51
|
Douraid D, Ahmed L. SeqA, the Escherichia coli origin sequestration protein, can regulate the replication of the pBR322 plasmid. Plasmid 2010; 65:15-9. [PMID: 20875449 DOI: 10.1016/j.plasmid.2010.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2009] [Revised: 09/15/2010] [Accepted: 09/17/2010] [Indexed: 11/25/2022]
Abstract
The pBR322 plasmid origin replication and oriC show similar responses to adenine methylation. Both are subject to sequestration by membrane fractions. In fact, like the host origin oriC, the RNA II promoter region of pBR322 is regulated by methylation of three GATC adenine methylation sites. The SeqA gene product acts in the negative control of oriC by sequestration. We suggest that the role of SeqA protein in sequestration is similar to oriC region DNA. Hence, SeqA recognize the methylation state of the pBR322RNA II promoter region by direct DNA binding in vitro. Using the pOC42 plasmid, we show that SeqA binds exclusively to the hemimethylated form of the replication origin of the pBR322 plasmid. In addition, we suggested that the SeqA protein could modulate periodically the initiation of replication of the pBR322 plasmid. The later could be fixed by its origin sequence, on a hemimethylated state, during the initiation of the replication.
Collapse
Affiliation(s)
- Daghfous Douraid
- Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des sciences de Bizerte, 7021 Zarzouna, Tunisia.
| | | |
Collapse
|
52
|
Booker BM, Deng S, Higgins NP. DNA topology of highly transcribed operons in Salmonella enterica serovar Typhimurium. Mol Microbiol 2010; 78:1348-64. [PMID: 21143310 DOI: 10.1111/j.1365-2958.2010.07394.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Bacteria differ from eukaryotes by having the enzyme DNA gyrase, which catalyses the ATP-dependent negative supercoiling of DNA. Negative supercoils are essential for condensing chromosomes into an interwound (plectonemic) and branched structure known as the nucleoid. Topo-1 removes excess supercoiling in an ATP-independent reaction and works with gyrase to establish a topological equilibrium where supercoils move within 10 kb domains bounded by stochastic barriers along the sequence. However, transcription changes the stochastic pattern by generating supercoil diffusion barriers near the sites of gene expression. Using supercoil-dependent Tn3 and γδ resolution assays, we studied DNA topology upstream, downstream and across highly transcribed operons. Whenever two Res sites flanked efficiently transcribed genes, resolution was inhibited and the loss in recombination efficiency was proportional to transcription level. Ribosomal RNA operons have the highest transcription rates, and resolution assays at the rrnG and rrnH operons showed inhibitory levels 40-100 times those measured in low-transcription zones. Yet, immediately upstream and downstream of RNA polymerase (RNAP) initiation and termination sites, supercoiling characteristics were similar to poorly transcribed zones. We present a model that explains why RNAP blocks plectonemic supercoil movement in the transcribed track and suggests how gyrase and TopA control upstream and downstream transcription-driven supercoiling.
Collapse
Affiliation(s)
- Betty M Booker
- Department of Biochemistry and Molecular Genetics, University of Alabama , Birmingham, AL 35294-0024, USA
| | | | | |
Collapse
|
53
|
A mathematical model for timing the release from sequestration and the resultant Brownian migration of SeqA clusters in E. coli. Bull Math Biol 2010; 73:1271-91. [PMID: 20640526 DOI: 10.1007/s11538-010-9558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2009] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
Abstract
DNA replication in Escherichia coli is initiated by DnaA binding to oriC, the replication origin. During the process of assembly of the replication factory, the DnaA is released back into the cytoplasm, where it is competent to reinitiate replication. Premature reinitiation is prevented by binding SeqA to newly formed GATC sites near the replication origin. Resolution of the resulting SeqA cluster is one aspect of timing for reinitiation. A Markov model accounting for the competition between SeqA binding and methylation for one or several GATC sites relates the timing to reaction rates, and consequently to the concentrations of SeqA and methylase. A model is proposed for segregation, the motion of the two daughter DNAs into opposite poles of the cell before septation. This model assumes that the binding of SeqA and its subsequent clustering results in loops from both daughter nucleoids attached to the SeqA cluster at the GATC sites. As desequestration occurs, the cluster is divided in two, one associated with each daughter. As the loops of DNA uncoil, the two subclusters migrate apart due to the Brownian ratchet effect of the DNA loop.
Collapse
|
54
|
Boczko EM, Stowers CC, Gedeon T, Young TR. ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast. JOURNAL OF BIOLOGICAL DYNAMICS 2010; 4:328-45. [PMID: 20563236 PMCID: PMC2885793 DOI: 10.1080/17513750903288003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.
Collapse
Affiliation(s)
- Erik M. Boczko
- Department of Biomedical Informatics, Vanderbilt University
| | | | - Tomas Gedeon
- Department of Mathematics, Montana State University
| | | |
Collapse
|
55
|
Aloui A, Mihoub M, Sethom MM, Chatti A, Feki M, Kaabachi N, Landoulsi A. Effects ofdamand/orseqAMutations on the Fatty Acid and Phospholipid Membrane Composition ofSalmonella entericaSerovar Typhimurium. Foodborne Pathog Dis 2010; 7:573-83. [DOI: 10.1089/fpd.2009.0385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Amine Aloui
- Biochemistry Unit of Lipids and Interactions of Macromolecules in Biology, Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Zarzouna, Tunisia
| | - Mouadh Mihoub
- Biochemistry Unit of Lipids and Interactions of Macromolecules in Biology, Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Zarzouna, Tunisia
| | | | - Abdelwaheb Chatti
- Biochemistry Unit of Lipids and Interactions of Macromolecules in Biology, Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Zarzouna, Tunisia
| | - Moncef Feki
- Research Laboratory, Biochemistry Department, LaRabta Hospital, Tunis, Tunisia
| | - Naziha Kaabachi
- Research Laboratory, Biochemistry Department, LaRabta Hospital, Tunis, Tunisia
| | - Ahmed Landoulsi
- Biochemistry Unit of Lipids and Interactions of Macromolecules in Biology, Laboratory of Biochemistry and Molecular Biology, Faculty of Sciences of Bizerte, Zarzouna, Tunisia
| |
Collapse
|
56
|
Stepankiw N, Kaidow A, Boye E, Bates D. The right half of the Escherichia coli replication origin is not essential for viability, but facilitates multi-forked replication. Mol Microbiol 2009; 74:467-79. [PMID: 19737351 DOI: 10.1111/j.1365-2958.2009.06877.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication initiation is a key event in the cell cycle of all organisms and oriC, the replication origin in Escherichia coli, serves as the prototypical model for this process. The minimal sequence required for oriC function was originally determined entirely from plasmid studies using cloned origin fragments, which have previously been shown to differ dramatically in sequence requirement from the chromosome. Using an in vivo recombineering strategy to exchange wt oriCs for mutated ones regardless of whether they are functional origins or not, we have determined the minimal origin sequence that will support chromosome replication. Nearly the entire right half of oriC could be deleted without loss of origin function, demanding a reassessment of existing models for initiation. Cells carrying the new DnaA box-depleted 163 bp minimal oriC exhibited little or no loss of fitness under slow-growth conditions, but were sensitive to rich medium, suggesting that the dense packing of initiator binding sites that is a hallmark of prokaryotic origins, has likely evolved to support the increased demands of multi-forked replication.
Collapse
Affiliation(s)
- Nicholas Stepankiw
- Department of Human and Molecular Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | |
Collapse
|
57
|
Rotman E, Bratcher P, Kuzminov A. Reduced lipopolysaccharide phosphorylation in Escherichia coli lowers the elevated ori/ter ratio in seqA mutants. Mol Microbiol 2009; 72:1273-92. [PMID: 19432803 DOI: 10.1111/j.1365-2958.2009.06725.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The seqA defect in Escherichia coli increases the ori/ter ratio and causes chromosomal fragmentation, making seqA mutants dependent on recombinational repair (the seqA recA colethality). To understand the nature of this chromosomal fragmentation, we characterized DeltaseqA mutants and isolated suppressors of the DeltaseqA recA lethality. We demonstrate that our DeltaseqA alleles have normal function of the downstream pgm gene and normal ratios of the major phospholipids in the membranes, but increased surface lipopolysaccharide (LPS) phosphorylation. The predominant class of DeltaseqA recA suppressors disrupts the rfaQGP genes, reducing phosphorylation of the inner core region of LPS. The rfaQGP suppressors also reduce the elevated ori/ter ratio of the DeltaseqA mutants but, unexpectedly, the suppressed mutants still exhibit the high levels of chromosomal fragmentation and SOS induction, characteristic of the DeltaseqA mutants. We also found that colethality of rfaP with defects in the production of acidic phospholipids is suppressed by alternative initiation of chromosomal replication, suggesting that LPS phosphorylation stimulates replication initiation. The rfaQGP suppression of the seqA recA lethality provides genetic support for the surprising physical evidence that the oriC DNA forms complexes with the outer membrane.
