51
|
Köstlin N, Ostermeir AL, Spring B, Schwarz J, Marmé A, Walter CB, Poets CF, Gille C. HLA-G promotes myeloid-derived suppressor cell accumulation and suppressive activity during human pregnancy through engagement of the receptor ILT4. Eur J Immunol 2016; 47:374-384. [DOI: 10.1002/eji.201646564] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/07/2016] [Accepted: 11/08/2016] [Indexed: 02/01/2023]
Affiliation(s)
- Natascha Köstlin
- Tuebingen University Children's Hospital; Department of Neonatology; Tuebingen Germany
| | - Anna-Lena Ostermeir
- Tuebingen University Children's Hospital; Department of Neonatology; Tuebingen Germany
| | - Bärbel Spring
- Tuebingen University Children's Hospital; Department of Neonatology; Tuebingen Germany
| | - Julian Schwarz
- Tuebingen University Children's Hospital; Department of Neonatology; Tuebingen Germany
| | | | | | - Christian F. Poets
- Tuebingen University Children's Hospital; Department of Neonatology; Tuebingen Germany
| | - Christian Gille
- Tuebingen University Children's Hospital; Department of Neonatology; Tuebingen Germany
| |
Collapse
|
52
|
Rescuing lymphocytes from HLA-G immunosuppressive effects mediated by the tumor microenvironment. Oncotarget 2016; 6:37385-97. [PMID: 26460949 PMCID: PMC4741936 DOI: 10.18632/oncotarget.6044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Accepted: 09/17/2015] [Indexed: 11/25/2022] Open
Abstract
Several studies have demonstrated that the antitumor activities of both T and natural killer (NK) effector populations are limited by the immunosuppressive strategies of tumors. In several malignant transformations, the expression of HLA-G by tumor cells rises dramatically, rendering them strongly immunosuppressive. In this study, we postulated that the absence of HLA-G receptors would prevent the immunosuppressive effects of both soluble and membrane-bound HLA-G. Thus, we investigated the therapeutic potential of effector NK cells genetically modified to downregulate the expression of ILT2 (HLA-G receptor) on their cell surfaces. We have shown that the proliferation of modified NK is still dependent on stimulation signals (no malignant transformation). ILT2− NK cells proliferate, migrate, and eliminate HLA-G negative targets cells to the same extent parental NK cells do. However, in the presence of HLA-G positive tumors, ILT2− NK cells exhibit superior proliferation, conjugate formation, degranulation, and killing activities compared to parent NK cells. We tested the effectiveness of ILT2− NK cells in vivo using a xenograft cancer model and found that silencing ILT2 rescued their anti-tumor activity. We believe that combining ILT2− NK cells with existing therapeutic strategies will strengthen the antitumor response in cancer patients.
Collapse
|
53
|
Recent Advances in Our Understanding of HLA-G Biology: Lessons from a Wide Spectrum of Human Diseases. J Immunol Res 2016; 2016:4326495. [PMID: 27652273 PMCID: PMC5019910 DOI: 10.1155/2016/4326495] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/23/2016] [Indexed: 12/27/2022] Open
Abstract
HLA-G is a HLA-class Ib molecule with potent immunomodulatory activities, which is expressed in physiological conditions, where modulation of the immune response is required to avoid allograft recognition (i.e., maternal-fetal interface or transplanted patients). However, HLA-G can be expressed de novo at high levels in several pathological conditions, including solid and hematological tumors and during microbial or viral infections, leading to the impairment of the immune response against tumor cells or pathogens, respectively. On the other hand, the loss of HLA-G mediated control of the immune responses may lead to the onset of autoimmune/inflammatory diseases, caused by an uncontrolled activation of the immune effector cells. Here, we have reviewed novel findings on HLA-G functions in different physiological and pathological settings, which have been published in the last two years. These studies further confirmed the important role of this molecule in the modulation of the immune system.
Collapse
|
54
|
Du WJ, Reppel L, Leger L, Schenowitz C, Huselstein C, Bensoussan D, Carosella ED, Han ZC, Rouas-Freiss N. Mesenchymal Stem Cells Derived from Human Bone Marrow and Adipose Tissue Maintain Their Immunosuppressive Properties After Chondrogenic Differentiation: Role of HLA-G. Stem Cells Dev 2016; 25:1454-69. [PMID: 27465875 DOI: 10.1089/scd.2016.0022] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cells (MSC) have emerged as alternative sources of stem cells for regenerative medicine because of their multipotency and strong immune-regulatory properties. Also, human leukocyte antigen G (HLA-G) is an important mediator of MSC-mediated immunomodulation. However, it is unclear whether MSC retain their immune-privileged potential after differentiation. As promising candidates for cartilage tissue engineering, the immunogenic and immunomodulatory properties of chondro-differentiated MSC (chondro-MSC) require in-depth exploration. In the present study, we used the alginate/hyaluronic acid (Alg/HA) hydrogel scaffold and induced both bone marrow- and adipose tissue-derived MSC into chondrocytes in three-dimensional condition. Then, MSC before and after chondrocyte differentiation were treated or not with interferon γ and tumor necrosis factor α mimicking inflammatory conditions and were compared side by side using flow cytometry, mixed lymphocyte reaction, and immunostaining assays. Results showed that chondro-MSC were hypoimmunogenic and could exert immunosuppression on HLA-mismatched peripheral blood mononuclear cells as well as undifferentiated MSC did. This alloproliferation inhibition mediated by MSC or chondro-MSC was dose dependent. Meanwhile, chondro-MSC exerted inhibition on natural killer cell-mediated cytolysis. Also, we showed that HLA-G expression was upregulated in chondro-MSC under hypoxia context and could be boosted in allogenic settings. Besides, the Alg/HA hydrogel scaffold was hypoimmunogenic and its addition for supporting MSC chondrocyte differentiation did not modify the immune properties of MSC. Finally, considering their chondro-regenerative potential and their retained immunosuppressive capacity, MSC constitute promising allogenic sources of stem cells for cartilage repair.
Collapse
Affiliation(s)
- Wen-Jing Du
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,2 The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease , Chinese Academy of Medical Science, Peking Union Medical College, Tianjin, China
| | - Loic Reppel
- 3 Cell and Tissue Banking Unit and Research Federation FR 3209, Nancy University Hospital , Nancy, France .,4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France .,5 Microbiology-Immunology Department, Faculty of Pharmacy, Lorraine University , Nancy, France
| | - Léonore Leger
- 3 Cell and Tissue Banking Unit and Research Federation FR 3209, Nancy University Hospital , Nancy, France .,4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France .,5 Microbiology-Immunology Department, Faculty of Pharmacy, Lorraine University , Nancy, France
| | - Chantal Schenowitz
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,6 Sorbonne Paris Cite, IUH, Hopital Saint-Louis, UMR_E5, Universite Paris Diderot , Paris, France
| | - Celine Huselstein
- 4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France
| | - Danièle Bensoussan
- 3 Cell and Tissue Banking Unit and Research Federation FR 3209, Nancy University Hospital , Nancy, France .,4 UMR CNRS 7365 and FR 3209 CNRS-INSERM-UL-CHU, Lorraine University , Vandoeuvre-Les-Nancy, France .,5 Microbiology-Immunology Department, Faculty of Pharmacy, Lorraine University , Nancy, France
| | - Edgardo D Carosella
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,6 Sorbonne Paris Cite, IUH, Hopital Saint-Louis, UMR_E5, Universite Paris Diderot , Paris, France
| | - Zhong-Chao Han
- 2 The State Key Laboratory of Experimental Hematology, Institute of Hematology and Hospital of Blood Disease , Chinese Academy of Medical Science, Peking Union Medical College, Tianjin, China
| | - Nathalie Rouas-Freiss
- 1 CEA, Direction de la Recherche Fondamentale (DRF), Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis , IUH, Paris, France .,6 Sorbonne Paris Cite, IUH, Hopital Saint-Louis, UMR_E5, Universite Paris Diderot , Paris, France
| |
Collapse
|
55
|
Zheng D, Wang X, Xu RH. Concise Review: One Stone for Multiple Birds: Generating Universally Compatible Human Embryonic Stem Cells. Stem Cells 2016; 34:2269-75. [DOI: 10.1002/stem.2407] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 04/14/2016] [Accepted: 05/03/2016] [Indexed: 01/28/2023]
Affiliation(s)
- Dejin Zheng
- Faculty of Health Sciences, University of Macau; Taipa Macau China
| | - Xiaofang Wang
- ImStem Biotechnology, Inc; Farmington Connecticut USA
| | - Ren-He Xu
- Faculty of Health Sciences, University of Macau; Taipa Macau China
- ImStem Biotechnology, Inc; Farmington Connecticut USA
| |
Collapse
|
56
|
Gerasimou P, Skordis N, Picolos M, Spyridonidis A, Costeas P. HLA-G 14-bp polymorphism affects the age of onset in Type I Diabetes Mellitus. Int J Immunogenet 2016; 43:135-42. [PMID: 27080982 DOI: 10.1111/iji.12259] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 02/02/2016] [Accepted: 03/10/2016] [Indexed: 02/06/2023]
Abstract
Type I diabetes mellitus (T1DM) is an organ-specific autoimmune disorder affecting the insulin-producing pancreatic cells. T1DM genetic association studies have so far revealed the involvement of more than 40 loci, with particularly strong associations for the human leucocyte antigens (HLA). Further to the well-established HLA class II associations, the immunomodulatory elements in the telomeric major histocompatibility complex locus, specifically nonclassical HLA class I, were also associated with T1DM, either in conferring susceptibility or by contributing to the overall pathogenesis. This study investigates the involvement of a 14-bp deletion polymorphism (rs371194629) at the 3' untranslated region of HLA-G in the context of T1DM and age of onset. The frequency of the polymorphism was determined in unrelated T1DM Cypriot patients and findings that emerge from this study show a strong association between the HLA-G 14-bp polymorphism and T1DM with respect to the age of onset. Specifically, the deletion/deletion (DEL/DEL) genotype was found to be associated with an early age of onset (P = 0.001), while the presence of the insertion allele (INS) was associated to a later age of onset (P = 0.0001), portraying a possible dominant effect over the deletion allele, a role in delaying disease onset and an overall involvement of HLA-G in the pathogenesis of type I diabetes mellitus.
