51
|
Hirsch TZ, Hernandez-Rapp J, Martin-Lannerée S, Launay JM, Mouillet-Richard S. PrP(C) signalling in neurons: from basics to clinical challenges. Biochimie 2014; 104:2-11. [PMID: 24952348 DOI: 10.1016/j.biochi.2014.06.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Accepted: 06/10/2014] [Indexed: 01/05/2023]
Abstract
The cellular prion protein PrP(C) was identified over twenty-five years ago as the normal counterpart of the scrapie prion protein PrP(Sc), itself the main if not the sole component of the infectious agent at the root of Transmissible Spongiform Encephalopathies (TSEs). PrP(C) is a ubiquitous cell surface protein, abundantly expressed in neurons, which constitute the targets of PrP(Sc)-mediated toxicity. Converging evidence have highlighted that neuronal, GPI-anchored PrP(C) is absolutely required for prion-induced neuropathogenesis, which warrants investigating into the normal function exerted by PrP(C) in a neuronal context. It is now well-established that PrP(C) can serve as a cell signalling molecule, able to mobilize transduction cascades in response to interactions with partners. This function endows PrP(C) with the capacity to participate in multiple neuronal processes, ranging from survival to synaptic plasticity. A diverse array of data have allowed to shed light on how this function is corrupted by PrP(Sc). Recently, amyloid Aβ oligomers, whose accumulation is associated with Alzheimer's disease (AD), were shown to similarly instigate toxic events by deviating PrP(C)-mediated signalling. Here, we provide an overview of the various signal transduction cascades ascribed to PrP(C) in neurons, summarize how their subversion by PrP(Sc) or Aβ oligomers contributes to TSE or AD neuropathogenesis and discuss the ensuing clinical implications.
Collapse
Affiliation(s)
- Théo Z Hirsch
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Julia Hernandez-Rapp
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France; Université Paris Sud 11, ED419 Biosigne, 91400 Orsay, France
| | - Séverine Martin-Lannerée
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France
| | - Jean-Marie Launay
- AP-HP Service de Biochimie, Fondation FondaMental, INSERM U942 Hôpital Lariboisière, 75010 Paris, France; Pharma Research Department, F. Hoffmann-La-Roche Ltd., CH-4070 Basel, Switzerland
| | - Sophie Mouillet-Richard
- INSERM UMR-S1124, 75006 Paris, France; Université Paris Descartes, Sorbonne Paris Cité, UMR-S1124, 75006 Paris, France.
| |
Collapse
|
52
|
Could Intracrine Biology Play a Role in the Pathogenesis of Transmissable Spongiform Encephalopathies Alzheimer’s Disease and Other Neurodegenerative Diseases? Am J Med Sci 2014; 347:312-20. [DOI: 10.1097/maj.0b013e3182a28af3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
53
|
Wang S, Zhao H, Zhang Y. Advances in research on Shadoo, shadow of prion protein. CHINESE SCIENCE BULLETIN-CHINESE 2014. [DOI: 10.1007/s11434-014-0129-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
54
|
Peggion C, Sorgato MC, Bertoli A. Prions and prion-like pathogens in neurodegenerative disorders. Pathogens 2014; 3:149-63. [PMID: 25437612 PMCID: PMC4235734 DOI: 10.3390/pathogens3010149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Revised: 01/24/2014] [Accepted: 02/01/2014] [Indexed: 12/24/2022] Open
Abstract
Prions are unique elements in biology, being able to transmit biological information from one organism to another in the absence of nucleic acids. They have been identified as self-replicating proteinaceous agents responsible for the onset of rare and fatal neurodegenerative disorders—known as transmissible spongiform encephalopathies, or prion diseases—which affect humans and other animal species. More recently, it has been proposed that other proteins associated with common neurodegenerative disorders, such as Alzheimer’s and Parkinson’s disease, can self-replicate like prions, thus sustaining the spread of neurotoxic entities throughout the nervous system. Here, we review findings that have contributed to expand the prion concept, and discuss if the involved toxic species can be considered bona fide prions, including the capacity to infect other organisms, or whether these pathogenic aggregates share with prions only the capability to self-replicate.
Collapse
Affiliation(s)
- Caterina Peggion
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| | - Maria Catia Sorgato
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| | - Alessandro Bertoli
- Department of Biomedical Sciences, University of Padova, Viale G. Colombo 3, Padova 35131, Italy.
| |
Collapse
|
55
|
Brazier MW, Wall VA, Brazier BW, Masters CL, Collins SJ. Therapeutic interventions ameliorating prion disease. Expert Rev Anti Infect Ther 2014; 7:83-105. [DOI: 10.1586/14787210.7.1.83] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
56
|
Xiao X, Cali I, Dong Z, Puoti G, Yuan J, Qing L, Wang H, Kong Q, Gambetti P, Zou WQ. Protease-sensitive prions with 144-bp insertion mutations. Aging (Albany NY) 2013; 5:155-73. [PMID: 23515139 PMCID: PMC3629288 DOI: 10.18632/aging.100543] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Insertion of 144-base pair (bp) containing six extra octapeptide repeats between residues 51 and 91 of prion protein (PrP) gene is associated with inherited prion diseases. Most cases linked to this insertion examined by Western blotting showed detectable proteinase K-resistant PrPSc (rPrPSc) resembling PrPSc type 1 and type 2 in sporadic Creutzfeldt-Jakob disease (sCJD), or PrP7-8 in Gerstmann-Sträussler-Scheinker disease. However, cases lacking detectable rPrPSc also have been reported. Which PrP conformer is associated with neuropathological changes in the cases without detectable rPrPSc remains to be determined. Here we report that while all six but one subjects with the 144-bp insertion mutations examined display the pathognomonic PrP patches in the cerebellum, one of them exhibits no detectable typical rPrPSc even in PrPSc-enriched preparations. Instead, a large amount of abnormal PrP is captured from this case by gene 5 protein and sodium phosphotungstate, reagents that have been proved to specifically capture abnormal PrP. All captured abnormal PrP from the cerebellum and other brain regions is virtually sensitive to PK-digestion (termed sPrPSc). The presence of the predominant sPrPSc but absence of rPrPSc in this 144-bp insertion-linked inherited CJD case suggests that mutant sPrPSc is the main component of the PrP deposit patches and sPrPSc is sufficient to cause neurotoxicity and prion disease.
Collapse
Affiliation(s)
- Xiangzhu Xiao
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Fernández-Borges N, Eraña H, Elezgarai SR, Harrathi C, Gayosso M, Castilla J. Infectivity versus Seeding in Neurodegenerative Diseases Sharing a Prion-Like Mechanism. Int J Cell Biol 2013; 2013:583498. [PMID: 24187553 PMCID: PMC3800648 DOI: 10.1155/2013/583498] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 08/21/2013] [Indexed: 12/11/2022] Open
Abstract
Prions are considered the best example to prove that the biological information can be transferred protein to protein through a conformational change. The term "prion-like" is used to describe molecular mechanisms that share similarities with the mammalian prion protein self-perpetuating aggregation and spreading characteristics. Since prions are presumably composed only of protein and are infectious, the more similar the mechanisms that occur in the different neurodegenerative diseases, the more these processes will resemble an infection. In vitro and in vivo experiments carried out during the last decade in different neurodegenerative disorders such as Alzheimer's disease (AD), Parkinson's diseases (PD), and amyotrophic lateral sclerosis (ALS) have shown a convergence toward a unique mechanism of misfolded protein propagation. In spite of the term "infection" that could be used to explain the mechanism governing the diversity of the pathological processes, other concepts as "seeding" or "de novo induction" are being used to describe the in vivo propagation and transmissibility of misfolded proteins. The current studies are demanding an extended definition of "disease-causing agents" to include those already accepted as well as other misfolded proteins. In this new scenario, "seeding" would be a type of mechanism by which an infectious agent can be transmitted but should not be used to define a whole "infection" process.
Collapse
Affiliation(s)
| | - Hasier Eraña
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160 Bizkaia, Spain
| | | | - Chafik Harrathi
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160 Bizkaia, Spain
| | - Mayela Gayosso
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160 Bizkaia, Spain
| | - Joaquín Castilla
- CIC bioGUNE, Parque Tecnológico de Bizkaia, Derio, 48160 Bizkaia, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011 Bizkaia, Spain
| |
Collapse
|
58
|
Hu PP, Huang CZ. Prion protein: structural features and related toxicity. Acta Biochim Biophys Sin (Shanghai) 2013; 45:435-41. [PMID: 23615535 DOI: 10.1093/abbs/gmt035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Transmissible spongiform encephalopathies, or prion diseases, is a group of infectious neurodegenerative disorders. The conformational conversion from cellular form (PrP(C)) to disease-causing isoform (PrP(Sc)) is considered to be the most important and remarkable event in these diseases, while accumulation of PrP(Sc) is thought to be the main reason for cell death, inflammation and spongiform degeneration observed in infected individuals. Although these rare but unique neurodegenerative disorders have attracted much attention, there are still many questions that remain to be answered. Knowledge of the scrapie agent structures and the toxic species may have significance for understanding the causes of the diseases, and could be helpful for rational design of novel therapeutic and diagnostic methods. In this review, we summarized the available experimental evidence concerning the relationship among the structural features, aggregation status of misfolded PrP and related neurotoxicity in the course of prion diseases development. In particular, most data supports the idea that the smaller oligomeric PrP(Sc) aggregates, rather than the mature amyloid fibers, exhibit the highest toxicity to the host.