Collapse
Affiliation(s)
- Ella Rotman
- Department of Microbiology, University of Illinois, Urbana-Champaign, IL, USA
| | | | | |
Collapse
|
58
|
Morigen, Odsbu I, Skarstad K. Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli. Genes Cells 2009; 14:643-57. [PMID: 19371375 DOI: 10.1111/j.1365-2443.2009.01298.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
When the bacterium Escherichia coli is grown in rich medium, the replication and segregation periods may span two, three or four generations and cells may contain up to 24 replication forks. The newly synthesized, hemimethylated DNA at each fork is bound by SeqA protein. The SeqA-DNA structures form distinct foci that can be observed by immunofluorescence microscopy. The numbers of foci were lower than the numbers of replication forks indicating fork co-localization. The extent of co-localization correlated with the extent of replication cycle overlap in wild-type cells. No abrupt increase in the numbers of foci occurred at the time of initiation of replication, suggesting that new replication forks bind to existing SeqA structures. Manipulations with replication control mechanisms that led to extension or reduction of the replication period and number of forks, did not lead to changes in the numbers of SeqA foci per cell. The results indicate that the number of SeqA foci is not directly governed by the number of replication forks, and supports the idea that new DNA may be 'captured' by existing SeqA structures.
Collapse
Affiliation(s)
- Morigen
- Department of Cell Biology, Institute for Cancer Research, Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | | | |
Collapse
|
59
|
Chung YS, Brendler T, Austin S, Guarné A. Structural insights into the cooperative binding of SeqA to a tandem GATC repeat. Nucleic Acids Res 2009; 37:3143-52. [PMID: 19304745 PMCID: PMC2691817 DOI: 10.1093/nar/gkp151] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
SeqA is a negative regulator of DNA replication in Escherichia coli and related bacteria that functions by sequestering the origin of replication and facilitating its resetting after every initiation event. Inactivation of the seqA gene leads to unsynchronized rounds of replication, abnormal localization of nucleoids and increased negative superhelicity. Excess SeqA also disrupts replication synchrony and affects cell division. SeqA exerts its functions by binding clusters of transiently hemimethylated GATC sequences generated during replication. However, the molecular mechanisms that trigger formation and disassembly of such complex are unclear. We present here the crystal structure of a dimeric mutant of SeqA [SeqAΔ(41–59)-A25R] bound to tandem hemimethylated GATC sites. The structure delineates how SeqA forms a high-affinity complex with DNA and it suggests why SeqA only recognizes GATC sites at certain spacings. The SeqA–DNA complex also unveils additional protein–protein interaction surfaces that mediate the formation of higher ordered complexes upon binding to newly replicated DNA. Based on this data, we propose a model describing how SeqA interacts with newly replicated DNA within the origin of replication and at the replication forks.
Collapse
Affiliation(s)
- Yu Seon Chung
- Department of Biochemistry and Biomedical Sciences, Health Sciences Center, McMaster University, 1200 Main Street West, Hamilton, ON L8N 3Z5, Canada
| | | | | | | |
Collapse
|
60
|
Waldminghaus T, Skarstad K. The Escherichia coli SeqA protein. Plasmid 2009; 61:141-50. [PMID: 19254745 DOI: 10.1016/j.plasmid.2009.02.004] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 02/12/2009] [Accepted: 02/19/2009] [Indexed: 10/21/2022]
Abstract
The Escherichia coli SeqA protein contributes to regulation of chromosome replication by preventing re-initiation at newly replicated origins. SeqA protein binds to new DNA which is hemimethylated at the adenine of GATC sequences. Most of the cellular SeqA is found complexed with the new DNA at the replication forks. In vitro the SeqA protein binds as a dimer to two GATC sites and is capable of forming a helical fiber of dimers through interactions of the N-terminal domain. SeqA can also bind, with less affinity, to fully methylated origins and affect timing of "primary" initiations. In addition to its roles in replication, the SeqA protein may also act in chromosome organization and gene regulation.
Collapse
Affiliation(s)
- Torsten Waldminghaus
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, Rikshospitalet, University of Oslo, 0310 Oslo, Norway
| | | |
Collapse
|
61
|
Duderstadt KE, Berger JM. AAA+ ATPases in the initiation of DNA replication. Crit Rev Biochem Mol Biol 2008; 43:163-87. [PMID: 18568846 DOI: 10.1080/10409230802058296] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
All cellular organisms and many viruses rely on large, multi-subunit molecular machines, termed replisomes, to ensure that genetic material is accurately duplicated for transmission from one generation to the next. Replisome assembly is facilitated by dedicated initiator proteins, which serve to both recognize replication origins and recruit requisite replisomal components to the DNA in a cell-cycle coordinated manner. Exactly how imitators accomplish this task, and the extent to which initiator mechanisms are conserved among different organisms have remained outstanding issues. Recent structural and biochemical findings have revealed that all cellular initiators, as well as the initiators of certain classes of double-stranded DNA viruses, possess a common adenine nucleotide-binding fold belonging to the ATPases Associated with various cellular Activities (AAA+) family. This review focuses on how the AAA+ domain has been recruited and adapted to control the initiation of DNA replication, and how the use of this ATPase module underlies a common set of initiator assembly states and functions. How biochemical and structural properties correlate with initiator activity, and how species-specific modifications give rise to unique initiator functions, are also discussed.
Collapse
Affiliation(s)
- Karl E Duderstadt
- Department Molecular and Cell Biology and Biophysics Graduate Group, California Institute for Quantitative Biology, University of California, Berkeley, California 94720-3220, USA.
| | | |
Collapse
|
62
|
Excess SeqA leads to replication arrest and a cell division defect in Vibrio cholerae. J Bacteriol 2008; 190:5870-8. [PMID: 18621898 DOI: 10.1128/jb.00479-08] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Although most bacteria contain a single circular chromosome, some have complex genomes, and all Vibrio species studied so far contain both a large and a small chromosome. In recent years, the divided genome of Vibrio cholerae has proven to be an interesting model system with both parallels to and novel features compared with the genome of Escherichia coli. While factors influencing the replication and segregation of both chromosomes have begun to be elucidated, much remains to be learned about the maintenance of this genome and of complex bacterial genomes generally. An important aspect of replicating any genome is the correct timing of initiation, without which organisms risk aneuploidy. During DNA replication in E. coli, newly replicated origins cannot immediately reinitiate because they undergo sequestration by the SeqA protein, which binds hemimethylated origin DNA. This DNA is already methylated by Dam on the template strand and later becomes fully methylated; aberrant amounts of Dam or the deletion of seqA leads to asynchronous replication. In our study, hemimethylated DNA was detected at both origins of V. cholerae, suggesting that these origins are also subject to sequestration. The overproduction of SeqA led to a loss of viability, the condensation of DNA, and a filamentous morphology. Cells with abnormal DNA content arose in the population, and replication was inhibited as determined by a reduced ratio of origin to terminus DNA in SeqA-overexpressing cells. Thus, excessive SeqA negatively affects replication in V. cholerae and prevents correct progression to downstream cell cycle events such as segregation and cell division.
Collapse
|
63
|
Chung YS, Guarné A. Crystallization and preliminary X-ray diffraction analysis of SeqA bound to a pair of hemimethylated GATC sites. Acta Crystallogr Sect F Struct Biol Cryst Commun 2008; 64:567-71. [PMID: 18540078 DOI: 10.1107/s1744309108014851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2008] [Accepted: 05/16/2008] [Indexed: 11/10/2022]
Abstract
Escherichia coli SeqA is a negative regulator of DNA replication. The SeqA protein forms a high-affinity complex with newly replicated DNA at the origin of replication and thus prevents premature re-initiation events. Beyond the origin, SeqA is found at the replication forks, where it organizes newly replicated DNA into higher ordered structures. These two functions depend on SeqA binding to multiple hemimethylated GATC sequences. In an effort to understand how SeqA forms a high-affinity complex with hemimethylated DNA, a dimeric variant of SeqA was overproduced, purified and crystallized bound to a DNA duplex containing two hemimethylated GATC sites. The preliminary X-ray analysis of crystals diffracting to 3 A resolution is presented here.
Collapse
Affiliation(s)
- Yu Seon Chung
- Department of Biochemistry and Biomedical Sciences, HSC-4N57A, McMaster University, Hamilton ON L8N 3Z5, Canada
| | | |
Collapse
|
64
|
Gotoh H, Zhang Y, Dallo SF, Hong S, Kasaraneni N, Weitao T. Pseudomonas aeruginosa, under DNA replication inhibition, tends to form biofilms via Arr. Res Microbiol 2008; 159:294-302. [PMID: 18434096 DOI: 10.1016/j.resmic.2008.02.002] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2007] [Revised: 01/10/2008] [Accepted: 02/01/2008] [Indexed: 11/29/2022]
Abstract
Bacteria infecting eukaryotic hosts often encounter therapeutic antimicrobial and DNA damaging agents and respond by forming biofilms. While mechanisms of biofilm response are incompletely understood, they seem to involve bacterial second messenger bis-(3'-5')-cyclic dimeric guanosine monophosphate (c-di-GMP) signaling. We hypothesized that DNA replication inhibition induces bacterial biofilm formation via c-di-GMP signaling. Evidently, we found that Pseudomonas aeruginosa mounted a biofilm response to the subinhibitory DNA replication inhibitors hydroxyurea and nalidixic acid, but planktonic proliferation was inhibited. The biofilm response was suppressed either genetically by mutations causing planktonic resistance or biochemically by reversal of replication inhibition. Biofilms were induced by a mechanism of stimulated adhesion of planktonic filaments having impaired DNA replication, as examined under fluorescence microscopy. Induction was suppressed by either inhibition or mutation of Arr-a c-di-GMP phosphodiesterase. These results suggest that P. aeruginosa, under DNA replication stress, tends to form biofilms via Arr. The profound implications of the SOS response, planktonic-sessile and bacteria-cancer relationships are discussed.