Collapse
Affiliation(s)
- P Gerasimou
- Karaiskakio Foundation, Nicosia, Cyprus.,Department of Biological Sciences, University of Cyprus, Nicosia, Cyprus
| | - N Skordis
- Division of Paediatric Endocrinology, Paedi Centre for Specialized Paediatrics, Nicosia, Cyprus
| | - M Picolos
- Alithia Endocrinology Centre, Nicosia, Cyprus
| | - A Spyridonidis
- Division of Hematology/BMT Unit, University Hospital of Patras (PGNP), Rio, Greece
| | - P Costeas
- Karaiskakio Foundation, Nicosia, Cyprus
| |
Collapse
|
57
|
Zidi I, Rizzo R, Bouaziz A, Laaribi AB, Zidi N, Di Luca D, Tlili H, Bortolotti D. sHLA-G1 and HLA-G5 levels are decreased in Tunisian women with multiple abortion. Hum Immunol 2016; 77:342-5. [DOI: 10.1016/j.humimm.2016.01.019] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 11/20/2015] [Accepted: 01/22/2016] [Indexed: 01/10/2023]
|
58
|
Grognuz A, Scaletta C, Farron A, Raffoul W, Applegate LA. Human Fetal Progenitor Tenocytes for Regenerative Medicine. Cell Transplant 2015; 25:463-79. [PMID: 26110286 DOI: 10.3727/096368915x688515] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Tendon injuries are very frequent and affect a wide and heterogeneous population. Unfortunately, the healing process is long with outcomes that are not often satisfactory due to fibrotic tissue appearance, which leads to scar and adhesion development. Tissue engineering and cell therapies emerge as interesting alternatives to classical treatments. In this study, we evaluated human fetal progenitor tenocytes (hFPTs) as a potential cell source for treatment of tendon afflictions, as fetal cells are known to promote healing in a scarless regenerative process. hFPTs presented a rapid and stable growth up to passage 9, allowing to create a large cell bank for off-the-shelf availability. hFPTs showed a strong tenogenic phenotype with an excellent stability, even when placed in conditions normally inducing cells to differentiate. The karyotype also indicated a good stability up to passage 12, which is far beyond that necessary for clinical application (passage 6). When placed in coculture, hFPTs had the capacity to stimulate human adult tenocytes (hATs), which are responsible for the deposition of a new extracellular matrix during tendon healing. Finally, it was possible to distribute cells in porous or gel scaffolds with an excellent survival, thus permitting a large variety of applications (from simple injections to grafts acting as filling material). All of these results are encouraging in the development of an off-the-shelf cell source capable of stimulating tendon regeneration for the treatment of tendon injuries.
Collapse
Affiliation(s)
- A Grognuz
- Unit of Regenerative Therapy, Service of Plastic, Reconstructive and Hand Surgery, Department of Musculoskeletal Medicine, University Hospital of Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
59
|
Ding DC, Chou HL, Chang YH, Hung WT, Liu HW, Chu TY. Characterization of HLA-G and Related Immunosuppressive Effects in Human Umbilical Cord Stroma-Derived Stem Cells. Cell Transplant 2015; 25:217-28. [PMID: 26044082 DOI: 10.3727/096368915x688182] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mesenchymal stem cells (MSCs) and especially those derived from fetal tissues exert a potent immunosuppressive effect that can be enhanced under inflammatory conditions. This study aimed to explore the immunosuppressive properties of human umbilical cord mesenchymal stem cells (HUCMSCs). We found that HLA-G, the nonclassical HLA allele with strong immune-inhibitory properties, was much more expressed on the HUCMSCs than on MSCs of other origins. Flow cytometry revealed that 90.8% of the HUCMSCs expressed HLA-G. RT-PCR revealed expression of HLA-G1, HLA-G5, and HLA-G7 in all of four HUCMSC lines. In a mixed lymphocyte reaction assay, the HUCMSCs inhibited the proliferation of lymphocytes by 35 ± 3% and could be reversed by treatment with an HLA-G blocking antibody. Upon coculture with the HUCMSCs, peripheral blood mononuclear cells expressed lower levels of proinflammatory mediators such as IL-6, TNF-α, and VEGF-α. This immunosuppressive effect was enhanced when the HUCMSCs were pretreated with IFN-γ, such that the expression of HLA-G was highly activated and HLA-DR diminished. The same phenomenon was not observed in MSCs derived from bone marrow or the placenta. In a xenograft rejection assay, the HUCMSCs survived in immunocompetent mice, whereas primary fibroblasts did not survive. This study confirms the HLA-G-related immunosuppressive property of HUCMSCs, which is more potent than MSCs of other origin. A good tolerance of this mesenchymal stem cell in allogeneic transplantation can thus be anticipated.
Collapse
Affiliation(s)
- Dah-Ching Ding
- Department of Obstetrics and Gynecology, Buddhist Tzu-Chi Buddhist General Hospital, Hualien, Taiwan
| | | | | | | | | | | |
Collapse
|
60
|
Malagutti N, Stomeo F, Pelucchi S, Ronchin R, Ceccon M, Malacrida G, Ciorba A, Pastore A, Borin M, Rizzo R. Analysis of Il-10 gene sequence in patients with sinonasal polyposis. Int J Immunopathol Pharmacol 2015; 28:434-9. [DOI: 10.1177/0394632015573922] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 01/14/2015] [Indexed: 11/15/2022] Open
Abstract
Sinonasal polyposis (SNP) is a chronic inflammatory disease of nasal and paranasal cavities. Human leukocyte antigen-G molecules (HLA-G) are non-classic HLA-I molecules with anti-inflammatory and tolerogenic properties. HLA-G production is mainly induced by interleukin (IL)-10. IL-10 is an anti-inflammatory cytokine that inhibits the production of proinflammatory cytokines and induces HLA-class II down-modulation. Recent studies suggest that HLA-G could play a role in SNP pathogenesis; in SNP patients physiological levels of IL-10 (produced by activated peripheral blood CD14+ monocytes) are not able to induce production of HLA-G. Different mechanisms could justify these findings: genomic or amino-acidic sequence alterations in IL-10 lower IL-10 receptor expression, lower IL-10 receptor affinity, or alterations of the intracellular signal transmission. This study analyzes nucleotidic sequence of IL-10 gene in SNP patients. Sequencing of IL-10 gene shows that the lack of HLA-G production by peripheral blood CD14+ monocytes is not related to alterations in IL-10 gene nucleotidic sequence.
Collapse
Affiliation(s)
- N Malagutti
- Department of Otolaringology, University of Ferrara, St Anna Hospital, Cona, Italy
| | - F Stomeo
- Department of Otolaringology, University of Ferrara, St Anna Hospital, Cona, Italy
| | - S Pelucchi
- Department of Otolaringology, University of Ferrara, St Anna Hospital, Cona, Italy
| | - R Ronchin
- Department of Otolaringology, University of Ferrara, St Anna Hospital, Cona, Italy
| | - M Ceccon
- BMR Genomics s.r.l., Padova, Italy
| | | | - A Ciorba
- Department of Otolaringology, University of Ferrara, St Anna Hospital, Cona, Italy
| | - A Pastore
- Department of Otolaringology, University of Ferrara, St Anna Hospital, Cona, Italy
| | - M Borin
- Department of Otolaringology, University of Ferrara, St Anna Hospital, Cona, Italy
| | - R Rizzo
- Department of Medical Sciences, Section of Microbiology and Medical Genetics, University of Ferrara, Italy
| |
Collapse
|
61
|
LeMaoult J, Caumartin J, Daouya M, Switala M, Rebmann V, Arnulf B, Carosella ED. Trogocytic intercellular membrane exchanges among hematological tumors. J Hematol Oncol 2015; 8:24. [PMID: 25887663 PMCID: PMC4371622 DOI: 10.1186/s13045-015-0114-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 01/17/2015] [Indexed: 01/01/2023] Open
Abstract
Trogocytosis is the transfer of plasma membrane fragments and the molecules they contain between one donor and one acceptor/acquirer cell. Through trogocytosis, acceptor cells temporarily display and use cell-surface molecules they do not express themselves, but borrow from other cells. Here, we investigated whether liquid tumors possessed a trogocytic capability, if immune escape molecules could be acquired by tumor cells, transferred between cells of the same tumor, and if this could benefit the tumor as a whole.For this, we investigated trogocytosis in hematological cell lines and freshly isolated hematological tumor cells. We demonstrate that hematological tumor lines possess a trogocytic capability that allows them to capture membranes that contain the immune-inhibitory molecule HLA-G from allogeneic as well as from autologous sources. We further show that freshly isolated hematological tumor cells also possess these capabilities. This work reports for the first time the trogocytic capabilities of liquid tumor cells and introduces the notion of immune escape strategy sharing among tumor cells through trogocytosis of membrane-bound immune-inhibitory molecules.
