51
|
Malaguti C, La Guardia PG, Leite ACR, Oliveira DN, de Lima Zollner RL, Catharino RR, Vercesi AE, Oliveira HCF. Oxidative stress and susceptibility to mitochondrial permeability transition precedes the onset of diabetes in autoimmune non-obese diabetic mice. Free Radic Res 2014; 48:1494-504. [DOI: 10.3109/10715762.2014.966706] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
52
|
Pickles S, Arbour N, Vande Velde C. Immunodetection of outer membrane proteins by flow cytometry of isolated mitochondria. J Vis Exp 2014:51887. [PMID: 25285411 DOI: 10.3791/51887] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Methods to detect and monitor mitochondrial outer membrane protein components in animal tissues are vital to study mitochondrial physiology and pathophysiology. This protocol describes a technique where mitochondria isolated from rodent tissue are immunolabeled and analyzed by flow cytometry. Mitochondria are isolated from rodent spinal cords and subjected to a rapid enrichment step so as to remove myelin, a major contaminant of mitochondrial fractions prepared from nervous tissue. Isolated mitochondria are then labeled with an antibody of choice and a fluorescently conjugated secondary antibody. Analysis by flow cytometry verifies the relative purity of mitochondrial preparations by staining with a mitochondrial specific dye, followed by detection and quantification of immunolabeled protein. This technique is rapid, quantifiable and high-throughput, allowing for the analysis of hundreds of thousands of mitochondria per sample. It is applicable to assess novel proteins at the mitochondrial surface under normal physiological conditions as well as the proteins that may become mislocalized to this organelle during pathology. Importantly, this method can be coupled to fluorescent indicator dyes to report on certain activities of mitochondrial subpopulations and is feasible for mitochondria from the central nervous system (brain and spinal cord) as well as liver.
Collapse
Affiliation(s)
- Sarah Pickles
- Department of Biochemistry, Université de Montréal, CRCHUM
| | | | | |
Collapse
|
53
|
Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 2014; 94:909-50. [PMID: 24987008 DOI: 10.1152/physrev.00026.2013] [Citation(s) in RCA: 3712] [Impact Index Per Article: 337.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Byproducts of normal mitochondrial metabolism and homeostasis include the buildup of potentially damaging levels of reactive oxygen species (ROS), Ca(2+), etc., which must be normalized. Evidence suggests that brief mitochondrial permeability transition pore (mPTP) openings play an important physiological role maintaining healthy mitochondria homeostasis. Adaptive and maladaptive responses to redox stress may involve mitochondrial channels such as mPTP and inner membrane anion channel (IMAC). Their activation causes intra- and intermitochondrial redox-environment changes leading to ROS release. This regenerative cycle of mitochondrial ROS formation and release was named ROS-induced ROS release (RIRR). Brief, reversible mPTP opening-associated ROS release apparently constitutes an adaptive housekeeping function by the timely release from mitochondria of accumulated potentially toxic levels of ROS (and Ca(2+)). At higher ROS levels, longer mPTP openings may release a ROS burst leading to destruction of mitochondria, and if propagated from mitochondrion to mitochondrion, of the cell itself. The destructive function of RIRR may serve a physiological role by removal of unwanted cells or damaged mitochondria, or cause the pathological elimination of vital and essential mitochondria and cells. The adaptive release of sufficient ROS into the vicinity of mitochondria may also activate local pools of redox-sensitive enzymes involved in protective signaling pathways that limit ischemic damage to mitochondria and cells in that area. Maladaptive mPTP- or IMAC-related RIRR may also be playing a role in aging. Because the mechanism of mitochondrial RIRR highlights the central role of mitochondria-formed ROS, we discuss all of the known ROS-producing sites (shown in vitro) and their relevance to the mitochondrial ROS production in vivo.
Collapse
Affiliation(s)
- Dmitry B Zorov
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Magdalena Juhaszova
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Steven J Sollott
- A. N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia; and Laboratory of Cardiovascular Science, National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|
54
|
Cui Z, Shen L, Lin Y, Wang S, Zheng D, Tan Q. Inhibition of oxygen-glucose deprivation-induced apoptosis of human adipose-derived stem cells by genetic modification with antiapoptotic protein bcl-2. Aesthetic Plast Surg 2014; 38:779-87. [PMID: 24907101 DOI: 10.1007/s00266-014-0354-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Accepted: 05/08/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Adipose-derived stem cells (ADSCs) have become a promising tool for a wide range of cell-based therapies. However, transplanted ADSCs do not survive well under ischemic conditions. In this study we aimed to inhibit oxygen-glucose deprivation (OGD)-induced apoptosis of human ADSCs by genetic modification with antiapoptotic protein Bcl-2. METHODS After isolation and culture, the phenotypes of human ADSCs at passage 3 were analyzed by flow cytometry. Then, genetic modification of ADSCs with Bcl-2 was carried out. Bcl-2 gene transfection was verified by Western blot analysis and multipotent differentiation properties were evaluated in Bcl-2-modified ADSCs (Bcl-2-ADSCs). Apoptosis was evaluated by a TUNEL assay under ischemic conditions induced by OGD. Apoptotic nuclei were also assessed and quantified by Hoechst staining. RESULTS The cultured ADSCs expressed stem cell-associated markers CD29, CD34, CD44, and CD90, but not fibroblast marker HLA-DR or hematopoietic stem cell marker CD133. The Bcl-2 gene was transferred into ADSCs efficiently, and Bcl-2-ADSCs differentiated into adipocytes, chondrocytes, and osteoblasts. In addition, Bcl-2 overexpression reduced the percentage of apoptotic Bcl-2-ADSCs by 38 % under OGD. CONCLUSION Our results indicate that Bcl-2 overexpression through gene transfection inhibits apoptosis of ADSCs under ischemic conditions. NO LEVEL ASSIGNED This journal requires that authors assign a level of evidence to each submission to which Evidence-Based Medicine rankings are applicable. This excludes Review Articles, Book Reviews, and manuscripts that concern Basic Science, Animal Studies, Cadaver Studies, and Experimental Studies. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .
Collapse
|
55
|
Fernandes MP, Leite ACR, Araújo FFB, Saad STO, Baratti MO, Correia MTS, Coelho LCBB, Gadelha FR, Vercesi AE. The Cratylia mollis
Seed Lectin Induces Membrane Permeability Transition in Isolated Rat Liver Mitochondria and a Cyclosporine A-Insensitive Permeability Transition in Trypanosoma cruzi
Mitochondria. J Eukaryot Microbiol 2014; 61:381-8. [DOI: 10.1111/jeu.12118] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/13/2014] [Accepted: 02/15/2014] [Indexed: 12/28/2022]
Affiliation(s)
- Mariana P. Fernandes
- Departamento de Patologia Clínica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - Ana C. R. Leite
- Departamento de Fisiologia e Biofísica; Instituto de Biologia, Universidade Estadual de Campinas; Campinas Brazil
| | - Flavia F. B. Araújo
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Sara T. O. Saad
- Departamento de Clínica Médica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - M. O. Baratti
- Departamento de Clínica Médica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| | - M. T. S. Correia
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Luana C. B. B. Coelho
- Departamento de Bioquímica; Centro de Ciências Biológicas; Universidade Federal de Pernambuco; Recife Brazil
| | - Fernanda R. Gadelha
- Departamento de Bioquímica; Instituto de Biologia; Universidade Estadual de Campinas; Campinas Brazil
| | - Anibal E. Vercesi
- Departamento de Patologia Clínica; Faculdade de Ciências Médicas; Universidade Estadual de Campinas; Campinas Brazil
| |
Collapse
|
56
|
Abstract
The mitochondrial calcium uniporter is a highly selective calcium channel distributed broadly across eukaryotes but absent in the yeast Saccharomyces cerevisiae. The molecular components of the human uniporter holocomplex (uniplex) have been identified recently. The uniplex consists of three membrane-spanning subunits--mitochondrial calcium uniporter (MCU), its paralog MCUb, and essential MCU regulator (EMRE)--and two soluble regulatory components--MICU1 and its paralog MICU2. The minimal components sufficient for in vivo uniporter activity are unknown. Here we consider Dictyostelium discoideum (Dd), a member of the Amoebazoa outgroup of Metazoa and Fungi, and show that it has a highly simplified uniporter machinery. We show that D. discoideum mitochondria exhibit membrane potential-dependent calcium uptake compatible with uniporter activity, and also that expression of DdMCU complements the mitochondrial calcium uptake defect in human cells lacking MCU or EMRE. Moreover, expression of DdMCU in yeast alone is sufficient to reconstitute mitochondrial calcium uniporter activity. Having established yeast as an in vivo reconstitution system, we then reconstituted the human uniporter. We show that coexpression of MCU and EMRE is sufficient for uniporter activity, whereas expression of MCU alone is insufficient. Our work establishes yeast as a powerful in vivo reconstitution system for the uniporter. Using this system, we confirm that MCU is the pore-forming subunit, define the minimal genetic elements sufficient for metazoan and nonmetazoan uniporter activity, and provide valuable insight into the evolution of the uniporter machinery.
Collapse
|
57
|
Divakaruni AS, Rogers GW, Murphy AN. Measuring Mitochondrial Function in Permeabilized Cells Using the Seahorse XF Analyzer or a Clark-Type Oxygen Electrode. ACTA ACUST UNITED AC 2014; 60:25.2.1-16. [PMID: 24865646 DOI: 10.1002/0471140856.tx2502s60] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Measurements of mitochondrial respiration in intact cells can help define metabolism and its dysregulation in fields such as cancer, metabolic disease, immunology, and neurodegeneration. Although cells can be offered various substrates in the assay medium, many cell types can oxidize stored pools of energy substrates. A general bioenergetic profile can therefore be obtained using intact cells, but the inability to control substrate provision to the mitochondria can restrict an in-depth, mechanistic understanding. Mitochondria can be isolated from intact cells, but the yield and quality of the end product is often poor and prone to subselection during isolation. Plasma membrane permeabilization of cells provides a solution to this challenge, allowing experimental control of the medium surrounding the mitochondria. This unit describes techniques to measure respiration in permeabilized adherent cells using a Seahorse XF Analyzer or permeabilized suspended cells in a Hansatech Oxygraph.