Collapse
Affiliation(s)
- Hideo Gotoh
- Department of Biology, The University of Texas at San Antonio, 6900 North Loop 1604 West, San Antonio, TX 78249, USA.
| | | | | | | | | | | |
Collapse
|
65
|
Narajczyk M, Barańska S, Szambowska A, Glinkowska M, Węgrzyn A, Węgrzyn G. Modulation of lambda plasmid and phage DNA replication by Escherichia coli SeqA protein. MICROBIOLOGY-SGM 2007; 153:1653-1663. [PMID: 17464080 DOI: 10.1099/mic.0.2006/005546-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
SeqA protein, a main negative regulator of the replication initiation of the Escherichia coli chromosome, also has several other functions which are still poorly understood. It was demonstrated previously that in seqA mutants the copy number of another replicon, the lambda plasmid, is decreased, and that the activity of the lambda p(R) promoter (whose function is required for stimulation of ori lambda) is lower than that in the wild-type host. Here, SeqA-mediated regulation of lambda phage and plasmid replicons was investigated in more detail. No significant influence of SeqA on ori lambda-dependent DNA replication in vitro was observed, indicating that a direct regulation of lambda DNA replication by this protein is unlikely. On the other hand, density-shift experiments, in which the fate of labelled lambda DNA was monitored after phage infection of host cells, strongly suggested the early appearance of sigma replication intermediates and preferential rolling-circle replication of phage DNA in seqA mutants. The directionality of lambda plasmid replication in such mutants was, however, only slightly affected. The stability of the heritable lambda replication complex was decreased in the seqA mutant relative to the wild-type host, but a stable fraction of the lambda O protein was easily detectable, indicating that such a heritable complex can function in the mutant. To investigate the influence of seqA gene function on heritable complex- and transcription-dependent lambda DNA replication, the efficiency of lambda plasmid replication in amino acid-starved relA seqA mutants was measured. Under these conditions, seqA dysfunction resulted in impairment of lambda plasmid replication. These results indicate that unlike oriC, SeqA modulates lambda DNA replication indirectly, most probably by influencing the stability of the lambda replication complex and the transcriptional activation of ori lambda.
Collapse
Affiliation(s)
- Magdalena Narajczyk
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Sylwia Barańska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Anna Szambowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Monika Glinkowska
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | - Alicja Węgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdańsk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, 80-822 Gdańsk, Poland
| | - Grzegorz Węgrzyn
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| |
Collapse
|
66
|
Natrajan G, Hall DR, Thompson AC, Gutsche I, Terradot L. Structural similarity between the DnaA-binding proteins HobA (HP1230) from Helicobacter pylori and DiaA from Escherichia coli. Mol Microbiol 2007; 65:995-1005. [PMID: 17683397 DOI: 10.1111/j.1365-2958.2007.05843.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In prokaryotes, DNA replication is initiated by the binding of DnaA to the oriC region of the chromosome to load the primosome machinery and start a new replication round. Several proteins control these events in Escherichia coli to ensure that replication is precisely timed during the cell cycle. Here, we report the crystal structure of HobA (HP1230) at 1.7 A, a recently discovered protein that specifically interacts with DnaA protein from Helicobacter pylori (HpDnaA). We found that the closest structural homologue of HobA is a sugar isomerase (SIS) domain containing protein, the phosphoheptose isomerase from Pseudomonas aeruginosa. Remarkably, SIS proteins share strong sequence homology with DiaA from E. coli; yet, HobA and DiaA share no sequence homology. Thus, by solving the structure of HobA, we unexpectedly discovered that HobA is a H. pylori structural homologue of DiaA. By comparing the structure of HobA to a homology model of DiaA, we identified conserved, surface-accessible residues that could be involved in protein-protein interaction. Finally, we show that HobA specifically interacts with the N-terminal part of HpDnaA. The structural homology between DiaA and HobA strongly supports their involvement in the replication process and these proteins could define a new structural family of replication regulators in bacteria.
Collapse
Affiliation(s)
- Ganesh Natrajan
- Macromolecular Crystallography Group, European Synchrotron Radiation Facility, B.P. 220, 6 rue Jules Horowitz, F-38043 Grenoble Cedex, France
| | | | | | | | | |
Collapse
|
67
|
Fossum S, Crooke E, Skarstad K. Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli. EMBO J 2007; 26:4514-22. [PMID: 17914458 PMCID: PMC2063475 DOI: 10.1038/sj.emboj.7601871] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2007] [Accepted: 09/10/2007] [Indexed: 11/09/2022] Open
Abstract
The replication period of Escherichia coli cells grown in rich medium lasts longer than one generation. Initiation thus occurs in the 'mother-' or 'grandmother generation'. Sister origins in such cells were found to be colocalized for an entire generation or more, whereas sister origins in slow-growing cells were colocalized for about 0.1-0.2 generations. The role of origin inactivation (sequestration) by the SeqA protein in origin colocalization was studied by comparing sequestration-deficient mutants with wild-type cells. Cells with mutant, non-sequesterable origins showed wild-type colocalization of sister origins. In contrast, cells unable to sequester new origins due to loss of SeqA, showed aberrant localization of origins indicating a lack of organization of new origins. In these cells, aberrant replisome organization was also found. These results suggest that correct organization of sister origins and sister replisomes is dependent on the binding of SeqA protein to newly formed DNA at the replication forks, but independent of origin sequestration. In agreement, in vitro experiments indicate that SeqA is capable of pairing newly replicated DNA molecules.
Collapse
Affiliation(s)
- Solveig Fossum
- Department of Cell Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular & Cellular Biology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, USA
| | - Kirsten Skarstad
- Department of Cell Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo, Norway
- Department of Cell Biology, Institute of Cancer Research, The Norwegian Radium Hospital, Oslo 0310, Norway. Tel.: +47 229 34255; Fax: +47 229 34580; E-mail:
| |
Collapse
|
68
|
Chatti A, Daghfous D, Landoulsi A. Effect of seqA mutation on Salmonella typhimurium virulence. J Infect 2007; 54:e241-5. [PMID: 17327135 DOI: 10.1016/j.jinf.2007.01.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2006] [Revised: 01/10/2007] [Accepted: 01/11/2007] [Indexed: 11/20/2022]
Abstract
It is well established that lack of SeqA protein leads to reinitiation at the same origin more than once per cell cycle, in E. coli. Aberrant cell division and filament formation in SeqA-deficient strains suggest that this protein might be involved in cell cycle process other than transient inhibition of replication initiation. The aim of our work was to examine the effect of lack of this protein on Salmonella typhimurium virulence. In the present study, Swiss albino mice were used for the determination of LD50, the competitive index and detection of bacteria in target organs. In vitro assays were used to determine the sensitivity of either wild-type and seqA mutant to hydrogen peroxide and bile salts. The seqA mutant strain of Salmonella typhimurium is attenuated for virulence in mice. seqA mutant is highly sensitive towards hydrogen peroxide and bile salts compared with the isogenic wild-type. The 50% lethal dose of seqA mutant were found to be significantly increased compared to the wild-type strain. In addition, enumeration of bacteria from target organs (spleen and liver) showed that the number of wild-type bacteria recovered from these organs was higher than SeqA-deficient cells during the infection. Also, competitive index demonstrated that seqA mutant was significantly out competed by the wild-type strain in both intraperitoneal and oral infections. In addition, our data showed that both adhesion and invasion of Salmonella typhimurium seqA mutant are reduced. According to these results, we can suggest that Salmonella typhimurium seqA mutant is attenuated for virulence in mice.
Collapse
Affiliation(s)
- Abdelwaheb Chatti
- Département des Sciences de la Vie, 03/UR/0902, Laboratoire de Biochimie et Biologie Moléculaire, Faculté des Sciences de Bizerte, Zarzouna 7021, Tunisia.
| | | | | |
Collapse
|
69
|
Abstract
In all organisms, multi-subunit replicases are responsible for the accurate duplication of genetic material during cellular division. Initiator proteins control the onset of DNA replication and direct the assembly of replisomal components through a series of precisely timed protein-DNA and protein-protein interactions. Recent structural studies of the bacterial protein DnaA have helped to clarify the molecular mechanisms underlying initiator function, and suggest that key structural features of cellular initiators are universally conserved. Moreover, it appears that bacteria use a diverse range of regulatory strategies dedicated to tightly controlling replication initiation; in many cases, these mechanisms are intricately connected to the activities of DnaA at the origin of replication. This Review presents an overview of both the mechanism and regulation of bacterial DNA replication initiation, with emphasis on the features that are similar in eukaryotic and archaeal systems.