Collapse
Affiliation(s)
- Ping Ping Hu
- Ministry of Education Key Laboratory on Luminescence and Real-Time Analysis, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, China
| | | |
Collapse
|
59
|
Reiniger L, Mirabile I, Lukic A, Wadsworth JDF, Linehan JM, Groves M, Lowe J, Druyeh R, Rudge P, Collinge J, Mead S, Brandner S. Filamentous white matter prion protein deposition is a distinctive feature of multiple inherited prion diseases. Acta Neuropathol Commun 2013; 1:8. [PMID: 24252267 PMCID: PMC4046834 DOI: 10.1186/2051-5960-1-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Sporadic, inherited and acquired prion diseases show distinct histological patterns of abnormal prion protein (PrP) deposits. Many of the inherited prion diseases show striking histological patterns, which often associate with specific mutations. Most reports have focused on the pattern of PrP deposition in the cortical or cerebellar grey matter. RESULTS We observed that the subcortical white matter in inherited prion diseases frequently contained filamentous depositions of abnormal PrP, and we have analysed by immunohistochemistry, immunofluorescence and electron microscopy 35 cases of inherited prion disease seen at the UK National Prion Clinic. We report here that filamentous PrP is abundantly deposited in myelinated fibres in inherited prion diseases, in particular in those with N-terminal mutations. CONCLUSIONS It is possible that the presence of filamentous PrP is related to the pathogenesis of inherited forms, which is different from those sporadic and acquired forms.
Collapse
Affiliation(s)
- Lilla Reiniger
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | - Ilaria Mirabile
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | - Ana Lukic
- />Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London UK
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | | | | | - Michael Groves
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
| | - Jessica Lowe
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Ronald Druyeh
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Peter Rudge
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - John Collinge
- />Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London UK
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Simon Mead
- />National Prion Clinic, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />MRC Prion Unit, UCL Institute of Neurology, London, UK
| | - Sebastian Brandner
- />Division of Neuropathology, National Hospital for Neurology and Neurosurgery, Queen Square, London UK
- />Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London UK
| |
Collapse
|
60
|
Zhou J, Liu B. Alzheimer's disease and prion protein. Intractable Rare Dis Res 2013; 2:35-44. [PMID: 25343100 PMCID: PMC4204584 DOI: 10.5582/irdr.2013.v2.2.35] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 05/20/2013] [Accepted: 05/22/2013] [Indexed: 11/05/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease with progressive loss of memory and cognitive function, pathologically hallmarked by aggregates of the amyloid-beta (Aβ) peptide and hyperphosphorylated tau in the brain. Aggregation of Aβ under the form of amyloid fibrils has long been considered central to the pathogenesis of AD. However, recent evidence has indicated that soluble Aβ oligomers, rather than insoluble fibrils, are the main neurotoxic species in AD. The cellular prion protein (PrP(C)) has newly been identified as a cell surface receptor for Aβ oligomers. PrP(C) is a cell surface glycoprotein that plays a key role in the propagation of prions, proteinaceous infectious agents that replicate by imposing their abnormal conformation to PrP(C) molecules. In AD, PrP(C) acts to transduce the neurotoxic signals arising from Aβ oligomers, leading to synaptic failure and cognitive impairment. Interestingly, accumulating evidence has also shown that aggregated Aβ or tau possesses prion-like activity, a property that would allow them to spread throughout the brain. In this article, we review recent findings regarding the function of PrP(C) and its role in AD, and discuss potential therapeutic implications of PrP(C)-based approaches in the treatment of AD.
Collapse
Affiliation(s)
- Jiayi Zhou
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, USA
- Address correspondence to: Dr. Jiayi Zhou, Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA. E-mail:
| | - Bingqian Liu
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
61
|
Emwas AHM, Al-Talla ZA, Guo X, Al-Ghamdi S, Al-Masri HT. Utilizing NMR and EPR spectroscopy to probe the role of copper in prion diseases. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2013; 51:255-268. [PMID: 23436479 DOI: 10.1002/mrc.3936] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 12/19/2012] [Accepted: 01/11/2013] [Indexed: 06/01/2023]
Abstract
Copper is an essential nutrient for the normal development of the brain and nervous system, although the hallmark of several neurological diseases is a change in copper concentrations in the brain and central nervous system. Prion protein (PrP) is a copper-binding, cell-surface glycoprotein that exists in two alternatively folded conformations: a normal isoform (PrP(C)) and a disease-associated isoform (PrP(Sc)). Prion diseases are a group of lethal neurodegenerative disorders that develop as a result of conformational conversion of PrP(C) into PrP(Sc). The pathogenic mechanism that triggers this conformational transformation with the subsequent development of prion diseases remains unclear. It has, however, been shown repeatedly that copper plays a significant functional role in the conformational conversion of prion proteins. In this review, we focus on current research that seeks to clarify the conformational changes associated with prion diseases and the role of copper in this mechanism, with emphasis on the latest applications of NMR and EPR spectroscopy to probe the interactions of copper with prion proteins.
Collapse
Affiliation(s)
- Abdul-Hamid M Emwas
- NMR Core Lab, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia.
| | | | | | | | | |
Collapse
|
62
|
Komolka K, Ponsuksili S, Schwerin M. Healthy sheep that differ in scrapie associated PRNP genotypes exhibit significant differences of expression pattern associated with immune response and cell-to-cell signalling in retropharyngeal lymph nodes. Vet Immunol Immunopathol 2013; 152:370-80. [PMID: 23428361 DOI: 10.1016/j.vetimm.2013.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Revised: 01/14/2013] [Accepted: 01/21/2013] [Indexed: 11/28/2022]
Abstract
The present study was conducted to test the hypothesis whether prion protein gene (PRNP) associated scrapie susceptibility is connected with physiological changes in tissue involved in pathogen uptake, migration and propagation. Jejunum, ileal Peyer's patches, retropharyngeal lymph nodes, brain stem and liver of healthy and non scrapie-infected sheep with PRNP genotypes representing the scrapie risk class R1 (scrapie-resistant) and R5 (scrapie-susceptible), respectively, were comparatively analysed by microarray technology and quantitative reverse transcriptase polymerase chain reaction (RT qPCR). Significantly higher expression levels of genes involved in immune response and cell communication pathways in retropharyngeal lymph nodes of R1 sheep in comparison with R5 animals strongly suggest PRNP associated physiological processes with impact as an early barrier in pathogen defence. Equal expression patterns in brain stem suggest no physiological differences in brain of healthy R1 and R5 animals. In addition, similar expression pattern in liver indicates that there are no transcriptional differences in genes of the hepatic energy metabolism between animals of scrapie classes R1 and R5.
