51
|
Mysling S, Palmisano G, Højrup P, Thaysen-Andersen M. Utilizing Ion-Pairing Hydrophilic Interaction Chromatography Solid Phase Extraction for Efficient Glycopeptide Enrichment in Glycoproteomics. Anal Chem 2010; 82:5598-609. [DOI: 10.1021/ac100530w] [Citation(s) in RCA: 254] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simon Mysling
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark, and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Giuseppe Palmisano
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark, and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Peter Højrup
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark, and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Morten Thaysen-Andersen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, Odense M, DK-5230, Denmark, and Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| |
Collapse
|
52
|
Snider C, Jayasinghe S, Hristova K, White SH. MPEx: a tool for exploring membrane proteins. Protein Sci 2010; 18:2624-8. [PMID: 19785006 DOI: 10.1002/pro.256] [Citation(s) in RCA: 220] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Hydropathy plot methods form a cornerstone of membrane protein research, especially in the early stages of biochemical and structural characterization. Membrane Protein Explorer (MPEx), described in this article, is a refined and versatile hydropathy-plot software tool for analyzing membrane protein sequences. MPEx is highly interactive and facilitates the characterization and identification of favorable protein transmembrane regions using experiment-based physical and biological hydrophobicity scales. Besides allowing the consequences of sequence mutations to be examined, it provides tools for aiding the design of membrane-active peptides. MPEx is freely available as a Java Web Start application from our web site at http://blanco.biomol.uci.edu/mpex.
Collapse
Affiliation(s)
- Craig Snider
- Department of Physiology and Biophysics, Center for Biomembrane Systems, University of California, Irvine, California 92697-4560, USA
| | | | | | | |
Collapse
|
53
|
Almeida PF, Pokorny A. Mechanisms of antimicrobial, cytolytic, and cell-penetrating peptides: from kinetics to thermodynamics. Biochemistry 2009; 48:8083-93. [PMID: 19655791 PMCID: PMC2774275 DOI: 10.1021/bi900914g] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The mechanisms of six different antimicrobial, cytolytic, and cell-penetrating peptides, including some of their variants, are discussed and compared. The specificity of these polypeptides varies; however, they all form amphipathic alpha-helices when bound to membranes, and there are no striking differences in their sequences. We have examined the thermodynamics and kinetics of their interaction with phospholipid vesicles, namely, binding and peptide-induced dye efflux. The thermodynamics of binding calculated using the Wimley-White interfacial hydrophobicity scale are in good agreement with the values derived from experiment. The generally accepted view that binding affinity determines functional specificity is also supported by experiments in model membranes. We now propose the hypothesis that it is the thermodynamics of the insertion of the peptide into the membrane, from a surface-bound state, that determine the mechanism.
Collapse
Affiliation(s)
- Paulo F Almeida
- Department of Chemistry and Biochemistry, University of North Carolina Wilmington, North Carolina 28403, USA.
| | | |
Collapse
|
54
|
Ding W, Nothaft H, Szymanski CM, Kelly J. Identification and quantification of glycoproteins using ion-pairing normal-phase liquid chromatography and mass spectrometry. Mol Cell Proteomics 2009; 8:2170-85. [PMID: 19525481 DOI: 10.1074/mcp.m900088-mcp200] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycoprotein structure determination and quantification by MS requires efficient isolation of glycopeptides from a proteolytic digest of complex protein mixtures. Here we describe that the use of acids as ion-pairing reagents in normal-phase chromatography (IP-NPLC) considerably increases the hydrophobicity differences between non-glycopeptides and glycopeptides, thereby resulting in the reproducible isolation of N-linked high mannose type and sialylated glycopeptides from the tryptic digest of a ribonuclease B and fetuin mixture. The elution order of non-glycopeptides relative to glycopeptides in IP-NPLC is predictable by their hydrophobicity values calculated using the Wimley-White water/octanol hydrophobicity scale. O-linked glycopeptides can be efficiently isolated from fetuin tryptic digests using IP-NPLC when N-glycans are first removed with PNGase. IP-NPLC recovers close to 100% of bacterial N-linked glycopeptides modified with non-sialylated heptasaccharides from tryptic digests of periplasmic protein extracts from Campylobacter jejuni 11168 and its pglD mutant. Label-free nano-flow reversed-phase LC-MS is used for quantification of differentially expressed glycopeptides from the C. jejuni wild-type and pglD mutant followed by identification of these glycoproteins using multiple stage tandem MS. This method further confirms the acetyltransferase activity of PglD and demonstrates for the first time that heptasaccharides containing monoacetylated bacillosamine are transferred to proteins in both the wild-type and mutant strains. We believe that IP-NPLC will be a useful tool for quantitative glycoproteomics.
Collapse
Affiliation(s)
- Wen Ding
- Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada.
| | | | | | | |
Collapse
|
55
|
Veresov VG, Davidovskii AI. Activation of Bax by joint action of tBid and mitochondrial outer membrane: Monte Carlo simulations. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 38:941-60. [PMID: 19466402 DOI: 10.1007/s00249-009-0475-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2009] [Revised: 04/30/2009] [Accepted: 05/04/2009] [Indexed: 12/31/2022]
Abstract
The mitochondrial pathway of apoptosis proceeds when molecules, such as cytochrome c, sequestered between the outer and inner mitochondrial membranes are released to the cytosol by mitochondrial outer membrane (MOM) permeabilization. Bax, a member of the Bcl-2 protein family, plays a pivotal role in mitochondrion-mediated apoptosis. In response to apoptotic stimuli, Bax integrates into the MOM, where it mediates the release of cytochrome c from the intermembrane space into the cytosol, leading to caspase activation and cell death. The pro-death action of Bax is regulated by interactions with both other prosurvival proteins, such as tBid, and the MOM, but the exact mechanisms remain largely unclear. Here, the mechanisms of integration of Bax into a model membrane mimicking the MOM were studied by Monte Carlo simulations preceded by a computer prediction of the docking of tBid with Bax. A novel model of Bax activation by tBid was predicted by the simulations. In this model, tBid binds to Bax at an interaction site formed by Bax helices alpha1, alpha2, alpha3 and alpha5 leading, due to interaction of the positively charged N-terminal fragment of tBid with anionic lipid headgroups, to Bax reorientation such that a hydrogen-bonded pair of residues, Asp98 and Ser184, is brought into close proximity with negatively charged lipid headgroups. The interaction with these headgroups destabilizes the hydrogen bond which results in the release of helix alpha9 from the Bax-binding groove, its insertion into the membrane, followed by insertion into the membrane of the alpha5-alpha6 helical hairpin.
Collapse
Affiliation(s)
- Valery G Veresov
- Department of Cell Biophysics, Institute of Biophysics and Cell Engineering, Academicheskaya St. 27, Minsk, 220072, Belarus.
| | | |
Collapse
|
56
|
Membrane perturbation by the antimicrobial peptide PMAP-23: a fluorescence and molecular dynamics study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2009; 1788:1523-33. [PMID: 19397893 DOI: 10.1016/j.bbamem.2009.04.013] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2009] [Revised: 04/03/2009] [Accepted: 04/13/2009] [Indexed: 01/16/2023]
Abstract
Several bioactive peptides exert their biological function by interacting with cellular membranes. Structural data on their location inside lipid bilayers are thus essential for a detailed understanding of their mechanism of action. We propose here a combined approach in which fluorescence spectroscopy and molecular dynamics (MD) simulations were applied to investigate the mechanism of membrane perturbation by the antimicrobial peptide PMAP-23. Fluorescence spectra, depth-dependent quenching experiments, and peptide-translocation assays were employed to determine the location of the peptide inside the membrane. MD simulations were performed starting from a random mixture of water, lipids and peptide, and following the spontaneous self-assembly of the bilayer. Both experimental and theoretical data indicated a peptide location just below the polar headgroups of the membrane, with an orientation essentially parallel to the bilayer plane. These findings, together with experimental results on peptide-induced leakage from large and giant vesicles, lipid flip-flop and peptide exchange between vesicles, support a mechanism of action consistent with the "carpet" model. Furthermore, the atomic detail provided by the simulations suggested the occurrence of an additional, more specific and novel mechanism of bilayer destabilization by PMAP-23, involving the unusual insertion of charged side chains into the hydrophobic core of the membrane.