Collapse
Affiliation(s)
- Joel LeMaoult
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France.
| | - Julien Caumartin
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France. .,Biology and Biotechnology Ph.D. Program, Univ Paris Diderot, Sorbonne Paris Cite, Paris, France.
| | - Marina Daouya
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France.
| | - Magdalena Switala
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.
| | - Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Essen, Germany.
| | - Bertrand Arnulf
- Département d'Immuno-Hématologie, Hôpital Saint-Louis, Paris, France.
| | - Edgardo D Carosella
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France. .,University Paris Diderot, Sorbonne Paris Cité, UMR E_5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France.
| |
Collapse
|
62
|
Suppression of human macrophage-mediated cytotoxicity by transgenic swine endothelial cell expression of HLA-G. Transpl Immunol 2015; 32:109-15. [DOI: 10.1016/j.trim.2014.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 11/15/2022]
|
63
|
Zidi I, Ben Yahia H, Bortolotti D, Mouelhi L, Laaribi AB, Ayadi S, Zidi N, Houissa F, Debbech R, Boudabous A, Najjar T, Di Luca D, Rizzo R. Association between sHLA-G and HLA-G 14-bp deletion/insertion polymorphism in Crohn’s disease. Int Immunol 2015; 27:289-96. [DOI: 10.1093/intimm/dxv002] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2014] [Accepted: 01/07/2015] [Indexed: 12/13/2022] Open
|
64
|
|
65
|
Rizzo R, Bortolotti D, Bolzani S, Fainardi E. HLA-G Molecules in Autoimmune Diseases and Infections. Front Immunol 2014; 5:592. [PMID: 25477881 PMCID: PMC4235267 DOI: 10.3389/fimmu.2014.00592] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 11/04/2014] [Indexed: 01/22/2023] Open
Abstract
Human leukocyte antigen (HLA)-G molecule, a non-classical HLA-Ib molecule, is less polymorphic when compared to classical HLA class I molecules. Human leukocyte antigen-G (HLA-G) was first detected on cytotrophoblast cells at the feto-maternal interface but its expression is prevalent during viral infections and several autoimmune diseases. HLA-G gene is characterized by polymorphisms at the 3' un-translated region and 5' upstream regulatory region that regulate its expression and are associated with autoimmune diseases and viral infection susceptibility, creating an unbalanced and pathologic environment. This review focuses on the role of HLA-G genetic polymorphisms, mRNA, and protein expression in autoimmune conditions and viral infections.
Collapse
Affiliation(s)
- Roberta Rizzo
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Daria Bortolotti
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Silvia Bolzani
- Section of Microbiology and Medical Genetics, Department of Medical Sciences, University of Ferrara, Ferrara, Italy
| | - Enrico Fainardi
- Neuroradiology Unit, Department of Neurosciences and Rehabilitation, Azienda Ospedaliera-Universitaria Arcispedale S. Anna, Ferrara, Italy
| |
Collapse
|
66
|
Teklemariam T, Zhao L, Hantash BM. Heterologous expression of mutated HLA-G1 reduces alloreactivity of human dermal fibroblasts. Regen Med 2014; 9:775-84. [DOI: 10.2217/rme.14.58] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To engineer a stable HLA-G molecule and evaluate its immunomodulatory properties in transgenic human dermal fibroblasts (HDFs). Materials & methods: A mutated HLA-G1 (mHLA-G1) molecule was generated by modifying the endoplasmic reticulum retrieval motif and 3′-untranslated region miRNA-binding sites of HLA-G1. Immunomodulatory properties of transgenic HDF-mHLA-G1 were evaluated in vitro. Results: Stable mHLA-G1 expressing HDF cells were successfully generated and flow cytometry analysis revealed that mHLA-G1 efficiently localized to the cell surface. Natural killer cell-mediated cytolysis of HDF-mHLA-G1/green fluorescent protein (GFP) was reduced by 73% compared with HDF-GDP. HDF-mHLA-G1/GFP decreased phytohemagglutinin-activated peripheral blood mononuclear cell proliferation by 30% versus HDF-GFP. Conclusion: We are the first to successfully create a human fibroblast source with reduced alloreactivity using a novel mHLA-G1 construct. This approach may be extended to other cell types including human embryonic stem cells for use in allogeneic transplantation for cell-based regenerative medicine applications.
Collapse
Affiliation(s)
| | | | - Basil M Hantash
- Escape Therapeutics, Inc., San Jose, CA, USA
- Elixir Institute of Regenerative Medicine, Inc., San Jose, CA, USA
| |
Collapse
|
67
|
Gimenes F, Teixeira JJV, de Abreu ALP, Souza RP, Pereira MW, da Silva VRS, Bôer CG, Maria-Engler SS, Bonini MG, Borelli SD, Consolaro MEL. Human leukocyte antigen (HLA)-G and cervical cancer immunoediting: a candidate molecule for therapeutic intervention and prognostic biomarker? Biochim Biophys Acta Rev Cancer 2014; 1846:576-89. [PMID: 25453366 DOI: 10.1016/j.bbcan.2014.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 10/14/2014] [Accepted: 10/14/2014] [Indexed: 02/06/2023]
Abstract
While persistent infection with oncogenic types of human Papillomavirus (HPV) is required for cervical epithelial cell transformation and cervical carcinogenesis, HPV infection alone is not sufficient to induce tumorigenesis. Only a minor fraction of HPV infections produce high-grade lesions and cervical cancer, suggesting complex host-virus interactions. Based on its pronounced immunoinhibitory properties, human leukocyte antigen (HLA)-G has been proposed as a possible prognostic biomarker and therapeutic target relevant in a wide variety of cancers and viral infections, but to date remains underexplored in cervical cancer. Given the possible influence of HLA-G on the clinical course of HPV infection, cervical lesions and cancer progression, a better understanding of HLA-G involvement in cervical carcinogenesis might contribute to two aspects of fundamental importance: 1. Characterization of a novel diagnostic/prognostic biomarker to identify cervical cancer and to monitor disease stage, critical for patient screening; 2. Identification of HLA-G-driven immune mechanisms involved in lesion development and cancer progression, leading to the development of strategies for modulating HLA-G expression for treatment purposes. Thus, this systematic review explores the potential involvement of HLA-G protein expression and polymorphisms in cervical carcinogenesis.
Collapse
Affiliation(s)
- Fabrícia Gimenes
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Jorge Juarez Vieira Teixeira
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - André Luelsdorf Pimenta de Abreu
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Raquel Pantarotto Souza
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Monalisa Wolski Pereira
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Vânia Ramos Sela da Silva
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Cinthia Gandolfi Bôer
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil
| | - Silvya Stuchi Maria-Engler
- Clinical Chemistry and Toxicology Department, School of Pharmaceutical Sciences, University of São Paulo, 05508000 São Paulo, Brazil
| | - Marcelo Gialluisi Bonini
- College of Medicine, Departments of Medicine, Pharmacology and Pathology, University of Illinois at Chicago, 60612 Chicago, IL, USA
| | - Sueli Donizete Borelli
- Laboratory of Immunogenetics, Department of Basic Health Sciences, State University of Maringá, 87020900 Paraná, Brazil
| | - Márcia Edilaine Lopes Consolaro
- Laboratory of Clinical Cytology, Department of Clinical Analysis and Biomedicine, State University of Maringá, 87020900 Paraná, Brazil.
| |
Collapse
|
68
|
Catamo E, Zupin L, Crovella S, Celsi F, Segat L. Non-classical MHC-I human leukocyte antigen (HLA-G) in hepatotropic viral infections and in hepatocellular carcinoma. Hum Immunol 2014; 75:1225-31. [PMID: 25318079 DOI: 10.1016/j.humimm.2014.09.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 09/27/2014] [Accepted: 09/27/2014] [Indexed: 01/05/2023]
Abstract
The human leukocyte antigen (HLA)-G is a "nonclassical" major histocompatibility complex (MHC) class Ib gene, located at chromosome 6, in the 6p21.3 region. The HLA-G presents immunomodulatory functions essential in pregnancy for the tolerance of the semi-allogenic fetus, but an abnormal expression of HLA-G has been observed in numerous pathological conditions, such as tumors, autoimmune diseases and viral infections. In recent years, numerous studies have assessed the clinical relevance of HLA-G expression in different types of cancer: in general, a higher HLA-G expression correlates with a lower survival rate or a shorter disease-free survival. Altered expression of HLA-G has been found in both HCV and HBV infection, and some genetic polymorphisms have been associated with altered susceptibility/disease development for these infections, however, whether the biologic role of HLA-G in HCV and HBV infection is beneficial or hazardous, it is not completely clear. In the context of hepatocellular carcinoma, HLA-G has shown a potential diagnostic role, moreover a prognostic value in HCC patients has been also attributed to HLA-G molecules. We revise here the role of HLA-G in hepatotropic HBV/HCV infections and in hepatocellular carcinoma (HCC).