Collapse
Affiliation(s)
- Katrin Komolka
- Research Group Functional Genomics, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | | | | |
Collapse
|
63
|
Majer A, Medina SJ, Niu Y, Abrenica B, Manguiat KJ, Frost KL, Philipson CS, Sorensen DL, Booth SA. Early mechanisms of pathobiology are revealed by transcriptional temporal dynamics in hippocampal CA1 neurons of prion infected mice. PLoS Pathog 2012; 8:e1003002. [PMID: 23144617 PMCID: PMC3493483 DOI: 10.1371/journal.ppat.1003002] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 09/13/2012] [Indexed: 12/23/2022] Open
Abstract
Prion diseases typically have long pre-clinical incubation periods during which time the infectious prion particle and infectivity steadily propagate in the brain. Abnormal neuritic sprouting and synaptic deficits are apparent during pre-clinical disease, however, gross neuronal loss is not detected until the onset of the clinical phase. The molecular events that accompany early neuronal damage and ultimately conclude with neuronal death remain obscure. In this study, we used laser capture microdissection to isolate hippocampal CA1 neurons and determined their pre-clinical transcriptional response during infection. We found that gene expression within these neurons is dynamic and characterized by distinct phases of activity. We found that a major cluster of genes is altered during pre-clinical disease after which expression either returns to basal levels, or alternatively undergoes a direct reversal during clinical disease. Strikingly, we show that this cluster contains a signature highly reminiscent of synaptic N-methyl-D-aspartic acid (NMDA) receptor signaling and the activation of neuroprotective pathways. Additionally, genes involved in neuronal projection and dendrite development were also altered throughout the disease, culminating in a general decline of gene expression for synaptic proteins. Similarly, deregulated miRNAs such as miR-132-3p, miR-124a-3p, miR-16-5p, miR-26a-5p, miR-29a-3p and miR-140-5p follow concomitant patterns of expression. This is the first in depth genomic study describing the pre-clinical response of hippocampal neurons to early prion replication. Our findings suggest that prion replication results in the persistent stimulation of a programmed response that is mediated, at least in part, by synaptic NMDA receptor activity that initially promotes cell survival and neurite remodelling. However, this response is terminated prior to the onset of clinical symptoms in the infected hippocampus, seemingly pointing to a critical juncture in the disease. Manipulation of these early neuroprotective pathways may redress the balance between degeneration and survival, providing a potential inroad for treatment. Neurodegenerative diseases affect an ever-increasing proportion of the population; therefore, there is an urgent need to develop treatments. Prion disorders belong to this group of diseases and although rare and uniquely transmissible, share many features on a sub-cellular level. Central to disease is progressive synaptic impairment that invariably leads to the irreversible loss of neurons. Understanding this process is undoubtedly essential for rational drug discovery. In this study we looked at neurons very early in disease, when prions are barely detectable and there are no clinical symptoms observed. Specifically, we performed a comprehensive analysis of transcriptional changes within a particularly dense area of neurons, the CA1 hippocampus region, from prion-infected and control mice. In this way we were able to enrich our data for molecular changes unique to neurons and minimize those changes characteristic of support cells such as astrocytes and microglia. We detected the activation of a transcriptional program indicative of a protective mechanism within these neurons early in disease. This mechanism diminished as disease progressed and was lost altogether, concurrently with the onset of clinical symptoms. These findings demonstrate the ability of neurons to mount an initial neuroprotective response to prions that could be exploited for therapy development.
Collapse
Affiliation(s)
- Anna Majer
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Sarah J. Medina
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Yulian Niu
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Bernard Abrenica
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy J. Manguiat
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Kathy L. Frost
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Clark S. Philipson
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Debra L. Sorensen
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Stephanie A. Booth
- Molecular PathoBiology, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
64
|
Falsig J, Sonati T, Herrmann US, Saban D, Li B, Arroyo K, Ballmer B, Liberski PP, Aguzzi A. Prion pathogenesis is faithfully reproduced in cerebellar organotypic slice cultures. PLoS Pathog 2012; 8:e1002985. [PMID: 23133383 PMCID: PMC3486912 DOI: 10.1371/journal.ppat.1002985] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Accepted: 09/07/2012] [Indexed: 11/27/2022] Open
Abstract
Prions cause neurodegeneration in vivo, yet prion-infected cultured cells do not show cytotoxicity. This has hampered mechanistic studies of prion-induced neurodegeneration. Here we report that prion-infected cultured organotypic cerebellar slices (COCS) experienced progressive spongiform neurodegeneration closely reproducing prion disease, with three different prion strains giving rise to three distinct patterns of prion protein deposition. Neurodegeneration did not occur when PrP was genetically removed from neurons, and a comprehensive pharmacological screen indicated that neurodegeneration was abrogated by compounds known to antagonize prion replication. Prion infection of COCS and mice led to enhanced fodrin cleavage, suggesting the involvement of calpains or caspases in pathogenesis. Accordingly, neurotoxicity and fodrin cleavage were prevented by calpain inhibitors but not by caspase inhibitors, whereas prion replication proceeded unimpeded. Hence calpain inhibition can uncouple prion replication from its neurotoxic sequelae. These data validate COCS as a powerful model system that faithfully reproduces most morphological hallmarks of prion infections. The exquisite accessibility of COCS to pharmacological manipulations was instrumental in recognizing the role of calpains in neurotoxicity, and significantly extends the collection of tools necessary for rigorously dissecting prion pathogenesis.
Collapse
Affiliation(s)
- Jeppe Falsig
- Institute of Neuropathology, Zürich, Switzerland
| | | | | | - Dino Saban
- Institute of Neuropathology, Zürich, Switzerland
| | - Bei Li
- Institute of Neuropathology, Zürich, Switzerland
| | | | | | - Pawel P. Liberski
- Laboratory of Electron Microscopy and Neuropathology, Department of Molecular Pathology and Neuropathology, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
65
|
Zhao H, Liu LL, Du SH, Wang SQ, Zhang YP. Comparative analysis of the Shadoo gene between cattle and buffalo reveals significant differences. PLoS One 2012; 7:e46601. [PMID: 23071594 PMCID: PMC3468620 DOI: 10.1371/journal.pone.0046601] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2012] [Accepted: 09/01/2012] [Indexed: 12/03/2022] Open
Abstract
Background While prions play a central role in the pathogenesis of transmissible spongiform encephalopathies, the biology of these proteins and the pathophysiology of these diseases remain largely unknown. Since no case of bovine spongiform encephalopathy (BSE) has ever been reported in buffalo despite their phylogenetic proximity to cattle, genetic differences may be driving the different susceptibilities of these two species to BSE. We thus hypothesized that differences in expression of the most recently identified member of the prion family or Shadoo (SPRN) gene may relate to these species-specific differences. Principal Findings We first analyzed and compared the polymorphisms of the SPRN gene (∼4.4 kb), including the putative promoter, coding and 3′ regions, and further verified the entire ORF and putative promoter. This yielded a total of 117 fixed differences, remarkably: 1) a 12-bp insertion/deletion polymorphism in the hydrophobic domain of the cattle but not buffalo gene, introducing a four amino acid expansion/contraction in a series of 5 tandem Ala/Gly-containing repeats; 2) two fixed missense mutations (102Ser→Gly and 119Thr→Ala), and three missense mutations (92Pro>Thr/Met, 122Thr>Ile and 139Arg>Trp) in the coding region presenting different (P<0.05) genotypic and allelic frequency distributions between cattle and buffalo; and, 3) functional luciferase-reporter experiments for the predicted promoter region, consistent with a significantly higher activity in buffalo than cattle. Supporting these findings, immunoblotting revealed higher relative expression levels of Sho protein in cerebrum from buffalo than from cattle. In addition, for cattle, highest Sho expression was detected in obex, as compared to cerebrum or cerebellum. Significance Our findings support Sho as a non-PrP specific marker for prion infections, with obex as the best tissue source for the detection of Sho in TSE rapid tests. Moreover, these discoveries may prove advantageous for further understanding the biology of prion diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Binding Sites
- Brain/metabolism
- Buffaloes/genetics
- Cattle/genetics
- Encephalopathy, Bovine Spongiform/genetics
- Gene Components
- Gene Expression
- Gene Frequency
- Genes, Reporter
- INDEL Mutation
- Luciferases, Renilla/biosynthesis
- Luciferases, Renilla/genetics
- Mutation, Missense
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Organ Specificity
- Polymorphism, Genetic
- Protein Structure, Tertiary
- Repetitive Sequences, Nucleic Acid
- Sequence Analysis, DNA
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
| | - Lin-Lin Liu
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
| | - Shou-Hui Du
- School of Life Science, Yunnan University, Kunming, People’s Republic of China
| | - Si-Qi Wang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
| | - Ya-Ping Zhang
- Laboratory for Conservation and Utilization of Bio-resource, Yunnan University, Kunming, People’s Republic of China
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, People’s Republic of China
- * E-mail:
| |
Collapse
|
66
|
Cong X, Bongarzone S, Giachin G, Rossetti G, Carloni P, Legname G. Dominant-negative effects in prion diseases: insights from molecular dynamics simulations on mouse prion protein chimeras. J Biomol Struct Dyn 2012; 31:829-40. [PMID: 22934595 DOI: 10.1080/07391102.2012.712477] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Mutations in the prion protein (PrP) can cause spontaneous prion diseases in humans (Hu) and animals. In transgenic mice, mutations can determine the susceptibility to the infection of different prion strains. Some of these mutations also show a dominant-negative effect, thus halting the replication process by which wild type mouse (Mo) PrP is converted into Mo scrapie. Using all-atom molecular dynamics (MD) simulations, here we studied the structure of HuPrP, MoPrP, 10 Hu/MoPrP chimeras, and 1 Mo/sheepPrP chimera in explicit solvent. Overall, ∼2 μs of MD were collected. Our findings suggest that the interactions between α1 helix and N-terminal of α3 helix are critical in prion propagation, whereas the β2-α2 loop conformation plays a role in the dominant-negative effect. An animated Interactive 3D Complement (I3DC) is available in Proteopedia at http://proteopedia.org/w/Journal:JBSD:4 .
