51
|
Alazem M, Lin NS. Antiviral Roles of Abscisic Acid in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:1760. [PMID: 29075279 PMCID: PMC5641568 DOI: 10.3389/fpls.2017.01760] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 09/26/2017] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a key hormone involved in tuning responses to several abiotic stresses and also has remarkable impacts on plant defense against various pathogens. The roles of ABA in plant defense against bacteria and fungi are multifaceted, inducing or reducing defense responses depending on its time of action. However, ABA induces different resistance mechanisms to viruses regardless of the induction time. Recent studies have linked ABA to the antiviral silencing pathway, which interferes with virus accumulation, and the micro RNA (miRNA) pathway through which ABA affects the maturation and stability of miRNAs. ABA also induces callose deposition at plasmodesmata, a mechanism that limits viral cell-to-cell movement. Bamboo mosaic virus (BaMV) is a member of the potexvirus group and is one of the most studied viruses in terms of the effects of ABA on its accumulation and resistance. In this review, we summarize how ABA interferes with the accumulation and movement of BaMV and other viruses. We also highlight aspects of ABA that may have an effect on other types of resistance and that require further investigation.
Collapse
|
52
|
Kamthan A, Chaudhuri A, Kamthan M, Datta A. Genetically modified (GM) crops: milestones and new advances in crop improvement. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1639-55. [PMID: 27381849 DOI: 10.1007/s00122-016-2747-6] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2016] [Accepted: 06/25/2016] [Indexed: 05/22/2023]
Abstract
New advances in crop genetic engineering can significantly pace up the development of genetically improved varieties with enhanced yield, nutrition and tolerance to biotic and abiotic stresses. Genetically modified (GM) crops can act as powerful complement to the crops produced by laborious and time consuming conventional breeding methods to meet the worldwide demand for quality foods. GM crops can help fight malnutrition due to enhanced yield, nutritional quality and increased resistance to various biotic and abiotic stresses. However, several biosafety issues and public concerns are associated with cultivation of GM crops developed by transgenesis, i.e., introduction of genes from distantly related organism. To meet these concerns, researchers have developed alternative concepts of cisgenesis and intragenesis which involve transformation of plants with genetic material derived from the species itself or from closely related species capable of sexual hybridization, respectively. Recombinase technology aimed at site-specific integration of transgene can help to overcome limitations of traditional genetic engineering methods based on random integration of multiple copy of transgene into plant genome leading to gene silencing and unpredictable expression pattern. Besides, recently developed technology of genome editing using engineered nucleases, permit the modification or mutation of genes of interest without involving foreign DNA, and as a result, plants developed with this technology might be considered as non-transgenic genetically altered plants. This would open the doors for the development and commercialization of transgenic plants with superior phenotypes even in countries where GM crops are poorly accepted. This review is an attempt to summarize various past achievements of GM technology in crop improvement, recent progress and new advances in the field to develop improved varieties aimed for better consumer acceptance.
Collapse
Affiliation(s)
- Ayushi Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Abira Chaudhuri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Kamthan
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- Indian Institute of Toxicology Research, Lucknow, 226 001, India
| | - Asis Datta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
53
|
Turina M, Kormelink R, Resende RO. Resistance to Tospoviruses in Vegetable Crops: Epidemiological and Molecular Aspects. ANNUAL REVIEW OF PHYTOPATHOLOGY 2016; 54:347-371. [PMID: 27296139 DOI: 10.1146/annurev-phyto-080615-095843] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
During the past three decades, the economic impact of tospoviruses has increased, causing high yield losses in a variety of crops and ornamentals. Owing to the difficulty in combating thrips vectors with insecticides, the best way to limit/prevent tospovirus-induced diseases involves a management strategy that includes virus resistance. This review briefly presents current tospovirus taxonomy, diversity, molecular biology, and cytopathology as an introduction to a more extensive description of the two main resistance genes employed against tospoviruses: the Sw5 gene in tomato and the Tsw in pepper. Natural and experimental resistance-breaking (RB) isolates allowed the identification of the viral avirulence protein triggering each of the two resistance gene products; epidemiology of RB isolates is discussed to reinforce the need for allelic variants and the need to search for new/alternative resistance genes. Ongoing efforts for alternative resistance strategies are described not only for Tomato spotted wilt virus (TSWV) in pepper and tomato but also for other vegetable crops heavily impacted by tospoviruses.
Collapse
Affiliation(s)
- Massimo Turina
- Institute for Sustainable Plant Protection, CNR Torino, 10135 Torino, Italy;
| | - Richard Kormelink
- Laboratory of Virology, Department of Plant Sciences, Wageningen University, 6708PB Wageningen, The Netherlands
| | - Renato O Resende
- Department of Cell Biology, University of Brasília, 70910-900 Brasília, DF, Brazil
| |
Collapse
|
54
|
Sempere RN, Gómez-Aix C, Ruíz-Ramón F, Gómez P, Hasiów-Jaroszewska B, Sánchez-Pina MA, Aranda MA. Pepino mosaic virus RNA-Dependent RNA Polymerase POL Domain Is a Hypersensitive Response-Like Elicitor Shared by Necrotic and Mild Isolates. PHYTOPATHOLOGY 2016; 106:395-406. [PMID: 26667188 DOI: 10.1094/phyto-10-15-0277-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pepino mosaic virus (PepMV) is an emerging pathogen that represents a serious threat to tomato production worldwide. PepMV-induced diseases manifest with a wide range of symptoms, including systemic necrosis. Our results showed that PepMV accumulation depends on the virus isolate, tomato cultivar, and environmental conditions, and associates with the development of necrosis. Substitution of lysine for glutamic acid at position 67 in the triple gene block 3 (TGB3) protein, previously described as a necrosis determinant, led to increased virus accumulation and was necessary but not sufficient to induce systemic necrosis. Systemic necrosis both in tomato and Nicotiana benthamiana shared hypersensitive response (HR) features, allowing the assessment of the role of different genomic regions on necrosis induction. Overexpression of both TGB3 and the polymerase domain (POL) of the RNA-dependent RNA polymerase (RdRp) resulted in necrosis, although only local expression of POL triggered HR-like symptoms. Our results also indicated that the necrosis-eliciting activity of POL resides in its highly conserved "palm" domain, and that necrosis was jasmonic acid-dependent but not salicylic acid-dependent. Altogether, our data suggest that the RdRp-POL domain plays an important role in PepMV necrosis induction, with necrosis development depending on the virus accumulation level, which can be modulated by the nature of TGB3, host genotype and environmental conditions.
Collapse
Affiliation(s)
- Raquel N Sempere
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Cristina Gómez-Aix
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Fabiola Ruíz-Ramón
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Pedro Gómez
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Beata Hasiów-Jaroszewska
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - María Amelia Sánchez-Pina
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| | - Miguel A Aranda
- First, second, third, fourth, sixth, and seventh authors: Centro de Edafología y Biología Aplicada del Segura (CEBAS), Consejo Superior de Investigaciones Científicas (CSIC), P.O. Box 164, 30100 Espinardo, Murcia, Spain; and fifth author: Institute of Plant Protection-National Research Institute, Department of Virology and Bacteriology, ul. Władysława Węgorka 20, 60-318 Poznán (Poland)
| |
Collapse
|
55
|
Zuluaga AP, Vega-Arreguín JC, Fei Z, Matas AJ, Patev S, Fry WE, Rose JKC. Analysis of the tomato leaf transcriptome during successive hemibiotrophic stages of a compatible interaction with the oomycete pathogen Phytophthora infestans. MOLECULAR PLANT PATHOLOGY 2016; 17:42-54. [PMID: 25808779 PMCID: PMC6638369 DOI: 10.1111/mpp.12260] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The infection of plants by hemibiotrophic pathogens involves a complex and highly regulated transition from an initial biotrophic, asymptomatic stage to a later necrotrophic state, characterized by cell death. Little is known about how this transition is regulated, and there are conflicting views regarding the significance of the plant hormones jasmonic acid (JA) and salicylic acid (SA) in the different phases of infection. To provide a broad view of the hemibiotrophic infection process from the plant perspective, we surveyed the transcriptome of tomato (Solanum lycopersicum) during a compatible interaction with the hemibiotrophic oomycete Phytophthora infestans during three infection stages: biotrophic, the transition from biotrophy to necrotrophy, and the necrotrophic phase. Nearly 10 000 genes corresponding to proteins in approximately 400 biochemical pathways showed differential transcript abundance during the three infection stages, revealing a major reorganization of plant metabolism, including major changes in source-sink relations, as well as secondary metabolites. In addition, more than 100 putative resistance genes and pattern recognition receptor genes were induced, and both JA and SA levels and associated signalling pathways showed dynamic changes during the infection time course. The biotrophic phase was characterized by the induction of many defence systems, which were either insufficient, evaded or suppressed by the pathogen.
Collapse
Affiliation(s)
- Andrea P Zuluaga
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Julio C Vega-Arreguín
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
- Laboratory of Agrigenomics, Universidad Nacional Autónoma de México (UNAM), ENES-León, 37684, Guanajuato, Mexico
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY, 14853, USA
- USDA Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Antonio J Matas
- Departamento de Biología Vegetal, Campus de Teatinos, Universidad de Málaga, 29071, Málaga, Spain
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sean Patev
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - William E Fry
- Section of Plant Pathology and Plant Microbe Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Jocelyn K C Rose
- Section of Plant Biology, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
56
|
Duff-Farrier CRA, Candresse T, Bailey AM, Boonham N, Foster GD. Evidence for different, host-dependent functioning of Rx against both wild-type and recombinant Pepino mosaic virus. MOLECULAR PLANT PATHOLOGY 2016; 17:120-6. [PMID: 25787776 PMCID: PMC6638469 DOI: 10.1111/mpp.12256] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
The potato Rx gene provides resistance against Pepino mosaic virus (PepMV) in tomato; however, recent work has suggested that the resistance conferred may not be durable. Resistance breaking can probably be attributed to multiple mutations observed to accumulate in the capsid protein (CP) region of resistance-breaking isolates, but this has not been confirmed through directed manipulation of an infectious PepMV clone. The present work describes the introduction of two specific mutations, A-T78 and A-T114, into the coat protein minimal elicitor region of an Rx-controlled PepMV isolate of the EU genotype. Enzyme-linked immunosorbent assay (ELISA) and phenotypic evaluation were conducted in three Rx-expressing and wild-type solanaceous hosts: Nicotiana benthamiana, Nicotiana tabacum and Solanum lycopersicum. Mutation A-T78 alone was sufficient to confer Rx-breaking activity in N. benthamiana and S. lycopersicum, whereas mutation A-T114 was found to be associated, in most cases, with a secondary A-D100 mutation to break Rx-mediated resistance in S. lycopersicum. These results suggest that the need for a second, fitness-restoring mutation may be dependent on the PepMV mutant under consideration. Both mutations conferred Rx breaking in S. lycopersicum, whereas neither conferred Rx breaking in N. tabacum and only A-T78 allowed Rx breaking in N. benthamiana, suggesting that Rx may function in a different manner depending on the genetic background in which it is present.