Collapse
|
57
|
Affiliation(s)
- Stephen H. White
- Department of Physiology and Biophysics, University of California, Irvine, California 92697-4560;
- Center for Biomembrane Systems, University of California, Irvine, California 92697-4560
| | - Gunnar von Heijne
- Department of Biochemistry and Biophysics, Stockholm University, SE-106 91 Stockholm, Sweden;
- Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
58
|
Lorenzo AC, Bisch PM. Analyzing different parameters of steered molecular dynamics for small membrane interacting molecules. J Mol Graph Model 2008; 24:59-71. [PMID: 16002307 DOI: 10.1016/j.jmgm.2005.05.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 05/11/2005] [Accepted: 05/11/2005] [Indexed: 11/23/2022]
Abstract
The aim of this report is two-fold: First, to show the applicability of the Steered Molecular Dynamics (SMD) methodology for analyzing non-specific interactions governing the membrane affinity process of small biological molecules. Second, to point out a correlation between the system response and certain combinations of the SMD parameters (spring-elastic-constant and pulling-group). For these purposes, a simplified membrane model was used, modeled as a non-polar region limited by two polar aqueous media in a continuous dielectric representation. Polarization-induced effects at both interfaces were taken into account by the "electrostatic images" method. To perform SMD simulations a harmonic external force, representing a spring acting on a selected atom, forces the molecule to "break" its interaction with the surrounding environment by extracting it out of the membrane. With this approach, small molecules and peptides, with known affinity for the membrane environment, were studied: the zwitterionic tryptophan residue and a pentapeptide AcWLKLL. The SMD parameters, spring-elastic-constant and pulling-group, were varied and combined in order to analyze the systems responses in each case. It was observed that, the spring stiffness was crucial to reveal specific events that occur during the molecule behavior; hence, it was directly responsible for the sensitivity of this methodology. The pulling-group selected highly influenced on the reaction pathway, a fact that it was not observed with other parameters; consequently, force profiles are like the "fingerprints" of these induced pathways. The potential profile for the tryptophan was recovered from the SMD simulations being in good agreement with that estimated by an approximation method. With this rather simple model approach, SMD methodology has proven to be suitable for revealing the main interactions that govern the membrane affinity processes of small molecules and peptides.
Collapse
Affiliation(s)
- Alicia C Lorenzo
- Laboratório de Dinâmica Molecular, Programa de Computação Científica, PROCC, Fundação Oswaldo Cruz, FIOCRUZ, Av. Brasil, 4365 Manguinhos, 21045-900 Rio de Janeiro, Brazil.
| | | |
Collapse
|
59
|
Kochan G, Escors D, González JM, Casasnovas JM, Esteban M. Membrane cell fusion activity of the vaccinia virus A17-A27 protein complex. Cell Microbiol 2008; 10:149-64. [PMID: 17708756 DOI: 10.1111/j.1462-5822.2007.01026.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Vaccinia virus enters cells by endocytosis and via a membrane fusion mechanism mediated by viral envelope protein complexes. While several proteins have been implicated in the entry/fusion event, there is no direct proof for fusogenic activity of any viral protein in heterologous systems. Transient coexpression of A17 and A27 in mammalian cells led to syncytia formation in a pH-dependent manner, as ascertained by confocal fluorescent immunomicroscopy. The pH-dependent fusion activity was identified to reside in A17 amino-terminal ectodomain after overexpression in insect cells using recombinant baculoviruses. Through the use of A17 ectodomain deletion mutants, it was found that the domain important for fusion spanned between residues 18 and 34. To further characterize A17-A27 fusion activity in mammalian cells, 293T cell lines stably expressing A17, A27 or coexpressing both proteins were generated using lentivectors. A27 was exposed on the cell surface only when A17 was coexpressed. In addition, pH-dependent fusion activity was functionally demonstrated in mammalian cells by cytoplasmic transfer of fluorescent proteins, only when A17 and A27 were coexpressed. Bioinformatic tools were used to compare the putative A17-A27 protein complex with well-characterized fusion proteins. Finally, all experimental evidence was integrated into a working model for A17-A27-induced pH-dependent cell-to-cell fusion.
Collapse
Affiliation(s)
- Grazyna Kochan
- Department of Molecular and Cell Biology, Centro Nacional de Biotecnologia, CSIC, Madrid, Spain
| | | | | | | | | |
Collapse
|
60
|
Affiliation(s)
- Kevin R Mackenzie
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| |
Collapse
|
61
|
Ding W, Hill JJ, Kelly J. Selective Enrichment of Glycopeptides from Glycoprotein Digests Using Ion-Pairing Normal-Phase Liquid Chromatography. Anal Chem 2007; 79:8891-9. [DOI: 10.1021/ac0707535] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wen Ding
- Genomics and Proteomics Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - Jennifer J. Hill
- Genomics and Proteomics Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| | - John Kelly
- Genomics and Proteomics Group, Institute for Biological Sciences, National Research Council of Canada, Ottawa, Ontario, Canada K1A 0R6
| |
Collapse
|
62
|
Bhayana B, Wilcox CS. A Minimal Protein Folding Model To Measure Hydrophobic and CH–π Effects on Interactions between Nonpolar Surfaces in Water. Angew Chem Int Ed Engl 2007; 46:6833-6. [PMID: 17676565 DOI: 10.1002/anie.200700932] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Brijesh Bhayana
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | |
Collapse
|
63
|
Bhayana B, Wilcox C. A Minimal Protein Folding Model To Measure Hydrophobic and CH–π Effects on Interactions between Nonpolar Surfaces in Water. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200700932] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
64
|
Zhang J, Hadlock T, Gent A, Strichartz GR. Tetracaine-membrane interactions: effects of lipid composition and phase on drug partitioning, location, and ionization. Biophys J 2007; 92:3988-4001. [PMID: 17351014 PMCID: PMC1868989 DOI: 10.1529/biophysj.106.102434] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Accepted: 01/30/2007] [Indexed: 11/18/2022] Open
Abstract
Interactions of the local anesthetic tetracaine with unilamellar vesicles made of dimyristoyl or dipalmitoyl phosphatidylcholine (DMPC or DPPC), the latter without or with cholesterol, were examined by following changes in the drug's fluorescent properties. Tetracaine's location within the membrane (as indicated by the equivalent dielectric constant around the aromatic fluorophore), its membrane:buffer partition coefficients for protonated and base forms, and its apparent pK(a) when adsorbed to the membrane were determined by measuring, respectively, the saturating blue shifts of fluorescence emission at high lipid:tetracaine, the corresponding increases in fluorescence intensity at this lower wavelength with increasing lipid, and the dependence of fluorescence intensity of membrane-bound tetracaine (TTC) on solution pH. Results show that partition coefficients were greater for liquid-crystalline than solid-gel phase membranes, whether the phase was set by temperature or lipid composition, and were decreased by cholesterol; neutral TTC partitioned into membranes more strongly than the protonated species (TTCH(+)). Tetracaine's location in the membrane placed the drug's tertiary amine near the phosphate of the headgroup, its ester bond in the region of the lipids' ester bonds, and associated dipole field and the aromatic moiety near fatty acyl carbons 2-5; importantly, this location was unaffected by cholesterol and was the same for neutral and protonated tetracaine, showing that the dipole-dipole and hydrophobic interactions are the critical determinants of tetracaine's location. Tetracaine's effective pK(a) was reduced by 0.3-0.4 pH units from the solution pK(a) upon adsorption to these neutral bilayers, regardless of physical state or composition. We propose that the partitioning of tetracaine into solid-gel membranes is determined primarily by its steric accommodation between lipids, whereas in the liquid-crystalline membrane, in which the distance between lipid molecules is larger and steric hindrance is less important, hydrophobic and ionic interactions between tetracaine and lipid molecules predominate.