Collapse
Affiliation(s)
- Xiaojing Cong
- Department of Physics, Scuola Internazionale Superiore di Studi Avanzati-SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | | | | | | | | | | |
Collapse
|
67
|
Glier H, Holada K. Blood storage affects the detection of cellular prion protein on peripheral blood leukocytes and circulating dendritic cells in part by promoting platelet satellitism. J Immunol Methods 2012; 380:65-72. [DOI: 10.1016/j.jim.2012.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Revised: 04/02/2012] [Accepted: 04/05/2012] [Indexed: 01/06/2023]
|
68
|
Young R, Bouet S, Polyte J, Le Guillou S, Passet B, Vilotte M, Castille J, Beringue V, Le Provost F, Laude H, Vilotte JL. Expression of the prion-like protein Shadoo in the developing mouse embryo. Biochem Biophys Res Commun 2011; 416:184-7. [DOI: 10.1016/j.bbrc.2011.11.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 11/04/2011] [Indexed: 01/29/2023]
|
69
|
Klingeborn M, Race B, Meade-White KD, Chesebro B. Lower specific infectivity of protease-resistant prion protein generated in cell-free reactions. Proc Natl Acad Sci U S A 2011; 108:E1244-53. [PMID: 22065744 PMCID: PMC3228482 DOI: 10.1073/pnas.1111255108] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Prions are unconventional infectious agents that cause transmissible spongiform encephalopathy (TSE) diseases, or prion diseases. The biochemical nature of the prion infectious agent remains unclear. Previously, using a protein misfolding cyclic amplification (PMCA) reaction, infectivity and disease-associated protease-resistant prion protein (PrPres) were both generated under cell-free conditions, which supported a nonviral hypothesis for the agent. However, these studies lacked comparative quantitation of both infectivity titers and PrPres, which is important both for biological comparison with in vivo-derived infectivity and for excluding contamination to explain the results. Here during four to eight rounds of PMCA, end-point dilution titrations detected a >320-fold increase in infectivity versus that in controls. These results provide strong support for the hypothesis that the agent of prion infectivity is not a virus. PMCA-generated samples caused the same clinical disease and neuropathology with the same rapid incubation period as the input brain-derived scrapie samples, providing no evidence for generation of a new strain in PMCA. However, the ratio of the infectivity titer to the amount of PrPres (specific infectivity) was much lower in PMCA versus brain-derived samples, suggesting the possibility that a substantial portion of PrPres generated in PMCA might be noninfectious.
Collapse
Affiliation(s)
| | - Brent Race
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840
| | - Kimberly D. Meade-White
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840
| | - Bruce Chesebro
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, Hamilton, MT 59840
| |
Collapse
|
70
|
de Pedro-Cuesta J, Mahillo-Fernández I, Rábano A, Calero M, Cruz M, Siden A, Laursen H, Falkenhorst G, Mølbak K. Nosocomial transmission of sporadic Creutzfeldt-Jakob disease: results from a risk-based assessment of surgical interventions. J Neurol Neurosurg Psychiatry 2011; 82:204-12. [PMID: 20547628 PMCID: PMC3022351 DOI: 10.1136/jnnp.2009.188425] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 03/03/2010] [Accepted: 04/12/2010] [Indexed: 01/04/2023]
Abstract
OBJECTIVES Evidence of surgical transmission of sporadic Creutzfeldt-Jakob disease (sCJD) remains debatable in part due to misclassification of exposure levels. In a registry-based case-control study, the authors applied a risk-based classification of surgical interventions to determine the association between a history of surgery and sCJD. DESIGN Case-control study, allowing for detailed analysis according to time since exposure. SETTING National populations of Denmark and Sweden. PARTICIPANTS From national registries of Denmark and Sweden, the authors included 167 definite and probable sCJD cases with onset during the period 1987-2003, 835 age-, sex- and residence-matched controls and 2224 unmatched. Surgical procedures were categorised by anatomical structure and presumed risk of transmission level. The authors used logistic regression to determine the odds ratio (OR) for sCJD by surgical interventions in specified time-windows before disease-onset. RESULTS From comparisons with matched controls, procedures involving retina and optic nerve were associated with an increased risk at a latency of ≥1 year OR (95% CI) 5.53 (1.08 to 28.0). At latencies of 10 to 19 years, interventions on peripheral nerves 4.41 (1.17 to 16.6) and skeletal muscle 1.58 (1.01 to 2.48) were directly associated. Interventions on blood vessels 4.54 (1.01 to 20.0), peritoneum 2.38 (1.14 to 4.96) and skeletal muscle 2.04 (1.06 to 3.92), interventions conducted by vaginal approach 2.26 (1.14 to 4.47) and a pooled category of lower-risk procedures 2.81 (1.62 to 4.88) had an increased risk after ≥20 years. Similar results were found when comparing with unmatched controls. INTERPRETATION This observation is in concordance with animal models of prion neuroinvasion and is likely to represent a causal relation of surgery with a non-negligible proportion of sCJD cases.
Collapse
Affiliation(s)
- Jesús de Pedro-Cuesta
- Centro Nacional de Epidemiología, Instituto de Salud Carlos III, Calle Monforte de Lemos 5, Madrid, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Almeida LM, Basu U, Khaniya B, Taniguchi M, Williams JL, Moore SS, Guan LL. Gene expression in the medulla following oral infection of cattle with bovine spongiform encephalopathy. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:110-126. [PMID: 21218340 DOI: 10.1080/15287394.2011.529061] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The identification of variations in gene expression in response to bovine spongiform encephalopathy (BSE) may help to elucidate the mechanisms of neuropathology and prion replication and discover biomarkers for disease. In this study, genes that are differentially expressed in the caudal medulla tissues of animals infected with different doses of PrP(BSE) at 12 and 45 mo post infection were compared using array containing 24,000 oligonucleotide probes. Data analysis identified 966 differentially expressed (DE) genes between control and infected animals. Genes identified in at least two of four experiments (control versus 1-g infected animals at 12 and 45-mo; control versus 100-g infected animals at 12 and 45 mo) were considered to be the genes that may be associated with BSE disease. From the 176 DE genes associated with BSE, 84 had functions described in the Gene Ontology (GO) database. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of 14 genes revealed that prion infection may cause dysfunction of several different networks, including extracellular matrix (ECM), cell adhesion, neuroactive ligand-receptor interaction, complement and coagulation cascades, MAPK signaling, neurodegenerative disorder, SNARE interactions in vesicular transport, and the transforming growth factor (TGF) beta signaling pathways. The identification of DE genes will contribute to a better understanding of the molecular mechanisms of neuropathology in bovine species. Additional studies on larger number of animals are in progress in our laboratory to investigate the roles of these DE genes in pathogenesis of BSE.
Collapse
Affiliation(s)
- Luciane M Almeida
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | | | | | | | | | | | | |
Collapse
|
72
|
Jones M, Peden AH, Head MW, Ironside JW. The application of in vitro cell-free conversion systems to human prion diseases. Acta Neuropathol 2011; 121:135-43. [PMID: 20535485 DOI: 10.1007/s00401-010-0708-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2010] [Revised: 05/20/2010] [Accepted: 05/30/2010] [Indexed: 01/15/2023]
Abstract
A key event in the pathogenesis of prion diseases is the conversion of the normal cellular isoform of the prion protein into the disease-associated isoform, but the mechanisms operating in this critical event are not yet fully understood. A number of novel approaches have recently been developed to study factors influencing this process. One of these, the protein misfolding cyclical amplification (PMCA) technique, has been used to explore defined factors influencing the conversion of cellular prion protein in a cell-free model system. Although initially developed in animal models, this technique has been increasingly applied to human prion diseases. Recent studies have focused on the role of different isoforms of the disease-associated human prion protein and the effects of the naturally occurring polymorphism at codon 129 in the human prion protein gene on the conversion process, improving our understanding of the interaction between host and agent factors that influence the wide range of phenotypes in human prion diseases. This technique also allows a greatly enhanced sensitivity of detection of disease-associated prion protein in human tissues and fluids, which is potentially applicable to disease screening, particularly for variant Creutzfeldt-Jakob disease. The PMCA technique can also be used to model human susceptibility to a range of prions of non-human origin, which is likely to prove of considerable future interest as more novel and potentially pathogenic prion diseases are identified in animal species that form part of the human food chain.
Collapse
Affiliation(s)
- Michael Jones
- Components and vCJD Research, National Science Laboratories, Scottish National Blood Transfusion Service, Edinburgh, EH 17 7QT, UK
| | | | | | | |
Collapse
|
73
|
Montagna P. Fatal familial insomnia and the role of the thalamus in sleep regulation. HANDBOOK OF CLINICAL NEUROLOGY 2011; 99:981-996. [PMID: 21056239 DOI: 10.1016/b978-0-444-52007-4.00018-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Affiliation(s)
- Pasquale Montagna
- Department of Neurological Sciences, University of Bologna Medical School, Bologna, Italy.
| |
Collapse
|
74
|
Seidel R, Engelhard M. Chemical biology of prion protein: tools to bridge the in vitro/vivo interface. Top Curr Chem (Cham) 2011; 305:199-223. [PMID: 21769714 DOI: 10.1007/128_2011_201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Research on prion protein (PrP) and pathogenic prion has been very intensive because of its importance as model system for neurodegenerative diseases. One important aspect of this research has been the application of chemical biology tools. In this review we describe new developments like native chemical ligation (NCL) and expressed protein ligation (EPL) for the synthesis and semisynthesis of proteins in general and PrP in particular. These techniques allow the synthesis of designed tailor made analogs which can be used in conjunction with modern biophysical methods like fluorescence spectroscopy, solid state Nuclear Magnetic Resonance (ssNMR), and Electron Paramagnetic Resonance (EPR). Another aspect of prion research is concerned with the interaction of PrP with small organic molecules and metals. The results are critically reviewed and put into perspective of their implication for PrP function.