Collapse
Affiliation(s)
- Celia R A Duff-Farrier
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Thierry Candresse
- UMR 1332 Biologie du Fruit et Pathologie, INRA, CS 20032, 33882, Villenave d'Ornon Cedex, France
- UMR 1332 Biologie du Fruit et Pathologie, Université de Bordeaux, CS 20032, 33882, Villenave d'Ornon Cedex, France
| | - Andy M Bailey
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | - Neil Boonham
- The Food and Environment Research Agency, Sand Hutton, York, YO41 1LZ, UK
| | - Gary D Foster
- School of Biological Sciences, University of Bristol, Life Sciences Building, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| |
Collapse
|
57
|
Genetic Dissection of Disease Resistance to the Blue Mold Pathogen, Peronospora tabacina, in Tobacco. AGRONOMY-BASEL 2015. [DOI: 10.3390/agronomy5040555] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
58
|
Zhu F, Deng XG, Xu F, Jian W, Peng XJ, Zhu T, Xi DH, Lin HH. Mitochondrial alternative oxidase is involved in both compatible and incompatible host-virus combinations in Nicotiana benthamiana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 239:26-35. [PMID: 26398788 DOI: 10.1016/j.plantsci.2015.07.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 07/08/2015] [Accepted: 07/10/2015] [Indexed: 05/27/2023]
Abstract
The alternative oxidase (AOX) functions in the resistance to biotic stress. However, the mechanisms of AOX in the systemic antiviral defense response and N (a typical resistance gene)-mediated resistance to Tobacco mosaic virus (TMV) are elusive. A chemical approach was undertaken to investigate the role of NbAOX in the systemic resistance to RNA viruses. Furthermore, we used a virus-induced gene-silencing (VIGS)-based genetics approach to investigate the function of AOX in the N-mediated resistance to TMV. The inoculation of virus significantly increased the NbAOX transcript and protein levels and the cyanide-resistant respiration in the upper un-inoculated leaves. Pretreatment with potassium cyanide greatly increased the plant's systemic resistance, whereas the application of salicylhydroxamic acid significantly compromised the plant's systemic resistance. Additionally, in NbAOX1a-silenced N-transgenic Nicotiana benthamiana plants, the inoculated leaf collapsed and the movement of TMV into the systemic tissue eventually led to the spreading of HR-PCD and the death of the whole plant. The hypersensitive response marker gene HIN1 was significantly increased in the NbAOX1a-silenced plants. Significant amounts of TMV-CP mRNA and protein were detected in the NbAOX1a-silenced plants but not in the control plants. Overall, evidence is provided that AOX plays important roles in both compatible and incompatible plant-virus combinations.
Collapse
Affiliation(s)
- Feng Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China; College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, China
| | - Xing-Guang Deng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Fei Xu
- Applied Biotechnology Center, Wuhan Bioengineering Insititute, 430415, China
| | - Wei Jian
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Xing-Ji Peng
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Tong Zhu
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - De-Hui Xi
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China
| | - Hong-Hui Lin
- Ministry of Education Key Laboratory for Bio-Resource and Eco-Environment, College of Life Science, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
59
|
Abstract
Transgenic resistance to plant viruses is an important technology for control of plant virus infection, which has been demonstrated for many model systems, as well as for the most important plant viruses, in terms of the costs of crop losses to disease, and also for many other plant viruses infecting various fruits and vegetables. Different approaches have been used over the last 28 years to confer resistance, to ascertain whether particular genes or RNAs are more efficient at generating resistance, and to take advantage of advances in the biology of RNA interference to generate more efficient and environmentally safer, novel "resistance genes." The approaches used have been based on expression of various viral proteins (mostly capsid protein but also replicase proteins, movement proteins, and to a much lesser extent, other viral proteins), RNAs [sense RNAs (translatable or not), antisense RNAs, satellite RNAs, defective-interfering RNAs, hairpin RNAs, and artificial microRNAs], nonviral genes (nucleases, antiviral inhibitors, and plantibodies), and host-derived resistance genes (dominant resistance genes and recessive resistance genes), and various factors involved in host defense responses. This review examines the above range of approaches used, the viruses that were tested, and the host species that have been examined for resistance, in many cases describing differences in results that were obtained for various systems developed in the last 20 years. We hope this compilation of experiences will aid those who are seeking to use this technology to provide resistance in yet other crops, where nature has not provided such.
Collapse
Affiliation(s)
| | - Peter Palukaitis
- Department of Horticultural Sciences, Seoul Women's University, Seoul, Republic of Korea.
| |
Collapse
|
60
|
Qin LJ, Zhao D, Zhang Y, Zhao DG. Selectable marker-free co-expression of Nicotiana rustica CN and Nicotiana tabacum HAK1 genes improves resistance to tobacco mosaic virus in tobacco. FUNCTIONAL PLANT BIOLOGY : FPB 2015; 42:802-815. [PMID: 32480723 DOI: 10.1071/fp14356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2014] [Accepted: 04/29/2015] [Indexed: 06/11/2023]
Abstract
The viral disease caused by tobacco mosaic virus (TMV) is the most prevalent viral disease in many tobacco production areas. A breeding strategy based on resistance genes is an effective method for improving TMV resistance in tobacco. Also, the physiological status of plants is also critical to disease resistance improvement. Potassium ion is one of the most abundant inorganic nutrients in plant cells, and mediates plant responses to abiotic and biotic stresses. Improving K+ content in soil by fertilising can enhance diseases resistance of crops. However, the K+ absorption in plants depends mostly on K+ transporters located in cytoplasmic membrane. Therefore, the encoding genes for K+ transporters are putative candidates to target for improving tobacco mosaic virus resistance. In this work, the synergistic effect of a N-like resistance gene CN and a tobacco putative potassium transporter gene HAK1 was studied. The results showed that TMV-resistance in CN-HAK1-containing tobaccos was significantly enhanced though a of strengthening leaf thickness and reduction in the size of necrotic spots compared with only CN-containing plants, indicating the improvement of potassium nutrition in plant cells could increase the tobacco resistance to TMV by reducing the spread of the virus. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis for TMV-CP expression in the inoculated leaf of the transgenic and wild-type plants also supported the conclusion. Further, the results of defence-related determination including antioxidative enzymes (AOEs) activity, salicylic acid (SA) content and the expression of resistance-related genes demonstrated CN with HAK1 synergistically enhanced TMV-resistance in transgenic tobaccos. Additionally, the HAK1- overexpression significantly improved the photosynthesis and K+-enriching ability in trans-CN-HAK1 tobaccos, compared with other counterparts. Finally, this work provides a method for screening new varieties of marker-free and safe transgenic antiviral tobacco.
Collapse
Affiliation(s)
- Li-Jun Qin
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, People's Republic of China
| | - Dan Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, People's Republic of China
| | - Yi Zhang
- The State Key Laboratory Breeding Base of Green Pesticide and Agricultural Biological Engineering, Guizhou University, Guiyang, 550025, Guizhou Province, People's Republic of China
| | - De-Gang Zhao
- The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Institute of Agro-Bioengineering and College of Life Sciences, Guizhou University, Guiyang 550025, Guizhou Province, People's Republic of China
| |
Collapse
|
61
|
Chilli leaf curl virus infection highlights the differential expression of genes involved in protein homeostasis and defense in resistant chilli plants. Appl Microbiol Biotechnol 2015; 99:4757-70. [DOI: 10.1007/s00253-015-6415-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 01/15/2015] [Accepted: 01/17/2015] [Indexed: 01/22/2023]
|
62
|
Nicaise V. Crop immunity against viruses: outcomes and future challenges. FRONTIERS IN PLANT SCIENCE 2014; 5:660. [PMID: 25484888 PMCID: PMC4240047 DOI: 10.3389/fpls.2014.00660] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 11/04/2014] [Indexed: 05/02/2023]
Abstract
Viruses cause epidemics on all major cultures of agronomic importance, representing a serious threat to global food security. As strict intracellular pathogens, they cannot be controlled chemically and prophylactic measures consist mainly in the destruction of infected plants and excessive pesticide applications to limit the population of vector organisms. A powerful alternative frequently employed in agriculture relies on the use of crop genetic resistances, approach that depends on mechanisms governing plant-virus interactions. Hence, knowledge related to the molecular bases of viral infections and crop resistances is key to face viral attacks in fields. Over the past 80 years, great advances have been made on our understanding of plant immunity against viruses. Although most of the known natural resistance genes have long been dominant R genes (encoding NBS-LRR proteins), a vast number of crop recessive resistance genes were cloned in the last decade, emphasizing another evolutive strategy to block viruses. In addition, the discovery of RNA interference pathways highlighted a very efficient antiviral system targeting the infectious agent at the nucleic acid level. Insidiously, plant viruses evolve and often acquire the ability to overcome the resistances employed by breeders. The development of efficient and durable resistances able to withstand the extreme genetic plasticity of viruses therefore represents a major challenge for the coming years. This review aims at describing some of the most devastating diseases caused by viruses on crops and summarizes current knowledge about plant-virus interactions, focusing on resistance mechanisms that prevent or limit viral infection in plants. In addition, I will discuss the current outcomes of the actions employed to control viral diseases in fields and the future investigations that need to be undertaken to develop sustainable broad-spectrum crop resistances against viruses.