Collapse
Affiliation(s)
- Melissa L Mott
- Department of Molecular and Cell Biology, Quantitative Biology Institute, University of California, Berkeley, 237 Hildebrand Hall #3220, California 94720-3220, USA
| | | |
Collapse
|
70
|
Champion K, Higgins NP. Growth rate toxicity phenotypes and homeostatic supercoil control differentiate Escherichia coli from Salmonella enterica serovar Typhimurium. J Bacteriol 2007; 189:5839-49. [PMID: 17400739 PMCID: PMC1952050 DOI: 10.1128/jb.00083-07] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli and Salmonella enterica serovar Typhimurium share high degrees of DNA and amino acid identity for 65% of the homologous genes shared by the two genomes. Yet, there are different phenotypes for null mutants in several genes that contribute to DNA condensation and nucleoid formation. The mutant R436-S form of the GyrB protein has a temperature-sensitive phenotype in Salmonella, showing disruption of supercoiling near the terminus and replicon failure at 42 degrees C. But this mutation in E. coli is lethal at the permissive temperature. A unifying hypothesis for why the same mutation in highly conserved homologous genes of different species leads to different physiologies focuses on homeotic supercoil control. During rapid growth in mid-log phase, E. coli generates 15% more negative supercoils in pBR322 DNA than Salmonella. Differences in compaction and torsional strain on chromosomal DNA explain a complex set of single-gene phenotypes and provide insight into how supercoiling may modulate epigenetic effects on chromosome structure and function and on prophage behavior in vivo.
Collapse
Affiliation(s)
- Keith Champion
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
| | - N. Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama 35294-0024
- Corresponding author. Mailing address: KAUL-524, 720 20th Street South, Birmingham, AL 35294. Phone: (205) 934-3299. Fax: (205) 975-5955. E-mail:
| |
Collapse
|
71
|
Nievera C, Torgue JJC, Grimwade JE, Leonard AC. SeqA blocking of DnaA-oriC interactions ensures staged assembly of the E. coli pre-RC. Mol Cell 2007; 24:581-92. [PMID: 17114060 PMCID: PMC1939805 DOI: 10.1016/j.molcel.2006.09.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2006] [Revised: 08/02/2006] [Accepted: 09/25/2006] [Indexed: 11/23/2022]
Abstract
DnaA occupies only the three highest-affinity binding sites in E. coli oriC throughout most of the cell cycle. Immediately prior to initiation of chromosome replication, DnaA interacts with additional recognition sites, resulting in localized DNA-strand separation. These two DnaA-oriC complexes formed during the cell cycle are functionally and temporally analogous to yeast ORC and pre-RC. After initiation, SeqA binds to hemimethylated oriC, sequestering oriC while levels of active DnaA are reduced, preventing reinitiation. In this paper, we investigate how resetting of oriC to the ORC-like complex is coordinated with SeqA-mediated sequestration. We report that oriC resets to ORC during sequestration. This was possible because SeqA blocked DnaA binding to hemimethylated oriC only at low-affinity recognition sites associated with GATC but did not interfere with occupation of higher-affinity sites. Thus, during the sequestration period, SeqA repressed pre-RC assembly while ensuring resetting of E. coli ORC.
Collapse
Affiliation(s)
| | | | | | - Alan C. Leonard
- Corresponding author: Alan C. Leonard, Email , Tel. (321) 674 8577, Fax (321) 674 7990
| |
Collapse
|
72
|
Łyżeń R, Wȩgrzyn G, Wȩgrzyn A, Szalewska-Pałasz A. Stimulation of the lambda pR promoter by Escherichia coli SeqA protein requires downstream GATC sequences and involves late stages of transcription initiation. MICROBIOLOGY-SGM 2007; 152:2985-2992. [PMID: 17005979 DOI: 10.1099/mic.0.29110-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Escherichia coli SeqA protein is a major negative regulator of chromosomal DNA replication acting by sequestration, and thus inactivation, of newly formed oriC regions. However, other activities of this protein have been discovered recently, one of which is regulation of transcription. SeqA has been demonstrated to be a specific transcription factor acting at bacteriophage lambda promoters p(I), p(aQ) and p(R). While SeqA-mediated stimulation of p(I) and p(aQ) occurs by facilitating functions of another transcription activator protein, cII, a mechanism for stimulation of p(R) remains largely unknown. Here, it has been demonstrated that two GATC sequences, located 82 and 105 bp downstream of the p(R) transcription start site, are necessary for this stimulation both in vivo and in vitro. SeqA-mediated activation of p(R) was as effective on a linear DNA template as on a supercoiled one, indicating that alterations in DNA topology are not likely to facilitate the SeqA effect. In vitro transcription analysis demonstrated that the most important regulatory effect of SeqA in p(R) transcription occurs after open complex formation, namely during promoter clearance. SeqA did not influence the appearance and level of abortive transcripts or the pausing during transcription elongation. Interestingly, SeqA is one of few known prokaryotic transcription factors which bind downstream of the regulated promoter and still act as transcription activators.
Collapse
Affiliation(s)
- Robert Łyżeń
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Grzegorz Wȩgrzyn
- Department of Molecular Biology, University of Gdansk, Kladki 24, 80-822 Gdansk, Poland
| | - Alicja Wȩgrzyn
- Laboratory of Molecular Biology (affiliated with University of Gdansk), Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kladki 24, 80-822 Gdansk, Poland
| | | |
Collapse
|
73
|
Wiacek C, Müller S, Benndorf D. A cytomic approach reveals population heterogeneity ofCupriavidus necator in response to harmful phenol concentrations. Proteomics 2006; 6:5983-94. [PMID: 17106909 DOI: 10.1002/pmic.200600244] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The understanding of functions of cells within microbial populations or communities is certainly needed for existing and novel cytomic approaches which grip the individual scale. Population behaviour results from single cell performances and is caused by the individual genetic pool, history, life cycle states and microenvironmental surroundings. Mimicking natural impaired environments, the paper shows that the Gram-negative Betaproteobacterium Cupriavidus necator dramatically altered its population heterogeneity in response to harmful phenol concentrations. Multiparametric flow cytometry was used to follow variations in structural cellular parameters like chromosome contents and storage materials. The functioning of these different cell types was resolved by ensuing proteomics after the cells' spatial separation by cell sorting, finding 11 proteins changed in their expression profile, among them elongation factor Tu and the trigger factor. At least one third of the individuals clearly underwent starving states; however, simultaneously these cells prepared themselves for entering the life cycle again. Using cytomics to recognise individual structure and function on the microbial scale represents an innovative technical design to describe the complexity of such systems, overcoming the disadvantage of small cell volumes and, thus, to resolve bacterial strategies to survive harmful environments by altering population heterogeneity.
Collapse
Affiliation(s)
- Claudia Wiacek
- Department of Environmental Microbiology, UFZ-Centre for Environmental Research Leipzig-Halle, Leipzig, Germany
| | | | | |
Collapse
|
74
|
Beauregard A, Chalamcharla VR, Piazza CL, Belfort M, Coros CJ. Bipolar localization of the group II intron Ll.LtrB is maintained in Escherichia coli deficient in nucleoid condensation, chromosome partitioning and DNA replication. Mol Microbiol 2006; 62:709-22. [PMID: 17005014 DOI: 10.1111/j.1365-2958.2006.05419.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Group II introns are mobile genetic elements that invade their cognate intron-minus alleles via an RNA intermediate, in a process known as retrohoming. They can also retrotranspose to ectopic sites at low frequency. In Escherichia coli, retrotransposition of the lactococcal group II intron, Ll.LtrB, occurs preferentially within the Ori and Ter macrodomains of the E. coli chromosome. These macrodomains migrate towards the poles of the cell, where the intron-encoded protein, LtrA, localizes. Here we investigate whether alteration of nucleoid condensation, chromosome partitioning and replication affect retrotransposition frequencies, as well as bipolar localization of the Ll.LtrB intron integration and LtrA distribution in E. coli. We thus examined these properties in the absence of the nucleoid-associated proteins H-NS, StpA and MukB, in variants of partitioning functions including the centromere-like sequence migS and the actin homologue MreB, as well as in the replication mutants DeltaoriC, seqA, tus and topoIV (ts). Although there were some dramatic fluctuations in retrotransposition levels in these hosts, bipolar localization of integration events was maintained. LtrA was consistently found in nucleoid-free regions, with its localization to the cellular poles being largely preserved in these hosts. Together, these results suggest that bipolar localization of group II intron retrotransposition results from the residence of the intron-encoded protein at the poles of the cell.