Collapse
Affiliation(s)
- Ajit S Divakaruni
- Department of Pharmacology, University of California, San Diego, La Jolla, California
| | | | | |
Collapse
|
58
|
Gomes KMS, Campos JC, Bechara LRG, Queliconi B, Lima VM, Disatnik MH, Magno P, Chen CH, Brum PC, Kowaltowski AJ, Mochly-Rosen D, Ferreira JCB. Aldehyde dehydrogenase 2 activation in heart failure restores mitochondrial function and improves ventricular function and remodelling. Cardiovasc Res 2014; 103:498-508. [PMID: 24817685 DOI: 10.1093/cvr/cvu125] [Citation(s) in RCA: 117] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
AIMS We previously demonstrated that pharmacological activation of mitochondrial aldehyde dehydrogenase 2 (ALDH2) protects the heart against acute ischaemia/reperfusion injury. Here, we determined the benefits of chronic activation of ALDH2 on the progression of heart failure (HF) using a post-myocardial infarction model. METHODS AND RESULTS We showed that a 6-week treatment of myocardial infarction-induced HF rats with a selective ALDH2 activator (Alda-1), starting 4 weeks after myocardial infarction at a time when ventricular remodelling and cardiac dysfunction were present, improved cardiomyocyte shortening, cardiac function, left ventricular compliance and diastolic function under basal conditions, and after isoproterenol stimulation. Importantly, sustained Alda-1 treatment showed no toxicity and promoted a cardiac anti-remodelling effect by suppressing myocardial hypertrophy and fibrosis. Moreover, accumulation of 4-hydroxynonenal (4-HNE)-protein adducts and protein carbonyls seen in HF was not observed in Alda-1-treated rats, suggesting that increasing the activity of ALDH2 contributes to the reduction of aldehydic load in failing hearts. ALDH2 activation was associated with improved mitochondrial function, including elevated mitochondrial respiratory control ratios and reduced H2O2 release. Importantly, selective ALDH2 activation decreased mitochondrial Ca(2+)-induced permeability transition and cytochrome c release in failing hearts. Further supporting a mitochondrial mechanism for ALDH2, Alda-1 treatment preserved mitochondrial function upon in vitro aldehydic load. CONCLUSIONS Selective activation of mitochondrial ALDH2 is sufficient to improve the HF outcome by reducing the toxic effects of aldehydic overload on mitochondrial bioenergetics and reactive oxygen species generation, suggesting that ALDH2 activators, such as Alda-1, have a potential therapeutic value for treating HF patients.
Collapse
Affiliation(s)
- Katia M S Gomes
- Department of Anatomy, Institute of Biomedical Sciences, Paulo, Brazil
| | - Juliane C Campos
- Department of Anatomy, Institute of Biomedical Sciences, Paulo, Brazil
| | - Luiz R G Bechara
- Department of Anatomy, Institute of Biomedical Sciences, Paulo, Brazil
| | - Bruno Queliconi
- Departamento de Bioquímica, Instituto de Química, Paulo, Brazil
| | - Vanessa M Lima
- Department of Anatomy, Institute of Biomedical Sciences, Paulo, Brazil
| | - Marie-Helene Disatnik
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Che-Hong Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Patricia C Brum
- School of Physical Education and Sports, University of Sao Paulo, Paulo, Brazil
| | | | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Julio C B Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, Paulo, Brazil Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
59
|
Streck EL, Gonçalves CL, Furlanetto CB, Scaini G, Dal-Pizzol F, Quevedo J. Mitochondria and the central nervous system: searching for a pathophysiological basis of psychiatric disorders. REVISTA BRASILEIRA DE PSIQUIATRIA 2014; 36:156-67. [DOI: 10.1590/1516-4446-2013-1224] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Accepted: 10/03/2013] [Indexed: 12/20/2022]
Affiliation(s)
- Emilio L. Streck
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Cinara L. Gonçalves
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Camila B. Furlanetto
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Giselli Scaini
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - Felipe Dal-Pizzol
- Universidade do Extremo Sul Catarinense (UNESC), Brazil; National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil
| | - João Quevedo
- National Science and Technology Institute for Translational Medicine (INCT-TM), Brazil; Center of Excellence in Applied Neurosciences of Santa Catarina (NENASC), Brazil; UNESC, Brazil
| |
Collapse
|
60
|
Jackman KA, Zhou P, Faraco G, Peixoto PM, Coleman C, Voss HU, Pickel V, Manfredi G, Iadecola C. Dichotomous effects of chronic intermittent hypoxia on focal cerebral ischemic injury. Stroke 2014; 45:1460-7. [PMID: 24713530 DOI: 10.1161/strokeaha.114.004816] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND AND PURPOSE Obstructive sleep apnea, a condition associated with chronic intermittent hypoxia (CIH), carries an increased risk of stroke. However, CIH has been reported to either increase or decrease brain injury in models of focal cerebral ischemia. The factors determining the differential effects of CIH on ischemic injury and their mechanisms remain unclear. Here, we tested the hypothesis that the intensity of the hypoxic challenge determines the protective or destructive nature of CIH by modulating mitochondrial resistance to injury. METHODS Male C57Bl/6J mice were exposed to CIH with 10% or 6% O2 for ≤35 days and subjected to transient middle cerebral artery occlusion. Motor deficits and infarct volume were assessed 3 days later. Intraischemic cerebral blood flow was measured by laser-Doppler flowmetry and resting cerebral blood flow by arterial spin labeling MRI. Ca2+-induced mitochondrial depolarization and reactive oxygen species production were evaluated in isolated brain mitochondria. RESULTS We found that 10% CIH is neuroprotective, whereas 6% CIH exacerbates tissue damage. No differences in resting or intraischemic cerebral blood flow were observed between 6% and 10% CIH. However, 10% CIH reduced, whereas 6% CIH increased, mitochondrial reactive oxygen species production and susceptibility to Ca2+-induced depolarizations. CONCLUSIONS The influence of CIH on the ischemic brain is dichotomous and can be attributed, in part, to changes in the mitochondrial susceptibility to injury. The findings highlight a previously unappreciated complexity in the effect of CIH on the brain, which needs to be considered in evaluating the neurological effect of conditions associated with cyclic hypoxia.
Collapse
Affiliation(s)
- Katherine A Jackman
- From the Feil Family Brain and Mind Research Institute (K.A.J., P.Z., G.F., P.M.P., C.C., V.P., G.M., C.I.) and Department of Radiology (H.U.V.), Weill Cornell Medical College, New York; and Department of Natural Sciences, Baruch College, City University of New York (P.M.P.)
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Uzhachenko R, Ivanov SV, Yarbrough WG, Shanker A, Medzhitov R, Ivanova AV. Fus1/Tusc2 is a novel regulator of mitochondrial calcium handling, Ca2+-coupled mitochondrial processes, and Ca2+-dependent NFAT and NF-κB pathways in CD4+ T cells. Antioxid Redox Signal 2014; 20:1533-47. [PMID: 24328503 PMCID: PMC3942676 DOI: 10.1089/ars.2013.5437] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AIMS Fus1 has been established as mitochondrial tumor suppressor, immunomodulator, and antioxidant protein, but molecular mechanism of these activities remained to be identified. Based on putative calcium-binding and myristoyl-binding domains that we identified in Fus1, we explored our hypothesis that Fus1 regulates mitochondrial calcium handling and calcium-coupled processes. RESULTS Fus1 loss resulted in reduced rate of mitochondrial calcium uptake in calcium-loaded epithelial cells, splenocytes, and activated CD4(+) T cells. The reduced rate of mitochondrial calcium uptake in Fus1-deficient cells correlated with cytosolic calcium increase and dysregulation of calcium-coupled mitochondrial parameters, such as reactive oxygen species production, ΔμH(+), mitochondrial permeability transition pore opening, and GSH content. Inhibition of calcium efflux via mitochondria, Na(+)/Ca(2+) exchanger significantly improved the mitochondrial calcium uptake in Fus1(-/-) cells. Ex vivo analysis of activated CD4(+) T cells showed Fus1-dependent changes in calcium-regulated processes, such as surface expression of CD4 and PD1/PD-L1, proliferation, and Th polarization. Fus1(-/-) T cells showed increased basal expression of calcium-dependent NF-κB and NFAT targets but were unable to fully activate these pathways after stimulation. INNOVATION Our results establish Fus1 as one of the few identified regulators of mitochondrial calcium handling. Our data support the idea that alterations in mitochondrial calcium dynamics could lead to the disruption of metabolic coupling in mitochondria that, in turn, may result in multiple cellular and systemic abnormalities. CONCLUSION Our findings suggest that Fus1 achieves its protective role in inflammation, autoimmunity, and cancer via the regulation of mitochondrial calcium and calcium-coupled parameters.
Collapse
Affiliation(s)
- Roman Uzhachenko
- 1 Department of Biochemistry and Cancer Biology, VICC, Meharry Medical College , Nashville, Tennessee
| | | | | | | | | | | |
Collapse
|
62
|
Rettberg JR, Yao J, Brinton RD. Estrogen: a master regulator of bioenergetic systems in the brain and body. Front Neuroendocrinol 2014; 35:8-30. [PMID: 23994581 PMCID: PMC4024050 DOI: 10.1016/j.yfrne.2013.08.001] [Citation(s) in RCA: 350] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 08/09/2013] [Accepted: 08/10/2013] [Indexed: 01/12/2023]
Abstract
Estrogen is a fundamental regulator of the metabolic system of the female brain and body. Within the brain, estrogen regulates glucose transport, aerobic glycolysis, and mitochondrial function to generate ATP. In the body, estrogen protects against adiposity, insulin resistance, and type II diabetes, and regulates energy intake and expenditure. During menopause, decline in circulating estrogen is coincident with decline in brain bioenergetics and shift towards a metabolically compromised phenotype. Compensatory bioenergetic adaptations, or lack thereof, to estrogen loss could determine risk of late-onset Alzheimer's disease. Estrogen coordinates brain and body metabolism, such that peripheral metabolic state can indicate bioenergetic status of the brain. By generating biomarker profiles that encompass peripheral metabolic changes occurring with menopause, individual risk profiles for decreased brain bioenergetics and cognitive decline can be created. Biomarker profiles could identify women at risk while also serving as indicators of efficacy of hormone therapy or other preventative interventions.
