51
|
Léger M, Sidani S, Brakier-Gingras L. A reassessment of the response of the bacterial ribosome to the frameshift stimulatory signal of the human immunodeficiency virus type 1. RNA (NEW YORK, N.Y.) 2004; 10:1225-35. [PMID: 15247429 PMCID: PMC1370612 DOI: 10.1261/rna.7670704] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2004] [Accepted: 05/12/2004] [Indexed: 05/18/2023]
Abstract
HIV-1 uses a programmed -1 ribosomal frameshift to produce the precursor of its enzymes. This frameshift occurs at a specific slippery sequence followed by a stimulatory signal, which was recently shown to be a two-stem helix, for which a three-purine bulge separates the upper and lower stems. In the present study, we investigated the response of the bacterial ribosome to this signal, using a translation system specialized for the expression of a firefly luciferase reporter. The HIV-1 frameshift region was inserted at the beginning of the coding sequence of the luciferase gene, such that its expression requires a -1 frameshift. Mutations that disrupt the upper or the lower stem of the frameshift stimulatory signal or replace the purine bulge with pyrimidines decreased the frameshift efficiency, whereas compensatory mutations that re-form both stems restored the frame-shift efficiency to near wild-type level. These mutations had the same effect in a eukaryotic translation system, which shows that the bacterial ribosome responds like the eukaryote ribosome to the HIV-1 frameshift stimulatory signal. Also, we observed, in contrast to a previous report, that a stop codon immediately 3' to the slippery sequence does not decrease the frameshift efficiency, ruling out a proposal that the frameshift involves the deacylated-tRNA and the peptidyl-tRNA in the E and P sites of the ribosome, rather than the peptidyl-tRNA and the aminoacyl-tRNA in the P and A sites, as commonly assumed. Finally, mutations in 16S ribosomal RNA that facilitate the accommodation of the incoming aminoacyl-tRNA in the A site decreased the frameshift efficiency, which supports a previous suggestion that the frameshift occurs when the aminoacyl-tRNA occupies the A/T entry site.
Collapse
Affiliation(s)
- Mélissa Léger
- Département de Biochimie, Université de Montréal, 2900, boul. Edouard-Montpetit, D-353, Québec, H3T 1J4, Canada
| | | | | |
Collapse
|
52
|
Plant EP, Wang P, Jacobs JL, Dinman JD. A programmed -1 ribosomal frameshift signal can function as a cis-acting mRNA destabilizing element. Nucleic Acids Res 2004; 32:784-90. [PMID: 14762205 PMCID: PMC373365 DOI: 10.1093/nar/gkh256] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Nonsense-mediated mRNA decay (NMD) directs rapid degradation of premature termination codon (PTC)-containing mRNAs, e.g. those containing frameshift mutations. Many viral mRNAs encode polycistronic messages where programmed -1 ribosomal frameshift (-1 PRF) signals direct ribosomes to synthesize polyproteins. A previous study, which identified consensus -1 PRF signals in the yeast genome, found that, in contrast to viruses, the majority of predicted -1 PRF events would direct translating ribosomes to PTCs. Here we tested the hypothesis that a -1 PRF signal can function as a cis-acting mRNA destabilizing element by inserting an L-A viral -1 PRF signal into a PGK1 reporter construct in the 'genomic' orientation. The results show that even low levels of -1 PRF are sufficient to target the reporter mRNA for degradation via the NMD pathway, with half-lives similar to messages containing in-frame PTCs. The demonstration of an inverse correlation between frameshift efficiency and mRNA half-lives suggests that modulation of -1 PRF frequencies can be used to post-transcriptionally regulate gene expression. Analysis of the mRNA decay profiles of the frameshift-signal- containing reporter mRNAs also supports the notion that NMD remains active on mRNAs beyond the 'pioneer round' of translation in yeast.
Collapse
MESH Headings
- Codon, Nonsense/genetics
- Frameshifting, Ribosomal/genetics
- Genes, Fungal/genetics
- Genes, Reporter/genetics
- Half-Life
- Models, Genetic
- Polyproteins/genetics
- RNA Stability
- RNA Transport
- RNA, Fungal/genetics
- RNA, Fungal/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Regulatory Sequences, Ribonucleic Acid/genetics
- Ribosomes/metabolism
- Saccharomyces cerevisiae/genetics
- Saccharomyces cerevisiae Proteins/genetics
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building Room 2135, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
53
|
Meskauskas A, Harger JW, Jacobs KLM, Dinman JD. Decreased peptidyltransferase activity correlates with increased programmed -1 ribosomal frameshifting and viral maintenance defects in the yeast Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2003; 9:982-92. [PMID: 12869709 PMCID: PMC1240118 DOI: 10.1261/rna.2165803] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2002] [Accepted: 05/22/2003] [Indexed: 05/20/2023]
Abstract
Increased efficiencies of programmed -1 ribosomal frameshifting in yeast cells expressing mutant forms of ribosomal protein L3 are unable to maintain the dsRNA "Killer" virus. Here we demonstrate that changes in frameshifting and virus maintenance in these mutants correlates with decreased peptidyltransferase activities. The mutants did not affect Ty1-directed programmed +1 ribosomal frameshifting or nonsense-mediated mRNA decay. Independent experiments demonstrate similar programmed -1 ribosomal frameshifting specific defects in cells lacking ribosomal protein L41, which has previously been shown to result in peptidyltransferase defects in yeast. These findings are consistent with the hypothesis that decreased peptidyltransferase activity should result in longer ribosome pause times after the accommodation step of the elongation cycle, allowing more time for ribosomal slippage at programmed -1 ribosomal frameshift signals.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | |
Collapse
|
54
|
Brierley I, Pennell S. Structure and function of the stimulatory RNAs involved in programmed eukaryotic-1 ribosomal frameshifting. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2003; 66:233-48. [PMID: 12762025 DOI: 10.1101/sqb.2001.66.233] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- I Brierley