Collapse
Affiliation(s)
- Arthur Beauregard
- Molecular Genetics Program, Wadsworth Center, New York State Department of Health, Center for Medical Sciences, 150 New Scotland Avenue, Albany, NY 12208, USA
| | | | | | | | | |
Collapse
|
75
|
Odsbu I, Klungsøyr HK, Fossum S, Skarstad K. Specific N-terminal interactions of the Escherichia coli SeqA protein are required to form multimers that restrain negative supercoils and form foci. Genes Cells 2006; 10:1039-49. [PMID: 16236133 DOI: 10.1111/j.1365-2443.2005.00898.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Escherichia coli SeqA protein binds preferentially to hemimethylated DNA and is required for inactivation (sequestration) of newly formed origins. A mutant SeqA protein, SeqA4 (A25T), which is deficient in origin sequestration in vivo, was found here to have lost the ability to form multimers, but could bind as dimers with wild-type affinity to a pair of hemimethylated GATC sites. In vitro, binding of SeqA dimers to a plasmid first generates a topology change equivalent to a few positive supercoils, then the binding leads to a topology change in the "opposite" direction, resulting in a restraint of negative supercoils. Binding of SeqA4 mutant dimers produced the former effect, but not the latter, showing that a topology change equivalent to positive supercoiling is caused by the binding of single dimers, whereas restraint of negative supercoils requires multimerization via the N-terminus. In vivo, mutant SeqA4 protein was not capable of forming foci observed by immunofluorescence microscopy, showing that N-terminus-dependent multimerization is required for building SeqA foci. Overproduction of SeqA4 led to partially restored initiation synchrony, indicating that origin sequestration may not depend on efficient higher-order multimerization into foci, but do require a high local concentration of SeqA.
Collapse
Affiliation(s)
- Ingvild Odsbu
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | | | | | |
Collapse
|
76
|
Sutera VA, Lovett ST. The role of replication initiation control in promoting survival of replication fork damage. Mol Microbiol 2006; 60:229-39. [PMID: 16556234 DOI: 10.1111/j.1365-2958.2006.05093.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dam methylase mutants were recovered in a screen for mutants sensitive to UV irradiation or mild inhibition of replication elongation. Dam's role in tolerance of DNA damage is to provide binding sites for SeqA, because seqA mutants showed similar sensitivity that was genetically epistatic to dam. The sensitivity of seqA mutants to UV irradiation and to the replication inhibitors hydroxyurea (HU) and azidothymidine (AZT) was suppressed by alleles of dnaA that reduce the efficiency of replication initiation. These results suggest that for survival of replication fork damage, SeqA's repression of replication initiation is more important than its effects on nucleoid organization. Convergence of forks upon DNA damage is a likely explanation for seqA mutant sensitivity, because its poor survival of UV was suppressed by reducing secondary initiation through minimal medium growth. Surprisingly, growth in minimal medium reduced the ability of seqA+ strains to form colonies in the presence of low levels of AZT. Double dnaA seqA mutants exhibited plating efficiencies much superior to wild-type strains during chronic low-level AZT exposure in minimal medium. This suggests that mild inhibition of replication fork progression may actively restrain initiation such that seqA+ strains fail to recover initiation capacity after sustained conditions of replication arrest.
Collapse
Affiliation(s)
- Vincent A Sutera
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | |
Collapse
|
77
|
Abstract
Initiation of DNA replication is a highly regulated process in all organisms. Proteins that are required to recruit DNA polymerase - initiator proteins - are often used to regulate the timing or frequency of initiation in the cell cycle by limiting either their own synthesis or availability. Studies of the Escherichia coli chromosome and of bacterial plasmids with iterated initiator binding sites (iterons) have revealed that, in addition to initiator limitation, replication origin inactivation is used to prevent replication that is untimely or excessive. Our recent studies of plasmid P1 revealed that this additional mode of control becomes a requirement when initiator availability is limited only by autoregulation. Thus, although initiator limitation appears to be a well-conserved and central mode of replication control, optimal replication might require additional control mechanisms. This review gives examples of how the multiple mechanisms can act synergistically, antagonistically or be partially redundant to guarantee low frequency events. The lessons learned are likely to help understand many other regulatory systems in the bacterial cell.
Collapse
Affiliation(s)
- Johan Paulsson
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
78
|
Abstract
N(6)-methyl-adenine is found in the genomes of bacteria, archaea, protists and fungi. Most bacterial DNA adenine methyltransferases are part of restriction-modification systems. Certain groups of Proteobacteria also harbour solitary DNA adenine methyltransferases that provide signals for DNA-protein interactions. In gamma-proteobacteria, Dam methylation regulates chromosome replication, nucleoid segregation, DNA repair, transposition of insertion elements and transcription of specific genes. In Salmonella, Haemophilus, Yersinia and Vibrio species and in pathogenic Escherichia coli, Dam methylation is required for virulence. In alpha-proteobacteria, CcrM methylation regulates the cell cycle in Caulobacter, Rhizobium and Agrobacterium, and has a role in Brucella abortus infection.
Collapse
Affiliation(s)
- Didier Wion
- INSERM U318, CHU Michallon, Université Joseph Fourier, 38043 Grenoble, France.
| | | |
Collapse
|
79
|
Daghfous D, Chatti A, Marzouk B, Landoulsi A. Phospholipid changes in seqA and dam mutants of Escherichia coli. C R Biol 2006; 329:271-6. [PMID: 16644499 DOI: 10.1016/j.crvi.2006.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Revised: 01/05/2006] [Accepted: 02/14/2006] [Indexed: 11/28/2022]
Abstract
SeqA and Dam proteins were known to be responsible for regulating the initiation of replication and to affect the expression of many genes and metabolisms. We have examined here the fatty acids composition and phospholipids membrane in dam and/or seqA mutants. The dam mutant showed an accumulation of the acidic phospholipids cardiolipin, whereas, the seqA mutant showed a higher proportion of phosphatidylglycerol compared with the wild-type strain. The seqA dam double mutant showed an intermediate proportion of acidic phospholipids compared with the wild-type strain. Based on these observations, we discuss the role of Dam and SeqA proteins in the regulation of phospholipids synthesis.
Collapse
Affiliation(s)
- Douraid Daghfous
- Laboratoire de Biochimie et de Biologie Moléculaire, Faculté des Sciences de Bizerte, 7021 Zarzouna, Tunisie.
| | | | | | | |
Collapse
|
80
|
Godoy VG, Jarosz DF, Walker FL, Simmons LA, Walker GC. Y-family DNA polymerases respond to DNA damage-independent inhibition of replication fork progression. EMBO J 2006; 25:868-79. [PMID: 16482223 PMCID: PMC1383567 DOI: 10.1038/sj.emboj.7600986] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2005] [Accepted: 01/10/2006] [Indexed: 01/20/2023] Open
Abstract
In Escherichia coli, the Y-family DNA polymerases Pol IV (DinB) and Pol V (UmuD2'C) enhance cell survival upon DNA damage by bypassing replication-blocking DNA lesions. We report a unique function for these polymerases when DNA replication fork progression is arrested not by exogenous DNA damage, but with hydroxyurea (HU), thereby inhibiting ribonucleotide reductase, and bringing about damage-independent DNA replication stalling. Remarkably, the umuC122::Tn5 allele of umuC, dinB, and certain forms of umuD gene products endow E. coli with the ability to withstand HU treatment (HUR). The catalytic activities of the UmuC122 and DinB proteins are both required for HUR. Moreover, the lethality brought about by such stalled replication forks in the wild-type derivatives appears to proceed through the toxin/antitoxin pairs mazEF and relBE. This novel function reveals a role for Y-family polymerases in enhancing cell survival under conditions of nucleotide starvation, in addition to their established functions in response to DNA damage.
Collapse
Affiliation(s)
- Veronica G Godoy
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Daniel F Jarosz
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Fabianne L Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Lyle A Simmons
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Graham C Walker
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, 68-633, 77 Massachusetts Avenue, Cambridge, MA 02139, USA. Tel.: +1 617 253 6716; Fax: +1 617 253 2643; E-mail:
| |
Collapse
|
81
|
Camara JE, Breier AM, Brendler T, Austin S, Cozzarelli NR, Crooke E. Hda inactivation of DnaA is the predominant mechanism preventing hyperinitiation of Escherichia coli DNA replication. EMBO Rep 2006; 6:736-41. [PMID: 16041320 PMCID: PMC1369143 DOI: 10.1038/sj.embor.7400467] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2005] [Revised: 05/30/2005] [Accepted: 06/02/2005] [Indexed: 11/09/2022] Open
Abstract
Initiation of DNA replication from the Escherichia coli chromosomal origin is highly regulated, assuring that replication occurs precisely once per cell cycle. Three mechanisms for regulation of replication initiation have been proposed: titration of free DnaA initiator protein by the datA locus, sequestration of newly replicated origins by SeqA protein and regulatory inactivation of DnaA (RIDA), in which active ATP-DnaA is converted to the inactive ADP-bound form. DNA microarray analyses showed that the level of initiation in rapidly growing cells that lack datA was indistinguishable from that in wild-type cells, and that the absence of SeqA protein caused only a modest increase in initiation, in agreement with flow-cytometry data. In contrast, cells lacking Hda overinitiated replication twofold, implicating RIDA as the predominant mechanism preventing extra initiation events in a cell cycle.