Collapse
Affiliation(s)
- Ralf Seidel
- Max Planck Institut für Molekulare Physiologie, Otto-Hahn-Str. 11, 44227, Dortmund, Germany
| | | |
Collapse
|
75
|
Wong M, Toth J, Haney S, Krewski D, Leighton FA, Ricketts M, Westaway D, Cashman N. PrioNet Canada: a network of centres of excellence for research on prion diseases--ongoing and future research directions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2011; 74:73-87. [PMID: 21218336 DOI: 10.1080/15287394.2011.529056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
It is PrioNet's vision to build a network that shapes and sustains prion research in Canada, translating basic science into accessible socioeconomic benefits for global betterment. PrioNet's research is developing surveillance measures, diagnostic tools, vaccines, and potential therapies and determining the various impacts of prion diseases on people. PrioNet seeks to integrate scientifically informed risk management strategies and to use this knowledge to address ongoing problems posed by bovine spongiform encephalopathy (BSE), the gathering crisis of chronic wasting disease (CWD), emerging issues of human prion disease, and basic scientific understanding of the nature of prions. PrioNet is strategically responding to prion threats by focusing its network of highly accomplished researchers and trainees to implement integrated risk management strategies that could not be supported by other mechanisms.
Collapse
Affiliation(s)
- Michelle Wong
- PrioNet Canada, 200-2386 East Mall, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Crucial role for prion protein membrane anchoring in the neuroinvasion and neural spread of prion infection. J Virol 2010; 85:1484-94. [PMID: 21123371 DOI: 10.1128/jvi.02167-10] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In nature prion diseases are usually transmitted by extracerebral prion infection, but clinical disease results only after invasion of the central nervous system (CNS). Prion protein (PrP), a host-encoded glycosylphosphatidylinositol (GPI)-anchored membrane glycoprotein, is necessary for prion infection and disease. Here, we investigated the role of the anchoring of PrP on prion neuroinvasion by studying various inoculation routes in mice expressing either anchored or anchorless PrP. In control mice with anchored PrP, intracerebral or sciatic nerve inoculation resulted in rapid CNS neuroinvasion and clinical disease (154 to 156 days), and after tongue, ocular, intravenous, or intraperitoneal inoculation, CNS neuroinvasion was only slightly slower (193 to 231 days). In contrast, in anchorless PrP mice, these routes resulted in slow and infrequent CNS neuroinvasion. Only intracerebral inoculation caused brain PrPres, a protease-resistant isoform of PrP, and disease in both types of mice. Thus, anchored PrP was an essential component for the rapid neural spread and CNS neuroinvasion of prion infection.
Collapse
|
77
|
Elmonir W, Inoshima Y, Elbassiouny A, Ishiguro N. Intron 1 mediated regulation of bovine prion protein gene expression: Role of donor splicing sites, sequences with potential enhancer and suppressor activities. Biochem Biophys Res Commun 2010; 397:706-10. [PMID: 20553871 DOI: 10.1016/j.bbrc.2010.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Accepted: 06/03/2010] [Indexed: 11/18/2022]
Abstract
Prion protein plays a key role in the pathogenesis of transmissible spongiform encephalopathies. Because changes in expression of the prion protein gene (PRNP) alter the incubation time and severity of prion diseases. Our previous work revealed a strong association between the promoter (spanning base pairs (bp) -88 to -30) and intron 1 (spanning bp +114 to +892) that leads to optimum expression of the bovine PRNP. Here, we employed two mutation analysis strategies (deletion and insertion) and two reporter assay systems (luciferase and GFP expression) to define the regulatory domains within intron 1 and further elucidate its role in regulating the promoter activity of the bovine prion protein gene. We identified DNA sequences with potential suppressor and enhancer activities within the 5' end of intron 1. Moreover stability analyses for PRNP mRNAs demonstrated that splicing sites and mechanism are critical for bovine PRNP expression.
Collapse
Affiliation(s)
- Walid Elmonir
- Laboratory of Food and Environmental Hygiene, Department of Veterinary Medicine, Faculty of Applied Biological Science, Gifu University, Gifu 501-1193, Japan
| | | | | | | |
Collapse
|
78
|
Velayos J, Irujo A, Cuadrado-Tejedor M, Paternain B, Moleres F, Ferrer V. La proteína priónica celular en el sistema nervioso central de mamíferos. Correlatos anatomoclínicos. Neurologia 2010. [DOI: 10.1016/j.nrl.2009.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
79
|
Zhao H, Wang XY, Zou W, Zhang YP. Prion protein gene (PRNP) polymorphisms in native Chinese cattle. Genome 2010; 53:138-45. [PMID: 20140032 DOI: 10.1139/g09-087] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Polymorphisms in four regions of the bovine prion protein gene (PRNP) confer susceptibility to bovine spongiform encephalopathy (BSE). These polymorphisms include a 23-bp insertion/deletion (indel) in the promoter region, a 12-bp indel in intron 1, an octapeptide repeat or 24-bp indel in the open reading frame, and a single nucleotide polymorphism (SNP) in the coding region. In this study, we investigated the frequency distributions of genotypes, alleles, and haplotypes at these indel sites in 349 native Chinese cattle and sequence variants in 50 samples. Our results showed that cattle in southern China have low frequencies of the 12-bp deletion allele and the 23-bp deletion / 12-bp deletion haplotype, which have been suggested to be relevant to BSE susceptibility. Interestingly, a significant difference was observed between BSE-affected cattle and healthy Chinese cattle in the 12-bp indel polymorphism. A total of 14 SNPs were discovered in the coding region of PRNP in Chinese cattle. Three of these SNPs were associated with amino acid changes (K3T, P54S, and S154N). The E211K substitution that was recently reported in the US atypical BSE case was not detected in this study.
Collapse
Affiliation(s)
- Hui Zhao
- Laboratory for Conservation and Utilization of Bioresource, Yunnan University, Kunming, China
| | | | | | | |
Collapse
|
80
|
Kobayashi S, Saito Y, Maki T, Murayama S. Cortical propagation of Creutzfeldt-Jakob disease with codon 180 mutation. Clin Neurol Neurosurg 2010; 112:520-3. [PMID: 20409635 DOI: 10.1016/j.clineuro.2010.03.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2009] [Revised: 01/28/2010] [Accepted: 03/13/2010] [Indexed: 11/17/2022]
Abstract
A patient with Creutzfeldt-Jakob disease (CJD) with prion protein (PrP) gene codon 180 mutation (CJD 180) experienced cognitive decline over the 1.5-year period before her death. Serial magnetic resonance imaging (MRI) studies tracked stepwise propagation of cortical abnormal swelling and T2 elongations. On postmortem examination, the cortical areas affected by CJD for relatively short periods were associated with mild spongiform changes with the number of neurons being largely preserved. The residual neurons in these areas exhibited vacuole-like dilatation of their cell body. In contrast, the atrophic cortical areas affected by CJD for long periods exhibited predominant gemistocytic astrocytosis with severe neuronal loss. The present report depicts the unique cortical propagation of CJD 180 with corresponding radiological and pathological findings. Axonal transport through corticocortical connections might underlie the disease's propagation. MRI appeared to be useful for discriminating between different pathological states and tracking the progression of CJD 180.