- Division of Virology, Department of Pathology, University of Cambridge, Cambridge CB2 1QP, United Kingdom
| | | |
Collapse
|
55
|
Meskauskas A, Baxter JL, Carr EA, Yasenchak J, Gallagher JEG, Baserga SJ, Dinman JD. Delayed rRNA processing results in significant ribosome biogenesis and functional defects. Mol Cell Biol 2003; 23:1602-13. [PMID: 12588980 PMCID: PMC151716 DOI: 10.1128/mcb.23.5.1602-1613.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
mof6-1 was originally isolated as a recessive mutation in Saccharomyces cerevisiae which promoted increased efficiencies of programmed -1 ribosomal frameshifting and rendered cells unable to maintain the killer virus. Here, we demonstrate that mof6-1 is a unique allele of the histone deacetylase RPD3, that the deacetylase function of Rpd3p is required for controlling wild-type levels of frameshifting and virus maintenance, and that the closest human homolog can fully complement these defects. Loss of the Rpd3p-associated histone deacetylase function, either by mutants of rpd3 or loss of the associated gene product Sin3p or Sap30p, results in a delay in rRNA processing rather than in an rRNA transcriptional defect. This results in production of ribosomes having lower affinities for aminoacyl-tRNA and diminished peptidyltransferase activities. We hypothesize that decreased rates of peptidyl transfer allow ribosomes with both A and P sites occupied by tRNAs to pause for longer periods of time at -1 frameshift signals, promoting increased programmed -1 ribosomal frameshifting efficiencies and subsequent loss of the killer virus. The frameshifting defect is accentuated when the demand for ribosomes is highest, suggesting that rRNA posttranscriptional modification is the bottleneck in ribosome biogenesis.
Collapse
Affiliation(s)
- Arturas Meskauskas
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Choi J, Xu Z, Ou JH. Triple decoding of hepatitis C virus RNA by programmed translational frameshifting. Mol Cell Biol 2003; 23:1489-97. [PMID: 12588970 PMCID: PMC151691 DOI: 10.1128/mcb.23.5.1489-1497.2003] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2002] [Revised: 08/21/2002] [Accepted: 11/27/2002] [Indexed: 11/20/2022] Open
Abstract
Ribosomes can be programmed to shift from one reading frame to another during translation. Hepatitis C virus (HCV) uses such a mechanism to produce F protein from the -2/+1 reading frame. We now report that the HCV frameshift signal can mediate the synthesis of the core protein of the zero frame, the F protein of the -2/+1 frame, and a 1.5-kDa protein of the -1/+2 frame. This triple decoding function does not require sequences flanking the frameshift signal and is apparently independent of membranes and the synthesis of the HCV polyprotein. Two consensus -1 frameshift sequences in the HCV type 1 frameshift signal facilitate ribosomal frameshifts into both overlapping reading frames. A sequence which is located immediately downstream of the frameshift signal and has the potential to form a double stem-loop structure can significantly enhance translational frameshifting in the presence of the peptidyl-transferase inhibitor puromycin. Based on these results, a model is proposed to explain the triple decoding activities of the HCV ribosomal frameshift signal.
Collapse
Affiliation(s)
- Jinah Choi
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, USA
| | | | | |
Collapse
|
57
|
Plant EP, Jacobs KLM, Harger JW, Meskauskas A, Jacobs JL, Baxter JL, Petrov AN, Dinman JD. The 9-A solution: how mRNA pseudoknots promote efficient programmed -1 ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2003; 9:168-74. [PMID: 12554858 PMCID: PMC1237042 DOI: 10.1261/rna.2132503] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
There is something special about mRNA pseudoknots that allows them to elicit efficient levels of programmed -1 ribosomal frameshifting. Here, we present a synthesis of recent crystallographic, molecular, biochemical, and genetic studies to explain this property. Movement of 9 A by the anticodon loop of the aminoacyl-tRNA at the accommodation step normally pulls the downstream mRNA a similar distance along with it. We suggest that the downstream mRNA pseudoknot provides resistance to this movement by becoming wedged into the entrance of the ribosomal mRNA tunnel. These two opposing forces result in the creation of a local region of tension in the mRNA between the A-site codon and the mRNA pseudoknot. This can be relieved by one of two mechanisms; unwinding the pseudoknot, allowing the downstream region to move forward, or by slippage of the proximal region of the mRNA backwards by one base. The observed result of the latter mechanism is a net shift of reading frame by one base in the 5' direction, that is, a -1 ribosomal frameshift.
Collapse
Affiliation(s)
- Ewan P Plant
- Department of Cell Biology and Molecular Genetics, Microbiology Building, University of Maryland, College Park, MD 20742, USA
| | | | | | | | | | | | | | | |
Collapse
|
58
|
Srivastava R, Lal SK. A yeast assay for high throughput screening of natural anti-viral agents. Biochem Biophys Res Commun 2003; 301:218-21. [PMID: 12535665 DOI: 10.1016/s0006-291x(02)02995-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Over the last decade the yeast Saccharomyces cerevisiae has become a popular organism for studying heterologous gene expression and in vivo protein-protein interactions. Many variations of these basic systems have originated over the years. Besides these vast and varied applications of the yeast expression system, S. cerevisiae has also been used extensively in fundamental research as a model simple eukaryote. We have used the S. cerevisiae system to design a high throughput screen for anti-viral agents from natural sources. The design of the assay rests on the ability of the L-A helper virus and the M(1) satellite virus to detect small variations in -1 ribosomal frameshifting. A minor change in frameshifting efficiencies can be detected and clearly shown phenotypically in terms of zones of clearing on an agar plate. Using such a process, we have initiated a high throughput screening process for natural anti-viral agents.