Collapse
Affiliation(s)
- Johanna E Camara
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20007, USA
| | - Adam M Breier
- Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, California 94720, USA
| | - Therese Brendler
- NCI-DBS, Frederick Cancer Research and Development Center, Box B, Building 539/223, Frederick, Maryland 21702, USA
| | - Stuart Austin
- NCI-DBS, Frederick Cancer Research and Development Center, Box B, Building 539/223, Frederick, Maryland 21702, USA
| | - Nicholas R Cozzarelli
- Molecular and Cell Biology, University of California, Berkeley, 16 Barker Hall, Berkeley, California 94720, USA
| | - Elliott Crooke
- Department of Biochemistry and Molecular Biology, Georgetown University Medical Center, 3900 Reservoir Road NW, Washington, District of Columbia 20007, USA
- Tel: +1 202 687 1644; Fax: +1 202 687 7186; E-mail:
| |
Collapse
|
82
|
Riber L, Løbner-Olesen A. Coordinated replication and sequestration of oriC and dnaA are required for maintaining controlled once-per-cell-cycle initiation in Escherichia coli. J Bacteriol 2005; 187:5605-13. [PMID: 16077105 PMCID: PMC1196069 DOI: 10.1128/jb.187.16.5605-5613.2005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli cells were constructed in which the dnaA gene was moved to a location opposite oriC on the circular chromosome. In these cells the dnaA gene was replicated with significant delay relative to the origin. Consequently, the period where the newly replicated and hemimethylated oriC was sequestered no longer coincided with the period where the dnaA gene promoter was sequestered. DnaA protein synthesis was therefore expected to continue during origin sequestration. Despite a normal length of the sequestration period in such cells, they had increased origin content and also displayed asynchrony of initiation. This indicated that reinitiation occasionally occurred at some origins within the same cell cycle. The extra initiations took place in spite of a reduction in total DnaA protein concentration to about half of the wild-type level. We propose that this more efficient utilization of DnaA protein results from an increased availability at the end of the origin sequestration period. Therefore, coordinated sequestration of oriC and dnaA is required for maintaining controlled once-per-cell-cycle initiation.
Collapse
Affiliation(s)
- Leise Riber
- Department of Life Sciences and Chemistry, Roskilde University, DK-4000 Roskilde, Denmark
| | | |
Collapse
|
83
|
Yamazoe M, Adachi S, Kanaya S, Ohsumi K, Hiraga S. Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of Escherichia coli. Mol Microbiol 2005; 55:289-98. [PMID: 15612935 DOI: 10.1111/j.1365-2958.2004.04389.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To demonstrate that sequestration A (SeqA) protein binds preferentially to hemimethylated GATC sequences at replication forks and forms clusters in Escherichia coli growing cells, we analysed, by the chromatin immunoprecipitation (ChIP) assay using anti-SeqA antibody, a synchronized culture of a temperature-sensitive dnaC mutant strain in which only one round of chromosomal DNA replication was synchronously initiated. After synchronized initiation of chromosome replication, the replication origin oriC was first detected by the ChIP assay, and other six chromosomal regions having multiple GATC sequences were sequentially detected according to bidirectional replication of the chromosome. In contrast, DNA regions lacking the GATC sequence were not detected by the ChIP assay. These results indicate that SeqA binds hemimethylated nascent DNA segments according to the proceeding of replication forks in the chromosome, and SeqA releases from the DNA segments when fully methylated. Immunofluorescence microscopy reveals that a single SeqA focus containing paired replication apparatuses appears at the middle of the cell immediately after initiation of chromosome replication and the focus is subsequently separated into two foci that migrate to 1/4 and 3/4 cellular positions, when replication forks proceed bidirectionally an approximately one-fourth distance from the replication origin towards the terminus. This supports the translocating replication apparatuses model.
Collapse
Affiliation(s)
- Mitsuyoshi Yamazoe
- Department of Radiation Genetics, Graduate School of Medicine, Kyoto University, Konoe, Yoshida, Sakyo-ku, Kyoto 606-8501, Japan
| | | | | | | | | |
Collapse
|
84
|
Molina F, Skarstad K. Deletion of the datA site does not affect once-per-cell-cycle timing but induces rifampin-resistant replication. J Bacteriol 2005; 187:3913-20. [PMID: 15939703 PMCID: PMC1151742 DOI: 10.1128/jb.187.12.3913-3920.2005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Escherichia coli, three mechanisms have been proposed to maintain proper regulation of replication so that initiation occurs once, and only once, per cell cycle. First, newly formed origins are inactivated by sequestration; second, the initiator, DnaA, is inactivated by the Hda protein at active replication forks; and third, the level of free DnaA protein is reduced by replication of the datA site. The datA site titrates unusually large amounts of DnaA and it has been reported that reinitiation, and thus asynchrony of replication, occurs in cells lacking this site. Here, we show that reinitiation in deltadatA cells does not occur during exponential growth and that an apparent asynchrony phenotype results from the occurrence of rifampin-resistant initiations. This shows that the datA site is not required to prevent reinitiation and limit initiation of replication to once per generation. The datA site may, however, play a role in timing of initiation relative to cell growth. Inactivation of active ATP-DnaA by the Hda protein and the sliding clamp of the polymerase was found to be required to prevent reinitiation and asynchrony of replication.
Collapse
|
85
|
Guarné A, Brendler T, Zhao Q, Ghirlando R, Austin S, Yang W. Crystal structure of a SeqA-N filament: implications for DNA replication and chromosome organization. EMBO J 2005; 24:1502-11. [PMID: 15933720 PMCID: PMC1142570 DOI: 10.1038/sj.emboj.7600634] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2004] [Accepted: 03/01/2005] [Indexed: 11/09/2022] Open
Abstract
Escherichia coli SeqA binds clusters of transiently hemimethylated GATC sequences and sequesters the origin of replication, oriC, from methylation and premature reinitiation. Besides oriC, SeqA binds and organizes newly synthesized DNA at replication forks. Binding to multiple GATC sites is crucial for the formation of stable SeqA-DNA complexes. Here we report the crystal structure of the oligomerization domain of SeqA (SeqA-N). The structural unit of SeqA-N is a dimer, which oligomerizes to form a filament. Mutations that disrupt filament formation lead to asynchronous DNA replication, but the resulting SeqA dimer can still bind two GATC sites separated from 5 to 34 base pairs. Truncation of the linker between the oligomerization and DNA-binding domains restricts SeqA to bind two GATC sites separated by one or two full turns. We propose a model of a SeqA filament interacting with multiple GATC sites that accounts for both origin sequestration and chromosome organization.
Collapse
Affiliation(s)
- Alba Guarné
- Laboratory of Molecular Biology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA.
| | | | | | | | | | | |
Collapse
|
86
|
Foti JJ, Schienda J, Sutera VA, Lovett ST. A bacterial G protein-mediated response to replication arrest. Mol Cell 2005; 17:549-60. [PMID: 15721258 DOI: 10.1016/j.molcel.2005.01.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Revised: 11/29/2004] [Accepted: 01/14/2005] [Indexed: 01/24/2023]
Abstract
To define factors in E. coli promoting survival to replication fork stress, we isolated insertion mutants sensitive to replication inhibitors. One insertion caused partial loss of the universally conserved GTPase, obgE/yhbZ gene. Although obgE is essential for growth, our insertion allele supported viability until challenged with various replication inhibitors. A mutation designed to negate the GTPase activity of the protein produced similar phenotypes, but was genetically dominant. Synergistic genetic interactions with recA and recB suggested that chromosome breaks and regressed forks accumulate in obgE mutants. Mutants in obgE also exhibited asynchronous overreplication during normal growth, as revealed by flow cytometry. ObgE overexpression caused SeqA foci, normally localized to replication forks, to spread extensively within the cell. We propose that ObgE defines a pathway analogous to the replication checkpoint response of eukaryotes and acts in a complementary way to the RecA-dependent SOS response to promote bacterial cell survival to replication fork arrest.