Collapse
Affiliation(s)
- Valérie Nicaise
- Fruit Biology and Pathology, Virology Laboratory, Institut National de la Recherche Agronomique, University of BordeauxUMR 1332, Villenave d’Ornon, France
| |
Collapse
|
63
|
Muralidharan S, Box MS, Sedivy EL, Wigge PA, Weigel D, Rowan BA. Different mechanisms for Arabidopsis thaliana hybrid necrosis cases inferred from temperature responses. PLANT BIOLOGY (STUTTGART, GERMANY) 2014; 16:1033-1041. [PMID: 24641593 DOI: 10.1111/plb.12164] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 01/08/2014] [Indexed: 06/03/2023]
Abstract
Temperature is a major determinant of plant growth, development and success. Understanding how plants respond to temperature is particularly relevant in a warming climate. Plant immune responses are often suppressed above species-specific critical temperatures. This is also true for intraspecific hybrids of Arabidopsis thaliana that express hybrid necrosis due to inappropriate activation of the immune system caused by epistatic interactions between alleles from different genomes. The relationship between temperature and defence is unclear, largely due to a lack of studies that assess immune activation over a wide range of temperatures. To test whether the temperature-based suppression of ectopic immune activation in hybrids exhibits a linear or non-linear relationship, we characterised the molecular and morphological phenotypes of two different necrotic A. thaliana hybrids over a range of ecologically relevant temperatures. We found both linear and non-linear responses for expression of immunity markers and for morphological defects depending on the underlying genetic cause. This suggests that the influence of temperature on the trade-off between immunity and growth depends on the specific defence components involved.
Collapse
Affiliation(s)
- S Muralidharan
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Choi DS, Kim NH, Hwang BK. Pepper mitochondrial FORMATE DEHYDROGENASE1 regulates cell death and defense responses against bacterial pathogens. PLANT PHYSIOLOGY 2014; 166:1298-311. [PMID: 25237129 PMCID: PMC4226358 DOI: 10.1104/pp.114.246736] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Formate dehydrogenase (FDH; EC 1.2.1.2) is an NAD-dependent enzyme that catalyzes the oxidation of formate to carbon dioxide. Here, we report the identification and characterization of pepper (Capsicum annuum) mitochondrial FDH1 as a positive regulator of cell death and defense responses. Transient expression of FDH1 caused hypersensitive response (HR)-like cell death in pepper and Nicotiana benthamiana leaves. The D-isomer -: specific 2-hydroxyacid dehydrogenase signatures of FDH1 were required for the induction of HR-like cell death and FDH activity. FDH1 contained a mitochondrial targeting sequence at the N-terminal region; however, mitochondrial localization of FDH1 was not essential for the induction of HR-like cell death and FDH activity. FDH1 silencing in pepper significantly attenuated the cell death response and salicylic acid levels but stimulated growth of Xanthomonas campestris pv vesicatoria. By contrast, transgenic Arabidopsis (Arabidopsis thaliana) overexpressing FDH1 exhibited greater resistance to Pseudomonas syringae pv tomato in a salicylic acid-dependent manner. Arabidopsis transfer DNA insertion mutant analysis indicated that AtFDH1 expression is required for basal defense and resistance gene-mediated resistance to P. syringae pv tomato infection. Taken together, these data suggest that FDH1 has an important role in HR-like cell death and defense responses to bacterial pathogens.
Collapse
Affiliation(s)
- Du Seok Choi
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Nak Hyun Kim
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| |
Collapse
|
65
|
Niemeyer J, Ruhe J, Machens F, Stahl DJ, Hehl R. Inducible expression of p50 from TMV for increased resistance to bacterial crown gall disease in tobacco. PLANT MOLECULAR BIOLOGY 2014; 84:111-23. [PMID: 23955710 DOI: 10.1007/s11103-013-0122-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 08/09/2013] [Indexed: 06/02/2023]
Abstract
The dominant tobacco mosaic virus (TMV) resistance gene N induces a hypersensitive response upon TMV infection and protects tobacco against systemic spread of the virus. It has been proposed to change disease resistance specificity by reprogramming the expression of resistance genes or their corresponding avirulence genes. To reprogramme the resistance response of N towards bacterial pathogens, the helicase domain (p50) of the TMV replicase, the avirulence gene of N, was linked to synthetic promoters 4D and 2S2D harbouring elicitor-responsive cis-elements. These promoter::p50 constructs induce local necrotic lesions on NN tobacco plants in an Agrobacterium tumefaciens infiltration assay. A tobacco genotype void of N (nn) was transformed with the promoter::p50 constructs and subsequently crossed to NN plants. Nn F1 offspring selected for the T-DNA develop normally under sterile conditions. After transfer to soil, some of the F1 plants expressing the 2S2D::p50 constructs develop spontaneous necrosis. Transgenic Nn F1 plants with 4D::p50 and 2S2D::p50 expressing constructs upregulate p50 transcription and induce local necrotic lesions in an A. tumefaciens infiltration assay. When leaves and stems of Nn F1 offspring harbouring promoter::p50 constructs are infected with oncogenic A. tumefaciens C58, transgenic lines harbouring the 2S2D::p50 construct induce necrosis and completely lack tumor development. These results demonstrate a successful reprogramming of the viral N gene response against bacterial crown gall disease and highlight the importance of achieving tight regulation of avirulence gene expression and the control of necrosis in the presence of the corresponding resistance gene.
Collapse
Affiliation(s)
- Julia Niemeyer
- Institut für Genetik, Technische Universität Braunschweig, Spielmannstr. 7, 38106, Braunschweig, Germany
| | | | | | | | | |
Collapse
|
66
|
Aritua V, Achor D, Gmitter FG, Albrigo G, Wang N. Transcriptional and microscopic analyses of citrus stem and root responses to Candidatus Liberibacter asiaticus infection. PLoS One 2013; 8:e73742. [PMID: 24058486 PMCID: PMC3772824 DOI: 10.1371/journal.pone.0073742] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 07/30/2013] [Indexed: 11/18/2022] Open
Abstract
Huanglongbing (HLB) is the most destructive disease that affects citrus worldwide. The disease has been associated with Candidatus Liberibacter. HLB diseased citrus plants develop a multitude of symptoms including zinc and copper deficiencies, blotchy mottle, corky veins, stunting, and twig dieback. Ca. L. asiaticus infection also seriously affects the roots. Previous study focused on gene expression of leaves and fruit to Ca. L. asiaticus infection. In this study, we compared the gene expression levels of stems and roots of healthy plants with those in Ca. L. asiaticus infected plants using microarrays. Affymetrix microarray analysis showed a total of 988 genes were significantly altered in expression, of which 885 were in the stems, and 111 in the roots. Of these, 551 and 56 were up-regulated, while 334 and 55 were down-regulated in the stem and root samples of HLB diseased trees compared to healthy plants, respectively. Dramatic differences in the transcriptional responses were observed between citrus stems and roots to Ca. L. asiaticus infection, with only 8 genes affected in both the roots and stems. The affected genes are involved in diverse cellular functions, including carbohydrate metabolism, cell wall biogenesis, biotic and abiotic stress responses, signaling and transcriptional factors, transportation, cell organization, protein modification and degradation, development, hormone signaling, metal handling, and redox. Microscopy analysis showed the depletion of starch in the roots of the infected plants but not in healthy plants. Collapse and thickening of cell walls were observed in HLB affected roots, but not as severe as in the stems. This study provides insight into the host response of the stems and roots to Ca. L. asiaticus infection.
Collapse
Affiliation(s)
- Valente Aritua
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, Florida, United States of America
| | - Diann Achor
- Citrus Research and Education Center, University of Florida, Lake Alfred, Florida, United States of America
| | - Frederick G. Gmitter
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Gene Albrigo
- Citrus Research and Education Center, Department of Horticultural Sciences, University of Florida, Lake Alfred, Florida, United States of America
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, University of Florida, Lake Alfred, Florida, United States of America
- * E-mail:
| |
Collapse
|
67
|
Parkunan V, Johnson CS, Xu L, Peng Y, Tolin SA, Eisenback JD. Induction and Maintenance of Systemic Acquired Resistance by Acibenzolar-S-Methyl in Three Cultivated Tobacco Types. PLANT DISEASE 2013; 97:1221-1226. [PMID: 30722429 DOI: 10.1094/pdis-07-11-0618-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Induction and maintenance of systemic acquired resistance (SAR) in 'N' gene containing burley, flue-cured, and oriental tobacco cultivars were assessed by monitoring decreases in the number of local lesions caused by Tobacco mosaic virus (TMV) following treatment with acibenzolar-S-methyl (ASM). Leaf samples were collected from lower, middle, and top positions on seedlings at 3-day intervals over 21 days following ASM treatment and subsequent inoculation with TMV under laboratory conditions. Local lesion number for each leaf was recorded 7 days postinoculation. Reductions in TMV local lesion numbers on ASM-treated versus nontreated tobacco varied over time, and differed for each tobacco type. Based on reduced local lesion numbers, SAR was induced in burley and flue-cured tobacco by 3 and 6 days postinoculation, respectively, while oriental tobacco responded by 9 days. SAR was maintained in burley tobacco from 3 to 9 days after ASM application, and from 9 to 15 days after application in oriental tobacco. ASM treatment reduced local lesion numbers in flue-cured tobacco significantly at 6, 12, and 21 days postapplication, but not at 15 and 18 days after treatment. The SAR response was similar among lower, middle, and top leaves with no effect of ASM on response by leaf position, although TMV local lesion numbers were greater on lower leaves than on middle and top leaves 6 days after treatment, but significantly less on lower leaves 18 days after treatment compared to middle and top leaves.
Collapse
Affiliation(s)
- V Parkunan
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| | - C S Johnson
- Virginia Tech Southern Piedmont Agricultural Research and Extension Center, Blackstone, VA 23824
| | - L Xu
- Laboratory for Interdisciplinary Statistical Analysis, Department of Statistics, Virginia Tech, Blacksburg, VA 24061
| | - Y Peng
- Laboratory for Interdisciplinary Statistical Analysis, Department of Statistics, Virginia Tech, Blacksburg, VA 24061
| | - S A Tolin
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| | - J D Eisenback
- Department of Plant Pathology, Physiology, and Weed Science, Virginia Tech, Blacksburg, VA 24061
| |
Collapse
|
68
|
Lin KY, Hsu YH, Chen HC, Lin NS. Transgenic resistance to Bamboo mosaic virus by expression of interfering satellite RNA. MOLECULAR PLANT PATHOLOGY 2013; 14:693-707. [PMID: 23675895 PMCID: PMC6638707 DOI: 10.1111/mpp.12040] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plant genetic engineering has broadened the options for plant virus resistance and is mostly based on pathogen-derived resistance. Previously, we have shown that interfering satellite RNA (satRNA) of Bamboo mosaic virus (satBaMV) greatly reduces Bamboo mosaic virus (BaMV) accumulation and BaMV-induced symptoms in co-inoculated plants. Here, we generated a nonviral source of virus-resistant transgenic Nicotiana benthamiana and Arabidopsis thaliana by introducing interfering satBaMV. Asymptomatic transgenic N. benthamiana lines were highly resistant to BaMV virion and viral RNA infection, and the expression of the transgene BSL6 was higher in asymptomatic than mildly symptomatic lines. In addition, BaMV- and satBaMV-specific small RNAs were detectable only after BaMV challenge, and their levels were associated with genomic viral RNA or satRNA levels. By transcriptomic analysis, the salicylic acid (SA) signalling pathway was not induced in satBaMV transgenic A. thaliana in mock conditions, suggesting that two major antiviral mechanisms, RNA silencing and SA-mediated resistance, are not involved directly in transgenic satBaMV-mediated BaMV interference. In contrast, resistance is associated with the level of the interfering satBaMV transgene. We propose satBaMV-mediated BaMV interference in transgenic plants by competition for replicase with BaMV.