Collapse
Affiliation(s)
- Eulalia Catamo
- Medical Science Department, University of Trieste, Italy
| | - Luisa Zupin
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Sergio Crovella
- Medical Science Department, University of Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| | - Ludovica Segat
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy.
| |
Collapse
|
69
|
Heterelogous expression of mutated HLA-G decreases immunogenicity of human embryonic stem cells and their epidermal derivatives. Stem Cell Res 2014; 13:342-54. [PMID: 25218797 DOI: 10.1016/j.scr.2014.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 06/29/2014] [Accepted: 08/08/2014] [Indexed: 12/28/2022] Open
Abstract
Human embryonic stem cells (hESCs) are capable of extensive self-renewal and expansion and can differentiate into any somatic tissue, making them useful for regenerative medicine applications. Allogeneic transplantation of hESC-derived tissues from results in immunological rejection absent adjunctive immunosuppression. The goal of our study was to generate a universal pluripotent stem cell source by nucleofecting a mutated human leukocyte antigen G (mHLA-G) gene into hESCs using the PiggyBac transposon. We successfully generated stable mHLA-G(EF1α)-hESC lines using chEF1α promoter system that stably expressed mHLA-G protein during prolonged undifferentiated proliferation andin differentiated embryoid bodies as well as teratomas. Morphology, karyotype, and telomerase activity of mHLA-G expressing hESC were normal. Immunofluorescence staining and flow cytometry analysis revealed persistent expression of pluripotent markers, OCT-3/4 and SSEA-4, in undifferentiated mHLA-G(EF1α)-hESC. Nucleofected hESC formed teratomas and when directed to differentiate into epidermal precursors, expressed high levels of mHLA-G and keratinocyte markers K14 and CD29. Natural killer cell cytotoxicity assays demonstrated a significant decrease in lysis of mHLA-G(EF1a)-hESC targets relative to control cells. Similar results were obtained with mHLA-G(EF1α)-hESC-derived epidermal progenitors (hEEP). One way mixed T lymphocyte reactions unveiled that mHLA-G(EF1a)-hESC and -hEEP restrained the proliferative activity of mixed T lymphocytes. We conclude that heterologous expression of mHLA-G decreases immunogenicity of hESCs and their epidermal differentiated derivatives.
Collapse
|
70
|
Rebmann V, da Silva Nardi F, Wagner B, Horn PA. HLA-G as a tolerogenic molecule in transplantation and pregnancy. J Immunol Res 2014; 2014:297073. [PMID: 25143957 PMCID: PMC4131093 DOI: 10.1155/2014/297073] [Citation(s) in RCA: 91] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/07/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022] Open
Abstract
HLA-G is a nonclassical HLA class I molecule. In allogeneic situations such as pregnancy or allograft transplantation, the expression of HLA-G has been related to a better acceptance of the fetus or the allograft. Thus, it seems that HLA-G is crucially involved in mechanisms shaping an allogeneic immune response into tolerance. In this contribution we focus on (i) how HLA-G is involved in transplantation and human reproduction, (ii) how HLA-G is regulated by genetic and microenvironmental factors, and (iii) how HLA-G can offer novel perspectives with respect to therapy.
Collapse
Affiliation(s)
- Vera Rebmann
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Fabiola da Silva Nardi
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
- CAPES Foundation, Ministry of Education of Brazil, 70.040-020 Brasília, DF, Brazil
| | - Bettina Wagner
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| | - Peter A. Horn
- Institute for Transfusion Medicine, University Hospital Essen, Virchowstraße 179, 45147 Essen, Germany
| |
Collapse
|
71
|
Rajagopalan S. HLA-G-mediated NK cell senescence promotes vascular remodeling: implications for reproduction. Cell Mol Immunol 2014; 11:460-6. [PMID: 24998350 DOI: 10.1038/cmi.2014.53] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 01/06/2023] Open
Abstract
The uterus in early pregnancy is a non-lymphoid organ that is enriched in natural killer (NK) cells. Studies to address the role of these abundant human NK cells at the maternal/fetal interface have focused on their response to the major histocompatibility complex (MHC) molecules on fetal trophoblast cells that they contact. The interaction of maternal NK cell receptors belonging to the killer cell immunoglobulin-like receptor (KIR) family with trophoblast MHC class I molecules in pregnancy can regulate NK cell activation for secretion of pro-angiogenic factors that promote placental development. This review will cover the role of KIR at the maternal/fetal interface and focus on KIR2DL4, a KIR family member that is uniquely poised to play a role in pregnancy due to the restricted expression of its ligand, human leukocyte antigen (HLA)-G, by fetal trophoblast cells early in pregnancy. The pathways by which KIR2DL4-HLA-G interactions induce the cellular senescence of NK cells and the role of the resulting senescence-associated secretory phenotype (SASP) in vascular remodeling will be discussed in the context of reproduction.
Collapse
|
72
|
Lynge Nilsson L, Djurisic S, Hviid TVF. Controlling the Immunological Crosstalk during Conception and Pregnancy: HLA-G in Reproduction. Front Immunol 2014; 5:198. [PMID: 24860568 PMCID: PMC4026753 DOI: 10.3389/fimmu.2014.00198] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 04/22/2014] [Indexed: 01/27/2023] Open
Abstract
In several years after its discovery in the placenta, the human leukocyte antigen (HLA) class Ib protein, HLA-G, was not given much attention, nor was it assigned great importance. As time has unraveled, HLA-G has proven to have distinctive functions and an unforeseen and possibly important role in reproduction. HLA-G is characterized mainly by its low polymorphism and restricted tissue distribution in non-pathological conditions. In fact, its expression pattern is primarily limited to extravillous cytotrophoblast cells at the maternal-fetal interface during pregnancy. Due to low polymorphism, almost the same protein is expressed by virtually all individuals. It is these unique features that make HLA-G differ from its highly polymorphic HLA class Ia counterparts, the HLA-A, -B, and -C molecules. Its function, seemingly diverse, is typically receptor-mediated, and involves interactions with a wide range of immune cells. As the expression of HLA-G primarily is limited to gestation, this has given rise to the hypothesis that HLA-G plays an important role in the immunological tolerance of the fetus by the mother. In keeping with this, it might not be surprising that polymorphisms in the HLA-G gene, and levels of HLA-G expression, have been linked to reproductive failure and pre-eclampsia. Based on recent studies, we speculate that HLA-G might be involved in mechanisms in reproductive immunology even before conception because HLA-G can be detected in the genital tract and in the blood of non-pregnant women, and is present in seminal fluid from men. In addition, HLA-G expression has been found in the pre-implanted embryo. Therefore, we propose that a combined contribution from the mother, the father, and the embryo/fetus is likely to be important. Furthermore, this review presents important aspects of HLA-G in relation to reproduction: from genetics to physiological effects, from pregnancy and pregnancy complications to a short discussion on future possible means of preventative measures and therapy.
Collapse
Affiliation(s)
- Line Lynge Nilsson
- Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry, Copenhagen University Hospital , Roskilde , Denmark
| | - Snezana Djurisic
- Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry, Copenhagen University Hospital , Roskilde , Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology, Department of Clinical Biochemistry, Copenhagen University Hospital , Roskilde , Denmark
| |
Collapse
|
73
|
Morandi F, Rouas-Freiss N, Pistoia V. The emerging role of soluble HLA-G in the control of chemotaxis. Cytokine Growth Factor Rev 2014; 25:327-35. [PMID: 24882150 DOI: 10.1016/j.cytogfr.2014.04.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 04/10/2014] [Accepted: 04/28/2014] [Indexed: 10/25/2022]
Abstract
HLA-G is an immunosuppressive molecule, that impairs the function of different immune cell populations, both in physiological and pathological conditions. Here, we have analyzed data obtained by our group and others regarding sHLA-G concentration in plasma from patients with different diseases. Next, we have summarized novel data regarding the impairment of chemotaxis of different immune effector cells mediated by sHLA-G. Finally, we have discussed the impact of this function on the immune response during cancer, viral infection, autoimmunity, and on B cell differentiation in secondary lymphoid organs. In conclusion, we have delineated a role of sHLA-G in the control of chemotaxis of immune effector cells, that may be relevant to modulate immune responses in different settings.
Collapse
Affiliation(s)
- Fabio Morandi
- Laboratory of Oncology, Istituto Giannina Gaslini, Via Gaslini 1, 16147 Genoa, Italy.
| | - Nathalie Rouas-Freiss
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (iMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, Avenue Claude Vellefaux 1, 75010 Paris, France.
| | - Vito Pistoia
- Laboratory of Oncology, Istituto Giannina Gaslini, Via Gaslini 1, 16147 Genoa, Italy.