Collapse
Affiliation(s)
- Rashi Srivastava
- Virology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Road, P.O. Box 10504, New Delhi 110067, India
| | | |
Collapse
|
59
|
Abstract
Many viral mRNAs, including those of HIV-1, can make translating ribosomes change reading frame. Altering the efficiencies of programmed ribosomal frameshift (PRF) inhibits viral propagation. As a new target for potential antiviral agents, it is therefore important to understand how PRF is controlled. Incorporation of the current models describing PRF into the context of the translation elongation cycle leads us to propose an 'integrated model' of PRF both as a guide towards further characterization of PRF at the molecular and biochemical levels, and for the identification of new targets for antiviral therapeutics.
Collapse
Affiliation(s)
- Jason W Harger
- Graduate School of Biomedical Sciences, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
60
|
Goss Kinzy T, Harger JW, Carr-Schmid A, Kwon J, Shastry M, Justice M, Dinman JD. New targets for antivirals: the ribosomal A-site and the factors that interact with it. Virology 2002; 300:60-70. [PMID: 12202206 DOI: 10.1006/viro.2002.1567] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many viruses use programmed -1 ribosomal frameshifting to ensure the correct ratio of viral structural to enzymatic proteins. Alteration of frameshift efficiencies changes these ratios, in turn inhibiting viral particle assembly and virus propagation. Previous studies determined that anisomycin, a peptidyl transferase inhibitor, specifically inhibited -1 frameshifting and the ability of yeast cells to propagate the L-A and M(1) dsRNA viruses (J. D. Dinman, M. J. Ruiz-Echevarria, K. Czaplinski, and S. W. Peltz, 1997, Proc. Natl. Acad. Sci. USA 94, 6606-6611). Here we show that preussin, a pyrollidine that is structurally similar to anisomycin (R. E. Schwartz, J. Liesch, O. Hensens, L. Zitano, S. Honeycutt, G. Garrity, R. A. Fromtling, J. Onishi, and R. Monaghan, 1988. J. Antibiot. (Tokyo) 41, 1774--1779), also inhibits -1 programmed ribosomal frameshifting and virus propagation by acting at the same site or through the same mechanism as anisomycin. Since anisomycin is known to assert its effect at the ribosomal A-site, we undertook a pharmacogenetic analysis of mutants of trans-acting eukaryotic elongation factors (eEFs) that function at this region of the ribosome. Among mutants of eEF1A, a correlation is observed between resistance/susceptibility profiles to preussin and anisomycin, and these in turn correlate with programmed -1 ribosomal frameshifting efficiencies and killer virus phenotypes. Among mutants of eEF2, the extent of resistance to preussin correlates with resistance to sordarin, an eEF2 inhibitor. These results suggest that structural features associated with the ribosomal A-site and with the trans-acting factors that interact with it may present a new set of molecular targets for the rational design of antiviral compounds.
Collapse
Affiliation(s)
- Terri Goss Kinzy
- Department of Molecular Genetics and Microbiology, UMDNJ/Rutgers Universities, UMDNJ Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | | | |
Collapse
|
61
|
Dinman JD, Richter S, Plant EP, Taylor RC, Hammell AB, Rana TM. The frameshift signal of HIV-1 involves a potential intramolecular triplex RNA structure. Proc Natl Acad Sci U S A 2002; 99:5331-6. [PMID: 11959986 PMCID: PMC122769 DOI: 10.1073/pnas.082102199] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The cis-acting mRNA elements that promote programmed -1 ribosomal frameshifting present a natural target for the rational design of antiretroviral chemotherapies. It has been commonly accepted that the HIV-1 frameshifting signal is special, because its downstream enhancer element consists of a simple mRNA stem loop rather than a more complex secondary structure such as a pseudoknot. Here we present three lines of evidence, bioinformatic, structural, and genetic, showing that the biologically relevant HIV-1 frameshift signal contains a complex RNA structure that likely includes an extended RNA triple-helix region. We suggest that the potential intramolecular triplex structure is essential for viral propagation and viability, and that small molecules targeted to this RNA structure may possess antiretroviral activities.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, 2135 Microbiology Building, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | | | |
Collapse
|
62
|
Meskauskas A, Dinman JD. Ribosomal protein L5 helps anchor peptidyl-tRNA to the P-site in Saccharomyces cerevisiae. RNA (NEW YORK, N.Y.) 2001; 7:1084-96. [PMID: 11497428 PMCID: PMC1307509 DOI: 10.1017/s1355838201001480] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Our previous demonstration that mutants of 5S rRNA called mof9 can specifically alter efficiencies of programmed ribosomal frameshifting (PRF) suggested a role for this ubiquitous molecule in the maintenance of translational reading frame, though the repetitive nature of the 5S rDNA gene (>100 copies/cell) inhibited more detailed analyses. However, given the known interactions between 5S rRNA and ribosomal protein L5 (previously called L1 or YL3) encoded by an essential, single-copy gene, we monitored the effects of a series of well-defined rpl5 mutants on PRF and virus propagation. Consistent with the mof9 results, we find that the rpl5 mutants promoted increased frameshifting efficiencies in both the -1 and +1 directions, and conferred defects in the ability of cells to propagate two endogenous viruses. Biochemical analyses demonstrated that mutant ribosomes had decreased affinities for peptidyl-tRNA. Pharmacological studies showed that sparsomycin, a peptidyltransferase inhibitor that specifically increases the binding of peptidyl-tRNA with ribosomes, was antagonistic to the frameshifting defects of the most severe mutant, and the extent of sparsomycin resistance correlated with the severity of the frameshifting defects in all of the mutants. These results provide biochemical and physiological evidence that one function of L5 is to anchor peptidyl-tRNA to the P-site. A model is presented describing how decreased affinity of ribosomes for peptidyl-tRNA can affect both -1 and +1 frameshifting, and for the effects of sparsomycin.