Collapse
Affiliation(s)
- James J Foti
- Department of Biology and Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454-9110, USA
| | | | | | | |
Collapse
|
87
|
Kang S, Han JS, Kim KP, Yang HY, Lee KY, Hong CB, Hwang DS. Dimeric configuration of SeqA protein bound to a pair of hemi-methylated GATC sequences. Nucleic Acids Res 2005; 33:1524-31. [PMID: 15767277 PMCID: PMC1065253 DOI: 10.1093/nar/gki289] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The binding of SeqA protein to hemi-methylated GATC sequences (hemi-sites) regulates chromosome initiation and the segregation of replicated chromosome in Escherichia coli. We have used atomic force microscopy to examine the architecture of SeqA and the mode of binding of one molecule of SeqA to a pair of hemi-sites in aqueous solution. SeqA has a bipartite structure composed of a large and a small lobe. Upon binding of a SeqA molecule to a pair of hemi-sites, the larger lobe becomes visibly separated into two DNA binding domains, each of which binds to one hemi-site. The two DNA binding domains are held together by association between the two multimerization domains that make up the smaller lobe. The binding of each DNA binding domain to a hemi-site leads to bending of the bound DNA inwards toward the bound protein. In this way, SeqA adopts a dimeric configuration when bound to a pair of hemi-sites. Mutational analysis of the multimerization domain indicates that, in addition to multimerization of SeqA polypeptides, this domain contributes to the ability of SeqA to bind to a pair of hemi-sites and to its cooperative behavior.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Joo Seok Han
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Keun Pill Kim
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Hye Yoon Yang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Kyung Yong Lee
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Choo Bong Hong
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
| | - Deog Su Hwang
- Institute of Molecular Biology and Genetics, Seoul National UniversitySeoul 151-742, Republic of Korea
- School of Biological Sciences, Seoul National UniversitySeoul 151-742, Republic of Korea
- To whom correspondence should be addressed. Tel: +82 2 880 7524; Fax: +82 2 874 1206;
| |
Collapse
|
88
|
Skovgaard O, Løbner-Olesen A. Reduced initiation frequency from oriC restores viability of a temperature-sensitive Escherichia coli replisome mutant. Microbiology (Reading) 2005; 151:963-973. [PMID: 15758241 DOI: 10.1099/mic.0.27630-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
ThednaXgene ofEscherichia coliencodesτandγclamp loader subunits of the replisome. Cells carrying the temperature-sensitivednaX2016mutation were induced for the SOS response at non-permissive temperature. The SOS induction most likely resulted from extensive replication fork collapse that exceeded the cells' capacity for restart. Seven mutations in thednaAgene that partly suppressed thednaX2016temperature sensitivity were isolated and characterized. Each of the mutations caused a single amino acid change in domains III and IV of the DnaA protein, where nucleotide binding and DNA binding, respectively, reside. The diversity ofdnaA(Sx) mutants obtained indicated that a direct interaction between the DnaA protein andτorγis unlikely and that the mechanism behind suppression is related to DnaA function. AlldnaA(Sx) mutant cells were compromised for initiation of DNA replication, and contained fewer active replication forks than their wild-type counterparts. Conceivably, this led to a reduced number of replication fork collapses within eachdnaX2016 dnaA(Sx) cell and prevented the SOS response. Lowered availability of wild-type DnaA protein also led to partial suppression of thednaX2016mutation, confirming that thednaA(Sx) mode of suppression is indirect and results from a reduced initiation frequency atoriC.
Collapse
Affiliation(s)
- Ole Skovgaard
- Department of Life Sciences and Chemistry, 18-1, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
| | - Anders Løbner-Olesen
- Department of Life Sciences and Chemistry, 18-1, Roskilde University, PO Box 260, DK-4000 Roskilde, Denmark
| |
Collapse
|
89
|
Molina F, Skarstad K. Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol Microbiol 2005; 52:1597-612. [PMID: 15186411 DOI: 10.1111/j.1365-2958.2004.04097.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Replication from the origin of Escherichia coli has traditionally been visualized as two replisomes moving away from each other, each containing a leading and a lagging strand polymerase. Fluorescence microscopy studies of tagged polymerases or forks have, however, indicated that the polymerases may be confined to a single location (or a few locations in cells with overlapping replication cycles). Here, we have analysed the exact replication patterns of cells growing with four different growth and replication rates, and compared these with the distributions of SeqA foci. The SeqA foci represent replication forks because the SeqA protein binds to the newly formed hemimethylated DNA immediately following the forks. The results show that pairs of forks originating from the same origin stay coupled for most of the cell cycle and thus support the replication factory model. They also suggest that the factories consisting of four polymerases are, at the time immediately after initiation, organized into higher order structures consisting of eight or 12 polymerases. The organization into replication factories was lost when replication forks experienced a limitation in the supply of nucleotides or when the thymidylate synthetase gene was mutated. These results support the idea that the nucleotide synthesis apparatus co-localizes with the replisomes forming a 'hyperstructure' and further suggest that the integrity of the replication factories and hyperstructures is dependent on nucleotide metabolism.
Collapse
Affiliation(s)
- Felipe Molina
- Department of Cell Biology, Institute for Cancer Research, Montebello, 0310 Oslo, Norway
| | | |
Collapse
|
90
|
Wegrzyn G, Wegrzyn A. Genetic switches during bacteriophage lambda development. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2005; 79:1-48. [PMID: 16096026 DOI: 10.1016/s0079-6603(04)79001-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Grzegorz Wegrzyn
- Department of Molecular Biology, University of Gdańsk, 80-822 Gdańsk, Poland
| | | |
Collapse
|
91
|
Bravo A, Serrano-Heras G, Salas M. Compartmentalization of prokaryotic DNA replication. FEMS Microbiol Rev 2005; 29:25-47. [PMID: 15652974 DOI: 10.1016/j.femsre.2004.06.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2004] [Revised: 06/15/2004] [Accepted: 06/17/2004] [Indexed: 11/22/2022] Open
Abstract
It becomes now apparent that prokaryotic DNA replication takes place at specific intracellular locations. Early studies indicated that chromosomal DNA replication, as well as plasmid and viral DNA replication, occurs in close association with the bacterial membrane. Moreover, over the last several years, it has been shown that some replication proteins and specific DNA sequences are localized to particular subcellular regions in bacteria, supporting the existence of replication compartments. Although the mechanisms underlying compartmentalization of prokaryotic DNA replication are largely unknown, the docking of replication factors to large organizing structures may be important for the assembly of active replication complexes. In this article, we review the current state of this subject in two bacterial species, Escherichia coli and Bacillus subtilis, focusing our attention in both chromosomal and extrachromosomal DNA replication. A comparison with eukaryotic systems is also presented.
Collapse
Affiliation(s)
- Alicia Bravo
- Instituto de Biología Molecular Eladio Viñuela (CSIC), Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma, Cantoblanco, 28049 Madrid, Spain.
| | | | | |
Collapse
|
92
|
Klungsøyr HK, Skarstad K. Positive supercoiling is generated in the presence of Escherichia coli SeqA protein. Mol Microbiol 2004; 54:123-31. [PMID: 15458410 DOI: 10.1111/j.1365-2958.2004.04239.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
In Escherichia coli, the SeqA protein is known as a negative regulator of chromosome replication. This protein is also suggested to have a role in chromosome organization. SeqA preferentially binds to hemi-methylated DNA and is by immunofluorescence microscopy seen as foci situated at the replication factories. Loss of SeqA leads to increased negative supercoiling of the DNA. We show that purified SeqA protein bound to fully methylated, covalently closed or nicked circular DNA generates positive supercoils in vitro in the presence of topoisomerase I or ligase respectively. This means that binding of SeqA changes either the twist or the writhe of the DNA. The ability to affect the topology of DNA suggests that SeqA may take part in the organization of the chromosome in vivo. The topology change performed by SeqA occurred also on unmethylated plasmids. It is, however, reasonable to suppose that in vivo the major part of such activity is performed on hemi-methylated DNA at the replication factories and presumably forms the basis for the characteristic SeqA foci observed by fluorescence microscopy.
Collapse
|
93
|
Ryan VT, Grimwade JE, Camara JE, Crooke E, Leonard AC. Escherichia coli prereplication complex assembly is regulated by dynamic interplay among Fis, IHF and DnaA. Mol Microbiol 2004; 51:1347-59. [PMID: 14982629 DOI: 10.1046/j.1365-2958.2003.03906.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Initiator DnaA and DNA bending proteins, Fis and IHF, comprise prereplication complexes (pre-RC) that unwind the Escherichia coli chromosome's origin of replication, oriC. Loss of either Fis or IHF perturbs synchronous initiation from oriC copies in rapidly growing E. coli. Based on dimethylsulphate (DMS) footprinting of purified proteins, we observed a dynamic interplay among Fis, IHF and DnaA on supercoiled oriC templates. Low levels of Fis inhibited oriC unwinding by blocking both IHF and DnaA binding to low affinity sites. As the concentration of DnaA was increased, Fis repression was relieved and IHF rapidly redistributed DnaA to all unfilled binding sites on oriC. This behaviour in vitro is analogous to observed assembly of pre-RC in synchronized E. coli. We propose that as new DnaA is synthesized in E. coli, opposing activities of Fis and IHF ensure an abrupt transition from a repressed complex with unfilled weak affinity DnaA binding sites to a completely loaded unwound complex, increasing both the precision of DNA replication timing and initiation synchrony.