| |
Collapse
|
74
|
Dahl M, Perin TL, Djurisic S, Rasmussen M, Ohlsson J, Buus S, Lindhard A, Hviid TVF. Soluble Human Leukocyte Antigen-G in Seminal Plasma is Associated with HLA-G Genotype: Possible Implications for Fertility Success. Am J Reprod Immunol 2014; 72:89-105. [DOI: 10.1111/aji.12251] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Accepted: 03/15/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Mette Dahl
- Centre for Immune Regulation and Reproductive Immunology (CIRRI); Department of Clinical Biochemistry; Copenhagen University Hospital (Roskilde) and Roskilde Hospital; Roskilde Denmark
| | - Trine L. Perin
- The Fertility Clinic; Department of Gynaecology and Obstetrics; Copenhagen University Hospital (Roskilde) and Roskilde Hospital; Roskilde Denmark
| | - Snezana Djurisic
- Centre for Immune Regulation and Reproductive Immunology (CIRRI); Department of Clinical Biochemistry; Copenhagen University Hospital (Roskilde) and Roskilde Hospital; Roskilde Denmark
| | - Merete Rasmussen
- Centre for Immune Regulation and Reproductive Immunology (CIRRI); Department of Clinical Biochemistry; Copenhagen University Hospital (Roskilde) and Roskilde Hospital; Roskilde Denmark
| | - Janni Ohlsson
- Department of International Health, Immunology and Microbiology; Faculty of Health Sciences; The Panum Institute; University of Copenhagen; Copenhagen Denmark
| | - Søren Buus
- Department of International Health, Immunology and Microbiology; Faculty of Health Sciences; The Panum Institute; University of Copenhagen; Copenhagen Denmark
| | - Anette Lindhard
- The Fertility Clinic; Department of Gynaecology and Obstetrics; Copenhagen University Hospital (Roskilde) and Roskilde Hospital; Roskilde Denmark
| | - Thomas Vauvert F. Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI); Department of Clinical Biochemistry; Copenhagen University Hospital (Roskilde) and Roskilde Hospital; Roskilde Denmark
| |
Collapse
|
75
|
Rouas-Freiss N, Moreau P, LeMaoult J, Carosella ED. The dual role of HLA-G in cancer. J Immunol Res 2014; 2014:359748. [PMID: 24800261 PMCID: PMC3995100 DOI: 10.1155/2014/359748] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 02/25/2014] [Indexed: 11/18/2022] Open
Abstract
We here review the current data on the role of HLA-G in cancer based on recent findings of an unexpected antitumor activity of HLA-G in hematological malignancies. For the past decade, HLA-G has been described as a tumor-escape mechanism favoring cancer progression, and blocking strategies have been proposed to counteract it. Aside from these numerous studies on solid tumors, recent data showed that HLA-G inhibits the proliferation of malignant B cells due to the interaction between HLA-G and its receptor ILT2, which mediates negative signaling on B cell proliferation. These results led to the conjecture that, according to the malignant cell type, HLA-G should be blocked or conversely induced to counteract tumor progression. In this context, we will here present (i) the dual role of HLA-G in solid and liquid tumors with special emphasis on (ii) the HLA-G active structures and their related ILT2 and ILT4 receptors and (iii) the current knowledge on regulatory mechanisms of HLA-G expression in tumors.
Collapse
Affiliation(s)
- Nathalie Rouas-Freiss
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| | - Philippe Moreau
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| | - Joel LeMaoult
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| | - Edgardo D. Carosella
- CEA, Institut des Maladies Emergentes et des Therapies Innovantes (IMETI), Service de Recherche en Hemato-Immunologie (SRHI), Hopital Saint-Louis, 75010 Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, IUH, Hopital Saint-Louis, UMR_E5, 75010 Paris, France
| |
Collapse
|
76
|
A splice variant of HLA-A with a deletion of exon 3 expressed as nonmature cell-surface glycoproteins forms a heterodimeric structure with full-length HLA-A. Hum Immunol 2014; 75:234-8. [DOI: 10.1016/j.humimm.2013.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 10/08/2013] [Accepted: 12/17/2013] [Indexed: 11/24/2022]
|
77
|
Gallegos CE, Michelin S, Trasci SB, Lobos EA, Dubner D, Carosella ED. HLA-G1 increases the radiosensitivity of human tumoral cells. Cell Immunol 2014; 287:106-11. [PMID: 24487034 DOI: 10.1016/j.cellimm.2014.01.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 01/05/2014] [Accepted: 01/07/2014] [Indexed: 11/30/2022]
Abstract
Different molecules regulate the response of tumoral tissues to ionizing radiation. The objective of this work was to determine if HLA-G1 expression modulates the radiosensitivity of human tumoral cell lines. To this end, human melanoma M8 and human erythroleukemia K562 cell lines, with their correspondent HLA-G1 negative and positive variants, were gamma irradiated and the survival frequency was determined by clonogenic assay. The survival fraction of HLA-G1 expressing cells was around 60% of HLA-G1 negative cells. The generation of acidic vesicular organelles was higher in HLA-G1 positive cells. Apoptosis levels showed statistically significant differences only in K562 cells, whereas the variation in G2/M cycle progression was only significant in M8 cells. In addition, irradiation diminished cell-surface HLA-G1 and increased soluble HLA-G1 levels. Soluble HLA-G1 has no influence on cell survival in any cell line. In summary, we could demonstrate that HLA-G1 confers higher radiosensitivity to HLA-G1 expressing cells.
Collapse
Affiliation(s)
- Cristina E Gallegos
- Radiopathology Laboratory, Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina; Toxicology Laboratory, Universidad Nacional del Sur (UNS), Bahía Blanca, Argentina
| | - Severino Michelin
- Radiopathology Laboratory, Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina.
| | - Sofía Baffa Trasci
- Radiopathology Laboratory, Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina
| | | | - Diana Dubner
- Radiopathology Laboratory, Autoridad Regulatoria Nuclear (ARN), Buenos Aires, Argentina
| | - Edgardo D Carosella
- Commissariat a l'Energie Atomique et aux Energies Alternatives (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France; University Paris Diderot, Sorbonne Paris Cité, UMR E-5 Institut Universitaire d'Hematologie, Saint-Louis Hospital, Paris, France
| |
Collapse
|
78
|
Zhao L, Teklemariam T, Hantash BM. Mutated HLA-G3 localizes to the cell surface but does not inhibit cytotoxicity of natural killer cells. Cell Immunol 2013; 287:23-6. [PMID: 24355712 DOI: 10.1016/j.cellimm.2013.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2013] [Revised: 11/19/2013] [Accepted: 11/21/2013] [Indexed: 11/29/2022]
Abstract
HLA-G plays an important role in the induction of immune tolerance. Various attempts to produce good manufacturing practice levels of HLA-G as a therapeutic molecule have failed to date partly due to the complicated structure of full-length HLA-G1. Truncated HLA-G3 is simpler and easier to produce than HLA-G1 and contains the expected functional epitope in its only α1 monomorphic domain. In this study, we engineered the ER retrieval and retention signal on HLA-G3's cytoplasmic tail by replacing its RKKSSD motif with RAASSD. We observed that mutated HLA-G3 was highly expressed on the cell surface of transduced K562 cells but did not inhibit cytotoxicity of natural killer cells.
Collapse
Affiliation(s)
- Longmei Zhao
- Escape Therapeutics, Inc., San Jose, CA, United States
| | | | | |
Collapse
|
79
|
Li J, Chen Y, Liu C, Hu Y, Li L. Intravenous Immunoglobulin Treatment for Repeated IVF/ICSI Failure and Unexplained Infertility: A Systematic Review and a Meta-Analysis. Am J Reprod Immunol 2013; 70:434-47. [PMID: 24238107 DOI: 10.1111/aji.12170] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 10/03/2013] [Indexed: 11/28/2022] Open
Affiliation(s)
- Jie Li
- Guangxi Reproductive Medical Research Center; First Affiliated Hospital of Guangxi Medical University; Nanning China
| | - Yang Chen
- Center for Genomic and Personalized Medicine; Guangxi Medical University; Nanning China
- Department of Urology and Nephrology; The First Affiliated Hospital of Guangxi Medical University; Nanning China
| | | | - Yanling Hu
- Center for Genomic and Personalized Medicine; Guangxi Medical University; Nanning China
- Medical Research Center; Guangxi Medical University; Nanning Guangxi China
| | - Liuming Li
- Guangxi Reproductive Medical Research Center; First Affiliated Hospital of Guangxi Medical University; Nanning China
| |
Collapse
|
80
|
Polymorphic sites at the 3' untranslated region of the HLA-G gene are associated with differential hla-g soluble levels in the Brazilian and French population. PLoS One 2013; 8:e71742. [PMID: 24204558 PMCID: PMC3808361 DOI: 10.1371/journal.pone.0071742] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Accepted: 07/01/2013] [Indexed: 11/19/2022] Open
Abstract
HLA-G molecule has well-recognized tolerogenic properties, and the encoding gene shows lower frequency of polymorphism at the coding region but higher variability at regulatory 5' and 3' untranslated (3'UTR) regions. At least three 3'UTR polymorphic sites have been associated with HLA-G mRNA regulation, including the 14 base pair (14bp) Insertion/Deletion, +3142C-G and +3187A-G. We studied the association of polymorphic sites at 3'UTR (sequencing analysis, encompassing the 14bp Ins-Del/+3003T-C/+3010C-G/+3027C-A/+3035C-T/+3142C-G/+3187A-G/+3196C-G polymorphic sites) with plasma soluble HLA-G levels (sHLA-G, detected by ELISA) in 187 French and 153 Brazilian healthy individuals. Allele and genotype frequencies were closely similar in both populations; however, Brazilians showed a higher HLA-G 3'UTR haplotype diversity. Considering sHLA-G levels in both populations altogether, individuals presenting 14bp Del/Del showed higher levels compared to 14bpIns/Ins genotype (P <0.05); those presenting +3010C/G showed higher levels compared to the +3010C-C genotype (P< 0.05); those presenting +3027C-C showed higher levels than the +3027A-A genotype (P< 0.05); and those bearing +3035C-C showed higher levels compared to the +3035C-T (P < 0.01) and +3035T-T (P < 0.05) genotypes. The analyses of 3'UTR haplotypes showed that UTR-1 (DelTGCCCGC) was associated with higher expression of sHLA-G, whereas UTR-5 (InsTCCTGAC) and UTR-7 (InsTCATGAC) with lower expression and other UTRs (UTR-2/3/4/6) exhibited intermediate levels. Since the differential expression of HLA-G may be beneficial or harmful depending on the underlying condition, the identification of individuals genetically programmed to differentially express HLA-G may help on defining novel strategies to control the immune response against the underlying disorder.