Collapse
Affiliation(s)
- Jamaica R Rettberg
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States
| | - Roberta Diaz Brinton
- Neuroscience Department, University of Southern California, Los Angeles, CA 90033, United States; Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA 90033, United States; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, United States.
| |
Collapse
|
63
|
Sun FC, Shyu HY, Lee MS, Lee MS, Lai YK. Involvement of calcium-mediated reactive oxygen species in inductive GRP78 expression by geldanamycin in 9L rat brain tumor cells. Int J Mol Sci 2013; 14:19169-85. [PMID: 24051401 PMCID: PMC3794827 DOI: 10.3390/ijms140919169] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Revised: 08/19/2013] [Accepted: 09/09/2013] [Indexed: 01/15/2023] Open
Abstract
Treatment with geldanamycin (GA) leads to an increase in [Ca2+]c and the production of reactive oxygen species (ROS) in rat brain tumor 9L RBT cells. GA-exerted calcium signaling was blocked by BAPTA/AM and EGTA. The effect of GA on [Ca2+]c was significantly reduced in the presence of thapsigargin (TG) and ruthenium red (RR). GA-induced GRP78 expression is significantly decreased in the presence of BAPTA/AM, EGTA and RR, suggesting that the calcium influx from the extracellular space and intracellular calcium store oscillations are contributed to by the calcium mobilization and GRP78 expression induced by GA. The induced GRP78 expression is sensitive to added U73122 and Ro-31-8425, pinpointing the involvement of phospholipase C (PLC) and protein kinase C (PKC) in GA-induced endoplasmic reticulum (ER) stress. The antioxidants N-acetylcysteine (NAC), BAPTA/AM, EGTA and H7 also have significant inhibitory effects on ROS generation. Finally, neither H7 nor NAC was able to affect the calcium response elicited by GA. Our results suggest that the causal signaling cascade during GA-inducted GRP78 expression occurs via a pathway that connects PLC to cytoplasmic calcium increase, PKC activation and, then, finally, ROS generation. Our data provides new insights into the influence of GA on ER stress response in 9L RBT cells.
Collapse
Affiliation(s)
- Fang-Chun Sun
- Department of Bioresources, Da-Yeh University, Changhua 515, Taiwan
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +886-4-8511-888; Fax: +886-4-8511-326
| | - Hsin-Yi Shyu
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; E-Mails: (H.-Y.S.); (Y.-K.L.)
| | - Meng-Shiou Lee
- School of Chinese Pharmaceutical Science and Chinese Medicine Resources, China Medical University, Taichung 404, Taiwan; E-Mail:
| | - Meng-Shiunn Lee
- Department of Medical Research, Tungs’ Taichung MetroHarbor Hospital, Taichung 435, Taiwan; E-Mail:
| | - Yiu-Kay Lai
- Department of Life Science and Institute of Biotechnology, National Tsing Hua University, Hsinchu 300, Taiwan; E-Mails: (H.-Y.S.); (Y.-K.L.)
| |
Collapse
|
64
|
Wang YZ, Zeng WZ, Xiao X, Huang Y, Song XL, Yu Z, Tang D, Dong XP, Zhu MX, Xu TL. Intracellular ASIC1a regulates mitochondrial permeability transition-dependent neuronal death. Cell Death Differ 2013; 20:1359-69. [PMID: 23852371 DOI: 10.1038/cdd.2013.90] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2012] [Revised: 05/12/2013] [Accepted: 06/10/2013] [Indexed: 01/08/2023] Open
Abstract
Acid-sensing ion channel 1a (ASIC1a) is the key proton receptor in nervous systems, mediating acidosis-induced neuronal injury in many neurological disorders, such as ischemic stroke. Up to now, functional ASIC1a has been found exclusively on the plasma membrane. Here, we show that ASIC1a proteins are also present in mitochondria of mouse cortical neurons where they are physically associated with adenine nucleotide translocase. Moreover, purified mitochondria from ASIC1a(-/-) mice exhibit significantly enhanced Ca(2+) retention capacity and accelerated Ca(2+) uptake rate. When challenged with hydrogen peroxide (H2O2), ASIC1a(-/-) neurons are resistant to cytochrome c release and inner mitochondrial membrane depolarization, suggesting an impairment of mitochondrial permeability transition (MPT) due to ASIC1a deletion. Consistently, H2O2-induced neuronal death, which is MPT dependent, is reduced in ASIC1a(-/-) neurons. Additionally, significant increases in mitochondrial size and oxidative stress levels are detected in ASIC1a(-/-) mouse brain, which also displays marked changes (>2-fold) in the expression of mitochondrial proteins closely related to reactive oxygen species signal pathways, as revealed by two-dimensional difference gel electrophoresis followed by mass spectrometry analysis. Our data suggest that mitochondrial ASIC1a may serve as an important regulator of MPT pores, which contributes to oxidative neuronal cell death.
Collapse
Affiliation(s)
- Y-Z Wang
- Departments of Anatomy and Embryology, Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Feng S, Li H, Tai Y, Huang J, Su Y, Abramowitz J, Zhu MX, Birnbaumer L, Wang Y. Canonical transient receptor potential 3 channels regulate mitochondrial calcium uptake. Proc Natl Acad Sci U S A 2013; 110:11011-6. [PMID: 23776229 PMCID: PMC3704010 DOI: 10.1073/pnas.1309531110] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Mitochondrial Ca(2+) homeostasis is fundamental to regulation of mitochondrial membrane potential, ATP production, and cellular Ca(2+) homeostasis. It has been known for decades that isolated mitochondria can take up Ca(2+) from the extramitochondrial solution, but the molecular identity of the Ca(2+) channels involved in this action is largely unknown. Here, we show that a fraction of canonical transient receptor potential 3 (TRPC3) channels is localized to mitochondria, a significant fraction of mitochondrial Ca(2+) uptake that relies on extramitochondrial Ca(2+) concentration is TRPC3-dependent, and the up- and down-regulation of TRPC3 expression in the cell influences the mitochondrial membrane potential. Our findings suggest that TRPC3 channels contribute to mitochondrial Ca(2+) uptake. We anticipate our observations may provide insights into the mechanisms of mitochondrial Ca(2+) uptake and advance understanding of the physiological role of TRPC3.
Collapse
Affiliation(s)
- Shengjie Feng
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Hongyu Li
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yilin Tai
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Shanghai 200031, China
| | - Junbo Huang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Yujuan Su
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Shanghai 200031, China
- University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Joel Abramowitz
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; and
| | - Michael X. Zhu
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center, Houston, TX 77030
| | - Lutz Birnbaumer
- Laboratory of Neurobiology, National Institute of Environmental Health Sciences, Research Triangle Park, NC 27709; and
| | - Yizheng Wang
- Laboratory of Neural Signal Transduction, Institute of Neuroscience, Shanghai Institutes of Biological Sciences, State Key Laboratory of Neuroscience, Shanghai 200031, China
| |
Collapse
|
66
|
Silva-Alvarez C, Arrázola MS, Godoy JA, Ordenes D, Inestrosa NC. Canonical Wnt signaling protects hippocampal neurons from Aβ oligomers: role of non-canonical Wnt-5a/Ca(2+) in mitochondrial dynamics. Front Cell Neurosci 2013; 7:97. [PMID: 23805073 PMCID: PMC3691552 DOI: 10.3389/fncel.2013.00097] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/03/2013] [Indexed: 12/26/2022] Open
Abstract
Alzheimer's disease (AD) is the most common type of age-related dementia. The disease is characterized by a progressive loss of cognitive abilities, severe neurodegeneration, synaptic loss and mitochondrial dysfunction. The Wnt signaling pathway participates in the development of the central nervous system and growing evidence indicates that Wnts also regulate the function of the adult nervous system. We report here, that indirect activation of canonical Wnt/β-catenin signaling using Bromoindirubin-30-Oxime (6-BIO), an inhibitor of glycogen synthase kinase-3β, protects hippocampal neurons from amyloid-β (Aβ) oligomers with the concomitant blockade of neuronal apoptosis. More importantly, activation with Wnt-5a, a non-canonical Wnt ligand, results in the modulation of mitochondrial dynamics, preventing the changes induced by Aβ oligomers (Aβo) in mitochondrial fission-fusion dynamics and modulates Bcl-2 increases induced by oligomers. The canonical Wnt-3a ligand neither the secreted Frizzled-Related Protein (sFRP), a Wnt scavenger, did not prevent these effects. In contrast, some of the Aβ oligomer effects were blocked by Ryanodine. We conclude that canonical Wnt/β-catenin signaling controls neuronal survival, and that non-canonical Wnt/Ca(2+)signaling modulates mitochondrial dysfunction. Since mitochondrial dysfunction is present in neurodegenerative diseases, the therapeutic possibilities of the activation of Wnt signaling are evident.
Collapse
Affiliation(s)
- Carmen Silva-Alvarez
- Departamento de Biología Celular y Molecular, Centro de Envejecimiento y Regeneración, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile Santiago, Chile
| | | | | | | | | |
Collapse
|
67
|
Lee Y, Whang I, Lee S, Menike U, Oh C, Kang DH, Heo GJ, Lee J, De Zoysa M. Two molluscan BCL-2 family members from Manila clam, Ruditapes philippinarum: molecular characterization and immune responses. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1628-1634. [PMID: 23558058 DOI: 10.1016/j.fsi.2013.03.366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/23/2013] [Accepted: 03/24/2013] [Indexed: 06/02/2023]
Abstract
Apoptosis based immune responses are important component of host defense in mollusks. In this study, we have identified two novel molluscan BCL-2 cDNAs from Manila clam, Ruditapes philippinarum and named as RpBCL-2A and RpBCL-2B. There were four and three highly conserved BCL-2 homology (BH) regions in RpBCL-2A and RpBCL-2B, respectively suggesting these two genes could be different isoforms of anti-apoptotic BCL-2 family. Phylogenetic results revealed that Manila clam BCL-2 genes were clustered closely with invertebrate BCL-2 members. It gives evidence of their common origin and conserved features of invertebrate BCL-2 family. RpBCL-2A and 2B were expressed in tissue-specific manner showing the highest and lowest level of expression in gills and hemocytes, respectively. However there was no clear expression profile difference between two genes. After Vibrio tapetis challenge, transcriptional responses of RpBCL-2A and RpBCL-2B were induced in gills and hemocytes with high variation that could be due to effects of immune reactions of other host defense molecules.