Collapse
Affiliation(s)
- Jingzhong Zhang
- Pain Research Center, Department of Anesthesiology, Perioperative, and Pain Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | |
Collapse
|
65
|
Counterion-mediated membrane penetration: Cationic cell-penetrating peptides overcome Born energy barrier by ion-pairing with phospholipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2007; 1768:1550-8. [DOI: 10.1016/j.bbamem.2007.03.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 02/14/2007] [Accepted: 03/02/2007] [Indexed: 11/23/2022]
|
66
|
Han W, Wu YD. Molecular dynamics studies of hexamers of amyloid-beta peptide (16-35) and its mutants: influence of charge states on amyloid formation. Proteins 2007; 66:575-87. [PMID: 17115426 DOI: 10.1002/prot.21232] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
To study the early stage of amyloid-beta peptide (Abeta) aggregation, hexamers of the wild-type (WT) Abeta(16-35) and its mutants with amyloid-like conformations have been studied by molecular dynamics simulations in explicit water for a total time of 1.7 micros. We found that the amyloid-like structures in the WT oligomers are destabilized by the solvation of ionic D23/K28 residues, which are buried in the fibrils. This means that the desolvation of D23/K28 residues may contribute to the kinetic barrier of aggregation in the early stage. In the E22Q/D23N, D23N/K28Q, and E22Q/D23N/K28Q mutants, hydration becomes much less significant because the mutated residues have neutral amide side-chains. These amide side-chains can form linear cross-strand hydrogen bond chains, or "polar zippers", if dehydrated. These "polar zippers" increase the stability of the amyloid-like conformation, reducing the barrier for the early-stage oligomerization. This is in accord with experimental observations that both the D23/K28 lactamization and the E22Q/D23N mutation promote aggregation. We also found that the E22Q/D23N mutant prefers an amyloid-like conformation that differs from the one found for WT Abeta. This suggests that different amyloid structures may be formed under different conditions.
Collapse
Affiliation(s)
- Wei Han
- Department of Chemistry, The Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | | |
Collapse
|
67
|
Wen EZ, Luo R. Interplay of secondary structures and side-chain contacts in the denatured state of BBA1. J Chem Phys 2006; 121:2412-21. [PMID: 15260796 DOI: 10.1063/1.1768151] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The denatured state of a miniprotein BBA1 is studied under the native condition with the AMBER/Poisson-Boltzmann energy model and with the self-guided enhanced sampling technique. Forty independent trajectories are collected to sample the highly diversified denatured structures. Our simulation data show that the denatured BBA1 contains high percentage of native helix and native turn, but low percentage of native hairpin. Conditional population analysis indicates that the native helix formation and the native hairpin formation are not cooperative in the denatured state. Side-chain analysis shows that the native hydrophobic contacts are more preferred than the non-native hydrophobic contacts in the denatured BBA1. In contrast, the salt-bridge contacts are more or less nonspecific even if their populations are higher than those of hydrophobic contacts. Analysis of the trajectories shows that the native helix mostly initiates near the N terminus and propagates to the C terminus, and mostly forms from 3(10)-helix/turn to alpha helix. The same analysis shows that the native turn is important but not necessary in its formation in the denatured BBA1. In addition, the formations of the two strands in the native hairpin are rather asymmetric, demonstrating the likely influence of the protein environment. Energetic analysis shows that the native helix formation is largely driven by electrostatic interactions in denatured BBA1. Further, the native helix formation is associated with the breakup of non-native salt-bridge contacts and the accumulation of native salt-bridge contacts. However, the native hydrophobic contacts only show a small increase upon the native helix formation while the non-native hydrophobic contacts stay essentially the same, different from the evolution of hydrophobic contacts observed in an isolated helix folding.
Collapse
Affiliation(s)
- Edward Z Wen
- Department of Molecular Biology and Biochemistry, University of California, Irvine 92697-3900, USA
| | | |
Collapse
|
68
|
Gunner MR, Mao J, Song Y, Kim J. Factors influencing the energetics of electron and proton transfers in proteins. What can be learned from calculations. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1757:942-68. [PMID: 16905113 PMCID: PMC2760439 DOI: 10.1016/j.bbabio.2006.06.005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/07/2006] [Revised: 06/07/2006] [Accepted: 06/13/2006] [Indexed: 11/15/2022]
Abstract
A protein structure should provide the information needed to understand its observed properties. Significant progress has been made in developing accurate calculations of acid/base and oxidation/reduction reactions in proteins. Current methods and their strengths and weaknesses are discussed. The distribution and calculated ionization states in a survey of proteins is described, showing that a significant minority of acidic and basic residues are buried in the protein and that most of these remain ionized. The electrochemistry of heme and quinones are considered. Proton transfers in bacteriorhodopsin and coupled electron and proton transfers in photosynthetic reaction centers, 5-coordinate heme binding proteins and cytochrome c oxidase are highlighted as systems where calculations have provided insight into the reaction mechanism.
Collapse
Affiliation(s)
- M R Gunner
- Physics Department City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
69
|
Nymeyer H, Woolf TB, Garcia AE. Folding is not required for bilayer insertion: replica exchange simulations of an alpha-helical peptide with an explicit lipid bilayer. Proteins 2006; 59:783-90. [PMID: 15828005 DOI: 10.1002/prot.20460] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We implement the replica exchange molecular dynamics algorithm to study the interactions of a model peptide (WALP-16) with an explicitly represented DPPC membrane bilayer. We observe the spontaneous, unbiased insertion of WALP-16 into the DPPC bilayer and its folding into an alpha-helix with a transbilayer orientation. The free energy surface suggests that the insertion of the peptide into the DPPC bilayer precedes secondary structure formation. Although the peptide has some propensity to form a partially helical structure in the interfacial region of the DPPC/water system, this state is not a productive intermediate but rather an off-pathway trap for WALP-16 insertion. Equilibrium simulations show that the observed insertion/folding pathway mirrors the potential of mean force (PMF). Calculation of the enthalpic and entropic contributions to this PMF show that the surface bound conformation of WALP-16 is significantly lower in energy than other conformations, and that the insertion of WALP-16 into the bilayer without regular secondary structure is enthalpically unfavorable by 5-10 kcal/mol/residue. The observed insertion/folding pathway disagrees with the dominant conceptual model, which is that a surface-bound helix is an obligatory intermediate for the insertion of alpha-helical peptides into lipid bilayers. In our simulations, the observed insertion/folding pathway is favored because of a large (>100 kcal/mol) increase in system entropy that occurs when the unstructured WALP-16 peptide enters the lipid bilayer interior. The insertion/folding pathway that is lowest in free energy depends sensitively on the near cancellation of large enthalpic and entropic terms. This suggests the possibility that intrinsic membrane peptides may have a diversity of insertion/folding behaviors depending on the exact system of peptide and lipid under consideration.
Collapse
Affiliation(s)
- Hugh Nymeyer
- Theoretical Biology & Biophysics Group, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
| | | | | |
Collapse
|
70
|
Kim J, Mao J, Gunner MR. Are acidic and basic groups in buried proteins predicted to be ionized? J Mol Biol 2005; 348:1283-98. [PMID: 15854661 DOI: 10.1016/j.jmb.2005.03.051] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2005] [Revised: 03/11/2005] [Accepted: 03/17/2005] [Indexed: 11/17/2022]
Abstract
Ionizable residues play essential roles in proteins, modulating protein stability, fold and function. Asp, Glu, Arg, and Lys make up about a quarter of the residues in an average protein. Multi-conformation continuum electrostatic (MCCE) calculations were used to predict the ionization states of all acidic and basic residues in 490 proteins. Of all 36,192 ionizable residues, 93.5% were predicted to be ionized. Thirty-five percent have lost 4.08 kcal/mol solvation energy (DeltaDeltaG(rxn)) sufficient to shift a pK(a) by three pH units in the absence of other interactions and 17% have DeltaDeltaG(rxn) sufficient to shift pK(a) by five pH units. Overall 85% of these buried residues (DeltaDeltaG(rxn)>5DeltapK units) are ionized, including 92% of the Arg, 86% of the Asp, 77% of the Glu, and 75% of the Lys. Ion-pair interactions stabilize the ionization of both acids and bases. The backbone dipoles stabilize anions more than cations. The interactions with polar side-chains are also different for acids and bases. Asn and Gln stabilize all charges, Ser and Thr stabilize only acids while Tyr rarely stabilize Lys. Thus, hydroxyls are better hydrogen bond donors than acceptors. Buried ionized residues are more likely to be conserved than those on the surface. There are 3.95 residues buried per 100 residues in an average protein.