Collapse
|
81
|
Curigliano G, Criscitiello C, Gelao L, Goldhirsch A. Molecular pathways: human leukocyte antigen G (HLA-G). Clin Cancer Res 2013; 19:5564-71. [PMID: 23897901 DOI: 10.1158/1078-0432.ccr-12-3697] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Human leukocyte antigen G (HLA-G) is a nonclassical MHC class I molecule that exerts important tolerogenic functions. Its main physiologic expression occurs in the placenta, where it participates in the maternal tolerance toward the fetus. HLA-G expression was found in embryonic tissues, in adult immune privileged organs, and in cells of the hematopoietic lineage. It is expressed in various types of primary solid (melanoma, head and neck, lung, urogenital, gastrointestinal, and breast cancers) and hematologic malignancies (acute leukemia, lymphomas) and metastases. HLA-G ectopic expression is observed in cancer, suggesting that its expression is one strategy used by tumor cells to escape immune surveillance. In this review, we will focus on HLA-G expression in cancers and its association with the prognosis. We will highlight the underlying molecular mechanisms of impaired HLA-G expression, the immune tolerant function of HLA-G in tumors, and the potential diagnostic use of membrane-bound and soluble HLA-G as a biomarker to identify tumors and to monitor disease stage. As HLA-G is a potent immunoinhibitory molecule, its blockade remains an attractive therapeutic strategy against cancer. Elimination of HLA-G-expressing cancer cells would be important in the efficacy of anticancer therapies.
Collapse
Affiliation(s)
- Giuseppe Curigliano
- Authors' Affiliation: Division of Early Drug Development for Innovative Therapies, Istituto Europeo di Oncologia, Milan, Italy
| | | | | | | |
Collapse
|
82
|
Sakakura K, Chikamatsu K. Immune suppression and evasion in patients with head and neck cancer. ACTA ACUST UNITED AC 2013. [DOI: 10.3402/acmo.v1i0.21809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
83
|
Celsi F, Catamo E, Kleiner G, Tricarico PM, Vuch J, Crovella S. HLA-G/C, miRNAs, and their role in HIV infection and replication. BIOMED RESEARCH INTERNATIONAL 2013; 2013:693643. [PMID: 23841087 PMCID: PMC3697138 DOI: 10.1155/2013/693643] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 05/03/2013] [Accepted: 05/07/2013] [Indexed: 12/25/2022]
Abstract
In recent years, a number of different mechanisms regulating gene expressions, either in normal or in pathological conditions, have been discovered. This review aims to highlight some of the regulatory pathways involved during the HIV-1 infection and disease progression, focusing on the novel discovered microRNAs (miRNAs) and their relation with immune system's agents. Human leukocyte antigen (HLA) family of proteins plays a key role because it is a crucial modulator of the immune response; here we will examine recent findings, centering especially on HLA-C and -G, novel players lately discovered to engage in modulation of immune system. We hope to provide novel perspectives useful to find out original therapeutic roads against HIV-1 infection and AIDS progression.
Collapse
Affiliation(s)
- Fulvio Celsi
- Institute for Maternal and Child Health, IRCCS Burlo Garofolo, 34137 Trieste, Italy.
| | | | | | | | | | | |
Collapse
|
84
|
LeMaoult J, Daouya M, Wu J, Loustau M, Horuzsko A, Carosella ED. Synthetic HLA-G proteins for therapeutic use in transplantation. FASEB J 2013; 27:3643-51. [PMID: 23752205 DOI: 10.1096/fj.13-228247] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The human leukocyte antigen (HLA)-G is a tolerogenic molecule, whose expression by allografts is associated with better acceptance. An increasing interest in producing HLA-G as a clinical-grade molecule for therapy use is impaired by its complexity and limited stability. Our purpose was to engineer simpler and more stable HLA-G-derived molecules than the full-length HLA-G trimolecular complex that are also tolerogenic, functional as soluble molecules, and compatible with good manufacturing practice (GMP) production conditions. We present two synthetic molecules: (α3-L)x2 and (α1-α3)x2 polypeptides. We show their capability to bind the HLA-G receptor LILRB2 and their functions in vitro and in vivo. The (α1-α3)x2 polypeptide proved to be a potent tolerogenic molecule in vivo: One treatment of skin allograft recipient mice with (α1-α3)x2 was sufficient to significantly prolong graft survival, and four weekly treatments induced complete tolerance. Furthermore, (α1-α3)x2 was active as a soluble molecule and capable of inhibiting the proliferation of tumor cell lines, as does the full length HLA-G trimolecular complex. Thus, the synthetic (α1-α3)x2 polypeptide is a stable and simpler alternative to the full-length HLA-G molecule. It can be produced under GMP conditions, it functions as a soluble molecule, and it is at least as tolerogenic as HLA-G in vivo.
Collapse
Affiliation(s)
- Joel LeMaoult
- Commissariat à l'Énergie Atomique et aux Énergies Alternatives (CEA), Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Paris, France.
| | | | | | | | | | | |
Collapse
|
85
|
Toward eliminating HLA class I expression to generate universal cells from allogeneic donors. Blood 2013; 122:1341-9. [PMID: 23741009 DOI: 10.1182/blood-2013-03-478255] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Long-term engraftment of allogeneic cells necessitates eluding immune-mediated rejection, which is currently achieved by matching for human leukocyte antigen (HLA) expression, immunosuppression, and/or delivery of donor-derived cells to sanctuary sites. Genetic engineering provides an alternative approach to avoid clearance of cells that are recognized as "non-self" by the recipient. To this end, we developed designer zinc finger nucleases and employed a "hit-and-run" approach to genetic editing for selective elimination of HLA expression. Electro-transfer of mRNA species coding for these engineered nucleases completely disrupted expression of HLA-A on human T cells, including CD19-specific T cells. The HLA-A(neg) T-cell pools can be enriched and evade lysis by HLA-restricted cytotoxic T-cell clones. Recognition by natural killer cells of cells that had lost HLA expression was circumvented by enforced expression of nonclassical HLA molecules. Furthermore, we demonstrate that zinc finger nucleases can eliminate HLA-A expression from embryonic stem cells, which broadens the applicability of this strategy beyond infusing HLA-disparate immune cells. These findings establish that clinically appealing cell types derived from donors with disparate HLA expression can be genetically edited to evade an immune response and provide a foundation whereby cells from a single donor can be administered to multiple recipients.
Collapse
|
86
|
Lucena-Silva N, de Souza VSB, Gomes RG, Fantinatti A, Muniz YCN, de Albuquerque RS, Monteiro ALR, Diniz GTN, Coelho MRCD, Mendes-Junior CT, Castelli EDC, Donadi EA. HLA-G 3' untranslated region polymorphisms are associated with systemic lupus erythematosus in 2 Brazilian populations. J Rheumatol 2013; 40:1104-13. [PMID: 23678155 DOI: 10.3899/jrheum.120814] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
OBJECTIVE HLA-G has well recognized tolerogenic properties in physiological and nonphysiological conditions. The 3' untranslated region (3'UTR) of the HLA-G gene has at least 3 polymorphic sites (14-bpINS/DEL, +3142C/G, and +3196C/G) described as associated with posttranscriptional influence on messenger RNA production; however, only the 14-bpINS/DEL and +3142C/G sites have been studied in systemic lupus erythematosus (SLE). METHODS We investigated the HLA-G 3'UTR polymorphic sites (14-bpINS/DEL, +3003C/T, +3010C/G, +3027A/C, +3035C/T, +3142C/G, +3187A/G, and +3196C/G) in 190 Brazilian patients with SLE and 282 healthy individuals in allele, genotype, and haplotype analyses. A multiple logistic regression model was used to assess the association of the disease features with the HLA-G 3'UTR haplotypes. RESULTS Increased frequencies were observed of the 14-bpINS (p = 0.053), +3010C (p = 0.008), +3142G (p = 0.006), and +3187A (p = 0.013) alleles, and increased frequencies of the 14-bpINS-INS (p = 0.094), +3010 C-C (p = 0.033), +3142 G-G (p = 0.021), and +3187 A-A (p = 0.035) genotypes. After Bonferroni correction, only the +3142G (p = 0.05) and +3010C (p = 0.06) alleles were overrepresented in SLE patients. The UTR-1 haplotype (14-bpDEL/+3003T/+3010G/+3027C/+3035C/+3142C/+3187G/+3196C) was underrepresented in SLE (pcorr = 0.035). CONCLUSION These results indicate that HLA-G 3'UTR polymorphic sites, particularly +3142G and +3010C alleles, were associated with SLE susceptibility, whereas UTR-1 was associated with protection against development of SLE.
Collapse
Affiliation(s)
- Norma Lucena-Silva
- Department of Immunology, Aggeu Magalhães Research Center, Oswaldo Cruz Foundation, Recife-PE, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
The HLA-G low expressor genotype is associated with protection against bipolar disorder. Hum Immunol 2013; 74:593-7. [DOI: 10.1016/j.humimm.2012.11.032] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Revised: 11/17/2012] [Accepted: 11/27/2012] [Indexed: 12/12/2022]
|
88
|
Wang Y, Liu XH, Li YH, Li O. The paradox of IL-10-mediated modulation in cervical cancer. Biomed Rep 2013; 1:347-351. [PMID: 24648946 PMCID: PMC3916998 DOI: 10.3892/br.2013.69] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Accepted: 02/06/2013] [Indexed: 11/06/2022] Open
Abstract
Interleukin-10 (IL-10) has opposing effects as an anti-inflammatory (potentially cancer-promoting) and antiangiogenic (potentially cancer-inhibiting) agent. The role of IL-10 in cervical cancer is also dual. Here, we review the IL-10-mediated tumor-promoting effect and tumor-inhibiting effects in cervical cancer, among which, human papilloma virus (HPV), human leukocyte antigen-G (HLA-G) and IL-10 polymorphisms are associated with the development of cervical cancer. IL-10 is also used for the therapy of cervical cancer through enhancing proliferation, expression of immunologically important surface molecules and increasing Th1 cytokine production and cytotoxic potential in HPV-specific CD8 (+) cytotoxic T lymphocytes.