Collapse
Affiliation(s)
- Kuan-Yu Lin
- Institute of Biotechnology, National Cheng Kung University, Tainan, 701, Taiwan
| | | | | | | |
Collapse
|
69
|
Hua J. Modulation of plant immunity by light, circadian rhythm, and temperature. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:406-13. [PMID: 23856082 DOI: 10.1016/j.pbi.2013.06.017] [Citation(s) in RCA: 126] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 06/20/2013] [Accepted: 06/24/2013] [Indexed: 05/21/2023]
Abstract
Plants perceive and integrate intrinsic and extrinsic signals to execute appropriate responses for maximal survival and reproductive success. Plant immune responses are tightly controlled to ensure effective defenses against pathogens while minimizing their adverse effects on plant growth and development. Plant defenses induced in response to pathogen infection are modulated by abiotic signals such as light, circadian rhythm, and temperature. The modulation occurs on specific key components of plant immunity, indicating an intricate integration of biotic and abiotic signals. This review will summarize very recent studies revealing the intersection of plant defenses with light, circadian rhythm and temperature. In addition, it will discuss the adaptive value and evolutionary constraints of abiotic regulation of plant immunity.
Collapse
Affiliation(s)
- Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, NY 148530, United States.
| |
Collapse
|
70
|
Negeri A, Wang GF, Benavente L, Kibiti CM, Chaikam V, Johal G, Balint-Kurti P. Characterization of temperature and light effects on the defense response phenotypes associated with the maize Rp1-D21 autoactive resistance gene. BMC PLANT BIOLOGY 2013; 13:106. [PMID: 23890100 PMCID: PMC3733612 DOI: 10.1186/1471-2229-13-106] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Accepted: 07/12/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Rp1 is a complex locus of maize, which carries a set of genes controlling race-specific resistance to the common rust fungus, Puccinia sorghi. The resistance response includes the "Hypersensitive response" (HR), a rapid response triggered by a pathogen recognition event that includes localized cell death at the point of pathogen penetration and the induction of pathogenesis associated genes. The Rp1-D21gene is an autoactive allelic variant at the Rp1 locus, causing spontaneous activation of the HR response, in the absence of pathogenesis. Previously we have shown that the severity of the phenotype conferred by Rp1-D21 is highly dependent on genetic background. RESULTS In this study we show that the phenotype conferred by Rp1-D21 is highly dependent on temperature, with lower temperatures favoring the expression of the HR lesion phenotype. This temperature effect was observed in all the 14 genetic backgrounds tested. Significant interactions between the temperature effects and genetic background were observed. When plants were grown at temperatures above 30°C, the spontaneous HR phenotype conferred by Rp1-D21 was entirely suppressed. Furthermore, this phenotype could be restored or suppressed by alternately reducing and increasing the temperature appropriately. Light was also required for the expression of this phenotype. By examining the expression of genes associated with the defense response we showed that, at temperatures above 30°C, the Rp1-D21 phenotype was suppressed at both the phenotypic and molecular level. CONCLUSIONS We have shown that the lesion phenotype conferred by maize autoactive resistance gene Rp1-D21 is temperature sensitive in a reversible manner, that the temperature-sensitivity phenotype interacts with genetic background and that the phenotype is light sensitive. This is the first detailed demonstration of this phenomenon in monocots and also the first demonstration of the interaction of this effect with genetic background. The use of temperature shifts to induce a massive and synchronous HR in plants carrying the Rp1-D21 genes will be valuable in identifying components of the defense response pathway.
Collapse
Affiliation(s)
- Adisu Negeri
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Guan-Feng Wang
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
| | - Larissa Benavente
- USDA-ARS, Plant Science Research Unit, North Carolina State University, Raleigh, NC 27695, USA
| | - Cromwell M Kibiti
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Vijay Chaikam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Guri Johal
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN 47907, USA
| | - Peter Balint-Kurti
- Department of Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA
- USDA-ARS, Plant Science Research Unit, North Carolina State University, Raleigh, NC 27695, USA
| |
Collapse
|
71
|
Katou S, Asakura N, Kojima T, Mitsuhara I, Seo S. Transcriptome analysis of WIPK/SIPK-suppressed plants reveals induction by wounding of disease resistance-related genes prior to the accumulation of salicylic acid. PLANT & CELL PHYSIOLOGY 2013; 54:1005-15. [PMID: 23574699 DOI: 10.1093/pcp/pct055] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Salicylic acid (SA) plays a key role in plant resistance to pathogens. Accumulation of SA is induced by wounding in tobacco plants in which the expression of WIPK and SIPK, two mitogen-activated protein kinases, is suppressed. Here, the mechanisms underlying the abnormal accumulation of SA in WIPK/SIPK-suppressed plants have been characterized. SA accumulation started around 12 h after wounding and was inhibited by cycloheximide (CHX), a protein synthesis inhibitor. SA accumulation, however, was enhanced several fold when leaf discs were transferred onto CHX after floating on water for ≥6 h. Temporal and spatial analyses of wound-induced and CHX-enhanced SA accumulation suggested that wounding induces activators for SA accumulation followed by the generation of repressors, and late CHX treatment inhibits the production of repressors more efficiently than that of activators. Microarray analysis revealed that the expression of many disease resistance-related genes, including N, a Resistance (R) gene for Tobacco mosaic virus and R gene-like genes, was up-regulated in wounded WIPK/SIPK-suppressed plants. Expression of the N gene and R gene-like genes peaked earlier than that of most other genes as well as SA accumulation, and was mainly induced in those parts of leaf discs where SA was highly accumulated. Moreover, wound-induced SA accumulation was decreased by the treatments which compromise the function of R proteins. These results indicate that signaling leading to the expression of disease resistance-related genes is activated by wounding in WIPK/SIPK-suppressed plants, and induction of R gene and R gene-like genes might lead to the biosynthesis of SA.
Collapse
Affiliation(s)
- Shinpei Katou
- International Young Researchers Empowerment Center, Shinshu University, Nagano, 399-4598 Japan.
| | | | | | | | | |
Collapse
|
72
|
Xin H, Zhu W, Wang L, Xiang Y, Fang L, Li J, Sun X, Wang N, Londo JP, Li S. Genome wide transcriptional profile analysis of Vitis amurensis and Vitis vinifera in response to cold stress. PLoS One 2013; 8:e58740. [PMID: 23516547 PMCID: PMC3596283 DOI: 10.1371/journal.pone.0058740] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/05/2013] [Indexed: 12/23/2022] Open
Abstract
Grape is one of the most important fruit crops worldwide. The suitable geographical locations and productivity of grapes are largely limited by temperature. Vitis amurensis is a wild grapevine species with remarkable cold-tolerance, exceeding that of Vitis vinifera, the dominant cultivated species of grapevine. However, the molecular mechanisms that contribute to the enhanced freezing tolerance of V. amurensis remain unknown. Here we used deep sequencing data from restriction endonuclease-generated cDNA fragments to evaluate the whole genome wide modification of transcriptome of V. amurensis under cold treatment. Vitis vinifera cv. Muscat of Hamburg was used as control to help investigate the distinctive features of V. amruensis in responding to cold stress. Approximately 9 million tags were sequenced from non-cold treatment (NCT) and cold treatment (CT) cDNA libraries in each species of grapevine sampled from shoot apices. Alignment of tags into V. vinifera cv. Pinot noir (PN40024) annotated genome identified over 15,000 transcripts in each library in V. amruensis and more than 16,000 in Muscat of Hamburg. Comparative analysis between NCT and CT libraries indicate that V. amurensis has fewer differential expressed genes (DEGs, 1314 transcripts) than Muscat of Hamburg (2307 transcripts) when exposed to cold stress. Common DEGs (408 transcripts) suggest that some genes provide fundamental roles during cold stress in grapes. The most robust DEGs (more than 20-fold change) also demonstrated significant differences between two kinds of grapevine, indicating that cold stress may trigger species specific pathways in V. amurensis. Functional categories of DEGs indicated that the proportion of up-regulated transcripts related to metabolism, transport, signal transduction and transcription were more abundant in V. amurensis. Several highly expressed transcripts that were found uniquely accumulated in V. amurensis are discussed in detail. This subset of unique candidate transcripts may contribute to the excellent cold-hardiness of V. amurensis.
Collapse
Affiliation(s)
- Haiping Xin
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, The Chinese Academy of Sciences, Wuhan, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Lee JH, Yun HS, Kwon C. Molecular communications between plant heat shock responses and disease resistance. Mol Cells 2012; 34:109-16. [PMID: 22710621 PMCID: PMC3887810 DOI: 10.1007/s10059-012-0121-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2012] [Revised: 05/17/2012] [Accepted: 05/18/2012] [Indexed: 12/24/2022] Open
Abstract
As sessile, plants are continuously exposed to potential dangers including various abiotic stresses and pathogen attack. Although most studies focus on plant responses under an ideal condition to a specific stimulus, plants in nature must cope with a variety of stimuli at the same time. This indicates that it is critical for plants to fine-control distinct signaling pathways temporally and spatially for simultaneous and effective responses to various stresses. Global warming is currently a big issue threatening the future of humans. Reponses to high temperature affect many physiological processes in plants including growth and disease resistance, resulting in decrease of crop yield. Although plant heat stress and defense responses share important mediators such as calcium ions and heat shock proteins, it is thought that high temperature generally suppresses plant immunity. We therefore specifically discuss on interactions between plant heat and defense responses in this review hopefully for an integrated understanding of these responses in plants.