Collapse
Affiliation(s)
- A Meskauskas
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Piscataway 08854, USA
| | | |
Collapse
|
63
|
Paul CP, Barry JK, Dinesh-Kumar SP, Brault V, Miller WA. A sequence required for -1 ribosomal frameshifting located four kilobases downstream of the frameshift site. J Mol Biol 2001; 310:987-99. [PMID: 11502008 DOI: 10.1006/jmbi.2001.4801] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Programmed ribosomal frameshifting allows one mRNA to encode regulate expression of, multiple open reading frames (ORFs). The polymerase encoded by ORF 2 of Barley yellow dwarf virus (BYDV) is expressed via minus one (-1) frameshifting from the overlapping ORF 1. Previously, this appeared to be mediated by a 116 nt RNA sequence that contains canonical -1 frameshift signals including a shifty heptanucleotide followed by a highly structured region. However, unlike known -1 frameshift signals, the reporter system required the zero frame stop codon and did not require a consensus shifty site for expression of the -1 ORF. In contrast, full-length viral RNA required a functional shifty site for frameshifting in wheat germ extract, while the stop codon was not required. Increasing translation initiation efficiency by addition of a 5' cap on the naturally uncapped viral RNA, decreased the frameshift rate. Unlike any other known RNA, a region four kilobases downstream of the frameshift site was required for frameshifting. This included an essential 55 base tract followed by a 179 base tract that contributed to full frameshifting. The effects of most mutations on frameshifting correlated with the ability of viral RNA to replicate in oat protoplasts, indicating that the wheat germ extract accurately reflected control of BYDV RNA translation in the infected cell. However, the overall frameshift rate appeared to be higher in infected cells, based on immunodetection of viral proteins. These findings show that use of short recoding sequences out of context in reporter constructs may overlook distant signals. Most importantly, the remarkably long-distance interaction reported here suggests the presence of a novel structure that can facilitate ribosomal frameshifting.
Collapse
MESH Headings
- 3' Untranslated Regions/biosynthesis
- 3' Untranslated Regions/chemistry
- 3' Untranslated Regions/genetics
- 3' Untranslated Regions/metabolism
- Avena/cytology
- Avena/virology
- Base Sequence
- Codon, Terminator/genetics
- Conserved Sequence/genetics
- DNA-Directed RNA Polymerases/genetics
- Daucus carota/cytology
- Daucus carota/virology
- Frameshifting, Ribosomal/genetics
- Gene Expression Regulation, Enzymologic
- Gene Expression Regulation, Viral
- Genes, Reporter/genetics
- Genes, Viral/genetics
- Genome, Viral
- Kinetics
- Luteovirus/enzymology
- Luteovirus/genetics
- Molecular Sequence Data
- Mutation/genetics
- Nucleic Acid Conformation
- Open Reading Frames/genetics
- Peptide Chain Initiation, Translational
- RNA, Viral/biosynthesis
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Ribosomes/metabolism
- Virus Replication
Collapse
Affiliation(s)
- C P Paul
- Plant Pathology Department, Iowa State University, Ames 50011, USA
| | | | | | | | | |
Collapse
|
64
|
Harger JW, Meskauskas A, Nielsen J, Justice MC, Dinman JD. Ty1 retrotransposition and programmed +1 ribosomal frameshifting require the integrity of the protein synthetic translocation step. Virology 2001; 286:216-24. [PMID: 11448174 DOI: 10.1006/viro.2001.0997] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Programmed ribosomal frameshifting is utilized by a number of RNA viruses to ensure the correct ratio of viral structural to enzymatic proteins for viral particle assembly. Altering frameshifting efficiencies upsets this ratio, inhibiting virus propagation. Two yeast viruses that induce host cell ribosomes to shift translational reading frame were used as tools to explore the interactions between viruses and host cellular protein synthetic machinery. Previous studies showed that the ribosome-inactivating protein pokeweed antiviral protein specifically inhibited propagation of the Ty1 retrotransposable element of yeast as a consequence of inhibition of programmed +1 ribosomal frameshifting. Here, complementary genetic and pharmacological approaches were employed to test whether inhibition of Ty1 retrotransposition is a general feature of alterations in the translocation step of elongation and +1 frameshifting. The results demonstrate that cells harboring a variety of mutant alleles of two host-encoded proteins that are involved in translocation, eukaryotic elongation factor-2 and the ribosome-associated protein RPP0, have Ty1 propagation defects. We also show that sordarin, a fungus-specific inhibitor of eEF-2 function, specifically inhibits programmed +1 ribosomal frameshifting and Ty1 retrotransposition. These findings serve to link inhibition of Ty1 retrotransposition and +1 frameshifting to changes in the translocation step of elongation.