Collapse
Affiliation(s)
- Shunsuke Kobayashi
- Department of Neurology, Division of Neuroscience, Graduate School of Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | | | | | | |
Collapse
|
81
|
Hnasko R, Serban AV, Carlson G, Prusiner SB, Stanker LH. Generation of antisera to purified prions in lipid rafts. Prion 2010; 4:94-104. [PMID: 20647769 DOI: 10.4161/pri.4.2.12622] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Prion diseases are fatal neurodegenerative disorders caused by prion proteins (PrP). Infectious prions accumulate in the brain through a template-mediated conformational conversion of endogenous PrP(C) into alternately folded PrP(Sc). Immunoassays toward pre-clinical detection of infectious PrP(Sc) have been confounded by low-level prion accumulation in non-neuronal tissue and the lack of PrP(Sc) selective antibodies. We report a method to purify infectious PrP(Sc) from biological tissues for use as an immunogen and sample enrichment for increased immunoassay sensitivity. Significant prion enrichment is accomplished by sucrose gradient centrifugation of infected tissue and isolation with detergent resistant membranes from lipid rafts (DRMs). At equivalent protein concentration a 50-fold increase in detectable PrP(Sc) was observed in DRM fractions relative to crude brain by direct ELISA. Sequential purification steps result in increased specific infectivity (DRM <20-fold and purified DRM immunogen <40-fold) relative to 1% crude brain homogenate. Purification of PrP(Sc) from DRM was accomplished using phosphotungstic acid protein precipitation after proteinase-K (PK) digestion followed by size exclusion chromatography to separate PK and residual protein fragments from larger prion aggregates. Immunization with purified PrP(Sc) antigen was performed using wild-type (wt) and Prnp(0/0) mice, both on Balb/cJ background. A robust immune response against PrP(Sc) was observed in all inoculated Prnp(0/0) mice resulting in antisera containing high-titer antibodies against prion protein. Antisera from these mice recognized both PrP(C) and PrP(Sc), while binding to other brain-derived protein was not observed. In contrast, the PrP(Sc) inoculum was non-immunogenic in wt mice and antisera showed no reactivity with PrP or any other protein.
Collapse
Affiliation(s)
- Robert Hnasko
- USDA Agricultural Research Service, Foodborne Contaminants Research Unit, Albany, CA, USA
| | | | | | | | | |
Collapse
|
82
|
Velayos J, Irujo A, Cuadrado-Tejedor M, Paternain B, Moleres F, Ferrer V. Cellular prion protein in the central nervous system of mammals. Anatomoclinical associations. NEUROLOGÍA (ENGLISH EDITION) 2010. [DOI: 10.1016/s2173-5808(10)70046-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
83
|
Frost B, Diamond MI. Prion-like mechanisms in neurodegenerative diseases. Nat Rev Neurosci 2009; 11:155-9. [PMID: 20029438 DOI: 10.1038/nrn2786] [Citation(s) in RCA: 565] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Many non-infectious neurodegenerative diseases are associated with the accumulation of fibrillar proteins. These diseases all exhibit features that are reminiscent of those of prionopathies, including phenotypic diversity and the propagation of pathology. Furthermore, emerging studies of amyloid-beta, alpha-synuclein and tau--proteins implicated in common neurodegenerative diseases--suggest that they share key biophysical and biochemical characteristics with prions. Propagation of protein misfolding in these diseases may therefore occur through mechanisms similar to those that underlie prion pathogenesis. If this hypothesis is verified in vivo, it will suggest new therapeutic strategies to block propagation of protein misfolding throughout the brain.
Collapse
Affiliation(s)
- Bess Frost
- Department of Pathology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | |
Collapse
|
84
|
Abstract
Transmissible spongiform encephalopathies (TSEs) are inevitably lethal neurodegenerative diseases that affect humans and a large variety of animals. The infectious agent responsible for TSEs is the prion, an abnormally folded and aggregated protein that propagates itself by imposing its conformation onto the cellular prion protein (PrPC) of the host. PrPCis necessary for prion replication and for prion-induced neurodegeneration, yet the proximal causes of neuronal injury and death are still poorly understood. Prion toxicity may arise from the interference with the normal function of PrPC, and therefore, understanding the physiological role of PrPCmay help to clarify the mechanism underlying prion diseases. Here we discuss the evolution of the prion concept and how prion-like mechanisms may apply to other protein aggregation diseases. We describe the clinical and the pathological features of the prion diseases in human and animals, the events occurring during neuroinvasion, and the possible scenarios underlying brain damage. Finally, we discuss potential antiprion therapies and current developments in the realm of prion diagnostics.
Collapse
|
85
|
Young R, Passet B, Vilotte M, Cribiu EP, Béringue V, Le Provost F, Laude H, Vilotte JL. The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Lett 2009; 583:3296-300. [PMID: 19766638 DOI: 10.1016/j.febslet.2009.09.027] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Accepted: 09/14/2009] [Indexed: 10/25/2022]
Abstract
The prion protein PrP has a key role in transmissible spongiform encephalopathies but its biological function remains largely unknown. Recently, a related protein, Shadoo, was discovered. Its biological properties and brain distribution partially overlap that of PrP. We report that the Shadoo-encoding gene knockdown in PrP-knockout mouse embryos results in a lethal phenotype, occurring between E8 and E11, not observed on the wild-type genetic background. It reveals that these two proteins play a shared, crucial role in mammalian embryogenesis, explaining the lack of severe phenotype in PrP-knockout mammals, an appreciable step towards deciphering the biological role of this protein family.
Collapse
Affiliation(s)
- Rachel Young
- INRA-UMR1313, Génétique Animale et Biologie Intégrative, Institut National de la Recherche Agronomique, 78350 Jouy-en-Josas, France
| | | | | | | | | | | | | | | |
Collapse
|
86
|
Induction of cerebral beta-amyloidosis: intracerebral versus systemic Abeta inoculation. Proc Natl Acad Sci U S A 2009; 106:12926-31. [PMID: 19622727 DOI: 10.1073/pnas.0903200106] [Citation(s) in RCA: 220] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Despite the importance of the aberrant polymerization of Abeta in the early pathogenic cascade of Alzheimer's disease, little is known about the induction of Abeta aggregation in vivo. Here we show that induction of cerebral beta-amyloidosis can be achieved in many different brain areas of APP23 transgenic mice through the injection of dilute Abeta-containing brain extracts. Once the amyloidogenic process has been exogenously induced, the nature of the induced Abeta-deposition is determined by the brain region of the host. Because these observations are reminiscent of a prion-like mechanism, we then investigated whether cerebral beta-amyloidosis also can be induced by peripheral and systemic inoculations or by the intracerebral implantation of stainless steel wires previously coated with minute amounts of Abeta-containing brain extract. Results reveal that oral, intravenous, intraocular, and intranasal inoculations yielded no detectable induction of cerebral beta-amyloidosis in APP23 transgenic mice. In contrast, transmission of cerebral beta-amyloidosis through the Abeta-contaminated steel wires was demonstrated. Notably, plasma sterilization, but not boiling of the wires before implantation, prevented the induction of beta-amyloidosis. Our results suggest that minute amounts of Abeta-containing brain material in direct contact with the CNS can induce cerebral beta-amyloidosis, but that systemic cellular mechanisms of prion uptake and transport to the CNS may not apply to Abeta.
Collapse
|
87
|
Haigh CL, Lewis VA, Vella LJ, Masters CL, Hill AF, Lawson VA, Collins SJ. PrPC-related signal transduction is influenced by copper, membrane integrity and the alpha cleavage site. Cell Res 2009; 19:1062-78. [PMID: 19597535 DOI: 10.1038/cr.2009.86] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
88
|
Nuvolone M, Aguzzi A, Heikenwalder M. Cells and prions: A license to replicate. FEBS Lett 2009; 583:2674-84. [DOI: 10.1016/j.febslet.2009.06.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Revised: 06/01/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
|
89
|
Velayos JL, Irujo A, Cuadrado-Tejedor M, Paternain B, Moleres FJ, Ferrer V. The cellular prion protein and its role in Alzheimer disease. Prion 2009; 3:110-7. [PMID: 19556894 DOI: 10.4161/pri.3.2.9135] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The cellular prion protein (PrP(C)) is a membrane-bound glycoprotein especially abundant in the central nervous system (CNS). The scrapie prion protein (PrP(Sc,) also termed prions) is responsible of transmissible spongiform encephalopathies (TSE), a group of neurodegenerative diseases which affect humans and other mammal species, although the presence of PrP(C) is needed for the establishment and further evolution of prions. The present work compares the expression and localization of PrP(C) between healthy human brains and those suffering from Alzheimer disease (AD). In both situations we have observed a rostrocaudal decrease in the amount of PrP(C) within the CNS, both by immunoblotting and immunohistochemistry techniques. PrP(C) is higher expressed in our control brains than in AD cases. There was a neuronal loss and astogliosis in our AD cases. There was a tendency of a lesser expression of PrP(C) in AD cases than in healthy ones. And in AD cases, the intensity of the expression of the unglycosylated band is higher than the di- and monoglycosylated bands. With regards to amyloid plaques, those present in AD cases were positively labeled for PrP(C), a result which is further supported by the presence of PrP(C) in the amyloid plaques of a transgenic line of mice mimicking AD. The work was done according to Helsinki Declaration of 1975, and approved by the Ethics Committee of the Faculty of Medicine of the University of Navarre.