Collapse
Affiliation(s)
- Youngdeuk Lee
- Korea Institute of Ocean Science Technology, Ansan 426-744, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
68
|
Rasagiline prevents apoptosis induced by PK11195, a ligand of the outer membrane translocator protein (18 kDa), in SH-SY5Y cells through suppression of cytochrome c release from mitochondria. J Neural Transm (Vienna) 2013; 120:1539-51. [PMID: 23681678 DOI: 10.1007/s00702-013-1033-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/02/2013] [Indexed: 12/13/2022]
Abstract
Rasagiline protects neuronal cells from cell death caused by various lines of insults. Its neuroprotective function is due to suppression of mitochondrial apoptosis signaling and induction of neuroprotective genes, including Bcl-2 and neurotrophic factors. Rasagiline inhibits the mitochondrial membrane permeabilization, an initial stage in apoptosis, but the mechanism has been elusive. In this paper, it was investigated how rasagiline regulates mitochondrial death cascade in apoptosis induced in SH-SY5Y cells by PK11195, a ligand of the outer membrane translocator protein of 18 kDa. Rasagiline prevented release of cytochrome c (Cyt-c), and the following caspase 3 activation, ATP depletion and apoptosis, but did not inhibit the mitochondrial membrane potential collapse, in contrast to Bcl-2 overexpression. Rasagiline stabilized the mitochondrial contact site and suppressed Cyt-c release into cytoplasm, which should be the critical point for the regulation of apoptosis. Monoamine oxidase was not associated with anti-apoptotic activity of rasagiline in PK11195-induced apoptosis.
Collapse
|
69
|
Huang H, Hu X, Eno CO, Zhao G, Li C, White C. An interaction between Bcl-xL and the voltage-dependent anion channel (VDAC) promotes mitochondrial Ca2+ uptake. J Biol Chem 2013; 288:19870-81. [PMID: 23720737 DOI: 10.1074/jbc.m112.448290] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The role of the antiapoptotic protein Bcl-xL in regulating mitochondrial Ca(2+) ([Ca(2+)]mito) handling was examined in wild-type (WT) and Bcl-xL knock-out (Bcl-xL-KO) mouse embryonic fibroblast cells. Inositol 1,4,5-trisphosphate-generating agonist evoked cytosolic Ca(2+) transients that produced a larger [Ca(2+)]mito uptake in WT cells compared with Bcl-xL-KO. In permeabilized cells, stepping external [Ca(2+)] from 0 to 3 μm also produced a larger [Ca(2+)]mito uptake in WT; moreover, the [Ca(2+)]mito uptake capacity of Bcl-xL-KO cells was restored by re-expression of mitochondrially targeted Bcl-xL. Bcl-xL enhancement of [Ca(2+)]mito uptake persisted after dissipation of the mitochondrial membrane potential but was absent in mitoplasts lacking an outer mitochondrial membrane. The outer membrane-localized voltage-dependent anion channel (VDAC) is a known Ca(2+) permeability pathway that directly interacts with Bcl-xL. Bcl-xL interacted with VDAC1 and -3 isoforms, and peptides based on the VDAC sequence disrupted Bcl-xL binding. Peptides reduced [Ca(2+)]mito uptake in WT but were without effect in Bcl-xL-KO cells. In addition, peptides reduced [Ca(2+)]mito uptake in VDAC1 and VDAC3 knock-out but not VDAC1 and -3 double knock-out mouse embryonic fibroblast cells, confirming that Bcl-xL interacts functionally with VDAC1 and -3 but not VDAC2. Thus, an interaction between Bcl-xL and VDAC promotes matrix Ca(2+) accumulation by increasing Ca(2+) transfer across the outer mitochondrial membrane.
Collapse
Affiliation(s)
- Huiya Huang
- Department of Physiology and Biophysics, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois 60064, USA
| | | | | | | | | | | |
Collapse
|
70
|
Seibenhener ML, Zhao T, Du Y, Calderilla-Barbosa L, Yan J, Jiang J, Wooten MW, Wooten MC. Behavioral effects of SQSTM1/p62 overexpression in mice: support for a mitochondrial role in depression and anxiety. Behav Brain Res 2013; 248:94-103. [PMID: 23591541 DOI: 10.1016/j.bbr.2013.04.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2013] [Revised: 04/01/2013] [Accepted: 04/06/2013] [Indexed: 11/18/2022]
Abstract
Affective spectrum and anxiety disorders have come to be recognized as the most prevalently diagnosed psychiatric disorders. Among a suite of potential causes, changes in mitochondrial energy metabolism and function have been associated with such disorders. Thus, proteins that specifically change mitochondrial functionality could be identified as molecular targets for drugs related to treatment for affective spectrum disorders. Here, we report generation of transgenic mice overexpressing the scaffolding and mitophagy related protein Sequestosome1 (SQSTM1/p62) or a single point mutant (P392L) in the UBA domain of SQSTM1/p62. We show that overexpression of SQSTM1/p62 increases mitochondrial energy output and improves transcription factor import into the mitochondrial matrix. These elevated levels of mitochondrial functionality correlate directly with discernible improvements in mouse behaviors related to affective spectrum and anxiety disorders. We also describe how overexpression of SQSTM1/p62 improves spatial learning and long term memory formation in these transgenic mice. These results suggest that SQSTM1/p62 provides an attractive target for therapeutic agents potentially suitable for the treatment of anxiety and affective spectrum disorders.
Collapse
Affiliation(s)
- M Lamar Seibenhener
- Dept. Biological Sciences, Auburn University, 331 Funchess Hall, Auburn, AL 36832, USA.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Patron M, Raffaello A, Granatiero V, Tosatto A, Merli G, De Stefani D, Wright L, Pallafacchina G, Terrin A, Mammucari C, Rizzuto R. The mitochondrial calcium uniporter (MCU): molecular identity and physiological roles. J Biol Chem 2013; 288:10750-8. [PMID: 23400777 DOI: 10.1074/jbc.r112.420752] [Citation(s) in RCA: 123] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The direct measurement of mitochondrial [Ca(2+)] with highly specific probes demonstrated that major swings in organellar [Ca(2+)] parallel the changes occurring in the cytosol and regulate processes as diverse as aerobic metabolism and cell death by necrosis and apoptosis. Despite great biological relevance, insight was limited by the complete lack of molecular understanding. The situation has changed, and new perspectives have emerged following the very recent identification of the mitochondrial Ca(2+) uniporter, the channel allowing rapid Ca(2+) accumulation across the inner mitochondrial membrane.
Collapse
Affiliation(s)
- Maria Patron
- Department of Biomedical Sciences, University of Padua and the Institute of Neuroscience, Consiglio Nazionale delle Ricerche, 35131 Padua, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Bonneau B, Prudent J, Popgeorgiev N, Gillet G. Non-apoptotic roles of Bcl-2 family: the calcium connection. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1833:1755-65. [PMID: 23360981 DOI: 10.1016/j.bbamcr.2013.01.021] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 01/11/2013] [Accepted: 01/12/2013] [Indexed: 01/06/2023]
Abstract
The existence of the bcl-2 (B-cell lymphoma-2) gene was reported nearly 30 years ago. Yet, Bcl-2 family group of proteins still surprises us with their structural and functional diversity. Since the discovery of the Bcl-2 family of proteins as one of the main apoptosis judges, the precise mechanism of their action remains a hot topic of intensive scientific research and debates. Although extensive work has been performed on the role of mitochondria in apoptosis, more and more studies point out an implication of the endoplasmic reticulum in this process. Interestingly, Bcl-2 family proteins could be localized to both the mitochondria and the endoplasmic reticulum highlighting their crucial role in apoptosis control. In particular, in these organelles Bcl-2 proteins seem to be involved in calcium homeostasis regulation although the mechanisms underlying this function are still misunderstood. We now assume with high degree of certainty that the majority of Bcl-2 family members take part not only in apoptosis regulation but also in other processes important for the cell physiology briefly denominated as "non-apoptotic" functions. Drawing a complete and comprehensive image of Bcl-2 family requires the understanding of their implications in all cellular processes. Here, we review the current knowledge on the control of calcium homeostasis by the Bcl-2 family at the endoplasmic reticulum and at the mitochondria. Then we focus on the non-apoptotic functions of the Bcl-2 proteins in relation with the regulation of this versatile intracellular messenger. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
|
73
|
2′-Epi-2′-O-acetylthevetin B induces apoptosis partly via Ca2+-mediated mitochondrial pathway in human hepatocellular carcinoma HepG2 cells. Cell Biol Int 2013; 33:918-25. [DOI: 10.1016/j.cellbi.2009.06.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2009] [Revised: 04/02/2009] [Accepted: 06/03/2009] [Indexed: 11/23/2022]
|
74
|
Nierenberg AA, Kansky C, Brennan BP, Shelton RC, Perlis R, Iosifescu DV. Mitochondrial modulators for bipolar disorder: a pathophysiologically informed paradigm for new drug development. Aust N Z J Psychiatry 2013; 47:26-42. [PMID: 22711881 DOI: 10.1177/0004867412449303] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVES Bipolar patients frequently relapse within 12 months of their previous mood episode, even in the context of adequate treatment, suggesting that better continuation and maintenance treatments are needed. Based on recent research of the pathophysiology of bipolar disorder, we review the evidence for mitochondrial dysregulation and selected mitochondrial modulators (MM) as potential treatments. METHODS We reviewed the literature about mitochondrial dysfunction and potential MMs worthy of study that could improve the course of bipolar disorder, reduce subsyndromal symptoms, and prevent subsequent mood episodes. RESULTS MM treatment targets mitochondrial dysfunction, oxidative stress, altered brain energy metabolism and the dysregulation of multiple mitochondrial genes in patients with bipolar disorder. Several tolerable and readily available candidates include N-acetyl-cysteine (NAC), acetyl-L-carnitine (ALCAR), S-adenosylmethionine (SAMe), coenzyme Q(10) (CoQ10), alpha-lipoic acid (ALA), creatine monohydrate (CM), and melatonin. The specific metabolic pathways by which these MMs may improve the symptoms of bipolar disorder are discussed and combinations of selected MMs could be of interest as well. CONCLUSIONS Convergent data implicate mitochondrial dysfunction as an important component of the pathophysiology of bipolar disorder. Clinical trials of individual MMs as well as combinations are warranted.