Collapse
Affiliation(s)
- J W Harger
- Department of Molecular Genetics and Microbiology, Graduate Program in Molecular Biosciences at UMDNJ/Rutgers Universities, The Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | |
Collapse
|
65
|
Giedroc DP, Theimer CA, Nixon PL. Structure, stability and function of RNA pseudoknots involved in stimulating ribosomal frameshifting. J Mol Biol 2000; 298:167-85. [PMID: 10764589 PMCID: PMC7126452 DOI: 10.1006/jmbi.2000.3668] [Citation(s) in RCA: 180] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Programmed -1 ribosomal frameshifting has become the subject of increasing interest over the last several years, due in part to the ubiquitous nature of this translational recoding mechanism in pathogenic animal and plant viruses. All cis-acting frameshift signals encoded in mRNAs are minimally composed of two functional elements: a heptanucleotide "slippery sequence" conforming to the general form X XXY YYZ, followed by an RNA structural element, usually an H-type RNA pseudoknot, positioned an optimal number of nucleotides (5 to 9) downstream. The slippery sequence itself promotes a low level ( approximately 1 %) of frameshifting; however, downstream pseudoknots stimulate this process significantly, in some cases up to 30 to 50 %. Although the precise molecular mechanism of stimulation of frameshifting remains poorly understood, significant advances have been made in our knowledge of the three-dimensional structures, thermodynamics of folding, and functional determinants of stimulatory RNA pseudoknots derived from the study of several well-characterized frameshift signals. These studies are summarized here and provide new insights into the structural requirements and mechanism of programmed -1 ribosomal frameshifting.
Collapse
MESH Headings
- Base Sequence
- Cations/metabolism
- Cations/pharmacology
- Frameshifting, Ribosomal/genetics
- Infectious bronchitis virus/genetics
- Luteovirus/genetics
- Mammary Tumor Virus, Mouse/genetics
- Models, Genetic
- Nucleic Acid Conformation/drug effects
- RNA Stability/drug effects
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Retroviruses, Simian/genetics
Collapse
Affiliation(s)
- D P Giedroc
- Department of Biochemistry and Biophysics, Center for Macromolecular Design, Texas A&M University, TX 77843-2128, USA.
| | | | | |
Collapse
|
66
|
Nixon PL, Giedroc DP. Energetics of a strongly pH dependent RNA tertiary structure in a frameshifting pseudoknot. J Mol Biol 2000; 296:659-71. [PMID: 10669615 DOI: 10.1006/jmbi.1999.3464] [Citation(s) in RCA: 72] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Retroviruses employ -1 translational frameshifting to regulate the relative concentrations of structural and non-structural proteins critical to the viral life cycle. The 1.6 A crystal structure of the -1 frameshifting pseudoknot from beet western yellows virus reveals, in addition to Watson-Crick base-pairing, many loop-stem RNA tertiary structural interactions and a bound Na(+). Investigation of the thermodynamics of unfolding of the beet western yellows virus pseudoknot reveals strongly pH-dependent loop-stem tertiary structural interactions which stabilize the molecule, contributing a net of DeltaH approximately -30 kcal mol(-1) and DeltaG degrees (37) of -3.3 kcal mol(-1) to a total DeltaH and DeltaG degrees (37) of -121 and -16 kcal mol(-1), respectively, at pH 6.0, 0.5 M K(+) by DSC. Characterization of mutant RNAs supports the presence of a C8(+).G12-C26 loop 1-stem 2 base-triple (pK(a)=6.8), protonation of which contributes nearly -3.5 kcal mol(-1) in net stability in the presence of a wild-type loop 2. Substitution of the nucleotides in loop 2 with uridine bases, which would eliminate the minor groove triplex, destroys pseudoknot formation. An examination of the dependence of the monovalent ion and type on melting profiles suggests that tertiary structure unfolding occurs in a manner quantitatively consistent with previous studies on the stabilizing effects of K(+), NH(4)(+) and Na(+) on other simple duplex and pseudoknotted RNAs.
Collapse
MESH Headings
- Base Pairing/drug effects
- Base Pairing/genetics
- Base Sequence
- Calorimetry, Differential Scanning
- Cations, Monovalent/metabolism
- Cations, Monovalent/pharmacology
- Frameshifting, Ribosomal
- Hydrogen Bonding
- Hydrogen-Ion Concentration
- Luteovirus/genetics
- Models, Molecular
- Mutation/genetics
- Nucleic Acid Conformation/drug effects
- Nucleic Acid Denaturation/drug effects
- RNA Stability/drug effects
- RNA, Double-Stranded/chemistry
- RNA, Double-Stranded/drug effects
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/chemistry
- RNA, Messenger/drug effects
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA, Viral/chemistry
- RNA, Viral/drug effects
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Solutions
- Thermodynamics
- Transcription, Genetic/genetics
- Uridine/chemistry
- Uridine/genetics
- Uridine/metabolism
Collapse
Affiliation(s)
- P L Nixon
- Department of Biochemistry, Center for Macromolecular Design, Texas A&M University, TX, 77843-2128, USA
| | | |
Collapse
|
67
|
Brunelle MN, Payant C, Lemay G, Brakier-Gingras L. Expression of the human immunodeficiency virus frameshift signal in a bacterial cell-free system: influence of an interaction between the ribosome and a stem-loop structure downstream from the slippery site. Nucleic Acids Res 1999; 27:4783-91. [PMID: 10572179 PMCID: PMC148779 DOI: 10.1093/nar/27.24.4783] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
A-1 frameshift event is required for expression of the pol gene when ribosomes translate the mRNA of human immunodeficiency virus type-1 (HIV-1). In this study, we inserted the frameshift region of HIV-1 (a slippery heptanucleotide motif followed by a stem-loop) in a reporter gene coding for firefly luciferase. The ability of the corresponding mRNA, generated by in vitro transcription, to be translated in an Escherichia coli cell-free extract is the first demonstration that the HIV-1 frameshift can be reproduced in a bacterial cell-free extract, providing a powerful approach for analysis of the frameshift mechanism. The responses of the frameshift signal to chloramphenicol, an inhibitor of peptide bond formation, and spectinomycin, an inhibitor of translocation, suggest that the frameshift complies with the same rules found in eukaryotic translation systems. Furthermore, when translation was performed in the presence of streptomycin and neamine, two error-inducing antibiotics, or with hyperaccurate ribosomes mutated in S12, the frameshift efficiency was increased or decreased, respectively, but only in the presence of the stem-loop, suggesting that the stem-loop can influence the frameshift through a functional interaction with the ribosomes.