Collapse
Affiliation(s)
- Valorie T Ryan
- Department of Biological Sciences, Florida Institute of Technology, Melbourne, Florida 32901-6795, USA
| | | | | | | | | |
Collapse
|
94
|
Bach T, Skarstad K. Re-replication from non-sequesterable origins generates three-nucleoid cells which divide asymmetrically. Mol Microbiol 2004; 51:1589-600. [PMID: 15009887 DOI: 10.1111/j.1365-2958.2003.03943.x] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In rapidly growing Escherichia coli cells replication cycles overlap and initiation occurs at multiple replication origins (oriCs). All origins within a cell are initiated essentially in synchrony and only once per cell cycle. Immediate re-initiation of new origins is avoided by sequestration, a mechanism dependent on the SeqA protein and Dam methylation of GATC sites in oriC. Here, GATC sites in oriC were changed to GTTC. This reduced the sequestration to essentially the level found in SeqA-less cells. The mutant origins underwent re-initiation, showing that the GATC sites in oriC are required for sequestration. Each re-initiation eventually gave rise to a cell containing an extra nucleoid. The three-nucleoid cells displayed one asymmetrically placed FtsZ-ring and divided into a two-nucleoid cell and a one-nucleoid cell. The three nucleoid-cells thus divided into three daughters by two consecutive divisions. The results show that extra rounds of replication cause extra daughter cells to be formed prematurely. The fairly normal mutant growth rate and size distribution show, however, that premature rounds of replication, chromosome segregation, and cell division are flexibly accommodated by the existing cell cycle controls.
Collapse
Affiliation(s)
- Trond Bach
- Department of Cell Biology, Institute for Cancer Research, The Norwegian Radium Hospital, 0310 Oslo, Norway
| | | |
Collapse
|
95
|
Abstract
The replication of the chromosome is among the most essential functions of the bacterial cell and influences many other cellular mechanisms, from gene expression to cell division. Yet the way it impacts on the bacterial chromosome was not fully acknowledged until the availability of complete genomes allowed one to look upon genomes as more than bags of genes. Chromosomal replication includes a set of asymmetric mechanisms, among which are a division in a lagging and a leading strand and a gradient between early and late replicating regions. These differences are the causes of many of the organizational features observed in bacterial genomes, in terms of both gene distribution and sequence composition along the chromosome. When asymmetries or gradients increase in some genomes, e.g. due to a different composition of the DNA polymerase or to a higher growth rate, so do the corresponding biases. As some of the features of the chromosome structure seem to be under strong selection, understanding such biases is important for the understanding of chromosome organization and adaptation. Inversely, understanding chromosome organization may shed further light on questions relating to replication and cell division. Ultimately, the understanding of the interplay between these different elements will allow a better understanding of bacterial genetics and evolution.
Collapse
Affiliation(s)
- Eduardo P C Rocha
- Atelier de Bioinformatique, Université Pierre et Marie Curie, 12, Rue Cuvier, 75005 Paris, and Unité Génétique des Génomes Bactériens, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France
| |
Collapse
|
96
|
Han JS, Kang S, Kim SH, Ko MJ, Hwang DS. Binding of SeqA protein to hemi-methylated GATC sequences enhances their interaction and aggregation properties. J Biol Chem 2004; 279:30236-43. [PMID: 15151991 DOI: 10.1074/jbc.m402612200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SeqA protein regulates chromosome initiation and is involved in segregation in Escherichia coli. One SeqA protein binds to two hemi-methylated GATC sequences to form a stable SeqA-DNA complex. We found that binding induced DNA bending, which was pronounced when the two sequences were on the same face of the DNA. Two SeqA molecules bound cooperatively to each pair of hemi-methylated sites when the spacing between the sites was < or = 30 bp. This cooperative binding was able to stabilize the binding of a wild type to a single hemi-methylated site, or mutant form of SeqA protein to hemi-methylated sites, although such binding did not occur without cooperative interaction. Two cooperatively bound SeqA molecules interacted with another SeqA bound up to 185 bp away from the two bound SeqA proteins, and this was followed by aggregation of free SeqA proteins onto the bound proteins. These results suggest that the stepwise interaction of SeqA proteins with hemi-methylated GATC sites enhances their interaction and leads to the formation of SeqA aggregates. Cooperative interaction followed by aggregation may be the driving force for formation of the SeqA foci that appear to be located behind replication forks.
Collapse
Affiliation(s)
- Joo Seok Han
- School of Biological Sciences and Institute of Molecular Biology and Genetics, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|
97
|
Løbner-Olesen A, Skarstad K. Titration of the Escherichia coli DnaA protein to excess datA sites causes destabilization of replication forks, delayed replication initiation and delayed cell division. Mol Microbiol 2003; 50:349-62. [PMID: 14507385 DOI: 10.1046/j.1365-2958.2003.03695.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In Escherichia coli, the level of the initiator protein DnaA is limiting for initiation of replication at oriC. A high-affinity binding site for DnaA, datA, plays an important role. Here, the effect of extra datA sites was studied. A moderate increase in datA dosage ( approximately fourfold) delayed initiation of replication and cell division, but increased the rate of replication fork movement about twofold. At a further increase in the datA gene dosage, the SOS response was induced, and incomplete rounds of chromosome replication were detected. Overexpression of DnaA protein suppressed the SOS response and restored normal replication timing and rate of fork movement. In the presence of extra datA sites, cells showed a dependency on PriA and RecA proteins, indicating instability of the replication fork. The results suggest that wild-type replication fork progression normally includes controlled pausing, and that this is a prerequisite for normal replication fork function.
Collapse
|
98
|
Abstract
In actively growing bacterial cells, the DNA exerts stress on the membrane, in addition to the turgor caused by osmotic pressure. This stress is applied through coupled transcription/translation and insertion of membrane proteins (so-called "transertion" process). In bacillary bacteria, the strength of this interaction varies along cell length with a minimum at its midpoint, and hence can locate the cell's equator for the assembly of the FtsZ-ring.
Collapse
Affiliation(s)
- Avinoam Rabinovitch
- Departments of Physics, Ben-Gurion University of the Negev, P.O. Box. 653, 84105 Be'er-Sheva, Israel.
| | | | | |
Collapse
|
99
|
Olsson JA, Nordström K, Hjort K, Dasgupta S. Eclipse–Synchrony Relationship in Escherichia coli Strains with Mutations Affecting Sequestration, Initiation of Replication and Superhelicity of the Bacterial Chromosome. J Mol Biol 2003; 334:919-31. [PMID: 14643657 DOI: 10.1016/j.jmb.2003.10.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Initiation of replication from oriC on the Escherichia coli chromosomes occurs once and only once per generation at the same cell mass per origin. During rapid growth there are overlapping replication cycles, and initiation occurs synchronously at two or more copies of oriC. Since the bacterial growth can vary over a wide range (from three divisions per hour to 2.5 hours or more per division) the frequency of initiation should change in coordination with bacterial growth. Prevention of reinitiation from a newly replicated origin by temporary sequestration of the hemi-methylated GATC-sites in the origin region provides the molecular/genetic basis for the maintenance of the eclipse period between two successive rounds of replication. Sequestration is also believed to be responsible for initiation synchrony, since inactivation of either the seqA or the dam gene abolishes synchrony while drastically reducing the eclipse. In this work, we attempted to examine the functional relationship(s) between the eclipse period and the synchrony of initiation in E.coli strains by direct measurements of these parameters by density-shift centrifugation and flow-cytometric analyses, respectively. The eclipse period, measured as a fraction of DNA-duplication times, varied continuously from 0.6 for the wild-type E.coli K12 to 0.1 for strains with mutations in seqA, dam, dnaA, topA and gyr genes (all of which have been shown to cause asynchrony) and their various combinations. The asynchrony index, a quantitative indicator for the loss of synchrony of initiation, changed from low (synchronous) to high (asynchronous) values in a step-function-like relationship with the eclipse. An eclipse period of approximately 0.5 generation time appeared to be the critical value for the switch from synchronous to asynchronous initiation.
Collapse
Affiliation(s)
- Jan A Olsson
- Department of Cell and Molecular Biology, Biomedical Centre, Uppsala University, Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | |
Collapse
|
100
|
Kang S, Han JS, Park JH, Skarstad K, Hwang DS. SeqA protein stimulates the relaxing and decatenating activities of topoisomerase IV. J Biol Chem 2003; 278:48779-85. [PMID: 14512422 DOI: 10.1074/jbc.m308843200] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The SeqA protein, which prevents overinitiation of chromosome replication, has been suggested to also participate in the segregation of chromosomes in Escherichia coli. Using a bacterial two-hybrid system, we found that SeqA interacts with the ParC subunit of topoisomerase IV (topo IV), a type II topoisomerase involved in decatenation of daughter chromosomes and relief of topological constraints generated by replication and transcription. We demonstrated that purified SeqA protein stimulates the activities of topo IV, both in relaxing supercoiled plasmid DNA and converting catenanes to monomers. The same moderate levels of SeqA protein did not affect the activities of DNA gyrase or topoisomerase I. At higher levels of SeqA, topo IV favored the formation of catenanes, caused by intermolecular strand exchange among plasmid DNA aggregates formed by SeqA. Excess SeqA inhibited the activity of all topoisomerases. We also found that stimulation of topo IV was dependent upon the affinity of SeqA for DNA. Our results suggest that this stimulation is mediated by the specific interaction of topo IV with SeqA. Some of the known phenotypes of mutant cells lacking SeqA, such as deficient chromosome segregation and increased negative superhelicity, support that the SeqA protein is required for topo IV-mediated relaxation and decatenation of chromosomes and plasmids, during and after their replication.
Collapse
Affiliation(s)
- Sukhyun Kang
- Institute of Molecular Biology and Genetics, School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | |
Collapse
|