Collapse
Affiliation(s)
- Jinrang Kim
- Physics Department J-419, City College of New York, 138th Street and Convent Avenue, New York, NY 10031, USA
| | | | | |
Collapse
|
71
|
Sudha R, Kohtani M, Jarrold MF. Non-Covalent Interactions between Unsolvated Peptides: Helical Complexes Based on Acid−Base Interactions. J Phys Chem B 2005; 109:6442-7. [PMID: 16851718 DOI: 10.1021/jp045490m] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have used ion-mobility mass spectrometry to examine the conformations of the protonated complex formed between AcA(7)KA(6)KK and AcEA(7)EA(7), helical alanine-based peptides that incorporate glutamic acid (E) and lysine (K). Designed interactions between the acidic E and basic K residues help to stabilize the complex, which is generated by electrospray and studied in the gas phase. There are two main conformations: (1) a coaxial linear arrangement where the helices are tethered together by an EKK interaction between the pair of lysines at the C-terminus of the AcA(7)KA(6)KK peptide and a glutamic acid at the N-terminus of the AcEA(7)EA(7) peptide and (2) a coiled-coil arrangement with side-by-side antiparallel helices where there is an additional EK interaction between the E and K residues in the middle of the helices. The coiled-coil opens up to the coaxial linear structure as the temperature is raised. Entropy and enthalpy changes for the opening of the coiled-coil were derived from the measurements. The enthalpy change indicates that the interaction between the E and K residues in the middle of the helices is a weak neutral hydrogen bond. The EKK interaction is significantly stronger.
Collapse
Affiliation(s)
- Rajagopalan Sudha
- Chemistry Department, Indiana University, Bloomington, Indiana 47405-7102, USA
| | | | | |
Collapse
|
72
|
Ash WL, Zlomislic MR, Oloo EO, Tieleman DP. Computer simulations of membrane proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2005; 1666:158-89. [PMID: 15519314 DOI: 10.1016/j.bbamem.2004.04.012] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 04/29/2004] [Indexed: 11/30/2022]
Abstract
Computer simulations are rapidly becoming a standard tool to study the structure and dynamics of lipids and membrane proteins. Increasing computer capacity allows unbiased simulations of lipid and membrane-active peptides. With the increasing number of high-resolution structures of membrane proteins, which also enables homology modelling of more structures, a wide range of membrane proteins can now be simulated over time spans that capture essential biological processes. Longer time scales are accessible by special computational methods. We review recent progress in simulations of membrane proteins.
Collapse
Affiliation(s)
- Walter L Ash
- Department of Biological Sciences, University of Calgary, 2500 University Dr. NW, Calgary AB, Canada T2N 1N4
| | | | | | | |
Collapse
|
73
|
Abstract
The energetic cost of partitioning peptide bonds into membrane bilayers is prohibitive unless the peptide bonds participate in hydrogen bonds. However, even then there is a significant free energy penalty for dehydrating the peptide bonds that can only be overcome by favorable hydrophobic interactions. Membrane protein structure formation is thus dominated by hydrogen bonding interactions, which is the subject of this review.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics, University of California at Irvine, Irvine, California 92697
| |
Collapse
|
74
|
Ciani B, Jourdan M, Searle MS. Stabilization of beta-hairpin peptides by salt bridges: role of preorganization in the energetic contribution of weak interactions. J Am Chem Soc 2004; 125:9038-47. [PMID: 15369359 DOI: 10.1021/ja030074l] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A model beta-hairpin peptide has been used to investigate the context-dependent contribution of cross-strand Lys-Glu interactions to hairpin stability. We have mutated two Ser-Lys interstrand pairs to Glu-Lys salt bridges, one close to the type I' Asn-Gly turn sequence (Ser6 --> Glu), and one close to the N- and C-termini (Ser15 --> Glu). Each individual interaction contributes approximately 1.2-1.3 kJ mol(-1) to stability; however, introducing the two salt bridges simultaneously produces a much larger overall contribution (-3.6 kJ mol(-1)) consistent with an important role for preorganization and cooperativity in determining the energetics of weak interactions. We compare and contrast CD and NMR data on the highly folded hairpin with the two Glu-Lys pairs to shed light on the nature of the folded state in water. We show that large cosolvent-induced changes in the CD spectrum, in contrast with the modest effects observed on Halpha chemical shifts, support a hydrophobically collapsed entropy-driven conformation in water whose stability is modulated by long-range Coulombic interactions from the Glu-Lys interactions. Cosolvent stabilizes the structure enthalpically, as is evident from CD melting profiles.
Collapse
Affiliation(s)
- Barbara Ciani
- Contribution from the School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, U.K
| | | | | |
Collapse
|
75
|
Chen L, Chen LR, Zhou XE, Wang Y, Kahsai MA, Clark AT, Edmondson SP, Liu ZJ, Rose JP, Wang BC, Meehan EJ, Shriver JW. The hyperthermophile protein Sso10a is a dimer of winged helix DNA-binding domains linked by an antiparallel coiled coil rod. J Mol Biol 2004; 341:73-91. [PMID: 15312764 DOI: 10.1016/j.jmb.2004.05.044] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2003] [Revised: 03/19/2004] [Accepted: 05/18/2004] [Indexed: 01/01/2023]
Abstract
Sso10a is a member of a group of DNA-binding proteins thought to be important in chromatin structure and regulation in the hyperthermophilic archaeon Sulfolobus solfataricus. We have determined the structure of Sso10a to 1.47A resolution directly with unlabelled native crystals by a novel approach using sulfur single-wavelength anomalous scattering (SAS) from a chromium X-ray source. The 95 amino acid residue protein contains a winged helix DNA-binding domain with an extended C-terminal alpha-helix that leads to dimerization by forming a two-stranded, antiparallel coiled-coil rod. The winged helix domains are at opposite ends of the extended coiled coil with two putative DNA-recognition helices separated by 55A and rotated by 83 degrees. Formation of stable dimers in solution is demonstrated by both analytical ultracentrifugation and differential scanning calorimetry. With a T0 of 109 degrees C, Sso10a is one of the most stable two-stranded coiled coils known. The coiled coil contains a rare aspartate residue (D69) in the normally hydrophobic d position of the heptad repeat, with two aspartate-lysine (d-g') interhelical ion pairs in the symmetrical dimer. Mutation of D69 to alanine resulted in an increase in thermal stability, indicating that destabilization resulting from the partially buried aspartate residue cannot be offset by ion pair formation. Possible DNA-binding interactions are discussed on the basis of comparisons to other winged helix proteins. The structure of Sso10a provides insight into the structures of the conserved domain represented by COG3432, a group of more than 20 hypothetical transcriptional regulators coded in the genomic sequences of both crenarchaeota and euryarchaeota.
Collapse
Affiliation(s)
- Liqing Chen
- Laboratory for Structural Biology, University of Alabama in Huntsville, Huntsville, AL 35899, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
Abstract
Two factors provide key contributions to the stability of thermophilic proteins relative to their mesophilic homologues: electrostatic interactions of charged residues in the folded state and the dielectric response of the folded protein. The dielectric response for proteins in a "thermophilic series" globally modulates the thermal stability of its members, with the calculated dielectric constant for the protein increasing from mesophiles to hyperthermophiles. This variability results from differences in the distribution of charged residues on the surface of the protein, in agreement with structural and genetic observations. Furthermore, the contribution of electrostatic interactions to the stability of the folded state is more favorable for thermophilic proteins than for their mesophilic homologues. This leads to the conclusion that electrostatic interactions play an important role in determining the stability of proteins at high temperatures. The interplay between electrostatic interactions and dielectric response also provides further rationalization for the enhanced stability of thermophilic proteins with respect to cold-denaturation. Taken together, the distribution of charged residues and their fluctuations have been shown to be factors in modulating protein stability over the entire range of biologically relevant temperatures.
Collapse
Affiliation(s)
- Brian N Dominy
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, Massachusetts, USA
| | | | | |
Collapse
|
77
|
Partridge AW, Therien AG, Deber CM. Missense mutations in transmembrane domains of proteins: Phenotypic propensity of polar residues for human disease. Proteins 2004; 54:648-56. [PMID: 14997561 DOI: 10.1002/prot.10611] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous experiments on the cystic fibrosis transmembrane conductance regulator suggested that non-native polar residues within membrane domains can compromise protein structure/function. However, depending on context, replacement of a native residue by a non-native residue can result either in genetic disease or in benign effects (e.g., polymorphisms). Knowledge of missense mutations that frequently cause protein malfunction and subsequent disease can accordingly reveal information as to the impact of these residues in local protein environments. We exploited this concept by performing a statistical comparison of disease-causing mutations in protein membrane-spanning domains versus soluble domains. Using the Human Gene Mutation Database of 240 proteins (including 80 membrane proteins) associated with human disease, we compared the relative phenotypic propensity to cause disease of the 20 naturally occurring amino acids when removed from-or inserted into-native protein sequences. We found that in transmembrane domains (TMDs), mutations involving polar residues, and ionizable residues in particular (notably arginine), are more often associated with protein malfunction than soluble proteins. To further test the hypothesis that interhelical cross-links formed by membrane-embedded polar residues stabilize TMDs, we compared the occurrence of such residues in the TMDs of mesophilic and thermophilic prokaryotes. Results showed a significantly higher proportion of ionizable residues in thermophilic organisms, reinforcing the notion that membrane-embedded electrostatic interactions play critical roles in TMD stability.