Collapse
Affiliation(s)
- J L Velayos
- Department of Anatomy, Faculty of Medicine, University of Navarre, Pamplona, Spain.
| | | | | | | | | | | |
Collapse
|
90
|
Rutishauser D, Mertz KD, Moos R, Brunner E, Rülicke T, Calella AM, Aguzzi A. The comprehensive native interactome of a fully functional tagged prion protein. PLoS One 2009; 4:e4446. [PMID: 19209230 PMCID: PMC2635968 DOI: 10.1371/journal.pone.0004446] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2008] [Accepted: 12/15/2008] [Indexed: 11/19/2022] Open
Abstract
The enumeration of the interaction partners of the cellular prion protein, PrP(C), may help clarifying its elusive molecular function. Here we added a carboxy proximal myc epitope tag to PrP(C). When expressed in transgenic mice, PrP(myc) carried a GPI anchor, was targeted to lipid rafts, and was glycosylated similarly to PrP(C). PrP(myc) antagonized the toxicity of truncated PrP, restored prion infectibility of PrP(C)-deficient mice, and was physically incorporated into PrP(Sc) aggregates, indicating that it possessed all functional characteristics of genuine PrP(C). We then immunopurified myc epitope-containing protein complexes from PrP(myc) transgenic mouse brains. Gentle differential elution with epitope-mimetic decapeptides, or a scrambled version thereof, yielded 96 specifically released proteins. Quantitative mass spectrometry with isotope-coded tags identified seven proteins which co-eluted equimolarly with PrP(C) and may represent component of a multiprotein complex. Selected PrP(C) interactors were validated using independent methods. Several of these proteins appear to exert functions in axomyelinic maintenance.
Collapse
Affiliation(s)
- Dorothea Rutishauser
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- Functional Genomics Center Zurich, Zurich, Switzerland
| | - Kirsten D. Mertz
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Rita Moos
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Erich Brunner
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
- Center for Model Organism Proteomes, University of Zurich, Zurich, Switzerland
| | - Thomas Rülicke
- Institute of Laboratory Animal Science and Research Center Biomodels Austria, University of Veterinary Medicine, Vienna, Austria
| | - Anna Maria Calella
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| | - Adriano Aguzzi
- Institute of Neuropathology, University Hospital of Zurich, Zurich, Switzerland
| |
Collapse
|
91
|
Mouillet-Richard S, Nishida N, Pradines E, Laude H, Schneider B, Féraudet C, Grassi J, Launay JM, Lehmann S, Kellermann O. Prions impair bioaminergic functions through serotonin- or catecholamine-derived neurotoxins in neuronal cells. J Biol Chem 2008; 283:23782-90. [PMID: 18617522 DOI: 10.1074/jbc.m802433200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The conversion of the cellular prion protein, PrP(C), to an abnormal isoform, PrP(Sc), is a central event leading to neurodegeneration in prion diseases. Deciphering the molecular and cellular changes imparted by PrP(Sc) accumulation remains an arduous task due to the small number of cell lines supporting prion replication. Here we introduce the 1C11 cell line as a new in vitro model to investigate prion pathogenesis. This cell line is a committed neuroectodermal progenitor able to differentiate into fully functional serotonergic or catecholaminergic neurons. 1C11 cells, which naturally express PrP(C) from the undifferentiated state, can be chronically infected with various prion strains. Prion infection does not promote any noticeable phenotypic change in the progenitor cells nor prevent the onset of the serotonergic and catecholaminergic differentiation programs. Pathogenic prions, however, deviate the overall neurotransmitter-metabolism in both pathways by decreasing bioamine synthesis, storage, and transport, and enhancing catabolism. Noteworthy, oxidized derivatives of both serotonin and catecholamines are selectively detected in the differentiated progenies of infected cells and contribute to irreversible impairment in bioamine synthesis. Finally, the level of PrP(Sc) accumulation, that of infectivity, and the extent of all prion-induced changes in infected cells appear to be correlated. The report of such specific effects of infection on neuronal functions provides a foundation for dissecting the events underlying loss of neuronal homeostasis in prion diseases.
Collapse
Affiliation(s)
- Sophie Mouillet-Richard
- Différenciation Cellulaire et prions, CNRS FRE 2937, Institut Pasteur, INSERM U747, 7 rue Guy Môquet, Villejuif, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Zhang W, Wu J, Li Y, Carke RC, Wong T. The In Vitro Bioassay Systems for the Amplification and Detection of Abnormal Prion PrPSc in Blood and Tissues. Transfus Med Rev 2008; 22:234-42. [DOI: 10.1016/j.tmrv.2008.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
93
|
Genoud N, Ott D, Braun N, Prinz M, Schwarz P, Suter U, Trono D, Aguzzi A. Antiprion prophylaxis by gene transfer of a soluble prion antagonist. THE AMERICAN JOURNAL OF PATHOLOGY 2008; 172:1287-96. [PMID: 18372425 DOI: 10.2353/ajpath.2008.070836] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Prion diseases are untreatable neurodegenerative disorders characterized by accumulation of PrP(Sc), an aggregated isoform of the normal prion protein PrP(C). Here, we delivered the soluble prion antagonist PrP-Fc(2) to the brains of mice by lentiviral gene transfer. Although naïve mice developed scrapie at 175 +/- 5 days postintracerebral prion inoculation (dpi), gene transfer before inoculation delayed disease onset by 72 +/- 4 days. At 170 days postintracerebral prion inoculation, PrP(Sc) accumulation and prion infectivity in PrPFc-treated brains were reduced by 3.6 and 4.2 logs, respectively. When PrP-Fc(2) was delivered 30 days after prion inoculation, survival of the treated animals was extended by 25 days. We then used tissue-specific recombination to express PrP-Fc(2) in the entire central nervous system, in only astrocytes, or in only oligodendrocytes. Oligodendrocyte-restricted PrP-Fc(2) expression impaired PrP(Sc) deposition and delayed disease even though oligodendrocytes are completely resistant to prion infection, suggesting that PrP-Fc(2) affords protection via noncell autonomous mechanisms. These results suggest that somatic gene transfer of prion antagonists may be effective for postexposure prophylaxis of prion diseases.
Collapse
Affiliation(s)
- Nicolas Genoud
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Groschup MH, Buschmann A. Rodent models for prion diseases. Vet Res 2008; 39:32. [PMID: 18284909 DOI: 10.1051/vetres:2008008] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2007] [Accepted: 01/15/2008] [Indexed: 11/14/2022] Open
Abstract
Until today most prion strains can only be propagated and the infectivity content assayed by experimentally challenging conventional or transgenic animals. Robust cell culture systems are not available for any of the natural and only for a few of the experimental prion strains. Moreover, the pathogenesis of different transmissible spongiform encephalopathies (TSE) can be analysed systematically by using experimentally infected animals. While, in the beginning, animals belonging to the natural host species were used, more and more rodent model species have been established, mostly due to practical reasons. Nowadays, most of these experiments are performed using highly susceptible transgenic mouse lines expressing cellular prion proteins, PrP, from a variety of species like cattle, sheep, goat, cervidae, elk, hamster, mouse, mink, pig, and man. In addition, transgenic mice carrying specific mutations or polymorphisms have helped to understand the molecular pathomechanisms of prion diseases. Transgenic mouse models have been utilised to investigate the physiological role of PrP(C), molecular aspects of species barrier effects, the cell specificity of the prion propagation, the role of the PrP glycosylation, the mechanisms of the prion spread, the neuropathological roles of PrP(C) and of its abnormal isoform PrP(D) (D for disease) as well as the function of PrP Doppel. Transgenic mouse models have also been used for mapping of PrP regions involved in or required for the PrP conversion and prion replication as well as for modelling of familial forms of human prion diseases.
Collapse
Affiliation(s)
- Martin H Groschup
- Friedrich-Loeffler-Institut , Institute for Novel and Emerging Infectious Diseases, Südufer 10, 17493 Greifswald - Insel Riems, Germany.
| | | |
Collapse
|
95
|
Ironside JW, Head MW. Biology and neuropathology of prion diseases. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:779-97. [PMID: 18631794 DOI: 10.1016/s0072-9752(07)01268-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- James W Ironside
- National Creutzfeldt-Jakob Disease Surveillance Unit, Western General Hospital and School of Molecular and Clinical Medicine, University of Edinburgh, Edinburgh, UK.
| | | |
Collapse
|
96
|
Uryu M, Karino A, Kamihara Y, Horiuchi M. Characterization of prion susceptibility in Neuro2a mouse neuroblastoma cell subclones. Microbiol Immunol 2007; 51:661-9. [PMID: 17641468 DOI: 10.1111/j.1348-0421.2007.tb03954.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this study, we established Neuro2a (N2a) neuroblastoma subclones and characterized their susceptibility to prion infection. The N2a cells were treated with brain homogenates from mice infected with mouse prion strain Chandler. Of 31 N2a subclones, 19 were susceptible to prion as those cells became positive for abnormal isoform of prion protein (PrP(Sc)) for up to 9 serial passages, and the remaining 12 subclones were classified as unsusceptible. The susceptible N2a subclones expressed cellular prion protein (PrP(C)) at levels similar to the parental N2a cells. In contrast, there was a variation in PrP(C) expression in unsusceptible N2a subclones. For example, subclone N2a-1 expressed PrP(C) at the same level as the parental N2a cells and prion-susceptible subclones, whereas subclone N2a-24 expressed much lower levels of PrP mRNA and PrP(C) than the parental N2a cells. There was no difference in the binding of PrP(Sc) to prion-susceptible and unsusceptible N2a subclones regardless of their PrP(C) expression level, suggesting that the binding of PrP(Sc) to cells is not a major determinant for prion susceptibility. Stable expression of PrP(C) did not confer susceptibility to prion in unsusceptible subclones. Furthermore, the existence of prion-unsusceptible N2a subclones that expressed PrP(C) at levels similar to prion-susceptible subclones, indicated that a host factor(s) other than PrP(C) and/or specific cellular microenvironments are required for the propagation of prion in N2a cells. The prion-susceptible and -unsusceptible N2a subclones established in this study should be useful for identifying the host factor(s) involved in the prion propagation.