Collapse
MESH Headings
- Animals
- Anti-Bacterial Agents/pharmacology
- Base Sequence
- Cell-Free System
- Chloramphenicol O-Acetyltransferase/genetics
- Cloning, Molecular
- Coleoptera
- Escherichia coli/drug effects
- Escherichia coli/genetics
- Frameshifting, Ribosomal
- Genes, Reporter
- Genes, gag
- Genes, pol
- HIV-1/genetics
- Humans
- Luciferases/genetics
- Models, Genetic
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Nucleic Acid Conformation
- Promoter Regions, Genetic
- Protein Biosynthesis
- RNA, Messenger/chemistry
- RNA, Messenger/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Recombinant Proteins/biosynthesis
- Sequence Deletion
Collapse
Affiliation(s)
- M N Brunelle
- Département de Biochimie, Université de Montréal, Montréal, Québec H3T 1J4, Canada
| | | | | | | |
Collapse
|
68
|
Napthine S, Liphardt J, Bloys A, Routledge S, Brierley I. The role of RNA pseudoknot stem 1 length in the promotion of efficient -1 ribosomal frameshifting. J Mol Biol 1999; 288:305-20. [PMID: 10329144 PMCID: PMC7126229 DOI: 10.1006/jmbi.1999.2688] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The ribosomal frameshifting signal present in the genomic RNA of the coronavirus infectious bronchitis virus (IBV) contains a classic hairpin-type RNA pseudoknot that is believed to possess coaxially stacked stems of 11 bp (stem 1) and 6 bp (stem 2). We investigated the influence of stem 1 length on the frameshift process by measuring the frameshift efficiency in vitro of a series of IBV-based pseudoknots whose stem 1 length was varied from 4 to 13 bp in single base-pair increments. Efficient frameshifting depended upon the presence of a minimum of 11 bp; pseudoknots with a shorter stem 1 were either non-functional or had reduced frameshift efficiency, despite the fact that a number of them had a stem 1 with a predicted stability equal to or greater than that of the wild-type IBV pseudoknot. An upper limit for stem 1 length was not determined, but pseudoknots containing a 12 or 13 bp stem 1 were fully functional. Structure probing analysis was carried out on RNAs containing either a ten or 11 bp stem 1; these experiments confirmed that both RNAs formed pseudoknots and appeared to be indistinguishable in conformation. Thus the difference in frameshifting efficiency seen with the two structures was not simply due to an inability of the 10 bp stem 1 construct to fold into a pseudoknot. In an attempt to identify other parameters which could account for the poor functionality of the shorter stem 1-containing pseudoknots, we investigated, in the context of the 10 bp stem 1 construct, the influence on frameshifting of altering the slippery sequence-pseudoknot spacing distance, loop 2 length, and the number of G residues at the bottom of the 5'-arm of stem 1. For each parameter, it was possible to find a condition where a modest stimulation of frameshifting was observable (about twofold, from seven to a maximal 17 %), but we were unable to find a situation where frameshifting approached the levels seen with 11 bp stem 1 constructs (48-57 %). Furthermore, in the next smaller construct (9 bp stem 1), changing the bottom four base-pairs to G.C (the optimal base composition) only stimulated frameshifting from 3 to 6 %, an efficiency about tenfold lower than seen with the 11 bp construct. Thus stem 1 length is a major factor in determining the functionality of this class of pseudoknot and this has implications for models of the frameshift process.
Collapse
Affiliation(s)
- Sawsan Napthine
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
| | - Jan Liphardt
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
| | - Alison Bloys
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
| | - Samantha Routledge
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
| | - Ian Brierley
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
- Corresponding author
| |
Collapse
|
69
|
Liphardt J, Napthine S, Kontos H, Brierley I. Evidence for an RNA pseudoknot loop-helix interaction essential for efficient -1 ribosomal frameshifting. J Mol Biol 1999; 288:321-35. [PMID: 10329145 PMCID: PMC7141562 DOI: 10.1006/jmbi.1999.2689] [Citation(s) in RCA: 65] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
RNA pseudoknots are structural elements that participate in a variety of biological processes. At -1 ribosomal frameshifting sites, several types of pseudoknot have been identified which differ in their organisation and functionality. The pseudoknot found in infectious bronchitis virus (IBV) is typical of those that possess a long stem 1 of 11-12 bp and a long loop 2 (30-164 nt). A second group of pseudoknots are distinguishable that contain stems of only 5 to 7 bp and shorter loops. The NMR structure of one such pseudoknot, that of mouse mammary tumor virus (MMTV), has revealed that it is kinked at the stem 1-stem 2 junction, and that this kinked conformation is essential for efficient frameshifting. We recently investigated the effect on frameshifting of modulating stem 1 length and stability in IBV-based pseudoknots, and found that a stem 1 with at least 11 bp was needed for efficient frameshifting. Here, we describe the sequence manipulations that are necessary to bypass the requirement for an 11 bp stem 1 and to convert a short non-functional IBV-derived pseudoknot into a highly efficient, kinked frameshifter pseudoknot. Simple insertion of an adenine residue at the stem 1-stem 2 junction (an essential feature of a kinked pseudoknot) was not sufficient to create a functional pseudoknot. An additional change was needed: efficient frameshifting was recovered only when the last nucleotide of loop 2 was changed from a G to an A. The requirement for an A at the end of loop 2 is consistent with a loop-helix contact similar to those described in other RNA tertiary structures. A mutational analysis of both partners of the proposed interaction, the loop 2 terminal adenine residue and two G.C pairs near the top of stem 1, revealed that the interaction was essential for efficient frameshifting. The specific requirement for a 3'-terminal A residue was lost when loop 2 was increased from 8 to 14 nt, suggesting that the loop-helix contact may be required only in those pseudoknots with a short loop 2.