Collapse
|
75
|
Campos JC, Queliconi BB, Dourado PMM, Cunha TF, Zambelli VO, Bechara LRG, Kowaltowski AJ, Brum PC, Mochly-Rosen D, Ferreira JCB. Exercise training restores cardiac protein quality control in heart failure. PLoS One 2012; 7:e52764. [PMID: 23300764 PMCID: PMC3531365 DOI: 10.1371/journal.pone.0052764] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Accepted: 11/22/2012] [Indexed: 12/16/2022] Open
Abstract
Exercise training is a well-known coadjuvant in heart failure treatment; however, the molecular mechanisms underlying its beneficial effects remain elusive. Despite the primary cause, heart failure is often preceded by two distinct phenomena: mitochondria dysfunction and cytosolic protein quality control disruption. The objective of the study was to determine the contribution of exercise training in regulating cardiac mitochondria metabolism and cytosolic protein quality control in a post-myocardial infarction-induced heart failure (MI-HF) animal model. Our data demonstrated that isolated cardiac mitochondria from MI-HF rats displayed decreased oxygen consumption, reduced maximum calcium uptake and elevated H₂O₂ release. These changes were accompanied by exacerbated cardiac oxidative stress and proteasomal insufficiency. Declined proteasomal activity contributes to cardiac protein quality control disruption in our MI-HF model. Using cultured neonatal cardiomyocytes, we showed that either antimycin A or H₂O₂ resulted in inactivation of proteasomal peptidase activity, accumulation of oxidized proteins and cell death, recapitulating our in vivo model. Of interest, eight weeks of exercise training improved cardiac function, peak oxygen uptake and exercise tolerance in MI-HF rats. Moreover, exercise training restored mitochondrial oxygen consumption, increased Ca²⁺-induced permeability transition and reduced H₂O₂ release in MI-HF rats. These changes were followed by reduced oxidative stress and better cardiac protein quality control. Taken together, our findings uncover the potential contribution of mitochondrial dysfunction and cytosolic protein quality control disruption to heart failure and highlight the positive effects of exercise training in re-establishing cardiac mitochondrial physiology and protein quality control, reinforcing the importance of this intervention as a non-pharmacological tool for heart failure therapy.
Collapse
Affiliation(s)
- Juliane C. Campos
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Bruno B. Queliconi
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, Brazil
| | | | - Telma F. Cunha
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | | | - Luiz R. G. Bechara
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Alicia J. Kowaltowski
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Sao Paulo, Brazil
| | - Patricia C. Brum
- School of Physical Education and Sport, University of Sao Paulo, Sao Paulo, Brazil
| | - Daria Mochly-Rosen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Julio C. B. Ferreira
- Department of Anatomy, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
76
|
Kim YM, Kim IH, Nam TJ. Induction of apoptosis signaling by glycoprotein of Capsosiphon fulvescens in human gastric cancer (AGS) cells. Nutr Cancer 2012; 64:761-9. [PMID: 22591240 DOI: 10.1080/01635581.2012.683228] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
Capsosiphon fulvescens is a well-known green sea algae that has been touted in recent years as a potential anticancer drug. In this study, C. fulvescens glycoprotein (Cf-GP) showed proapoptotic signaling in AGS cells. An MTS assay indicated that Cf-GP inhibited the proliferation of AGS cell lines in a dose-dependent manner. Cells were treated with Cf-GP and the expression of proteins associated with apoptosis was examined by Western blotting. Based on the Western blot, expression of Cf-GP-activated caspase-cascade and PARP, which is a substrate of caspase-3 and -8, and proteins of the Bcl-2 family was observed. Cf-GP treatment stimulated the release of cytochrome C and apoptotic protease activating factor-1 from mitochondria to the cytosol. Cf-GP inhibited the growth of AGS cells through induction of sub-G1 phase arrest. We confirmed that sub-G1-phase arrest was associated with a decrease in the expression of cyclin D, cyclin E, Cdk2, Cdk4, and Cdk6, and an increase in the protein levels of p21 and p27. As a result, the increased sub-G1 ratio appears to be inhibited by cell proliferation. Therefore, we can confirm apoptosis in the AGS cells. Our results suggest that Cf-GP could be a potential source of biofunctional material that shows anticancer effects in human gastrointestinal cancer.
Collapse
Affiliation(s)
- Young-Min Kim
- Department of Food Science and Nutrition, Pukyong National University, Busan, Republic of Korea
| | | | | |
Collapse
|
77
|
Abstract
Major psychiatric illnesses such as mood disorders and schizophrenia are chronic, recurrent mental illnesses that affect the lives of millions of individuals. Although these disorders have traditionally been viewed as 'neurochemical diseases', it is now clear that they are associated with impairments of synaptic plasticity and cellular resilience. Although most patients with these disorders do not have classic mitochondrial disorders, there is a growing body of evidence to suggest that impaired mitochondrial function may affect key cellular processes, thereby altering synaptic functioning and contributing to the atrophic changes that underlie the deteriorating long-term course of these illnesses. Enhancing mitochondrial function could represent an important avenue for the development of novel therapeutics and also presents an opportunity for a potentially more efficient drug-development process.
Collapse
|
78
|
Lee J, Lim KT. Phytoglycoprotein (38 kDa) induces cell cycle (G₀/G₁) arrest and apoptosis in HepG2 cells. J Cell Biochem 2012; 112:3129-39. [PMID: 21695715 DOI: 10.1002/jcb.23239] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Styrax japonica Siebold et al Zuccarini (SJSZ) has been used to heal inflammation and bronchitis as folk medicine in Korea. Firstly, glycoprotein isolated from SJSZ (SJSZ glycoprotein) has a molecular weight with 38 kDa and consists of carbohydrate (57.64%) and protein (42.35%). In the composition of SJSZ glycoprotein, carbohydrate mostly consists of glucose (28.17%), galactose (21.85%), and mannose (2.62%) out of 52.64%, respectively. The protein consists of Trp (W, 7.01%), Pro (P, 6.72%), and Ile (I, 5.42%) out of 42.35% as three major amino acids, while total amount of other amino acids is 23.20%. The purpose of this study is to know whether the SJSZ glycoprotein (38 kDa) induces the cell cycle arrest and apoptosis in HepG2 cells. Cytotoxicity was evaluated using MTT and lactate dehydrogenase assay and amount of intracellular reactive oxygen species (iROS) and nitric oxide (NO) was measured using fluorescence microplate reader. Activities of cell cycle-related proteins [p53, p21, p27, Cyclin D1, and cyclin-dependent kinase (CDK)4] and apoptosis-related factors [iNOS, Bid, Bcl-2/bax, cytochrome c, caspase-9, caspase-3, and poly-(ADP-ribose) polymerase (PARP)] were assessed by Western blot and fluorescence-activated cell sorter (FACS) analysis. In the cell cycle-related proteins, SJSZ glycoprotein (50 µg/ml) significantly enhances the expression of p53, p21, and p27, whereas it suppressed the activity of cyclin D1/CDK4. In the apoptosis-related factors, SJSZ glycoprotein (50 µg/ml) stimulates to increase iROS, and NO, to activate iNOS, Bid, Bcl-2/bax, cytochrome c, caspase-9, caspase-3, and PARP. SJSZ glycoprotein (50 µg/ml) has potent effect to arrest cell cycle from G(0) /G(1) to S and to induce apoptosis in HepG2 cells.
Collapse
Affiliation(s)
- Jin Lee
- Molecular Biochemistry Laboratory, Biotechnology Research Institute & Center for the Control of Animal Hazards Using Biotechnology (BK21), Chonnam National University, 300 Yongbong-Dong, Gwang-ju 500-757, South Korea
| | | |
Collapse
|
79
|
Yao J, Brinton RD. Estrogen regulation of mitochondrial bioenergetics: implications for prevention of Alzheimer's disease. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2012; 64:327-71. [PMID: 22840752 PMCID: PMC3970844 DOI: 10.1016/b978-0-12-394816-8.00010-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with a complex and progressive pathological phenotype characterized first by hypometabolism and impaired mitochondrial bioenergetics followed by pathological burden. Increasing evidence indicates an antecedent and potentially causal role of mitochondrial bioenergetic deficits and brain hypometabolism coupled with increased mitochondrial oxidative stress in AD pathogenesis. Compromised aerobic glycolysis pathway coupled with oxidative stress is first accompanied by a shift toward a ketogenic pathway that eventually progresses into fatty acid oxidation (FAO) pathways and leads to white matter degeneration and overproduction and mitochondrial accumulation of β-amyloid. Estrogen-induced signaling pathways converge upon the mitochondria to enhance mitochondrial function and to sustain aerobic glycolysis coupled with citric acid cycle-driven oxidative phosphorylation to potentiate ATP (Adenosine triphosphate) generation. In addition to potentiated mitochondrial bioenergetics, estrogen also enhances neural survival and health through maintenance of calcium homeostasis, promotion of antioxidant defense against free radicals, efficient cholesterol trafficking, and beta amyloid clearance. Significantly, the convergence of E2 mechanisms of action onto mitochondria is also a potential point of vulnerability when activated in diseased neurons that exacerbates degeneration through increased load on dysregulated calcium homeostasis. The "healthy cell bias of estrogen action" hypothesis examines the role that regulating mitochondrial function and bioenergetics play in promoting neural health and the mechanistic crossroads that lead to divergent outcomes following estrogen exposure. As the continuum of neurological health progresses from healthy to unhealthy, so too do the benefits of estrogen or hormone therapy.