Collapse
Affiliation(s)
- Masahide Uryu
- Laboratory of Prion Diseases, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
97
|
Thaa B, Zahn R, Matthey U, Kroneck PMH, Bürkle A, Fritz G. The deletion of amino acids 114-121 in the TM1 domain of mouse prion protein stabilizes its conformation but does not affect the overall structure. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1783:1076-84. [PMID: 18088603 DOI: 10.1016/j.bbamcr.2007.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 11/17/2022]
Abstract
A mutant of mouse prion protein (PrPC) carrying a deletion of residues 114-121 (PrPDelta114-121) has previously been described to lack convertibility into the scrapie-associated isoform of PrP (PrPSc) and to exhibit a dominant-negative effect on the conversion of wild-type PrPC into PrPSc in living cells. Here we report the characterization of recombinantly expressed PrPDelta114-121 by Fourier-transformation infrared spectroscopy (FTIR) and circular dichroism (CD) spectroscopy. The analysis of spectra revealed an increased antiparallel beta-sheet content in the deletion mutant compared to wild-type PrPC. This additional short beta-sheet stabilized the fold of the mutant protein by DeltaDeltaG(0)'=3.4+/-0.3 kJ mol(-1) as shown by chemical unfolding experiments using guanidine hydrochloride. Secondary structure predictions suggest that the additional beta-sheet in PrPDelta114-121 is close to the antiparallel beta-sheet in PrPC. The high-affinity Cu2+-binding site outside the octarepeats, which is located close to the deletion and involves His110 as a ligand, was not affected, as detected by electron paramagnetic resonance (EPR) spectroscopy, suggesting that Cu2+ binding does not contribute to the protection of PrPDelta114-121 from conversion into PrPSc. We propose that the deletion of residues 114-121 stabilizes the mutant protein. This stabilization most likely does not obstruct the interaction of PrPDelta114-121 with PrPSc but represents an energy barrier that blocks the conversion of PrPDelta114-121 into PrPSc.
Collapse
Affiliation(s)
- Bastian Thaa
- Fachbereich Biologie, Mathematisch-Naturwissenschaftliche Sektion, Universität Konstanz, 78457 Konstanz, Germany
| | | | | | | | | | | |
Collapse
|
98
|
Austbø L, Espenes A, Olsaker I, Press CM, Skretting G. Increased PrP mRNA expression in lymphoid follicles of the ileal Peyer's patch of sheep experimentally exposed to the scrapie agent. J Gen Virol 2007; 88:2083-2090. [PMID: 17554044 DOI: 10.1099/vir.0.82791-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
To understand the functional role of cellular prion protein (PrP(C)) in the initiation and maintenance of prion disease within the host, it is important to obtain a more detailed understanding of PrP(C) transcription in tissues during the development of disease. Using an experimental model with oral infection, we examined the effect of scrapie and the accumulation of the scrapie related form of the prion protein (PrP(Sc)) on the expression level of PrP mRNA in the ileal Peyer's patch of sheep. In the early phase of infection, prior to PrP(Sc) accumulation, no effect on the PrP expression was detected. However, it was found that lambs with PrP genotypes associated with high susceptibility for scrapie generally had higher PrP mRNA levels than lambs with less susceptible genotypes. Further, in highly susceptible VRQ/VRQ sheep at a stage of disease with high accumulation of PrP(Sc), real-time RT-PCR and microdissection were used to investigate levels of PrP mRNA in four different tissue compartments. An increased level of PrP mRNA was found in lymphoid follicles of infected sheep compared with controls, indicating upregulation of PrP expression in the follicles to compensate for the loss of PrP(C) converted to PrP(Sc), or that PrP(Sc) accumulation directly or indirectly influences the PrP expression. Still, the PrP expression level in the follicles was low compared with the other compartments investigated, suggesting that although increased PrP expression could contribute to PrP(Sc) accumulation, other factors are also important in the processes leading to accumulation of PrP(Sc) in the follicles.
Collapse
Affiliation(s)
- Lars Austbø
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Arild Espenes
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Ingrid Olsaker
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Charles McL Press
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| | - Grethe Skretting
- Department of Basic Sciences and Aquatic Medicine, Norwegian School of Veterinary Science, PO Box 8146 Dep., N-0033, Oslo, Norway
| |
Collapse
|
99
|
Kercher L, Favara C, Striebel JF, LaCasse R, Chesebro B. Prion protein expression differences in microglia and astroglia influence scrapie-induced neurodegeneration in the retina and brain of transgenic mice. J Virol 2007; 81:10340-51. [PMID: 17652390 PMCID: PMC2045503 DOI: 10.1128/jvi.00865-07] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activated microglia and astroglia are known to be involved in a variety of neurodegenerative diseases, including prion diseases. In the present experiments, we studied activation of astroglia and microglia after intraocular scrapie infection in transgenic mice expressing prion protein (PrP) in multiple cell types (tg7 mice) or in neurons only (tgNSE mice). In this model, scrapie infection and protease-resistant PrP deposition occurs in the retinas of both strains of mice, but retinal degeneration is observed only in tg7 mice. Our results showed that the retinas of tg7 and tgNSE mice both had astroglial activation with increased chemokine expression during the course of infection. However, only tg7 retinas exhibited strong microglial activation compared to tgNSE retinas, which showed little microglial activation by biochemical or morphological criteria. Therefore, microglial PrP expression might be required for scrapie-induced retinal microglial activation and damage. Furthermore, microglial activation preceded retinal neurodegeneration in tg7 mice, suggesting that activated microglia might contribute to the degenerative process, rather than being a response to the damage. Surprisingly, brain differed from retina in that an altered profile of microglial activation markers was upregulated, and the profiles in the two mouse strains were indistinguishable. Microglial activation in the brain was associated with severe brain vacuolation and neurodegeneration, leading to death. Thus, retinal and brain microglia appeared to differ in their requirements for activation, suggesting that different activation pathways occur in the two tissues.
Collapse
Affiliation(s)
- Lisa Kercher
- Laboratory of Persistent Viral Diseases, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, 903 S. 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | |
Collapse
|
100
|
Friedman-Levi Y, Ovadia H, Hoftberger R, Einstein O, Abramsky O, Budka H, Gabizon R. Fatal neurological disease in scrapie-infected mice induced for experimental autoimmune encephalomyelitis. J Virol 2007; 81:9942-9. [PMID: 17626090 PMCID: PMC2045403 DOI: 10.1128/jvi.00780-07] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
During the years or decades of prion disease incubation, at-risk individuals are certain to encounter diverse pathological insults, such as viral and bacterial infections, autoimmune diseases, or inflammatory processes. Whether prion disease incubation time and clinical signs or otherwise the pathology of intercurrent diseases can be affected by the coinfection process is unknown. To investigate this possibility, mice infected with the scrapie agent at both high and low titers were subsequently induced for experimental autoimmune encephalomyelitis, an immune system-mediated model of central nervous system (CNS) inflammation. We show here that co-induced mice died from a progressive neurological disease long before control mice succumbed to classical scrapie. To investigate the mechanism of the co-induced syndrome, we evaluated biochemical and pathological markers of both diseases. Brain and spleen PrP(Sc) levels in the dying co-induced mice were comparable to those observed in asymptomatic scrapie-infected animals, suggesting that co-induced disease is not an accelerated form of scrapie. In contrast, inflammatory markers, such as demyelination, immune cell infiltrates, and gliosis, were markedly increased in co-induced mouse spinal cords. Activated astrocytes were especially elevated in the medulla oblongata. Furthermore, PrP(sc) depositions were found in demyelinated white matter areas in co-induced mouse spinal cords, suggesting the presence of activated infected immune cells that infiltrate into the CNS to facilitate the process of prion neuroinvasion. We hypothesize that inflammatory processes affecting the CNS may have severe clinical implications in subjects incubating prion diseases.
Collapse
Affiliation(s)
- Yael Friedman-Levi
- Department of Neurology, Hadassah University Hospital, Jerusalem, Israel
| | | | | | | | | | | | | |
Collapse
|