Collapse
Affiliation(s)
- Jae-Hoon Lee
- Department of Biology Education, Pusan National University, Busan 609-735,
Korea
| | - Hye Sup Yun
- Department of Biological Sciences, Konkuk University, Seoul 143-701,
Korea
| | - Chian Kwon
- Department of Molecular Biology, Brain Korea 21 Graduate Program for RNA Biology, Dankook University, Yongin 448-701,
Korea
| |
Collapse
|
74
|
Ercolano MR, Sanseverino W, Carli P, Ferriello F, Frusciante L. Genetic and genomic approaches for R-gene mediated disease resistance in tomato: retrospects and prospects. PLANT CELL REPORTS 2012; 31:973-85. [PMID: 22350316 PMCID: PMC3351601 DOI: 10.1007/s00299-012-1234-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/27/2012] [Accepted: 01/27/2012] [Indexed: 05/22/2023]
Abstract
Tomato (Solanum lycopersicum) is one of the world's most important vegetable crops. Managing the health of this crop can be particularly challenging; crop resistance may be overcome by new pathogen races while new pathogens have been introduced by global agricultural markets. Tomato is extensively used as a model plant for resistance studies and much has been attained through both genetic and biotechnological approaches. In this paper, we illustrate genomic methods currently employed to preserve resistant germplasm and to facilitate the study and transfer of resistance genes, and we describe the genomic organization of R-genes. Patterns of gene activation during disease resistance response, identified through functional approaches, are depicted. We also describe the opportunities offered by the use of new genomic technologies, including high-throughput DNA sequencing, large-scale expression data production and the comparative hybridization technique, whilst reporting multifaceted approaches to achieve genetic tomato disease control. Future strategies combining the huge amount of genomic and genetic data will be able to accelerate development of novel resistance varieties sustainably on a worldwide basis. Such strategies are discussed in the context of the latest insights obtained in this field.
Collapse
Affiliation(s)
- M R Ercolano
- Department of Soil, Plant, Environmental and Animal Production Sciences, University of Naples 'Federico II', Via Università 100, 80055 Portici, Italy.
| | | | | | | | | |
Collapse
|
75
|
Li F, Orban R, Baker B. SoMART: a web server for plant miRNA, tasiRNA and target gene analysis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:891-901. [PMID: 22268718 DOI: 10.1111/j.1365-313x.2012.04922.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Plant microRNAs (miRNAs) and trans-acting small interfering RNAs (tasiRNAs) play important roles in a variety of biological processes. Bioinformatics prediction and small RNA (sRNA) cloning are the most important approaches for identification of miRNAs and tasiRNAs and their targets. However, these approaches are not readily accessible to every researcher. Here we present SoMART, a web server for miRNA/tasiRNA analysis resources and tools, which is designed for researchers who are interested in identifying miRNAs or tasiRNAs that potentially regulate genes of interest. The server includes four sets of tools: 'Slicer detector' for detecting sRNAs targeting input genes, 'dRNA mapper' for detecting degradome (d)RNA products derived from input genes, 'PreMIR detector' for identifying miRNA precursors (MIRs) or tasiRNA precursor (TASs) of input sRNAs, and 'sRNA mapper' for mapping sRNAs onto input genes. We also developed a dRNA-seq protocol to achieve longer dRNA reads for better characterization of miRNA precursors by dRNA mapper. To validate the server function and robustness, we installed sRNA, dRNA and collected genomic DNA or transcriptome databases from Arabidopsis and solanaceous plants, and characterized miR172-mediated regulation of the APETALA2 gene in potato (Solanum tuberosum) and demonstrated conservation of MIR390-triggered TAS3 in tomato (Solanum lycopersicum). More importantly, we predicted the existence of MIR482-triggered TAS5 in tomato. We further tested and confirmed the efficiency and accuracy of the server by analyses of 21 validated miRNA targets and 115 miRNA precursors in Arabidopsis thaliana. SoMART is available at http://somart.ist.berkeley.edu.
Collapse
Affiliation(s)
- Feng Li
- Department of Plant and Microbial Biology, Plant Gene Expression Center, University of California, Berkeley, USA.
| | | | | |
Collapse
|
76
|
Liu Z, Crampton M, Todd A, Kalavacharla V. Identification of expressed resistance gene-like sequences by data mining in 454-derived transcriptomic sequences of common bean (Phaseolus vulgaris L.). BMC PLANT BIOLOGY 2012; 12:42. [PMID: 22443214 PMCID: PMC3353201 DOI: 10.1186/1471-2229-12-42] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 03/23/2012] [Indexed: 05/10/2023]
Abstract
BACKGROUND Common bean (Phaseolus vulgaris L.) is one of the most important legumes in the world. Several diseases severely reduce bean production and quality; therefore, it is very important to better understand disease resistance in common bean in order to prevent these losses. More than 70 resistance (R) genes which confer resistance against various pathogens have been cloned from diverse plant species. Most R genes share highly conserved domains which facilitates the identification of new candidate R genes from the same species or other species. The goals of this study were to isolate expressed R gene-like sequences (RGLs) from 454-derived transcriptomic sequences and expressed sequence tags (ESTs) of common bean, and to develop RGL-tagged molecular markers. RESULTS A data-mining approach was used to identify tentative P. vulgaris R gene-like sequences from approximately 1.69 million 454-derived sequences and 116,716 ESTs deposited in GenBank. A total of 365 non-redundant sequences were identified and named as common bean (P. vulgaris = Pv) resistance gene-like sequences (PvRGLs). Among the identified PvRGLs, about 60% (218 PvRGLs) were from 454-derived sequences. Reverse transcriptase-polymerase chain reaction (RT-PCR) analysis confirmed that PvRGLs were actually expressed in the leaves of common bean. Upon comparison to P. vulgaris genomic sequences, 105 (28.77%) of the 365 tentative PvRGLs could be integrated into the existing common bean physical map. Based on the syntenic blocks between common bean and soybean, 237 (64.93%) PvRGLs were anchored on the P. vulgaris genetic map and will need to be mapped to determine order. In addition, 11 sequence-tagged-site (STS) and 19 cleaved amplified polymorphic sequence (CAPS) molecular markers were developed for 25 unique PvRGLs. CONCLUSIONS In total, 365 PvRGLs were successfully identified from 454-derived transcriptomic sequences and ESTs available in GenBank and about 65% of PvRGLs were integrated into the common bean genetic map. A total of 30 RGL-tagged markers were developed for 25 unique PvRGLs, including 11 STS and 19 CAPS markers. The expressed PvRGLs identified in this study provide a large sequence resource for development of RGL-tagged markers that could be used further for genetic mapping of disease resistant candidate genes and quantitative trait locus/loci (QTLs). This work also represents an additional method for identifying expressed RGLs from next generation sequencing data.
Collapse
Affiliation(s)
- Zhanji Liu
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Hi-Tech Research Center, Shandong Academy of Agricultural Sciences, Jinan 250100, China
- Department of Plant Pathology, University of Georgia, Tifton, GA 31793, USA
| | - Mollee Crampton
- Department of Biological Sciences, Delaware State University, Dover, DE 19901, USA
- Department of Biological Sciences, University of Delaware, Newark, DE 19711, USA
| | - Antonette Todd
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
| | - Venu Kalavacharla
- College of Agriculture & Related Sciences, Delaware State University, Dover, DE 19901, USA
- Center of Integrated Biological and Environmental Research (CIBER), Delaware State University, Dover, DE 19901, USA
| |
Collapse
|
77
|
Joshi RK, Kar B, Nayak S. Survey and characterization of NBS-LRR (R) genes in Curcuma longa transcriptome. Bioinformation 2011; 6:360-3. [PMID: 21814396 PMCID: PMC3143401 DOI: 10.6026/97320630006360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Accepted: 07/12/2011] [Indexed: 11/25/2022] Open
Abstract
Resistance genes are among the most important gene classes for plant breeding purposes being responsible for activation of plant defense mechanisms. Among them, the nucleotide binding site-leucine rich repeat (NBS-LRR) class R-genes are the most abundant and actively found in all types of plants. Insilico characterization of EST database resulted in the detection of 28 NBS types R-gene sequences in Curcuma longa. All the 28 sequences represented the NB-ARC domain, 21 of which were found to have highly conserved motif characteristics and categorized as regular NBS genes. The Open Reading Frames varied from 361 (CL.CON.3566) to 112 (CL.CON.1267) with an average of 279 amino acids. Most alignment occurred with monocots (67.8%) with emphasis on Oryza sativa and Zingiber sequences. All best alignments with dicots occurred with Arabidopsis thaliana, Populus trichocarpa and Medicago sativa. These detected NBS type Rgenes from Curcuma longa can be used as a valuable resource for molecular marker development, molecular mapping of R-genes, and identification of resistance gene analogs and functional and evolutionary characterization of NBS-LRR-encoding resistance genes in asexually reproducing plants.
Collapse
Affiliation(s)
- Raj Kumar Joshi
- Centre of Biotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar-751003, India
| | - Basudeba Kar
- Centre of Biotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar-751003, India
| | - Sanghamitra Nayak
- Centre of Biotechnology, School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar-751003, India
| |
Collapse
|
78
|
Seifi A, Kaloshian I, Vossen J, Che D, Bhattarai KK, Fan J, Naher Z, Goverse A, Tjallingii WF, Lindhout P, Visser RGF, Bai Y. Linked, if not the same, Mi-1 homologues confer resistance to tomato powdery mildew and root-knot nematodes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2011; 24:441-50. [PMID: 21171892 DOI: 10.1094/mpmi-06-10-0145] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
On the short arm of tomato chromosome 6, a cluster of disease resistance (R) genes have evolved harboring the Mi-1 and Cf genes. The Mi-1 gene confers resistance to root-knot nematodes, aphids, and whiteflies. Previously, we mapped two genes, Ol-4 and Ol-6, for resistance to tomato powdery mildew in this cluster. The aim of this study was to investigate whether Ol-4 and Ol-6 are homologues of the R genes located in this cluster. We show that near-isogenic lines (NIL) harboring Ol-4 (NIL-Ol-4) and Ol-6 (NIL-Ol-6) are also resistant to nematodes and aphids. Genetically, the resistance to nematodes cosegregates with Ol-4 and Ol-6, which are further fine-mapped to the Mi-1 cluster. We provide evidence that the composition of Mi-1 homologues in NIL-Ol-4 and NIL-Ol-6 is different from other nematode-resistant tomato lines, Motelle and VFNT, harboring the Mi-1 gene. Furthermore, we demonstrate that the resistance to both nematodes and tomato powdery mildew in these two NIL is governed by linked (if not the same) Mi-1 homologues in the Mi-1 gene cluster. Finally, we discuss how Solanum crops exploit Mi-1 homologues to defend themselves against distinct pathogens.