Collapse
Affiliation(s)
- Anthony W Partridge
- Division of Structural Biology and Biochemistry, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | | |
Collapse
|
78
|
Abstract
Recent three-dimensional structures of helical membrane proteins present new challenges for the prediction of structure from amino acid sequence. Membrane proteins reside stably in a thermodynamic free energy minimum after release into the membrane's bilayer fabric from the translocon complex. This means that structure prediction is primarily a problem of physical chemistry. But the folding processes within the translocon must also be considered. A distilled overview of the physical principles of membrane protein stability is presented, and extended to encompass translocon-assisted folding.
Collapse
Affiliation(s)
- Stephen H White
- Department of Physiology and Biophysics and the Program in Macromolecular Structure, University of California at Irvine, Med. Sci. I-D346, 92697-4560, Irvine, CA, USA
| |
Collapse
|
79
|
Bartolucci S, De Simone G, Galdiero S, Improta R, Menchise V, Pedone C, Pedone E, Saviano M. An integrated structural and computational study of the thermostability of two thioredoxin mutants from Alicyclobacillus acidocaldarius. J Bacteriol 2003; 185:4285-9. [PMID: 12837806 PMCID: PMC164891 DOI: 10.1128/jb.185.14.4285-4289.2003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2003] [Accepted: 04/03/2003] [Indexed: 11/20/2022] Open
Abstract
We report a crystallographic and computational analysis of two mutant forms of the Alicyclobacillus acidocaldarius thioredoxin (BacTrx) done in order to evaluate the contribution of two specific amino acids to the thermostability of BacTrx. Our results suggest that the thermostability of BacTrx may be modulated by mutations affecting the overall electrostatic energy of the protein.
Collapse
Affiliation(s)
- Simonetta Bartolucci
- Dipartimento di Chimica Biologica, University of Naples Federico II, Istituto di Biostrutture e Bioimmagini-CNR, 80134 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Makhatadze GI, Loladze VV, Ermolenko DN, Chen X, Thomas ST. Contribution of surface salt bridges to protein stability: guidelines for protein engineering. J Mol Biol 2003; 327:1135-48. [PMID: 12662936 DOI: 10.1016/s0022-2836(03)00233-x] [Citation(s) in RCA: 190] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The small globular protein, ubiquitin, contains a pair of oppositely charged residues, K11 and E34, that according to the three-dimensional structure are located on the surface of this protein with a spatial orientation characteristic of a salt bridge. We investigated the strength of this salt bridge and its contribution to the global stability of the ubiquitin molecule. Using the "double mutant cycle" analysis, the strength of the pairwise interactions between K11 and E34 was estimated to be favorable by 3.6kJ/mol. Further, the salt bridge of the reverse orientation, i.e. E11/K34, can be formed and is found to have a strength (3.8kJ/mol) similar to that of the K11/E34 pair. However, the global stability of the K11/E34 variant of ubiquitin is 2.2kJ/mol higher than that of the E11/K34 variant. The difference in the contribution of the opposing salt bridge orientations to the overall stability of the ubiquitin molecule is attributed to the difference in the charge-charge interactions between residues forming the salt bridge and the rest of the ionizable groups in this protein. On the basis of these results, we concluded that surface salt bridges are stabilizing, but their contribution to the overall protein stability is strongly context-dependent, with charge-charge interactions being the largest determinant. Analysis of 16 salt bridges from six different proteins, for which detailed experimental data on energetics have been reported, support the conclusions made from the analysis of the salt bridge in ubiquitin. Implications of these findings for engineering proteins with enhanced thermostability are discussed.
Collapse
Affiliation(s)
- George I Makhatadze
- Department of Biochemistry and Molecular Biology, College of Medicine, Penn State University, 500 UniversityDrive, Hershey, PA 17033-2390, USA.
| | | | | | | | | |
Collapse
|
81
|
Chen CP, Kernytsky A, Rost B. Transmembrane helix predictions revisited. Protein Sci 2002; 11:2774-91. [PMID: 12441377 PMCID: PMC2373751 DOI: 10.1110/ps.0214502] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2002] [Revised: 07/22/2002] [Accepted: 09/16/2002] [Indexed: 12/24/2022]
Abstract
Methods that predict membrane helices have become increasingly useful in the context of analyzing entire proteomes, as well as in everyday sequence analysis. Here, we analyzed 27 advanced and simple methods in detail. To resolve contradictions in previous works and to reevaluate transmembrane helix prediction algorithms, we introduced an analysis that distinguished between performance on redundancy-reduced high- and low-resolution data sets, established thresholds for significant differences in performance, and implemented both per-segment and per-residue analysis of membrane helix predictions. Although some of the advanced methods performed better than others, we showed in a thorough bootstrapping experiment based on various measures of accuracy that no method performed consistently best. In contrast, most simple hydrophobicity scale-based methods were significantly less accurate than any advanced method as they overpredicted membrane helices and confused membrane helices with hydrophobic regions outside of membranes. In contrast, the advanced methods usually distinguished correctly between membrane-helical and other proteins. Nonetheless, few methods reliably distinguished between signal peptides and membrane helices. We could not verify a significant difference in performance between eukaryotic and prokaryotic proteins. Surprisingly, we found that proteins with more than five helices were predicted at a significantly lower accuracy than proteins with five or fewer. The important implication is that structurally unsolved multispanning membrane proteins, which are often important drug targets, will remain problematic for transmembrane helix prediction algorithms. Overall, by establishing a standardized methodology for transmembrane helix prediction evaluation, we have resolved differences among previous works and presented novel trends that may impact the analysis of entire proteomes.
Collapse
Affiliation(s)
- Chien Peter Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
82
|
Guimond A, Sulea T, Zwaagstra JC, Ekiel I, O'Connor-McCourt MD. Identification of a functional site on the type I TGF-beta receptor by mutational analysis of its ectodomain. FEBS Lett 2002; 513:147-52. [PMID: 11904140 DOI: 10.1016/s0014-5793(01)03231-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Six charged amino acid residues located in the ectodomain of the full-length type I transforming growth factor (TGF)-beta receptor were individually mutated to alanine. Mutation of residues D47, D98, K102 and E104 resulted in functionally impaired receptors as demonstrated by a marked decrease in ligand-dependent signaling and ligand internalization relative to the wild-type receptor. The other two mutants (K39A and K87A) exhibited wild-type-like activity. Molecular modeling indicates that the four functionally important residues are located on the convex face of the ectodomain structure. Since mutation of these four residues affects signaling and ligand internalization but not ligand binding, we propose that this functional site is an interacting site between type I and II receptors.
Collapse
MESH Headings
- Activin Receptors, Type I/chemistry
- Activin Receptors, Type I/genetics
- Activin Receptors, Type I/metabolism
- Amino Acid Sequence
- Animals
- Cells, Cultured
- DNA Mutational Analysis
- Humans
- Ligands
- Models, Molecular
- Molecular Sequence Data
- Protein Serine-Threonine Kinases
- Protein Structure, Tertiary
- Rats
- Receptor, Transforming Growth Factor-beta Type I
- Receptor, Transforming Growth Factor-beta Type II
- Receptors, Transforming Growth Factor beta/chemistry
- Receptors, Transforming Growth Factor beta/genetics
- Receptors, Transforming Growth Factor beta/metabolism
- Sequence Homology, Amino Acid
- Signal Transduction
- Structure-Activity Relationship
Collapse
Affiliation(s)
- Alain Guimond
- Biotechnology Research Institute, National Research Council of Canada, 6100 Royalmount Avenue, H4P 2R2, Montréal, QC, Canada
| | | | | | | | | |
Collapse
|
83
|
Abstract
We show that the peptide backbone of an alpha-helix places a severe thermodynamic constraint on transmembrane (TM) stability. Neglect of this constraint by commonly used hydrophobicity scales underlies the notorious uncertainty of TM helix prediction by sliding-window hydropathy plots of membrane protein (MP) amino acid sequences. We find that an experiment-based whole-residue hydropathy scale (WW scale), which includes the backbone constraint, identifies TM helices of membrane proteins with an accuracy greater than 99 %. Furthermore, it correctly predicts the minimum hydrophobicity required for stable single-helix TM insertion observed in Escherichia coli. In order to improve membrane protein topology prediction further, we introduce the augmented WW (aWW) scale, which accounts for the energetics of salt-bridge formation. An important issue for genomic analysis is the ability of the hydropathy plot method to distinguish membrane from soluble proteins. We find that the method falsely predicts 17 to 43 % of a set of soluble proteins to be MPs, depending upon the hydropathy scale used.