Collapse
Affiliation(s)
- Jan Liphardt
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
| | - Sawsan Napthine
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
| | - Harry Kontos
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
| | - Ian Brierley
- Division of Virology Department of Pathology University of Cambridge Tennis Court Road, Cambridge CB2 1QP, UK
- Corresponding author
| |
Collapse
|
70
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of Putative Programmed −1 Ribosomal Frameshift Signals in Large DNA Databases. Genome Res 1999. [DOI: 10.1101/gr.9.5.417] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the −1 (5′) direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed −1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed −1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus −1 ribosomal frameshift signals. The results demonstrated that consensus programmed −1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed −1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeastRAS1 and the human CCR5 genes were able to promote significant levels of programmed −1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
|
71
|
Wilson GM, Brewer G. Slip-Sliding the Frame: Programmed −1 Frameshifting on Eukaryotic Transcripts. Genome Res 1999. [DOI: 10.1101/gr.9.5.393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
72
|
Hammell AB, Taylor RC, Peltz SW, Dinman JD. Identification of putative programmed -1 ribosomal frameshift signals in large DNA databases. Genome Res 1999; 9:417-27. [PMID: 10330121 PMCID: PMC310776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The cis-acting elements that promote efficient ribosomal frameshifting in the -1 (5') direction have been well characterized in several viral systems. Results from many studies have convincingly demonstrated that the basic molecular mechanisms governing programmed -1 ribosomal frameshifting are almost identical from yeast to humans. We are interested in testing the hypothesis that programmed -1 ribosomal frameshifting can be used to control cellular gene expression. Toward this end, a computer program was designed to search large DNA databases for consensus -1 ribosomal frameshift signals. The results demonstrated that consensus programmed -1 ribosomal frameshift signals can be identified in a substantial number of chromosomally encoded mRNAs and that they occur with frequencies from two- to sixfold greater than random in all of the databases searched. A preliminary survey of the databases resulting from the computer searches found that consensus frameshift signals are present in at least 21 homologous genes from different species, 2 of which are nearly identical, suggesting evolutionary conservation of function. We show that four previously described missense alleles of genes that are linked to human diseases would disrupt putative programmed -1 ribosomal frameshift signals, suggesting that the frameshift signal may be involved in the normal expression of these genes. We also demonstrate that signals found in the yeast RAS1 and the human CCR5 genes were able to promote significant levels of programmed -1 ribosomal frameshifting. The significance of these frameshifting signals in controlling gene expression is not known, however.
Collapse
Affiliation(s)
- A B Hammell
- Department of Molecular Genetics and Microbiology, University of Medicine and Dentistry of New Jersey (UMDNJ), Robert Wood Johnson Medical School, and The Graduate Programs in Molecular Bioscience Rutgers/UMDNJ, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
73
|
Peltz SW, Hammell AB, Cui Y, Yasenchak J, Puljanowski L, Dinman JD. Ribosomal protein L3 mutants alter translational fidelity and promote rapid loss of the yeast killer virus. Mol Cell Biol 1999; 19:384-91. [PMID: 9858562 PMCID: PMC83896 DOI: 10.1128/mcb.19.1.384] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Programmed -1 ribosomal frameshifting is utilized by a number of RNA viruses as a means of ensuring the correct ratio of viral structural to enzymatic proteins available for viral particle assembly. Altering frameshifting efficiencies upsets this ratio, interfering with virus propagation. We have previously demonstrated that compounds that alter the kinetics of the peptidyl-transfer reaction affect programmed -1 ribosomal frameshift efficiencies and interfere with viral propagation in yeast. Here, the use of a genetic approach lends further support to the hypothesis that alterations affecting the ribosome's peptidyltransferase activity lead to changes in frameshifting efficiency and virus loss. Mutations in the RPL3 gene, which encodes a ribosomal protein located at the peptidyltransferase center, promote approximately three- to fourfold increases in programmed -1 ribosomal frameshift efficiencies and loss of the M1 killer virus of yeast. The mak8-1 allele of RPL3 contains two adjacent missense mutations which are predicted to structurally alter the Mak8-1p. Furthermore, a second allele that encodes the N-terminal 100 amino acids of L3 (called L3Delta) exerts a trans-dominant effect on programmed -1 ribosomal frameshifting and killer virus maintenance. Taken together, these results support the hypothesis that alterations in the peptidyltransferase center affect programmed -1 ribosomal frameshifting.
Collapse
Affiliation(s)
- S W Peltz
- The Cancer Institute of New Jersey, Piscataway, New Jersey 08854, USA
| | | | | | | | | | | |
Collapse
|
74
|
Ruiz-Echevarría MJ, Yasenchak JM, Han X, Dinman JD, Peltz SW. The upf3 protein is a component of the surveillance complex that monitors both translation and mRNA turnover and affects viral propagation. Proc Natl Acad Sci U S A 1998; 95:8721-6. [PMID: 9671745 PMCID: PMC21143 DOI: 10.1073/pnas.95.15.8721] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/1998] [Indexed: 02/08/2023] Open
Abstract
The nonsense-mediated mRNA decay pathway functions to degrade aberrant mRNAs that contain premature translation termination codons. In Saccharomyces cerevisiae, the Upf1, Upf2, and Upf3 proteins have been identified as trans-acting factors involved in this pathway. Recent results have demonstrated that the Upf proteins may also be involved in maintaining the fidelity of several aspects of the translation process. Certain mutations in the UPF1 gene have been shown to affect the efficiency of translation termination at nonsense codons and/or the process of programmed -1 ribosomal frameshifting used by viruses to control their gene expression. Alteration of programmed frameshift efficiencies can affect virus assembly leading to reduced viral titers or elimination of the virus. Here we present evidence that the Upf3 protein also functions to regulate programmed -1 frameshift efficiency. A upf3-Delta strain demonstrates increased sensitivity to the antibiotic paromomycin and increased programmed -1 ribosomal frameshift efficiency resulting in loss of the M1 virus. Based on these observations, we hypothesize that the Upf proteins are part of a surveillance complex that functions to monitor translational fidelity and mRNA turnover.