Collapse
Affiliation(s)
- Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, School of Pharmacy, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
80
|
Irwin RW, Yao J, To J, Hamilton RT, Cadenas E, Brinton RD. Selective oestrogen receptor modulators differentially potentiate brain mitochondrial function. J Neuroendocrinol 2012; 24:236-48. [PMID: 22070562 PMCID: PMC3264398 DOI: 10.1111/j.1365-2826.2011.02251.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The mitochondrial energy-transducing capacity of the brain is important for long-term neurological health and is influenced by endocrine hormone responsiveness. The present study aimed to determine the role of oestrogen receptor (ER) subtypes in regulating mitochondrial function using selective agonists for ERα (propylpyrazoletriol; PPT) and ERβ (diarylpropionitrile; DPN). Ovariectomised female rats were treated with 17β-oestradiol (E(2) ), PPT, DPN or vehicle control. Both ER selective agonists significantly increased the mitochondrial respiratory control ratio and cytochrome oxidase (COX) activity relative to vehicle. Western blots of purified whole brain mitochondria detected ERα and, to a greater extent, ERβ localisation. Pre-treatment with DPN, an ERβ agonist, significantly increased ERβ association with mitochondria. In the hippocampus, DPN activated mitochondrial DNA-encoded COX I expression, whereas PPT was ineffective, indicating that mechanistically ERβ, and not ERα, activated mitochondrial transcriptional machinery. Both selective ER agonists increased protein expression of nuclear DNA-encoded COX IV, suggesting that activation of ERβ or ERα is sufficient. Selective ER agonists up-regulated a panel of bioenergetic enzymes and antioxidant defence proteins. Up-regulated proteins included pyruvate dehydrogenase, ATP synthase, manganese superoxide dismutase and peroxiredoxin V. In vitro, whole cell metabolism was assessed in live primary cultured hippocampal neurones and mixed glia. The results of analyses conducted in vitro were consistent with data obtained in vivo. Furthermore, lipid peroxides, accumulated as a result of hormone deprivation, were significantly reduced by E(2) , PPT and DPN. These findings suggest that the activation of both ERα and ERβ is differentially required to potentiate mitochondrial function in brain. As active components in hormone therapy, synthetically designed oestrogens as well as natural phyto-oestrogen cocktails can be tailored to improve brain mitochondrial endpoints.
Collapse
Affiliation(s)
- Ronald W. Irwin
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jia Yao
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Jimmy To
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Ryan T. Hamilton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Enrique Cadenas
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
| | - Roberta Diaz Brinton
- Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, Los Angeles, California, 90033
- Program in Neuroscience, University of Southern California, Los Angeles, California, 90033
- Address correspondence to: Roberta Diaz Brinton, Ph.D., Department of Pharmacology and Pharmaceutical Sciences, University of Southern California, Pharmaceutical Sciences Center, 1985 Zonal Avenue, Los Angeles, California, 90089, Tel. 323-442-1428; Fax. 323-442-1489;
| |
Collapse
|
81
|
Park JS, Shin DY, Lee YW, Cho CK, Kim GY, Kim WJ, Yoo HS, Choi YH. Apoptotic and anti-metastatic effects of the whole skin of Venenum bufonis in A549 human lung cancer cells. Int J Oncol 2011; 40:1210-9. [PMID: 22200726 PMCID: PMC3584623 DOI: 10.3892/ijo.2011.1310] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2011] [Accepted: 09/16/2011] [Indexed: 11/23/2022] Open
Abstract
In the present study, the effects of the whole skin of Venenum bufonis on apoptotic and anti-invasive activity in A549 human lung cancer cells were investigated. Treatment with extract of the whole skin of V. bufonis (SVB) resulted in a significant decrease in cell growth of A549 cells, depending on dosage, which was associated with apoptosis induction, as proved by chromatin condensation and accumulation of apoptotic fraction. SVB treatment induced expression of death receptor-related proteins, such as death receptor 4, which further triggered activation of caspase-8 and cleavage of Bid. In addition, the increase in apoptosis by SVB treatment was correlated with dysfunction of mitochondria, activation of caspase-9 and -3, downregulation of IAP family proteins, such as XIAP, cIAP-1 and cIAP-2, and concomitant degradation of activated caspase-3-specific target proteins, such as poly (ADP-ribose) polymerase and β-catenin proteins. However, z-DEVD-fmk, a caspase-3-specific inhibitor, blocked SVB-induced apoptosis and increased the survival rate of SVB-treated cells, indicating that activation of caspase-3 plays a key role in SVB-induced apoptosis. In addition, within concentrations that were not cytotoxic to A549 cells, SVB induced marked inhibition of cell motility and invasiveness. Activities of matrix metalloproteinase (MMP)-2 and MMP-9 in AGS cells were dose-dependently inhibited by treatment with SVB, and this was also correlated with a decrease in expression of their mRNA and proteins, and upregulation of tissue inhibitors of metalloproteinase (TIMP)-1 and TIMP-2 mRNA expression. Further studies are needed; however, the results indicated that SVB induces apoptosis of A549 cells through a signaling cascade of death receptor-mediated extrinsic as well as mitochondria-mediated intrinsic caspase pathways. Our data also demonstrated that MMPs are critical targets of SVB-induced anti-invasiveness in A549 cells.
Collapse
Affiliation(s)
- Jeong-Seok Park
- Department of East-West Cancer Center, College of Oriental Medicine, Daejeon University, Daejeon 301-724, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
82
|
Low ICC, Kang J, Pervaiz S. Bcl-2: a prime regulator of mitochondrial redox metabolism in cancer cells. Antioxid Redox Signal 2011; 15:2975-87. [PMID: 21574773 DOI: 10.1089/ars.2010.3851] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
SIGNIFICANCE Mitochondria play a critical role as death amplifiers during drug-induced apoptosis in cancer cells by providing pro-apoptotic factors that are released from the mitochondrial inter-membranous space upon the induction of mitochondrial outer membrane permeabilization. This intrinsic death signaling pathway is the preferred mechanism employed by most anticancer compounds, and as such, resistance to drug-induced apoptosis is invariably associated with inhibition of mitochondrial death signaling network. The latter is a function of a balance between the pro- and the anti-apoptotic members of the Bcl-2 family. Bcl-2 is the prototype anti-apoptotic protein that localizes to the mitochondria and blocks the recruitment and activation of pro-apoptotic proteins, such as Bax, to the mitochondria. RECENT ADVANCES AND CRITICAL ISSUES Recent evidence has highlighted a novel mechanism of anti-apoptotic activity of Bcl-2 in addition to its canonical activity in regulating mitochondrial outer membrane permeabilization. This novel activity is a function of cellular redox regulation, in particular, mitochondrial metabolism in cancer cells. FUTURE DIRECTIONS Here we review the current state of our understanding of the death inhibitory activity of Bcl-2 and provide insight into the novel functional biology of this remarkable protein, which could have implications for designing innovative strategies to overcome the problem of drug resistance in the clinical settings.
Collapse
Affiliation(s)
- Ivan Cherh Chiet Low
- ROS, Apoptosis and Cancer Biology Laboratory, Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | | |
Collapse
|
83
|
Hirata H, Lopes GS, Jurkiewicz A, Garcez-do-Carmo L, Smaili SS. Bcl-2 Modulates Endoplasmic Reticulum and Mitochondrial Calcium Stores in PC12 Cells. Neurochem Res 2011; 37:238-43. [DOI: 10.1007/s11064-011-0600-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 09/05/2011] [Accepted: 09/09/2011] [Indexed: 11/30/2022]
|
84
|
Rogers GW, Brand MD, Petrosyan S, Ashok D, Elorza AA, Ferrick DA, Murphy AN. High throughput microplate respiratory measurements using minimal quantities of isolated mitochondria. PLoS One 2011; 6:e21746. [PMID: 21799747 PMCID: PMC3143121 DOI: 10.1371/journal.pone.0021746] [Citation(s) in RCA: 371] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2011] [Accepted: 06/06/2011] [Indexed: 12/21/2022] Open
Abstract
Recently developed technologies have enabled multi-well measurement of O(2) consumption, facilitating the rate of mitochondrial research, particularly regarding the mechanism of action of drugs and proteins that modulate metabolism. Among these technologies, the Seahorse XF24 Analyzer was designed for use with intact cells attached in a monolayer to a multi-well tissue culture plate. In order to have a high throughput assay system in which both energy demand and substrate availability can be tightly controlled, we have developed a protocol to expand the application of the XF24 Analyzer to include isolated mitochondria. Acquisition of optimal rates requires assay conditions that are unexpectedly distinct from those of conventional polarography. The optimized conditions, derived from experiments with isolated mouse liver mitochondria, allow multi-well assessment of rates of respiration and proton production by mitochondria attached to the bottom of the XF assay plate, and require extremely small quantities of material (1-10 µg of mitochondrial protein per well). Sequential measurement of basal, State 3, State 4, and uncoupler-stimulated respiration can be made in each well through additions of reagents from the injection ports. We describe optimization and validation of this technique using isolated mouse liver and rat heart mitochondria, and apply the approach to discover that inclusion of phosphatase inhibitors in the preparation of the heart mitochondria results in a specific decrease in rates of Complex I-dependent respiration. We believe this new technique will be particularly useful for drug screening and for generating previously unobtainable respiratory data on small mitochondrial samples.
Collapse
Affiliation(s)
- George W. Rogers
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - Martin D. Brand
- Buck Institute for Age Research, Novato, California, United States of America
| | - Susanna Petrosyan
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| | - Deepthi Ashok
- Buck Institute for Age Research, Novato, California, United States of America
| | - Alvaro A. Elorza
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - David A. Ferrick
- Seahorse Bioscience, North Billerica, Massachusetts, United States of America
| | - Anne N. Murphy
- Department of Pharmacology, University of California San Diego, La Jolla, California, United States of America
| |
Collapse
|
85
|
Popgeorgiev N, Bonneau B, Ferri KF, Prudent J, Thibaut J, Gillet G. The apoptotic regulator Nrz controls cytoskeletal dynamics via the regulation of Ca2+ trafficking in the zebrafish blastula. Dev Cell 2011; 20:663-76. [PMID: 21571223 DOI: 10.1016/j.devcel.2011.03.016] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Revised: 02/02/2011] [Accepted: 03/21/2011] [Indexed: 11/26/2022]
Abstract
Bcl-2 family members are key regulators of apoptosis. Their involvement in other cellular processes has been so far overlooked. We have studied the role of the Bcl-2 homolog Nrz in the developing zebrafish. Nrz was found to be localized to the yolk syncytial layer, a region containing numerous mitochondria and ER membranes. Nrz knockdown resulted in developmental arrest before gastrulation, due to free Ca(2+) increase in the yolk cell, activating myosin light chain kinase, which led to premature contraction of actin-myosin cables in the margin and separation of the blastomeres from the yolk cell. In the yolk syncytial layer, Nrz appears to prevent the release of Ca(2+) from the endoplasmic reticulum by directly interacting with the IP3R1 Ca(2+) channel. Thus, the Bcl-2 family may participate in early development, not only by controlling apoptosis but also by acting on cytoskeletal dynamics and cell movements via Ca(2+) fluxes inside the embryo.