Collapse
Affiliation(s)
- S Jayasinghe
- Department of Physiology and Biophysics and the Program in Macromolecular Structure, University of California at Irvine, Irvine, CA 92697-4560, USA
| | | | | |
Collapse
|
84
|
Olson CA, Spek EJ, Shi Z, Vologodskii A, Kallenbach NR. Cooperative helix stabilization by complex Arg-Glu salt bridges. Proteins 2001; 44:123-32. [PMID: 11391775 DOI: 10.1002/prot.1079] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Among the interactions that stabilize the native state of proteins, the role of electrostatic interactions has been difficult to quantify precisely. Surface salt bridges or ion pairs between acidic and basic side chains have only a modest stabilizing effect on the stability of helical peptides or proteins: estimates are roughly 0.5 kcal/mol or less. On the other hand, theoretical arguments and the occurrence of salt bridge networks in thermophilic proteins suggest that multiple salt bridges may exert a stronger stabilizing effect. We show here that triads of charged side chains, Arg(+)-Glu(-)-Arg(+) spaced at i,i+4 or i,i+3 intervals in a helical peptide stabilize alpha helix by more than the additive contribution of two single salt bridges. The free energy of the triad is more than 1 kcal/mol in excess of the sum of the individual pairs, measured in low salt concentration (10 mM). The effect of spacing the three groups is severe; placing the charges at i,i+4 or i,i+3 sites has a strong effect on stability relative to single bridges; other combinations are weaker. A conservative calculation suggests that interactions of this kind between salt bridges can account for much of the stabilization of certain thermophilic proteins.
Collapse
Affiliation(s)
- C A Olson
- Department of Chemistry, New York University, New York, New York 10003, USA
| | | | | | | | | |
Collapse
|
85
|
Ozawa T, Hakamada Y, Hatada Y, Kobayashi T, Shirai T, Ito S. Thermostabilization by replacement of specific residues with lysine in a Bacillus alkaline cellulase: building a structural model and implications of newly formed double intrahelical salt bridges. PROTEIN ENGINEERING 2001; 14:501-4. [PMID: 11522924 DOI: 10.1093/protein/14.7.501] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
An alkaline, mesophilic endo-1,4-beta-glucanase from alkaliphilic Bacillus sp. strain KSM-64 was significantly thermostabilized by replacement of both Asn179 and Asp194 with lysine by site-directed mutagenesis. Structural remodeling of the mutant enzyme newly generated by the double mutation suggested that Glu175-->Lys179 and Glu190-->Lys194 were the most plausible ion pairs, both of which involved side chains at the i and i + 4 positions on the alpha(4)-helix from Glu175 to Ser195. By molecular dynamics simulations, the N(zeta) hydrogens of Lys179 and Lys194 were found to coordinate with the carbonyl O(varepsilon1) and O(varepsilon2) of Glu175 and the carbonyl O(varepsilon1) of Glu190, respectively, with distances of around 2 A for all. These results confirm that the formation of these double intrahelical ion pairs (salt bridges) is responsible for the thermostabilization by the double mutation.
Collapse
Affiliation(s)
- T Ozawa
- Tochigi Research Laboratories, Kao Corporation, 2606 Akabane, Ichikai, Haga, Tochigi 321-3497, Japan
| | | | | | | | | | | |
Collapse
|
86
|
Affiliation(s)
- M. Vijayakumar
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104
| | - Huan-Xiang Zhou
- Department of Physics, Drexel University, Philadelphia, Pennsylvania 19104
| |
Collapse
|
87
|
Hendsch ZS, Nohaile MJ, Sauer RT, Tidor B. Preferential heterodimer formation via undercompensated electrostatic interactions. J Am Chem Soc 2001; 123:1264-5. [PMID: 11456695 DOI: 10.1021/ja0032273] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Z S Hendsch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | | | |
Collapse
|
88
|
Lee LP, Tidor B. Optimization of binding electrostatics: charge complementarity in the barnase-barstar protein complex. Protein Sci 2001; 10:362-77. [PMID: 11266622 PMCID: PMC2373948 DOI: 10.1110/ps.40001] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Theoretical and experimental studies have shown that the large desolvation penalty required for polar and charged groups frequently precludes their involvement in electrostatic interactions that contribute strongly to net stability in the folding or binding of proteins in aqueous solution near room temperature. We have previously developed a theoretical framework for computing optimized electrostatic interactions and illustrated use of the algorithm with simplified geometries. Given a receptor and model assumptions, the method computes the ligand-charge distribution that provides the most favorable balance of desolvation and interaction effects on binding. In this paper the method has been extended to treat complexes using actual molecular shapes. The barnase-barstar protein complex was investigated with barnase treated as a target receptor. The atomic point charges of barstar were varied to optimize the electrostatic binding free energy. Barnase and natural barstar form a tight complex (K(d) approximately 10(-14) M) with many charged and polar groups near the interface that make this a particularly relevant system for investigating the role of electrostatic effects on binding. The results show that sets of barstar charges (resulting from optimization with different constraints) can be found that give rise to relatively large predicted improvements in electrostatic binding free energy. Principles for enhancing the effect of electrostatic interactions in molecular binding in aqueous environments are discussed in light of the optima. Our findings suggest that, in general, the enhancements in electrostatic binding free energy resulting from modification of polar and charged groups can be substantial. Moreover, a recently proposed definition of electrostatic complementarity is shown to be a useful tool for examining binding interfaces. Finally, calculational results suggest that wild-type barstar is closer to being affinity optimized than is barnase for their mutual binding, consistent with the known roles of these proteins.
Collapse
Affiliation(s)
- L P Lee
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | |
Collapse
|
89
|
Strittmatter EF, Wong RL, Williams ER. Effects of Gas-Phase Basicity on the Proton Transfer between Organic Bases and Trifluoroacetic Acid in the Gas Phase: Energetics of Charge Solvation and Salt Bridges. J Phys Chem A 2000; 104:10271-9. [PMID: 16554909 PMCID: PMC1409764 DOI: 10.1021/jp0012505] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The unimolecular dissociation pathways and kinetics of a series of protonated trimer ions consisting of two organic bases and trifluoroacetic acid were investigated using blackbody infrared radiative dissociation. Five bases with gas-phase basicities (GB) ranging from 238.4 to 246.2 kcal/mol were used. Both the dissociation pathways and the threshold dissociation energies depend on the GB of the base. Trimers consisting of the two most basic molecules dissociate to form protonated base monomers with an E(0) ~ 1.4 eV. Trimers consisting of the two least basic molecules dissociate to form protonated base dimers with an E(0) ~ 1.1-1.2 eV. These results indicate that the structures of the trimers change as a function of the GB of the basic molecule. The predominant structure of the protonated trimers consisting of the two most basic molecules is consistent with a salt bridge in which both of the basic molecules are protonated, and the trifluoroacetic acid molecule is deprotonated, whereas the predominant structure of the protonated trimers consisting of the two least basic molecules are consistent with charge-solvated complexes in which the proton is shared. The structure of the trimer consisting of the base of intermediate basicity is less clear; it dissociates to form primarily protonated base dimer, but has an E(0) ~ 1.2 eV. These results are consistent with the structure of this trimer as a salt bridge, but the resulting dissociation A(-). BH(+) product does not appear to be stable as an ion pair in the dissociative transition state.