Collapse
Affiliation(s)
- Yan Wang
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Hebei United University
| | - Xiao-Hong Liu
- Departments of Pharmacy, Tangshan, Hebei 063000, P.R. China
| | - Yue-Hong Li
- Gynaecology and Obstetrics, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| | - Ou Li
- Gynaecology and Obstetrics, Tangshan Gongren Hospital, Tangshan, Hebei 063000, P.R. China
| |
Collapse
|
89
|
Buse E, Häeger JD, Svensson-Arvelund J, Markert UR, Faas MM, Ernerudh J, Dixon D, Cline JM, Pfarrer C. The placenta in toxicology. Part I: Animal models in toxicology: placental morphology and tolerance molecules in the cynomolgus monkey (Macaca fascicularis). Toxicol Pathol 2013; 42:314-26. [PMID: 23548606 DOI: 10.1177/0192623313482208] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The immune system represents a key defense mechanism against potential pathogens and adverse non-self materials. During pregnancy, the placenta is the point of contact between the maternal organism and non-self proteins of the fetal allograft and hence undoubtedly fulfils immune functions. In the placenta bacteria, foreign (non-self) proteins and proteins that might be introduced in toxicological studies or by medication are barred from reaching the progeny, and the maternal immune system is primed for acceptance of non-maternal fetal protein. Both immunologic protection of the fetus and acceptance of the fetus by the mother require effective mechanisms to prevent an immunologic fetomaternal conflict and to keep both organisms in balance. This is why the placenta requires toxicological consideration in view of its immune organ function. The following articles deal with placenta immune-, control-, and tolerance mechanisms in view of both fetal and maternal aspects. Furthermore, models for experimental access to placental immune function are addressed and the pathological evaluation is elucidated. "The Placenta as an Immune Organ and Its Relevance in Toxicological Studies" was subject of a continuing education course at the 2012 Society of Toxicologic Pathology meeting held in Boston, MA.
Collapse
|
90
|
Blanco-García R, López-Álvarez M, Garrido I, Salgado-Cecilia G, Campillo J, Bolarín J, Gimeno L, Muro M, García-Alonso A, Martínez-Sánchez M, Bernardo Pisa M, Soriano-Díaz S, Pascual-Figal D, Álvarez-López M, Minguela A. Post-transplant increase in soluble human leukocyte antigen-G associated with non-severe cardiac allograft vasculopathy. Hum Immunol 2013; 74:318-24. [DOI: 10.1016/j.humimm.2012.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 11/30/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
|
91
|
Winger EE, Reed JL. The multiple faces of the decidual natural killer cell. Am J Reprod Immunol 2013; 70:1-9. [PMID: 23448380 DOI: 10.1111/aji.12103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Accepted: 01/29/2013] [Indexed: 01/06/2023] Open
Abstract
The decidual NK (dNK) cell is called on to support placental growth by providing an array of growth factors that directly transform the spiral artery and direct trophoblast invasion. Successful transformation is dependent upon adequate stimulation paradoxically stimulating the cell for placental support rather than cytotoxicity. With the identification of its supportive role, the presence of an intact cytotoxic mechanism has been confusing. Investigators have found that the cell remains fully capable of cytotoxic responses particularly in response to pathogen-specific signals. We postulate a dual threshold model where moderate stimulation results in release of stimulatory factors supporting placentation while intense stimulation, particularly triggered through pathogen-specific receptors, restores the cell to its protective, cytotoxic, role. Individual dNK cells mature attaining the capacity to respond to the delivery of cognate signals. The process, known as 'licensing' tunes responsiveness to the degree to which stochastically selected inhibitory receptors block cytotoxic response to self. A changing licensing milieu within the decidua may result in altered and unsuitable receptor expression. We postulate that a heterogeneous population of dNK cells where cells inappropriately licensed for the milieu contributes to pathology.
Collapse
Affiliation(s)
- Edward E Winger
- Laboratory for Reproductive Medicine & Immunology, San Jose, CA, USA
| | | |
Collapse
|
92
|
Loustau M, Wiendl H, Ferrone S, Carosella ED. HLA-G 2012 conference: the 15-year milestone update. ACTA ACUST UNITED AC 2013; 81:127-36. [PMID: 23347068 DOI: 10.1111/tan.12053] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The non-classical human leukocyte antigen (HLA) Class I molecule HLA-G is best known for its tolerogenic function at the maternal-fetal interface, where it protects the fetus from destruction by the immune system of its mother. Yet, HLA-G has been the topic of intense investigations and its functions reach much further than originally believed. International conferences on HLA-G have taken place every 3 years since 1998, and the Sixth International Conference on HLA-G, that took place in Paris in July 2012. It counted 180 attendees from 28 countries, 35 speakers in plenary sessions, and 63 presentations of research in symposia and poster sessions, bringing new insight in HLA-G research. Here we summarize the major advances on the function and nature of HLA-G molecule that were reported, with particular interest on the findings in new mechanisms of action through regulatory cells, its relevance in cancer as well as in the molecular structure and functions of HLA-G, which are key for its clinical application.
Collapse
Affiliation(s)
- M Loustau
- CEA, Institute of Emerging Diseases and Innovative Therapies (iMETI), Research Division in Hematology and Immunology (SRHI), Saint-Louis Hospital, Paris, France
| | | | | | | |
Collapse
|
93
|
Zhao L, Purandare B, Zhang J, Hantash BM. β2-Microglobulin-free HLA-G activates natural killer cells by increasing cytotoxicity and proinflammatory cytokine production. Hum Immunol 2012; 74:417-24. [PMID: 23228393 DOI: 10.1016/j.humimm.2012.11.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Revised: 09/27/2012] [Accepted: 11/28/2012] [Indexed: 11/25/2022]
Abstract
Human leukocyte antigen-G (HLA-G) is a nonclassical HLA class-I molecule and plays a role in tissue specific immunoregulation. Many studies have addressed functional aspects of β2-microglobulin (β2m)-associated HLA-G1. β2m-free HLA-G has been found in human placental cytotrophoblasts and pancreatic β cells although its function remains unclear. In the present study, we investigated the function of β2m-free HLA-G by transfecting HLA-G1 and -G3 into human β2m deficient rat pancreatic β cell carcinoma (BRIN-BD11) cells. RT-PCR and western blots studies confirmed high expression of HLA-G1 and -G3 in -G1 and -G3 transfectants, respectively. HLA-G1 and -G3 were detected mainly in intracellular compartments of BRIN-BD11 transductants by confocal fluorescent microscopy and flow cytometry. Functional analysis revealed that β2m-free HLA-G promoted xenogeneic cytotoxic lysis of BRIN-BD11 cells by natural killer (NK) cells and increased production of IL-1β, TNF-α, and IFN-γ. Stimulation of cytotoxic lysis was impaired by blocking the MAPK and DNA-PKcs pathways in NK cells. Importantly, treatment with 33mAb, a KLR2DL4 receptor agonist, induced NK-mediated cytotoxic lysis of BRIN-BD11 cells transfected with a mock vector. Our data suggest that β2m-free HLA-G activates NK cells via engagement of KLR2DL4 receptors.
Collapse
Affiliation(s)
- Longmei Zhao
- Escape Therapeutics, Inc., San Jose, CA 95138, USA
| | | | | | | |
Collapse
|
94
|
Martinez-Laso J, Herraiz MA, Peñaloza J, Barbolla ML, Jurado ML, Macedo J, Vidart J, Cervera I. Promoter sequences confirm the three different evolutionary lineages described for HLA-G. Hum Immunol 2012; 74:383-8. [PMID: 23220497 DOI: 10.1016/j.humimm.2012.11.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 11/16/2012] [Accepted: 11/27/2012] [Indexed: 01/03/2023]
Abstract
HLA-G alleles follow a different pattern of polymorphism generation that those of the HLA classical I alleles. However, this polymorphism maintenance could have an evolutionary specific pathways based on non coding regions as introns, 14 bp deletion/insertion (exon 8) or promoter regions. For this reason, a systematic sequencing study of HLA-G promoter region was done in 36 individuals with a total of 15 different alleles. From the 12 sequences obtained, 7 were new sequences and not previously described. Results show that the sequences have three different patterns of evolution confirming the results obtained in the rest of the sequence regions (exons, introns and 3'UTR) where three different lineages were established. Only one of these lineages includes the non-human primate promoter sequences suggesting the possibility of this lineage could come directly from non-human primates while the other two could be generated after the speciation. More non-human primates MHC-G promoter sequences must be obtained to confirm this hypothesis. Expression and functional assays could be done considering the differences obtained in the promoter regions involving the HLA-G function (mRNA expression, isoforms).