Collapse
Affiliation(s)
- Nikolay Popgeorgiev
- CRCL U1052 INSERM, UMS 3443 CNRS, Centre Léon Bérard, 28 rue Laennec, 69008 Lyon, France
| | | | | | | | | | | |
Collapse
|
86
|
Peixoto PM, Dejean LM, Kinnally KW. The therapeutic potential of mitochondrial channels in cancer, ischemia-reperfusion injury, and neurodegeneration. Mitochondrion 2011; 12:14-23. [PMID: 21406252 DOI: 10.1016/j.mito.2011.03.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2010] [Revised: 02/23/2011] [Accepted: 03/03/2011] [Indexed: 10/18/2022]
Abstract
Mitochondria communicate with the rest of the cell through channels located in their inner and outer membranes. Most of the time, the message is encoded by the flow of anions and cations e.g., through VDAC and PTP, respectively. However, proteins are also both imported and exported across the mitochondrial membranes e.g., through TOM and MAC, respectively. Transport through mitochondrial channels is exquisitely regulated and controls a myriad of processes; from energy production to cell death. Here, we examine the role of some of the mitochondrial channels involved in neurodegeneration, ischemia-reperfusion injury and cancer in the context of their potential as therapeutic targets.
Collapse
Affiliation(s)
- Pablo M Peixoto
- New York University, College of Dentistry, 345 East 24th Street, New York, NY 10010, United States
| | | | | |
Collapse
|
87
|
Wei AC, Liu T, Cortassa S, Winslow RL, O'Rourke B. Mitochondrial Ca2+ influx and efflux rates in guinea pig cardiac mitochondria: low and high affinity effects of cyclosporine A. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2011; 1813:1373-81. [PMID: 21362444 DOI: 10.1016/j.bbamcr.2011.02.012] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 02/14/2011] [Accepted: 02/17/2011] [Indexed: 12/12/2022]
Abstract
Ca(2+) plays a central role in energy supply and demand matching in cardiomyocytes by transmitting changes in excitation-contraction coupling to mitochondrial oxidative phosphorylation. Matrix Ca(2+) is controlled primarily by the mitochondrial Ca(2+) uniporter and the mitochondrial Na(+)/Ca(2+) exchanger, influencing NADH production through Ca(2+)-sensitive dehydrogenases in the Krebs cycle. In addition to the well-accepted role of the Ca(2+)-triggered mitochondrial permeability transition pore in cell death, it has been proposed that the permeability transition pore might also contribute to physiological mitochondrial Ca(2+) release. Here we selectively measure Ca(2+) influx rate through the mitochondrial Ca(2+) uniporter and Ca(2+) efflux rates through Na(+)-dependent and Na(+)-independent pathways in isolated guinea pig heart mitochondria in the presence or absence of inhibitors of mitochondrial Na(+)/Ca(2+) exchanger (CGP 37157) or the permeability transition pore (cyclosporine A). cyclosporine A suppressed the negative bioenergetic consequences (ΔΨ(m) loss, Ca(2+) release, NADH oxidation, swelling) of high extramitochondrial Ca(2+) additions, allowing mitochondria to tolerate total mitochondrial Ca(2+) loads of >400nmol/mg protein. For Ca(2+) pulses up to 15μM, Na(+)-independent Ca(2+) efflux through the permeability transition pore accounted for ~5% of the total Ca(2+) efflux rate compared to that mediated by the mitochondrial Na(+)/Ca(2+) exchanger (in 5mM Na(+)). Unexpectedly, we also observed that cyclosporine A inhibited mitochondrial Na(+)/Ca(2+) exchanger-mediated Ca(2+) efflux at higher concentrations (IC(50)=2μM) than those required to inhibit the permeability transition pore, with a maximal inhibition of ~40% at 10μM cyclosporine A, while having no effect on the mitochondrial Ca(2+) uniporter. The results suggest a possible alternative mechanism by which cyclosporine A could affect mitochondrial Ca(2+) load in cardiomyocytes, potentially explaining the paradoxical toxic effects of cyclosporine A at high concentrations. This article is part of a Special Issue entitled: Mitochondria and Cardioprotection.
Collapse
Affiliation(s)
- An-Chi Wei
- Department of Biomedical Engineering, Institute of Computational Medicine, The Johns Hopkins University, Baltimore MD 21205-2195, USA
| | | | | | | | | |
Collapse
|
88
|
Gnaiger E, Kuznetsov A, Rieger G, Amberger A, Fuchs A, Stadlmann S, Eberl T, Margreiter R. Mitochondrial defects by intracellular calcium overload versus endothelial cold ischemia/reperfusion injury. Transpl Int 2011. [DOI: 10.1111/j.1432-2277.2000.tb02103.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
89
|
Ouyang YB, Xu LJ, Emery JF, Lee AS, Giffard RG. Overexpressing GRP78 influences Ca2+ handling and function of mitochondria in astrocytes after ischemia-like stress. Mitochondrion 2010; 11:279-86. [PMID: 21047562 DOI: 10.1016/j.mito.2010.10.007] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 09/22/2010] [Accepted: 10/25/2010] [Indexed: 01/08/2023]
Abstract
Ca(2+) transfer from endoplasmic reticulum (ER) to mitochondria at contact sites between the organelles can induce mitochondrial dysfunction and programmed cell death after stress. The ER-localized chaperone glucose-regulated protein 78kDa (GRP78/BiP) protects neurons against excitotoxicity and apoptosis. Here we show that overexpressing GRP78 protects astrocytes against ischemic injury, reduces net flux of Ca(2+) from ER to mitochondria, increases Ca(2+) uptake capacity in isolated mitochondria, reduces free radical production, and preserves respiratory activity and mitochondrial membrane potential after stress. We conclude that GRP78 influences ER-mitochondrial Ca(2+) crosstalk to maintain mitochondrial function and protect astrocytes from ischemic injury.
Collapse
Affiliation(s)
- Yi-Bing Ouyang
- Department of Anesthesia, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
90
|
Kinnally KW, Peixoto PM, Ryu SY, Dejean LM. Is mPTP the gatekeeper for necrosis, apoptosis, or both? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2010; 1813:616-22. [PMID: 20888866 DOI: 10.1016/j.bbamcr.2010.09.013] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Revised: 09/22/2010] [Accepted: 09/23/2010] [Indexed: 02/01/2023]
Abstract
Permeabilization of the mitochondrial membranes is a crucial step in apoptosis and necrosis. This phenomenon allows the release of mitochondrial death factors, which trigger or facilitate different signaling cascades ultimately causing the execution of the cell. The mitochondrial permeability transition pore (mPTP) has long been known as one of the main regulators of mitochondria during cell death. mPTP opening can lead to matrix swelling, subsequent rupture of the outer membrane, and a nonspecific release of intermembrane space proteins into the cytosol. While mPTP was purportedly associated with early apoptosis, recent observations suggest that mitochondrial permeabilization mediated by mPTP is generally more closely linked to events of late apoptosis and necrosis. Mechanisms of mitochondrial membrane permeabilization during cell death, involving three different mitochondrial channels, have been postulated. These include the mPTP in the inner membrane, and the mitochondrial apoptosis-induced channel (MAC) and voltage-dependent anion-selective channel (VDAC) in the outer membrane. New developments on mPTP structure and function, and the involvement of mPTP, MAC, and VDAC in permeabilization of mitochondrial membranes during cell death are explored. This article is part of a Special Issue entitled Mitochondria: the deadly organelle.
Collapse
Affiliation(s)
- Kathleen W Kinnally
- New York University College of Dentistry, Department Basic Sciences 345 East 24th Street, New York, NY 10010, USA
| | | | | | | |
Collapse
|
91
|
Clay HB, Sillivan S, Konradi C. Mitochondrial dysfunction and pathology in bipolar disorder and schizophrenia. Int J Dev Neurosci 2010; 29:311-24. [PMID: 20833242 DOI: 10.1016/j.ijdevneu.2010.08.007] [Citation(s) in RCA: 295] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 08/25/2010] [Accepted: 08/26/2010] [Indexed: 12/20/2022] Open
Abstract
Bipolar disorder (BPD) and schizophrenia (SZ) are severe psychiatric illnesses with a combined prevalence of 4%. A disturbance of energy metabolism is frequently observed in these disorders. Several pieces of evidence point to an underlying dysfunction of mitochondria: (i) decreased mitochondrial respiration; (ii) changes in mitochondrial morphology; (iii) increases in mitochondrial DNA (mtDNA) polymorphisms and in levels of mtDNA mutations; (iv) downregulation of nuclear mRNA molecules and proteins involved in mitochondrial respiration; (v) decreased high-energy phosphates and decreased pH in the brain; and (vi) psychotic and affective symptoms, and cognitive decline in mitochondrial disorders. Furthermore, transgenic mice with mutated mitochondrial DNA polymerase show mood disorder-like phenotypes. In this review, we will discuss the genetic and physiological components of mitochondria and the evidence for mitochondrial abnormalities in BPD and SZ. We will furthermore describe the role of mitochondria during brain development and the effect of current drugs for mental illness on mitochondrial function. Understanding the role of mitochondria, both developmentally as well as in the ailing brain, is of critical importance to elucidate pathophysiological mechanisms in psychiatric disorders.
Collapse
Affiliation(s)
- Hayley B Clay
- Neuroscience Graduate Program, Vanderbilt University, Nashville, TN 37232, USA
| | | | | |
Collapse
|
92
|
MICU1 encodes a mitochondrial EF hand protein required for Ca(2+) uptake. Nature 2010; 467:291-6. [PMID: 20693986 PMCID: PMC2977980 DOI: 10.1038/nature09358] [Citation(s) in RCA: 701] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 07/19/2010] [Indexed: 02/07/2023]
Abstract
Mitochondrial calcium uptake plays a central role in cell physiology by stimulating ATP production, shaping cytosolic calcium transients, and regulating cell death. The biophysical properties of mitochondrial calcium uptake have been studied in detail, but the underlying proteins remain elusive. Here, we utilize an integrative strategy to predict human genes involved in mitochondrial calcium entry based on clues from comparative physiology, evolutionary genomics, and organelle proteomics. RNA interference against 13 top candidates highlighted one gene that we now call mitochondrial calcium uptake 1 (MICU1). Silencing MICU1 does not disrupt mitochondrial respiration or membrane potential but abolishes mitochondrial calcium entry in intact and permeabilized cells, and attenuates the metabolic coupling between cytosolic calcium transients and activation of matrix dehydrogenases. MICU1 is associated with the organelle’s inner membrane and has two canonical EF hands that are essential for its activity, suggesting a role in calcium sensing. MICU1 represents the founding member of a set of proteins required for high capacity mitochondrial calcium entry. Its discovery may lead to the complete molecular characterization of mitochondrial calcium uptake pathways, and offers genetic strategies for understanding their contribution to normal physiology and disease.