Collapse
Affiliation(s)
- Alireza Seifi
- Wageningen UR Plant Breeding, Wageningen University and Research Center, Droevendaalsesteeg 1, 6708PB Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Zheng HQ, Zhang Q, Li HX, Lin SZ, An XM, Zhang ZY. Over-expression of the triploid white poplar PtDrl01 gene in tobacco enhances resistance to tobacco mosaic virus. PLANT BIOLOGY (STUTTGART, GERMANY) 2011; 13:145-53. [PMID: 21143735 DOI: 10.1111/j.1438-8677.2010.00327.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
A full-length cDNA, designated as the Populus tomentosa disease resistance-like 01 (PtDrl01) gene, was isolated from triploid white poplar [(Populus tomentosa × P. bolleana) × P. tomentosa]. The protein thought to be produced by the PtDrl01 gene contains a nuclear localisation sequence (NLS), a toll/interleukin-1 receptor (TIR) homologue region, a nucleotide binding site (NBS) and a leucine-rich repeat (LRR) domain. The protein also exhibits a considerable degree of homology to N-like resistance proteins. Real-time quantitative RT-PCR analysis revealed that expression of the PtDrl01 gene in triploid white poplar leaves could be induced by two defence signalling molecules: methyl jasmonate (MeJA) and salicylic acid (SA). Over-expression of the PtDrl01 gene in transgenic tobacco induced enhanced resistance to tobacco mosaic virus (TMV). Long-term resistance from the PtDrl01 gene to TMV infection was also observed in transgenic tobacco plants. Additionally, over-expression of the PtDrl01 gene resulted in transcriptional changes in genes expressing pathogenesis-related proteins in transgenic tobacco under non-stress conditions. These data strongly suggest that the PtDrl01 gene is involved in plant defence responses to pathogen infection.
Collapse
Affiliation(s)
- H-Q Zheng
- National Engineering Laboratory for Tree Breeding, Key Laboratory of Genetics and Breeding of Forest Trees and Ornamental Plants, Ministry of Education, Beijing Forestry University, Beijing, China
| | | | | | | | | | | |
Collapse
|
80
|
Padmanabhan MS, Dinesh-Kumar SP. All hands on deck—the role of chloroplasts, endoplasmic reticulum, and the nucleus in driving plant innate immunity. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:1368-80. [PMID: 20923348 DOI: 10.1094/mpmi-05-10-0113] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant innate immunity is mediated by cell membrane and intracellular immune receptors that function in distinct and overlapping cell-signaling pathways to activate defense responses. It is becoming increasingly evident that immune receptors rely on components from multiple organelles for the generation of appropriate defense responses. This review analyzes the defense-related functions of the chloroplast, nucleus, and endoplasmic reticulum (ER) during plant innate immunity. It details the role of the chloroplasts in synthesizing defense-specific second messengers and discusses the retrograde signal transduction pathways that exist between the chloroplast and nucleus. Because the activities of immune modulators are regulated, in part, by their subcellular localization, the review places special emphasis on the dynamics and nuclear–cytoplasmic transport of immune receptors and regulators and highlights the importance of this process in generating orderly events during an innate immune response. The review also covers the recently discovered contributions of the ER quality-control pathways in ensuring the signaling competency of cell surface immune receptors or immune regulators.
Collapse
Affiliation(s)
- Meenu S Padmanabhan
- Department of Plant Biology and the Genome Center, College of Biological Sciences, University of California, Davis 95616, USA
| | | |
Collapse
|
81
|
Wang X, Kelman Z, Culver JN. Helicase ATPase activity of the Tobacco mosaic virus 126-kDa protein modulates replicase complex assembly. Virology 2010; 402:292-302. [PMID: 20413140 DOI: 10.1016/j.virol.2010.03.019] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2010] [Revised: 02/21/2010] [Accepted: 03/11/2010] [Indexed: 11/23/2022]
Abstract
Mutations disrupting helicase domain motifs of the Tobacco mosaic virus 126/183-kDa proteins were investigated for their effect on replicase function and assembly. These mutations inhibited virus replication but did not affect 126-kDa induced N gene resistance or RNAi suppression. However, in vivo expressed 126-kDa motif mutants yielded two distinct cytoplasmic phenotypes that correlated with ATPase activity. Specifically, ATPase active 126-kDa proteins produced small cytoplasmic bodies that resembled the ovoid granular-like bodies found early in virus infection while 126-kDa proteins defective in ATPase activity produced large tubule containing cytoplasmic bodies similar to those observed late in infection. Additional studies indicate that the helicase ATPase activity resides predominantly within monomer and dimer helicase forms and that motifs affecting ATPase activity induce alterations in helicase assembly. Combined these findings indicate that helicase ATPase activity modulates the progression of replicase complex assembly and maturation.
Collapse
Affiliation(s)
- Xiao Wang
- Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | | | | |
Collapse
|
82
|
Candresse T, Marais A, Faure C, Dubrana MP, Gombert J, Bendahmane A. Multiple coat protein mutations abolish recognition of Pepino mosaic potexvirus (PepMV) by the potato rx resistance gene in transgenic tomatoes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2010; 23:376-83. [PMID: 20192825 DOI: 10.1094/mpmi-23-4-0376] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Despite the fact that Pepino mosaic virus (PepMV) and Potato virus X (PVX) share less than 40% identity in their coat proteins (CP), the known PVX elicitor of Rx, transgenic tomato (cv. Microtom) plants expressing a functional potato Rx resistance gene showed resistance toward PepMV. However, in a low percentage of plants, PepMV accumulation was observed and back inoculation experiments demonstrated that these plants contained resistance-breaking PepMV variants. Sequencing of the CP gene of these variants showed the accumulation of mutations in the amino acid 41 to 125 region the CP, whereas no mutations were observed in the nonevolved isolates. Agroinfiltration-mediated transient expression of the mutant CP demonstrated that they had a greatly attenuated or abolished ability to induce a hypersensitive reaction in Rx-expressing Nicotiana benthamiana leaves. The transient expression of truncated forms of the PepMV CP allowed the identification of a minimal elicitor domain (amino acids 30 to 136). These results demonstrate that the Rx-based sensing system is able to recognize the PepMV CP but, contrary to the situation with PVX, for which only two closely spaced resistance-breaking mutations are known, many mutations over a significant stretch of the PepMV CP allow escape from recognition by Rx.
Collapse
Affiliation(s)
- Thierry Candresse
- Equipe de Virologie, UMR GD2P, IBVM, INRA and Université Victor Ségalen Bordeaux2, BP81, Villenave d'Ornon Cedex, France.
| | | | | | | | | | | |
Collapse
|
83
|
Zhu Y, Qian W, Hua J. Temperature modulates plant defense responses through NB-LRR proteins. PLoS Pathog 2010; 6:e1000844. [PMID: 20368979 PMCID: PMC2848567 DOI: 10.1371/journal.ppat.1000844] [Citation(s) in RCA: 203] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2009] [Accepted: 03/03/2010] [Indexed: 12/31/2022] Open
Abstract
An elevated growth temperature often inhibits plant defense responses and renders plants more susceptible to pathogens. However, the molecular mechanisms underlying this modulation are unknown. To genetically dissect this regulation, we isolated mutants that retain disease resistance at a higher growth temperature in Arabidopsis. One such heat-stable mutant results from a point mutation in SNC1, a NB-LRR encoding gene similar to disease resistance (R) genes. Similar mutations introduced into a tobacco R gene, N, confer defense responses at elevated temperature. Thus R genes or R-like genes involved in recognition of pathogen effectors are likely the causal temperature-sensitive component in defense responses. This is further supported by snc1 intragenic suppressors that regained temperature sensitivity in defense responses. In addition, the SNC1 and N proteins had a reduction of nuclear accumulation at elevated temperature, which likely contributes to the inhibition of defense responses. These findings identify a plant temperature sensitive component in disease resistance and provide a potential means to generate plants adapting to a broader temperature range.
Collapse
Affiliation(s)
- Ying Zhu
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Weiqiang Qian
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| | - Jian Hua
- Department of Plant Biology, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
84
|
Genetically engineered virus-resistant plants in developing countries: current status and future prospects. Adv Virus Res 2010; 75:185-220. [PMID: 20109667 DOI: 10.1016/s0065-3527(09)07506-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Plant viruses cause severe crop losses worldwide. Conventional control strategies, such as cultural methods and biocide applications against arthropod, nematode, and plasmodiophorid vectors, have limited success at mitigating the impact of plant viruses. Planting resistant cultivars is the most effective and economical way to control plant virus diseases. Natural sources of resistance have been exploited extensively to develop virus-resistant plants by conventional breeding. Non-conventional methods have also been used successfully to confer virus resistance by transferring primarily virus-derived genes, including viral coat protein, replicase, movement protein, defective interfering RNA, non-coding RNA sequences, and protease, into susceptible plants. Non-viral genes (R genes, microRNAs, ribosome-inactivating proteins, protease inhibitors, dsRNAse, RNA modifying enzymes, and scFvs) have also been used successfully to engineer resistance to viruses in plants. Very few genetically engineered (GE) virus resistant (VR) crops have been released for cultivation and none is available yet in developing countries. However, a number of economically important GEVR crops, transformed with viral genes are of great interest in developing countries. The major issues confronting the production and deregulation of GEVR crops in developing countries are primarily socio-economic and related to intellectual property rights, biosafety regulatory frameworks, expenditure to generate GE crops and opposition by non-governmental activists. Suggestions for satisfactory resolution of these factors, presumably leading to field tests and deregulation of GEVR crops in developing countries, are given.
Collapse
|
85
|
Vegetables. BIOTECHNOLOGY IN AGRICULTURE AND FORESTRY 2010. [PMCID: PMC7121345 DOI: 10.1007/978-3-642-02391-0_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The conscious promotion of health by an appropriate, balanced diet has become an important social request. Vegetable thereby possesses a special importance due to its high vitamin, mineral and dietary fibre content. Major progress has been made over the past few years in the transformation of vegetables. The expression of several genes has been inhibited by sense gene suppression, and new traits caused by new gene constructs are stably inherited. This chapter reviews advances in various traits such as disease resistance, abiotic stress tolerance, quality improvement, pharmaceutical and industrial application. Results are presented from most important vegetable families, like Solanaceae, Brassicaceae, Fabaceae, Cucurbitaceae, Asteraceae, Apiaceae, Chenopodiaceae and Liliaceae. Although many research trends in this report are positive, only a few transgenic vegetables have been released from confined into precommercial testing or into use.