Collapse
Affiliation(s)
- E F Strittmatter
- Department of Chemistry, University of California, Berkeley, California 94720-1460
| | | | | |
Collapse
|
90
|
Kajander T, Kahn PC, Passila SH, Cohen DC, Lehtiö L, Adolfsen W, Warwicker J, Schell U, Goldman A. Buried charged surface in proteins. Structure 2000; 8:1203-14. [PMID: 11080642 DOI: 10.1016/s0969-2126(00)00520-7] [Citation(s) in RCA: 102] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
BACKGROUND The traditional picture of charged amino acids in globular proteins is that they are almost exclusively on the outside exposed to the solvent. Buried charges, when they do occur, are assumed to play an essential role in catalysis and ligand binding, or in stabilizing structure as, for instance, helix caps. RESULTS By analyzing the amount and distribution of buried charged surface and charges in proteins over a broad range of protein sizes, we show that buried charge is much more common than is generally believed. We also show that the amount of buried charge rises with protein size in a manner which differs from other types of surfaces, especially aromatic and polar uncharged surfaces. In large proteins such as hemocyanin, 35% of all charges are greater than 75% buried. Furthermore, at all sizes few charged groups are fully exposed. As an experimental test, we show that replacement of the buried D178 of muconate lactonizing enzyme by N stabilizes the enzyme by 4.2 degrees C without any change in crystallographic structure. In addition, free energy calculations of stability support the experimental results. CONCLUSIONS Nature may use charge burial to reduce protein stability; not all buried charges are fully stabilized by a prearranged protein environment. Consistent with this view, thermophilic proteins often have less buried charge. Modifying the amount of buried charge at carefully chosen sites may thus provide a general route for changing the thermophilicity or psychrophilicity of proteins.
Collapse
Affiliation(s)
- T Kajander
- Centre for Biotechnology, University of Turku, Turku, Finland
| | | | | | | | | | | | | | | | | |
Collapse
|
91
|
Minor DL, Lin YF, Mobley BC, Avelar A, Jan YN, Jan LY, Berger JM. The polar T1 interface is linked to conformational changes that open the voltage-gated potassium channel. Cell 2000; 102:657-70. [PMID: 11007484 DOI: 10.1016/s0092-8674(00)00088-x] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Kv voltage-gated potassium channels share a cytoplasmic assembly domain, T1. Recent mutagenesis of two T1 C-terminal loop residues implicates T1 in channel gating. However, structural alterations of these mutants leave open the question concerning direct involvement of T1 in gating. We find in mammalian Kv1.2 that gating depends critically on residues at complementary T1 surfaces in an unusually polar interface. An isosteric mutation in this interface causes surprisingly little structural alteration while stabilizing the closed channel and increasing the stability of T1 tetramers. Replacing T1 with a tetrameric coiled-coil destabilizes the closed channel. Together, these data suggest that structural changes involving the buried polar T1 surfaces play a key role in the conformational changes leading to channel opening.
Collapse
Affiliation(s)
- D L Minor
- Howard Hughes Medical Institute and Department of Physiology, University of California, San Francisco 94143, USA.
| | | | | | | | | | | | | |
Collapse
|
92
|
Declerck N, Machius M, Wiegand G, Huber R, Gaillardin C. Probing structural determinants specifying high thermostability in Bacillus licheniformis alpha-amylase. J Mol Biol 2000; 301:1041-57. [PMID: 10966804 DOI: 10.1006/jmbi.2000.4025] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bacillus licheniformis alpha-amylase (BLA) is a starch-degrading enzyme that is highly thermostable although it is produced by a rather mesophilic organism. Over the last decade, the origin of BLA thermal properties has been extensively investigated in both academic and industrial laboratories, yet it is poorly understood. Here, we have used structure-based mutagenesis in order to probe the role of amino acid residues previously proposed as being important for BLA thermostability. Residues involved in salt-bridges, calcium binding or potential deamidation processes have been selected and replaced with various amino acids using a site-directed mutagenesis method, based on informational suppression. A total of 175 amylase variants were created and analysed in vitro. Active amylase variants were tested for thermostability by measuring residual activities after incubation at high temperature. Out of the 15 target residues, seven (Asp121, Asn126, Asp164, Asn192, Asp200, Asp204 and Ala269) were found to be particularly intolerant to any amino acid substitutions, some of which lead to very unstable mutant enzymes. By contrast, three asparagine residues (Asn172, Asn188 and Asn190) could be replaced with amino acid residues that significantly increase the thermostability compared to the wild-type enzyme. The highest stabilization event resulted from the substitution of phenylalanine in place of asparagine at position 190, leading to a sixfold increase of the enzyme's half-life at 80 degrees C (pH 5.6, 0.1 mM CaCl(2)). These results, combined with those of previous mutational analyses, show that the structural determinants contributing to the overall thermostability of BLA concentrate in domain B and at its interface with the central A domain. This region contains a triadic Ca-Na-Ca metal-binding site that appears extremely sensitive to any modification that may alter or reinforce the network of electrostatic interactions entrapping the metal ions. In particular, a loop spanning from residue 178 to 199, which undergoes pronounced conformational changes upon removal of calcium, appears to be the key feature for maintaining the enzyme structural integrity. Outside this region, most salt-bridges that were destroyed by mutations were found to be dispensable, except for an Asp121-Arg127 salt-bridge that contributes to the enhanced thermostability of BLA compared to other homologous bacterial alpha-amylases. Finally, our studies demonstrate that the natural resistance of BLA against high temperature is not optimized and can be enhanced further through various means, including the removal of possibly deamidating residues.
Collapse
Affiliation(s)
- N Declerck
- Génétique Moléculaire et Cellulaire, INRA-UMR216 and CNRS-URA1925 INA-PG, Thiverval-Grignon, F-78850, France.
| | | | | | | | | |
Collapse
|
93
|
Albeck S, Unger R, Schreiber G. Evaluation of direct and cooperative contributions towards the strength of buried hydrogen bonds and salt bridges. J Mol Biol 2000; 298:503-20. [PMID: 10772866 DOI: 10.1006/jmbi.2000.3656] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An experimental approach to evaluate the net binding free energy of buried hydrogen bonds and salt bridges is presented. The approach, which involves a modified multiple-mutant cycle protocol, was applied to selected interactions between TEM-1-beta-lactamase and its protein inhibitor, BLIP. The selected interactions (two salt bridges and two hydrogen bonds) all involving BLIP-D49, define a distinct binding unit. The penta mutant, where all side-chains constructing the binding unit were mutated to Ala, was used as a reference state to which combinations of side-chains were introduced. At first, pairs of interacting residues were added allowing the determination of interaction energies in the absence of neighbors, using double mutant cycles. Addition of neighboring residues allowed the evaluation of their cooperative effects on the interaction. The two isolated salt bridges were either neutral or repulsive whereas the two hydrogen bonds contribute 0.3 kcal mol(-1 )each. Conversely, a double mutant cycle analysis of these interactions in their native environment showed that they all stabilize the complex by 1-1.5 kcal mol(-1). Examination of the effects of neighboring residues on each of the interactions revealed that the formation of a salt bridge triad, which involves two connected salt bridges, had a strong cooperative effect on stabilizing the complex independent of the presence or absence of additional neighbors. These results demonstrate the importance of forming net-works of buried salt bridges. We present theoretical electrostatic calculations which predict the observed mode of cooperativity, and suggest that the cooperative networking effect results from the favorable contribution of the protein to the interaction. Furthermore, a good correlation between calculated and experimentally determined interaction energies for the two salt bridges, and to a lesser extent for the two hydrogen bonds, is shown. The data analysis was performed on values of DeltaDeltaG(double dagger)K(d) which reflect the strength of short range interactions, while DeltaDeltaG(o)K(D) values which include the effects of long range electrostatic forces that alter specifically DeltaDeltaG(double dagger)k(a) were treated separately.
