologyErnst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Yangqiu Li
- Institute of HematologyJinan University, Guangzhou, China
- Key Laboratory for Regenerative Medicine of Ministry of EducationJinan University, Guangzhou, China
| |
Collapse
|