Collapse
|
86
|
Citovsky V, Zaltsman A, Kozlovsky SV, Gafni Y, Krichevsky A. Proteasomal degradation in plant-pathogen interactions. Semin Cell Dev Biol 2009; 20:1048-54. [PMID: 19505586 DOI: 10.1016/j.semcdb.2009.05.012] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 05/29/2009] [Indexed: 11/30/2022]
Abstract
The ubiquitin/26S proteasome pathway is a basic biological mechanism involved in the regulation of a multitude of cellular processes. Increasing evidence indicates that plants utilize the ubiquitin/26S proteasome pathway in their immune response to pathogen invasion, emphasizing the role of this pathway during plant-pathogen interactions. The specific functions of proteasomal degradation in plant-pathogen interactions are diverse, and do not always benefit the host plant. Although in some cases, proteasomal degradation serves as an effective barrier to help plants ward off pathogens, in others, it is used by the pathogen to enhance the infection process. This review discusses the different roles of the ubiquitin/26S proteasome pathway during interactions of plants with pathogenic viruses, bacteria, and fungi.
Collapse
Affiliation(s)
- Vitaly Citovsky
- Department of Biochemistry and Cell Biology, State University of New York, Stony Brook, NY 11794-5215, USA
| | | | | | | | | |
Collapse
|
87
|
Gupta V, Mathur S, Solanke AU, Sharma MK, Kumar R, Vyas S, Khurana P, Khurana JP, Tyagi AK, Sharma AK. Genome analysis and genetic enhancement of tomato. Crit Rev Biotechnol 2009; 29:152-81. [PMID: 19319709 DOI: 10.1080/07388550802688870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The Solanaceae is an important family of vegetable crops, ornamentals and medicinal plants. Tomato has served as a model member of this family largely because of its enriched cytogenetic, genetic, as well as physical, maps. Mapping has helped in cloning several genes of importance such as Pto, responsible for resistance against bacterial speck disease, Mi-1.2 for resistance against nematodes, and fw2.2 QTL for fruit weight. A high-throughput genome-sequencing program has been initiated by an international consortium of 10 countries. Since heterochromatin has been found to be concentrated near centromeres, the consortium is focusing on sequencing only the gene-rich euchromatic region. Genomes of the members of Solanaceae show a significant degree of synteny, suggesting that the tomato genome sequence would help in the cloning of genes for important traits from other Solanaceae members as well. ESTs from a large number of cDNA libraries have been sequenced, and microarray chips, in conjunction with wide array of ripening mutants, have contributed immensely to the understanding of the fruit-ripening phenomenon. Work on the analysis of the tomato proteome has also been initiated. Transgenic tomato plants with improved abiotic stress tolerance, disease resistance and insect resistance, have been developed. Attempts have also been made to develop tomato as a bioreactor for various pharmaceutical proteins. However, control of fruit quality and ripening remains an active and challenging area of research. Such efforts should pave the way to improve not only tomato, but also other solanaceous crops.
Collapse
Affiliation(s)
- Vikrant Gupta
- Interdisciplinary Centre for Plant Genomics, Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
88
|
Wang Y, Bao Z, Zhu Y, Hua J. Analysis of temperature modulation of plant defense against biotrophic microbes. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:498-506. [PMID: 19348568 DOI: 10.1094/mpmi-22-5-0498] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant-pathogen interactions are known to be affected by environmental factors including temperature; however, the temperature effects have not been systematically studied in plant disease resistance. Here, we characterized the effects of a moderate increase in temperature on resistance to bacterial pathogen Pseudomonas syringae and two viral elicitors in Arabidopsis thaliana and Nicotiana benthamiana. Both the basal and the resistance (R) gene-mediated defense responses to Pseudomonas syringae are found to be inhibited by a moderately high temperature, and hypersensitive responses induced by R genes against two viruses are also reduced by an increase of temperature. These indicate that temperature modulation of defense responses to biotrophic and hemibiotrophic pathogens might be a general phenomenon. We further investigated the roles of two small signaling molecules, salicylic acid and jasmonic acid, as well as two defense regulators, EDS1 and PAD4, in this temperature modulation. These components, though modulated by temperature or involved in temperature regulation or both, are not themselves determinants of temperature sensitivity in the defense responses analyzed. The inhibition of plant defense response by a moderately high temperature may thus be mediated by other defense signaling components or a combination of multiple factors.
Collapse
Affiliation(s)
- Yi Wang
- Department of Plant Biology, Cornell University, Ithaca, NY 14853, USA
| | | | | | | |
Collapse
|
89
|
|
90
|
Abstract
Plant-parasitic nematodes are major pests of both temperate and tropical agriculture. Many of the most damaging species employ an advanced parasitic strategy in which they induce redifferentiation of root cells to form specialized feeding structures able to support nematode growth and reproduction over several weeks. Current control measures, particularly in intensive agriculture systems, rely heavily on nematicides but alternative strategies are required as effective chemicals are withdrawn from use. Here, we review the different approaches that are being developed to provide resistance to a range of nematode species. Natural, R gene-based resistance is currently exploited in traditional breeding programmes and research is ongoing to characterize the molecular basis for the observed resistant phenotypes. A number of transgenic approaches hold promise, the best described being the expression of proteinase inhibitors to disrupt nematode digestion. The application of plant-delivered RNA interference (RNAi) to silence essential nematode genes has recently emerged as a potentially valuable resistance strategy.
Collapse
Affiliation(s)
- Victoria L Fuller
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Catherine J Lilley
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| | - Peter E Urwin
- Centre for Plant Sciences, University of Leeds, Leeds, West Yorkshire LS2 9JT, UK
| |
Collapse
|
91
|
Abstract
A variety of techniques have been used to examine plant viral genomes, the functions of virus-encoded proteins, plant responses induced by virus infection and plant-virus interactions. This overview considers these technologies and how they have been used to identify novel viral and plant proteins or genes involved in disease and resistance responses, as well as defense signaling. These approaches include analysis of spatial and temporal responses by plants to infection, and techniques that allow the expression of viral genes transiently or transgenically in planta, the expression of plant and foreign genes from virus vectors, the silencing of plants genes, imaging of live, infected cells, and the detection of interactions between viral proteins and plant gene products, both in planta and in various in vitro or in vivo systems. These methods and some of the discoveries made using these approaches are discussed.
Collapse
Affiliation(s)
- Peter Palukaitis
- Scottish Crop Research Institute, Invergowrie, Dundee, DD2 5DA, UK
| | | | | |
Collapse
|
92
|
Prins M, Laimer M, Noris E, Schubert J, Wassenegger M, Tepfer M. Strategies for antiviral resistance in transgenic plants. MOLECULAR PLANT PATHOLOGY 2008; 9:73-83. [PMID: 18705886 PMCID: PMC6640351 DOI: 10.1111/j.1364-3703.2007.00447.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Genetic engineering offers a means of incorporating new virus resistance traits into existing desirable plant cultivars. The initial attempts to create transgenes conferring virus resistance were based on the pathogen-derived resistance concept. The expression of the viral coat protein gene in transgenic plants was shown to induce protective effects similar to classical cross protection, and was therefore distinguished as 'coat-protein-mediated' protection. Since then, a large variety of viral sequences encoding structural and non-structural proteins were shown to confer resistance. Subsequently, non-coding viral RNA was shown to be a potential trigger for virus resistance in transgenic plants, which led to the discovery of a novel innate resistance in plants, RNA silencing. Apart from the majority of pathogen-derived resistance strategies, alternative strategies involving virus-specific antibodies have been successfully applied. In a separate section, efforts to combat viroids in transgenic plants are highlighted. In a final summarizing section, the potential risks involved in the introduction of transgenic crops and the specifics of the approaches used will be discussed.
Collapse
Affiliation(s)
- Marcel Prins
- Laboratory of Virology, Wageningen University, Binnenhaven 11, 6709 PD, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
93
|
|
94
|
Lewis RS, Linger LR, Wolff MF, Wernsman EA. The negative influence of N-mediated TMV resistance on yield in tobacco: linkage drag versus pleiotropy. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2007; 115:169-78. [PMID: 17492424 DOI: 10.1007/s00122-007-0552-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Accepted: 04/10/2007] [Indexed: 05/11/2023]
Abstract
Resistance to tobacco mosaic virus (TMV) is controlled by the single dominant gene N in Nicotiana glutinosa L. This gene has been transferred to cultivated tobacco (N. tabacum L.) by interspecific hybridization and backcrossing, but has historically been associated with reduced yields and/or quality in flue-cured tobacco breeding materials. Past researchers have suggested the role of pleiotropy and/or linkage drag effects in this unfavorable relationship. Introduction of the cloned N gene into a TMV-susceptible tobacco genotype (cultivar 'K326') via plant transformation permitted investigation of the relative importance of these possibilities. On average, yield and cash return ($ ha(-1)) of 14 transgenic NN lines of K326 were significantly higher relative to an isoline of K326 carrying N introduced via interspecific hybridization and backcrossing. The negative effects of tissue culture-induced genetic variation confounded comparisons with the TMV-susceptible cultivar, K326, however. Backcrossing the original transgenic lines to non-tissue cultured K326 removed many of these unfavorable effects, and significantly improved their performance for yield and cash return. Comparisons of the 14 corresponding transgenic NN backcross-derived lines with K326 indicated that linkage drag is the main factor contributing to reduced yields in TMV-resistant flue-cured tobacco germplasm. On average, these transgenic lines outyielded the conventionally-developed TMV-resistant K326 isoline by 427 kg ha(-1) (P < 0.05) and generated $1,365 ha(-1) more (P < 0.05). Although transgenic tobacco cultivars are currently not commercially acceptable, breeding strategies designed to reduce the amount of N. glutinosa chromatin linked to N may increase the likelihood of developing high-yielding TMV-resistant flue-cured tobacco cultivars.