Collapse
Affiliation(s)
- S Albeck
- Department of Biological Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | | | | |
Collapse
|
94
|
Abstract
The native form of inhibitory serpins (serine protease inhibitors) is not in the thermodynamically most stable state but in a metastable state, which is critical to inhibitory functions. To understand structural basis and functional roles of the native metastability of inhibitory serpins, we have been characterizing stabilizing mutations of human alpha1-antitrypsin, a prototype inhibitory serpin. One of the sites that has been shown to be critical in stability and inhibitory activity of alpha1-antitrypsin is Lys335. In the present study, detailed roles of this lysine were analyzed by assessing the effects of 13 different amino acid substitutions. Results suggest that size and architect of the side chains at the 335 site determine the metastability of alpha1-antitrypsin. Moreover, factors such as polarity and flexibility of the side chain at this site, in addition to the metastability, seem to be critical for the inhibitory activity. Substitutions of the lysine at equivalent positions in two other inhibitory serpins, human alpha1-antichymotrypsin and human antithrombin III, also increased stability and decreased inhibitory activity toward alpha-chymotrypsin and thrombin, respectively. These results and characteristics of lysine side chain, such as flexibility, polarity, and the energetic cost upon burial, suggest that this lysine is one of the structural designs in regulating metastability and function of inhibitory serpins in general.
Collapse
Affiliation(s)
- H Im
- National Creative Research Initiative Center, Korea Research Institute of Bioscience and Biotechnology, Taejon
| | | |
Collapse
|
95
|
Gargallo R, Oliva B, Querol E, Avilés FX. Effect of the reaction field electrostatic term on the molecular dynamics simulation of the activation domain of procarboxypeptidase B. PROTEIN ENGINEERING 2000; 13:21-6. [PMID: 10679526 DOI: 10.1093/protein/13.1.21] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Molecular dynamics simulations of the activation domain of porcine procarboxypeptidase B (ADBp) were performed in order to examine the effects of the inclusion of a reaction field (RF) term into the calculation of electrostatics forces for highly charged proteins. Two simulations were performed with the GROMOS96 package, studying the influence of counterions on the final results. Comparison with previous results without the inclusion of the RF term (Martí-Renom, M.A., Mas,J.M., Oliva,B., Querol,E. and Avilés,F.X., Protein Engng, 1998, 11, 101-110) shows that the structure is well maintained when the RF term is included. Moreover, the analysis of the trajectories shows that simulations of solvated highly-charged proteins are sensitive to the presence of counterions, the secondary structures being more stable when their charges are neutralized.
Collapse
Affiliation(s)
- R Gargallo
- Departament de Quimica Analítica, Universitat de Barcelona, Martí i Franqués, 1-11, 08028, Barcelona, Spain
| | | | | | | |
Collapse
|
96
|
Sleigh SH, Seavers PR, Wilkinson AJ, Ladbury JE, Tame JR. Crystallographic and calorimetric analysis of peptide binding to OppA protein. J Mol Biol 1999; 291:393-415. [PMID: 10438628 DOI: 10.1006/jmbi.1999.2929] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Isothermal titration calorimetry has been used to study the binding of 20 different peptides to the peptide binding protein OppA, and the crystal structures of the ligand complexes have been refined. This periplasmic binding protein, part of the oligopeptide permease system of Gram negative bacteria, has evolved to bind and enclose small peptides of widely varying sequences. The peptides used in this study have the sequence Lys-X-Lys, where X is any of the 20 commonly occurring amino acids. The various side-chains found at position 2 on the ligand fit into a hydrated pocket. The majority of side-chains are restrained to particular conformations within the pocket. Water molecules act as flexible adapters, matching the hydrogen-bonding requirements of the protein and ligand and shielding charges on the buried ligand. This use of water by OppA to broaden the repertoire of its binding site is not unique, but contrasts sharply with other proteins which use water to help bind ligands highly selectively. Predicting the thermodynamics of binding from the structure of the complexes is highly complicated by the influence of water on the system.
Collapse
Affiliation(s)
- S H Sleigh
- Structural Biology Centre Department of Chemistry, University of York, York, YO10 5DD, UK
| | | | | | | | | |
Collapse
|
97
|
Nagan MC, Kerimo SS, Musier-Forsyth K, Cramer CJ. Wild-Type RNA MicrohelixAla and 3:70 Variants: Molecular Dynamics Analysis of Local Helical Structure and Tightly Bound Water. J Am Chem Soc 1999. [DOI: 10.1021/ja9842565] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Maria C. Nagan
- Contribution from the Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431
| | - Stephanie S. Kerimo
- Contribution from the Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431
| | - Karin Musier-Forsyth
- Contribution from the Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431
| | - Christopher J. Cramer
- Contribution from the Department of Chemistry and Supercomputer Institute, University of Minnesota, 207 Pleasant St. SE, Minneapolis, Minnesota 55455-0431
| |
Collapse
|
98
|
White SH, Wimley WC. Membrane protein folding and stability: physical principles. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:319-65. [PMID: 10410805 DOI: 10.1146/annurev.biophys.28.1.319] [Citation(s) in RCA: 1390] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Stably folded membrane proteins reside in a free energy minimum determined by the interactions of the peptide chains with each other, the lipid bilayer hydrocarbon core, the bilayer interface, and with water. The prediction of three-dimensional structure from sequence requires a detailed understanding of these interactions. Progress toward this objective is summarized in this review by means of a thermodynamic framework for describing membrane protein folding and stability. The framework includes a coherent thermodynamic formalism for determining and describing the energetics of peptide-bilayer interactions and a review of the properties of the environment of membrane proteins--the bilayer milieu. Using a four-step thermodynamic cycle as a guide, advances in three main aspects of membrane protein folding energetics are discussed: protein binding and folding in bilayer interfaces, transmembrane helix insertion, and helix-helix interactions. The concepts of membrane protein stability that emerge provide insights to fundamental issues of protein folding.
Collapse
Affiliation(s)
- S H White
- Department of Physiology and Biophysics, University of California at Irvine 92697-4560, USA.
| | | |
Collapse
|
99
|
Hendsch ZS, Tidor B. Electrostatic interactions in the GCN4 leucine zipper: substantial contributions arise from intramolecular interactions enhanced on binding. Protein Sci 1999; 8:1381-92. [PMID: 10422826 PMCID: PMC2144375 DOI: 10.1110/ps.8.7.1381] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The GCN4 leucine zipper is a peptide homodimer that has been the subject of a number of experimental and theoretical investigations into the determinants of affinity and specificity. Here, we utilize this model system to investigate electrostatic effects in protein binding using continuum calculations. A particularly novel feature of the computations made here is that they provide an interaction-by-interaction breakdown of the electrostatic contributions to the free energy of docking that includes changes in the interaction of each functional group with solvent and changes in interactions between all pairs of functional groups on binding. The results show that (1) electrostatic effects disfavor binding by roughly 15 kcal/mol due to desolvation effects that are incompletely compensated in the bound state, (2) while no groups strongly stabilize binding, the groups that are most destabilizing are charged and polar side chains at the interface that have been implicated in determining binding specificity, and (3) attractive intramolecular interactions (e.g., backbone hydrogen bonds) that are enhanced on binding due to reduced solvent screening in the bound state contribute significantly to affinity and are likely to be a general effect in other complexes. A comparison is made between the results obtained in an electrostatic analysis carried out calculationally and simulated results corresponding to idealized data from a scanning mutagenesis experiment. It is shown that scanning experiments provide incomplete information on interactions and, if overinterpreted, tend to overestimate the energetic effect of individual side chains that make attractive interactions. Finally, a comparison is made between the results available from a continuum electrostatic model and from a simpler surface-area dependent solvation model. In this case, although the simpler model neglects certain interactions, on average it performs rather well.
Collapse
Affiliation(s)
- Z S Hendsch
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139-4307, USA
| | | |
Collapse
|
100
|
Hirsch JA, Schubert C, Gurevich VV, Sigler PB. The 2.8 A crystal structure of visual arrestin: a model for arrestin's regulation. Cell 1999; 97:257-269. [PMID: 10219246 DOI: 10.1016/s0092-8674(00)80735-7] [Citation(s) in RCA: 337] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
G protein-coupled signaling is utilized by a wide variety of eukaryotes for communicating information from the extracellular environment. Signal termination is achieved by the action of the arrestins, which bind to activated, phosphorylated G protein-coupled receptors. We describe here crystallographic studies of visual arrestin in its basal conformation. The salient features of the structure are a bipartite molecule with an unusual polar core. This core is stabilized in part by an extended carboxy-terminal tail that locks the molecule into an inactive state. In addition, arrestin is found to be a dimer of two asymmetric molecules, suggesting an intrinsic conformational plasticity. In conjunction with biochemical and mutagenesis data, we propose a molecular mechanism by which arrestin is activated for receptor binding.
Collapse
Affiliation(s)
- J A Hirsch
- Howard Hughes Medical Institute, Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA
| | | | | | | |
Collapse
|