Collapse
Affiliation(s)
- J Martinez-Laso
- Unidad de Inmunoterapia Celular, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Ctra. Majadahonda-Pozuelo, Km 2.2, 28220 Majadahonda, Madrid, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
95
|
Dai ZX, Zhang GH, Zhang XH, Zheng YT. Identification and characterization of a novel splice variant of rhesus macaque MHC IA. Mol Immunol 2012; 53:206-13. [PMID: 22947772 DOI: 10.1016/j.molimm.2012.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2012] [Revised: 08/07/2012] [Accepted: 08/07/2012] [Indexed: 10/27/2022]
Abstract
Major histocompatibility complex class I (MHC I) molecules play a pivotal role in the immune recognition to intracellular pathogens. A number of important splice variants have already been characterized for these molecules in different species, suggesting their important roles in modulation of immune responses. In this study, we have identified and characterized a novel alternatively spliced form of rhesus macaque MHC IA (designated MHC IA-sv2) that lacks exons coding for the α2 and α3 domains. Despite lacking the α2 and α3 domains, MHC IA-sv2 is targeted to the cell surface, as a 23-kDa glycoprotein that is totally susceptible to endoglycosidase-H digestion and is reduced to 18kDa after deglycosylation with PNGase F. In contrast, the full-length MHC IA reaches the cell surface as a 43-kDa protein of form with complex-type N-glycosylation (endoglycosidase-H resistant). Moreover, we provide evidence here that MHC IA-sv2 can self-associate, forming homodimers, or associate with the fully mature MHC IA molecule, forming a heterodimeric structure in mammalian cells. These data demonstrate that the formation of heterodimers may have some functional implications in the fine tuning of MHC IA-mediated innate and adaptive immune responses.
Collapse
Affiliation(s)
- Zheng-Xi Dai
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan 650223, PR China
| | | | | | | |
Collapse
|
96
|
Teklemariam T, Zhao L, Hantash BM. Full-length HLA-G1 and truncated HLA-G3 differentially increase HLA-E surface localization. Hum Immunol 2012; 73:898-905. [PMID: 22732094 DOI: 10.1016/j.humimm.2012.06.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 05/28/2012] [Accepted: 06/13/2012] [Indexed: 01/25/2023]
Abstract
Human leukocyte antigen (HLA)-E plays a role in immune tolerance induction and its transport to the cell surface is limited and dependent on the availability of HLA class I signal peptide. The role of HLA-G in regulating HLA-E surface localization remains controversial. The aim of our study was to clarify whether full-length and truncated HLA-G isoforms regulate HLA-E surface localization. Using a retroviral expression system and flow cytometric analysis, we found that surface HLA-E levels were significantly higher in HLA-G1 (34.1±4.4%, p<0.005) and -G3 (15.3±1.8%, p<0.04) versus empty vector (9.0±1.0%) transductants. Biotinylation and Western blot studies revealed HLA-E surface protein was increased by 4.5- and 1.3-fold in HLA-G1 and -G3 versus empty vector transductants. Although no significant differences in transcript and protein levels were detected between HLA-G1 and -G3 transductants, surface levels of HLA-G1 were 2.5-fold higher than HLA-G3 by flow cytometric analysis and Western blotting. Taken together, our data demonstrate that full-length HLA-G1 and truncated -G3 differentially increase HLA-E surface localization.
Collapse
|
97
|
Rajagopalan S, Long EO. KIR2DL4 (CD158d): An activation receptor for HLA-G. Front Immunol 2012; 3:258. [PMID: 22934097 PMCID: PMC3422731 DOI: 10.3389/fimmu.2012.00258] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2012] [Accepted: 08/01/2012] [Indexed: 01/06/2023] Open
Abstract
KIR2DL4 is an unusual killer cell immunoglobulin-like receptor (KIR) family member in terms of its structure, expression, cellular localization, and signaling properties. The most conserved KIR in evolution, it is referred to as a framework KIR gene and is expressed by all natural killer (NK) cells and a subset of T cells. Although it has a long cytoplasmic tail that is typical of inhibitory KIR, engagement of this receptor results in the activation of NK cells, not for cytotoxicity, but for cytokine and chemokine secretion. Unlike all other KIRs, which are expressed on the surface of NK cells, KIR2DL4 resides in endosomes. It signals from this intracellular site for a proinflammatory and proangiogenic response, using a novel endosomal signaling pathway that involves the serine/threonine kinases DNA-PKcs and Akt. The only known ligand of KIR2DL4 is HLA-G. Soluble HLA-G accumulates in KIR2DL4+ endosomes. Unlike classical HLA molecules that serve as ligands for other KIR family members, in healthy individuals, HLA-G expression is restricted to the fetal trophoblast cells that invade the maternal decidua during early pregnancy. Since NK cells constitute the predominant lymphocyte subset at this site, the proinflammatory/proangiogenic outcome of the interaction between KIR2DL4 and soluble HLA-G supports a role for KIR2DL4 in the extensive remodeling of the maternal vasculature during the early weeks of pregnancy.
Collapse
Affiliation(s)
- Sumati Rajagopalan
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases/National Institutes of Health Rockville, MD, USA
| | | |
Collapse
|
98
|
Sizzano F, Testi M, Zito L, Crocchiolo R, Troiano M, Mazzi B, Turchiano G, Torchio M, Pultrone C, Gregori S, Chiesa R, Gaziev J, Sodani P, Marktel S, Amoroso A, Roncarolo MG, Lucarelli G, Ciceri F, Andreani M, Fleischhauer K. Genotypes and haplotypes in the 3' untranslated region of the HLA-G gene and their association with clinical outcome of hematopoietic stem cell transplantation for beta-thalassemia. ACTA ACUST UNITED AC 2012; 79:326-32. [PMID: 22489942 DOI: 10.1111/j.1399-0039.2012.01862.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Polymorphisms in the 3' untranslated region (3'UTR) of HLA-G, an important player in immunological tolerance, could be involved in post-transcriptional expression control, and their association with different clinical immune-related conditions including autoimmunity and transplantation is of mounting interest. Most studies have focused on a 14 base pair (bp) insertion/deletion (ins/del), while additional single-nucleotide polymorphisms (SNPs) in the HLA-G 3'UTR have been described but not extensively investigated for their clinical relevance. Here we have comparatively studied the association between 3'UTR haplotypes of HLA-G, or the 14 bp ins/del, with clinical outcome of HLA-identical sibling hematopoietic stem cell transplantation (HSCT) in 147 Middle Eastern beta-thalassemia patients. Sequence based typing of 3'UTR HLA-G polymorphisms in the patients and in 102 healthy Italian blood donors showed strong linkage disequilibrium between the 14 bp ins/del and five 3'UTR SNPs, which together could be arranged into eight distinct haplotypes based on expectation-maximization studies, with four predominant haplotypes (UTRs1-4). After HSCT, we found a moderate though not significant association between the presence of UTR-2 in double dose and protection from acute graft versus host disease (hazard ratio (HR) 0.45, 95% confidence intervals (CI): 0.14-1.45; P = 0.18), an effect that was also seen when the corresponding 14 bp ins/ins genotype was considered alone (HR 0.42, 95% CI: 0.16-1.06; P = 0.07). No association was found with rejection or survival. Taken together, our data show that there is no apparent added value of considering entire 3'UTR HLA-G haplotypes for risk prediction after allogeneic HSCT for beta-thalassemia.
Collapse
Affiliation(s)
- F Sizzano
- Unit of Molecular and Functional Immunogenetics, Division of Regenerative Medicine, Stem Cells and Gene Therapy, San Raffaele Scientific Institute, Milan, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Abstract
Preeclampsia (PE) manifested by hypertension and proteinuria complicates 3% to 8% of pregnancies and is a leading cause of fetal-maternal morbidity and mortality worldwide. It may lead to intrauterine growth restriction, preterm delivery, and long-term sequelae in women and fetuses, and consequently cause socioeconomic burden to the affected families and society as a whole. Balanced immune responses are required for the maintenance of successful pregnancy. Although not a focus of most studies, decidual cells, the major resident cell type at the fetal-maternal interface, have been shown to modulate the local immune balance by interacting with other cell types, such as bone marrow derived-immune cells, endothelial cells, and invading extravillous trophoblasts. Accumulating evidence suggests that an imbalanced innate immunity, facilitated by decidual cells, plays an important role in the pathogenesis of PE. Thus, this review will discuss the role of innate immunity and the potential contribution of decidual cells in the pathogenesis of PE.
Collapse
Affiliation(s)
- Chang-Ching Yeh
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | | | | |
Collapse
|
100
|
Impact of the NK cell receptor LIR-1 (ILT-2/CD85j/LILRB1) on cytotoxicity against multiple myeloma. Clin Dev Immunol 2012; 2012:652130. [PMID: 22844324 PMCID: PMC3400434 DOI: 10.1155/2012/652130] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/25/2022]
Abstract
The role of different receptors in natural-killer- (NK-) cell-mediated cytotoxicity against multiple myeloma (MM) cells is unknown. We investigated if an enhancement of NK-cell-mediated cytotoxicity against MM could be reached by blocking of the inhibitory leukocyte immunoglobulin-like receptor 1 (LIR-1). Our investigations revealed high levels of LIR-1 expression not only on the NK cell line NK-92, but also on myeloma cells (MOLP-8, RPMI8226) as well as on a lymphoblastoid cell line (LBCL; IM-9). Subsequent cytotoxicity assays were designed to show the isolated effects of LIR-1 blocking on either the effector or the tumor side to rule out receptor-receptor interactions. Although NK-92 was shown to be capable of myeloma cell lysis, inhibition of LIR-1 on NK-92 did not enhance cytotoxicity. Targeting the receptor on MM and LBCL did not also alter NK-92-mediated lysis. We come to the conclusion that LIR-1 alone does not directly influence NK-cell-mediated cytotoxicity against myeloma. To our knowledge, this work provides the first investigation of the inhibitory capability of LIR-1 in NK-92-mediated cytotoxicity against MM and the first functional evaluation of LIR-1 on MM and LBCL.
Collapse
|