Collapse
Affiliation(s)
- R S Lewis
- Crop Science Department, North Carolina State University, Campus Box 7620, Raleigh, NC 27695, USA.
| | | | | | | |
Collapse
|
95
|
Kyrychenko AM, Telegeyeva TA, Kovalenko OG. Molecular and genetic mechanisms of resistance of plants to viruses. CYTOL GENET+ 2007. [DOI: 10.3103/s0095452707020107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
96
|
Farnham G, Baulcombe DC. Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc Natl Acad Sci U S A 2006; 103:18828-33. [PMID: 17021014 PMCID: PMC1693747 DOI: 10.1073/pnas.0605777103] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A major class of disease-resistance (R) genes in plants encode nucleotide-binding site/leucine-rich repeat (LRR) proteins. The LRR domains mediate recognition of pathogen-derived elicitors. Here we describe a random in vitro mutation analysis illustrating how mutations in an R protein (Rx) LRR domain generate disease-resistance specificity. The original Rx protein confers resistance only against a subset of potato virus X (PVX) strains, whereas selected mutants were effective against an additional strain of PVX and against the distantly related poplar mosaic virus. These effects of LRR mutations indicate that in vitro evolution of R genes could be exploited for enhancement of disease resistance in crop plants. Our results also illustrate how short-term evolution of disease resistance in wild populations might be toward broader spectrum resistance against multiple strains of the pathogen. The breadth of the disease-resistance phenotype from a natural R gene may be influenced by the tradeoff between the costs and benefits of broad-spectrum disease resistance.
Collapse
Affiliation(s)
- Garry Farnham
- The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | - David C. Baulcombe
- The Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
97
|
Tuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, et alTuskan GA, Difazio S, Jansson S, Bohlmann J, Grigoriev I, Hellsten U, Putnam N, Ralph S, Rombauts S, Salamov A, Schein J, Sterck L, Aerts A, Bhalerao RR, Bhalerao RP, Blaudez D, Boerjan W, Brun A, Brunner A, Busov V, Campbell M, Carlson J, Chalot M, Chapman J, Chen GL, Cooper D, Coutinho PM, Couturier J, Covert S, Cronk Q, Cunningham R, Davis J, Degroeve S, Déjardin A, Depamphilis C, Detter J, Dirks B, Dubchak I, Duplessis S, Ehlting J, Ellis B, Gendler K, Goodstein D, Gribskov M, Grimwood J, Groover A, Gunter L, Hamberger B, Heinze B, Helariutta Y, Henrissat B, Holligan D, Holt R, Huang W, Islam-Faridi N, Jones S, Jones-Rhoades M, Jorgensen R, Joshi C, Kangasjärvi J, Karlsson J, Kelleher C, Kirkpatrick R, Kirst M, Kohler A, Kalluri U, Larimer F, Leebens-Mack J, Leplé JC, Locascio P, Lou Y, Lucas S, Martin F, Montanini B, Napoli C, Nelson DR, Nelson C, Nieminen K, Nilsson O, Pereda V, Peter G, Philippe R, Pilate G, Poliakov A, Razumovskaya J, Richardson P, Rinaldi C, Ritland K, Rouzé P, Ryaboy D, Schmutz J, Schrader J, Segerman B, Shin H, Siddiqui A, Sterky F, Terry A, Tsai CJ, Uberbacher E, Unneberg P, Vahala J, Wall K, Wessler S, Yang G, Yin T, Douglas C, Marra M, Sandberg G, Van de Peer Y, Rokhsar D. The genome of black cottonwood, Populus trichocarpa (Torr. & Gray). Science 2006; 313:1596-604. [PMID: 16973872 DOI: 10.1126/science.1128691] [Show More Authors] [Citation(s) in RCA: 2677] [Impact Index Per Article: 140.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We report the draft genome of the black cottonwood tree, Populus trichocarpa. Integration of shotgun sequence assembly with genetic mapping enabled chromosome-scale reconstruction of the genome. More than 45,000 putative protein-coding genes were identified. Analysis of the assembled genome revealed a whole-genome duplication event; about 8000 pairs of duplicated genes from that event survived in the Populus genome. A second, older duplication event is indistinguishably coincident with the divergence of the Populus and Arabidopsis lineages. Nucleotide substitution, tandem gene duplication, and gross chromosomal rearrangement appear to proceed substantially more slowly in Populus than in Arabidopsis. Populus has more protein-coding genes than Arabidopsis, ranging on average from 1.4 to 1.6 putative Populus homologs for each Arabidopsis gene. However, the relative frequency of protein domains in the two genomes is similar. Overrepresented exceptions in Populus include genes associated with lignocellulosic wall biosynthesis, meristem development, disease resistance, and metabolite transport.
Collapse
Affiliation(s)
- G A Tuskan
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Seo YS, Rojas MR, Lee JY, Lee SW, Jeon JS, Ronald P, Lucas WJ, Gilbertson RL. A viral resistance gene from common bean functions across plant families and is up-regulated in a non-virus-specific manner. Proc Natl Acad Sci U S A 2006; 103:11856-61. [PMID: 16880399 PMCID: PMC1567666 DOI: 10.1073/pnas.0604815103] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2006] [Indexed: 01/18/2023] Open
Abstract
Genes involved in a viral resistance response in common bean (Phaseolus vulgaris cv. Othello) were identified by inoculating a geminivirus reporter (Bean dwarf mosaic virus expressing the green fluorescent protein), extracting RNA from tissue undergoing the defense response, and amplifying sequences with degenerate R gene primers. One such gene (a TIR-NBS-LRR gene, RT4-4) was selected for functional analysis in which transgenic Nicotiana benthamiana were generated and screened for resistance to a range of viruses. This analysis revealed that RT4-4 did not confer resistance to the reporter geminivirus; however, it did activate a resistance-related response (systemic necrosis) to seven strains of Cucumber mosaic virus (CMV) from pepper or tomato, but not to a CMV strain from common bean. Of these eight CMV strains, only the strain from common bean systemically infected common bean cv. Othello. Additional evidence that RT4-4 is a CMV R gene came from the detection of resistance response markers in CMV-challenged leaves of RT4-4 transgenic plants, and the identification of the CMV 2a gene product as the elicitor of the necrosis response. These findings indicate that RT4-4 functions across two plant families and is up-regulated in a non-virus-specific manner. This experimental approach holds promise for providing insights into the mechanisms by which plants activate resistance responses against pathogens.
Collapse
Affiliation(s)
| | | | - Jung-Youn Lee
- Section of Plant Biology, University of California, Davis, CA 95616
| | | | | | | | - William J. Lucas
- Section of Plant Biology, University of California, Davis, CA 95616
| | | |
Collapse
|
99
|
Peyyala R, Farman ML. Magnaporthe oryzae isolates causing gray leaf spot of perennial ryegrass possess a functional copy of the AVR1-CO39 avirulence gene. MOLECULAR PLANT PATHOLOGY 2006; 7:157-165. [PMID: 20507436 DOI: 10.1111/j.1364-3703.2006.00325.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
SUMMARY Gray leaf spot of perennial ryegrass (Lolium perenne) is a severe foliar disease caused by the ascomycete fungus Magnaporthe oryzae (formerly known as Magnaporthe grisea). Control of gray leaf spot is completely dependent on the use of fungicides because currently available perennial ryegrass cultivars lack genetic resistance to this disease. M. oryzae isolates from perennial ryegrass (prg) were unable to cause disease on rice cultivars CO39 and 51583, and instead triggered a hypersensitive response. Southern hybridization analysis of DNA from over 50 gray leaf spot isolates revealed that all of them contain sequences corresponding to AVR1-CO39, a host specificity gene that confers avirulence to rice cultivar CO39, which carries the corresponding resistance gene Pi-CO39(t). There was also an almost complete lack of restriction site polymorphism at the avirulence locus. Cloning and sequencing of the AVR1-CO39 gene (AVR1-CO39(Lp)) from 16 different gray leaf spot isolates revealed just two point mutations, both of which were located upstream of the predicted open reading frame. When an AVR1-CO39(Lp) gene copy was transferred into ML33, a rice pathogenic isolate that is highly virulent to rice cultivar CO39, the transformants were unable to cause disease on CO39 but retained their virulence to 51583, a rice cultivar that lacks Pi-CO39(t). These data demonstrate that the AVR1-CO39 gene in the gray leaf spot pathogens is functional, and suggest that interaction of AVR1-CO39(Lp) and Pi-CO39(t) is responsible, at least in part, for the host specificity expressed on CO39. This indicates that it may be possible to use the Pi-CO39(t) resistance gene as part of a transgenic strategy to complement the current deficiency of gray leaf spot resistance in prg. Furthermore, our data indicate that, if Pi-CO39(t) can function in prg, the resistance provided should be broadly effective against a large proportion of the gray leaf spot pathogen population.
Collapse
Affiliation(s)
- Rebecca Peyyala
- Department of Plant Pathology, Plant Science Building, 1405 Veteran's Drive, University of Kentucky, Lexington, KY 40546, USA
| | | |
Collapse
|
100
|
Goggin FL, Jia L, Shah G, Hebert S, Williamson VM, Ullman DE. Heterologous expression of the Mi-1.2 gene from tomato confers resistance against nematodes but not aphids in eggplant. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2006; 19:383-8. [PMID: 16610741 DOI: 10.1094/mpmi-19-0383] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The Mi-1.2 gene in tomato (Solanum lycopersicum) is a member of the nucleotide-binding leucine-rich repeat (NBLRR) class of plant resistance genes, and confers resistance against root-knot nematodes (Meloidogyne spp.), the potato aphid (Macrosiphum euphorbiae), and the sweet potato whitefly (Bemisia tabaci). Mi-1.2 mediates a rapid local defensive response at the site of infection, although the signaling and defensive pathways required for resistance are largely unknown. In this study, eggplant (S. melongena) was transformed with Mi-1.2 to determine whether this gene can function in a genetic background other than tomato. Eggplants that carried Mi-1.2 displayed resistance to the root-knot nematode Meloidogyne javanica but were fully susceptible to the potato aphid, whereas a susceptible tomato line transformed with the same transgene was resistant to nematodes and aphids. This study shows that Mi-1.2 can confer nematode resistance in another Solanaceous species. It also indicates that the requirements for Mi-mediated aphid and nematode resistance differ. Potentially, aphid resistance requires additional genes that are not conserved between tomato and eggplant.
Collapse
Affiliation(s)
- Fiona L Goggin
- Department of Entomology, University of Arkansas, 320 Agriculture Building, Fayetteville 72701, USA.
| | | | | | | | | | | |
Collapse
|