Collapse
|
93
|
Saito A, Castilho RF. Inhibitory effects of adenine nucleotides on brain mitochondrial permeability transition. Neurochem Res 2010; 35:1667-74. [PMID: 20652632 DOI: 10.1007/s11064-010-0228-x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2010] [Indexed: 01/15/2023]
Abstract
The adenine nucleotides ADP and ATP are probably the most important endogenous inhibitors of the mitochondrial permeability transition (MPT). We studied the inhibitory effects of adenine nucleotides on brain MPT by measuring mitochondrial swelling and Ca(2+) and cytochrome c release. We observed that in the presence of either ADP or ATP, at 250 μM, brain mitochondria accumulated more than 1 μmol Ca(2+) × mg protein(-1). ADP or ATP also prevented Ca(2+)-induced mitochondrial swelling and cytochrome c release. Interestingly, ATP lost most of its inhibitory effects on MPT when the experiments were carried out in the presence of ATP-regenerating systems. These results indicate that MPT inhibition observed in the presence of added ATP could be mainly due to hydrolysis of ATP to ADP. From mitochondrial swelling measurements, half-maximal inhibitory values (K(i)) of 4.5 and 98 μM were obtained for ADP and ATP, respectively. In addition, a delayed mitochondrial swelling sensitive to higher ADP concentrations was observed. Mitochondrial anoxia/reoxygenation did not interfere with the inhibitory effect of ADP on Ca(2+)-induced MPT, but oxidative phosphorylation markedly decreased this effect. We conclude that ADP is a potent inhibitor of brain MPT whereas ATP is a weaker inhibitor of this phenomenon. Our results suggest that ADP can have an important protective role against MPT-mediated tissue damage under conditions of brain ischemia and hypoglycemia.
Collapse
Affiliation(s)
- Angela Saito
- Departamento de Patologia Clínica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | | |
Collapse
|
94
|
Aleman M, Nieto JE. Gene expression of proteolytic systems and growth regulators of skeletal muscle in horses with myopathy associated with pituitary pars intermedia dysfunction. Am J Vet Res 2010; 71:664-70. [DOI: 10.2460/ajvr.71.6.664] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
95
|
Peixoto PM, Ryu SY, Kinnally KW. Mitochondrial ion channels as therapeutic targets. FEBS Lett 2010; 584:2142-52. [PMID: 20178788 PMCID: PMC2872129 DOI: 10.1016/j.febslet.2010.02.046] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2009] [Revised: 02/12/2010] [Accepted: 02/16/2010] [Indexed: 12/31/2022]
Abstract
The study of mitochondrial ion channels changed our perception of these double-wrapped organelles from being just the power house of a cell to the guardian of a cell's fate. Mitochondria communicate with the cell through these special channels. Most of the time, the message is encoded by ion flow across the mitochondrial outer and inner membranes. Potassium, sodium, calcium, protons, nucleotides, and proteins traverse the mitochondrial membranes in an exquisitely regulated manner to control a myriad of processes, from respiration and mitochondrial morphology to cell proliferation and cell death. This review is an update on both well established and putative mitochondrial channels regarding their composition, function, regulation, and therapeutic potential.
Collapse
Affiliation(s)
| | - Shin-Young Ryu
- New York University College of Dentistry, New York, NY, 10002
| | | |
Collapse
|
96
|
Jang KJ, Han MH, Lee BH, Kim BW, Kim CH, Yoon HM, Choi YH. Induction of Apoptosis by Ethanol Extracts of Ganoderma lucidum in Human Gastric Carcinoma Cells. J Acupunct Meridian Stud 2010; 3:24-31. [DOI: 10.1016/s2005-2901(10)60004-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/03/2009] [Indexed: 12/28/2022] Open
|
97
|
Induction of apoptosis by esculetin in human leukemia U937 cells: Roles of Bcl-2 and extracellular-regulated kinase signaling. Toxicol In Vitro 2010; 24:486-94. [DOI: 10.1016/j.tiv.2009.09.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2009] [Revised: 08/08/2009] [Accepted: 09/22/2009] [Indexed: 11/19/2022]
|
98
|
Leite ACR, Oliveira HCF, Utino FL, Garcia R, Alberici LC, Fernandes MP, Castilho RF, Vercesi AE. Mitochondria generated nitric oxide protects against permeability transition via formation of membrane protein S-nitrosothiols. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1210-6. [PMID: 20138021 DOI: 10.1016/j.bbabio.2010.01.034] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2009] [Revised: 01/27/2010] [Accepted: 01/27/2010] [Indexed: 10/19/2022]
Abstract
Mitochondria generated nitric oxide (NO) regulates several cell functions including energy metabolism, cell cycling, and cell death. Here we report that the NO synthase inhibitors (L-NAME, L-NNA and L-NMMA) administered either in vitro or in vivo induce Ca2+-dependent mitochondrial permeability transition (MPT) in rat liver mitochondria via a mechanism independent on changes in the energy state of the organelle. MPT was determined by the occurrence of cyclosporin A sensitive mitochondrial membrane potential disruption followed by mitochondrial swelling and Ca2+ release. In in vitro experiments, the effect of NOS inhibitors was dose-dependent (1 to 50 microM). In addition to cyclosporin A, L-NAME-induced MPT was sensitive to Mg2+ plus ATP, EGTA, and to a lower degree, to catalase and dithiothreitol. In contrast to L-NAME, its isomer D-NAME did not induce MPT. L-NAME-induced MPT was associated with a significant decrease in both the rate of NO generation and the content of mitochondrial S-nitrosothiol. Acute and chronic in vivo treatment with L-NAME also promoted MPT and decreased the content of mitochondrial S-nitrosothiol. SNAP (a NO donor) prevented L-NAME mediated MPT and reversed the decrease in the rate of NO generation and in the content of S-nitrosothiol. We propose that S-nitrosylation of critical membrane protein thiols by NO protects against MPT.
Collapse
Affiliation(s)
- Ana Catarina R Leite
- Departamento de Fisiologia e Biofísica, Universidade Estadual de Campinas, UNICAMP, Campinas, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Kim JH, Choi YW, Park C, Jin CY, Lee YJ, Park DJ, Kim SG, Kim GY, Choi IW, Hwang WD, Jeong YK, Kim SK, Choi YH. Apoptosis induction of human leukemia U937 cells by gomisin N, a dibenzocyclooctadiene lignan, isolated from Schizandra chinensis Baill. Food Chem Toxicol 2009; 48:807-13. [PMID: 20034537 DOI: 10.1016/j.fct.2009.12.012] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Revised: 11/27/2009] [Accepted: 12/16/2009] [Indexed: 11/26/2022]
Abstract
We compared the pro-apoptotic effect of two dibenzocyclooctadiene lignans, gomisin A and gomisin N, isolated from Schizandra chinensis Baill, in U937 human promyelocytic leukemia cells in vitro. Gomisin N, but not gomisin A, inhibited cell growth in a dose-dependent manner, which was associated with the induction of apoptosis. The increase in apoptosis that was induced by gomisin N was correlated with down-regulation of anti-apoptotic Bcl-2 expression, a decrease in the mitochondrial membrane potential (MMP) and a release of cytochrome c from the mitochondria into the cytosol. Furthermore, gomisin N induced the proteolytic activation of caspase-9 and -3 and a concomitant degradation of poly(ADP-ribose) polymerase. However, caspase-8 was not activated and cleavage of Bid was not observed in gomisin N-treated U937 cells. The cytotoxic effects and apoptotic characteristics induced by gomisin N were significantly inhibited by z-DEVD-fmk, a caspase-3 inhibitor, demonstrating the important role that caspase-3 plays in the process. We conclude that gomisin N induces the apoptosis of U937 cells through a signaling cascade of mitochondria-mediated intrinsic caspase pathways and gomisin N may be a useful chemotherapeutic agent.
Collapse
Affiliation(s)
- Jong-Hwan Kim
- Department of Oriental Medicine, Dongeui University College of Oriental Medicine, Busan 614-052, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
100
|
Effect of IPP5, a novel inhibitor of PP1, on apoptosis and the underlying mechanisms involved. Biotechnol Appl Biochem 2009; 54:231-8. [PMID: 19874272 DOI: 10.1042/ba20090168] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Genes encoding apoptosis-inducing proteins are postulated to be candidate tumour suppressors. The identification of such proteins may benefit the early diagnosis and therapy of tumours. In the present study, we characterized the function of a novel human BMSC (bone marrow stromal cell)-derived protein {IPP5 [inhibitor-5 of PP1 (protein phosphatase 1)]} by large-scale random sequencing of a human BMSC cDNA library. hIPP5 (human IPP5) cDNA encodes a protein of 116 amino acid residues, which shares high homology with human PPI-1 (inhibitor-1 of PP1). The effect of IPP5 on apoptosis and the underlying molecular mechanisms were investigated by overexpression of IPP5 in HeLa cells, a human cervical carcinoma cell line. Our results showed that overexpression of active mutant IPP5 inhibited anchorage-dependent growth and induced apoptosis in HeLa cells, which may be attributed to the up-regulation of p21(waf/cip1) (a 21 kDa cell-cycle regulatory protein), p53 and Bcl-2-antagonist/killer, and down-regulation of Bcl-2 and Bcl-X(L). We also showed that the expression of active mutant IPP5 in HeLa cells was further enhanced on TNF (tumour necrosis factor) treatment and overexpression of active mutant IPP5 sensitized HeLa cells to TNF-induced JNK (c-Jun N-terminal kinase) and p38 activation as well as TNF-mediated apoptosis. Thus overexpression of active mutant IPP5 may increase cell susceptibility to TNF-induced apoptosis by the activation of p38 and JNK pathways. In addition, IPP5 active mutant could interact with PP1alpha as demonstrated by the co-precipitation assay.
Collapse
|