Collapse
Affiliation(s)
- M J Ruiz-Echevarría
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School-University of Medicine and Dentistry of New Jersey, USA
| | | | | | | | | |
Collapse
|
75
|
Hung M, Patel P, Davis S, Green SR. Importance of ribosomal frameshifting for human immunodeficiency virus type 1 particle assembly and replication. J Virol 1998; 72:4819-24. [PMID: 9573247 PMCID: PMC110024 DOI: 10.1128/jvi.72.6.4819-4824.1998] [Citation(s) in RCA: 104] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/1997] [Accepted: 02/17/1998] [Indexed: 02/07/2023] Open
Abstract
The recent development and use of protease inhibitors have demonstrated the essential role that combination therapy will play in the treatment of individuals infected with the human immunodeficiency virus type 1 (HIV-1). Past clinical experience suggests that due to the appearance of resistant HIV-1 variants, additional therapeutics will be required in the future. To identify new options for combination therapy, it is of paramount importance to pursue novel targets for drug development. Ribosomal frameshifting is one potential target that has not been fully explored. Data presented here demonstrate that small molecules can stimulate frameshifting, leading to an imbalance in the ratio of Gag to Gag-Pol and inhibiting HIV-1 replication at what appears to be the point of viral particle assembly. Thus, we propose that frameshifting represents a new target for the identification of novel anti-HIV-1 therapeutics.
Collapse
Affiliation(s)
- M Hung
- RiboGene Inc., Hayward, California 94545, USA
| | | | | | | |
Collapse
|
76
|
Benard L, Carroll K, Valle RC, Wickner RB. Ski6p is a homolog of RNA-processing enzymes that affects translation of non-poly(A) mRNAs and 60S ribosomal subunit biogenesis. Mol Cell Biol 1998; 18:2688-96. [PMID: 9566888 PMCID: PMC110648 DOI: 10.1128/mcb.18.5.2688] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
We mapped and cloned SKI6 of Saccharomyces cerevisiae, a gene that represses the copy number of the L-A double-stranded RNA virus, and found that it encodes an essential 246-residue protein with homology to a tRNA-processing enzyme, RNase PH. The ski6-2 mutant expressed electroporated non-poly(A) luciferase mRNAs 8- to 10-fold better than did the isogenic wild type. No effect of ski6-2 on expression of uncapped or normal mRNAs was found. Kinetics of luciferase synthesis and direct measurement of radiolabeled electroporated mRNA indicate that the primary effect of Ski6p was on efficiency of translation rather than on mRNA stability. Both ski6 and ski2 mutants show hypersensitivity to hygromycin, suggesting functional alteration of the translation apparatus. The ski6-2 mutant has normal amounts of 40S and 60S ribosomal subunits but accumulates a 38S particle containing 5'-truncated 25S rRNA but no 5.8S rRNA, apparently an incomplete or degraded 60S subunit. This suggests an abnormality in 60S subunit assembly. The ski6-2 mutation suppresses the poor expression of the poly(A)- viral mRNA in a strain deficient in the 60S ribosomal protein L4. Thus, a ski6 mutation bypasses the requirement of the poly(A) tail for translation, allowing better translation of non-poly(A) mRNA, including the L-A virus mRNA which lacks poly(A). We speculate that the derepressed translation of non-poly(A) mRNAs is due to abnormal (but full-size) 60S subunits.
Collapse
Affiliation(s)
- L Benard
- Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, Maryland 20892-0830, USA
| | | | | | | |
Collapse
|
77
|
Ribas JC, Wickner RB. The Gag domain of the Gag-Pol fusion protein directs incorporation into the L-A double-stranded RNA viral particles in Saccharomyces cerevisiae. J Biol Chem 1998; 273:9306-11. [PMID: 9535925 DOI: 10.1074/jbc.273.15.9306] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The L-A double-stranded RNA virus of yeast encodes its major coat protein, Gag, and a Gag-Pol fusion protein made by a -1 ribosomal frameshift, a coding strategy used by many retroviruses. We find that cells expressing only Gag from one plasmid and only Gag-Pol (in frame) from a separate plasmid can support the propagation of M1 double-stranded RNA, encoding the killer toxin. We use this system to separately investigate the functions of Gag and the Gag part of Gag-Pol. L-A contains two fusion protein molecules per particle, and although N-terminal acetylation of Gag is essential for viral assembly, it is completely dispensable for function of Gag-Pol. In general, the requirements on Gag for viral assembly and propagation are more stringent than on the Gag part of Gag-Pol. Finally, we directly show that it is Gag that instructs the incorporation of Gag-Pol into the viral particles.
Collapse
Affiliation(s)
- J C Ribas
- Laboratory of Biochemistry and Genetics, NIDDK, National Institutes of Health, Bethesda, Maryland 20892-0830, USA
| | | |
Collapse
|
78
|
Dinman JD, Ruiz-Echevarria MJ, Peltz SW. Translating old drugs into new treatments: ribosomal frameshifting as a target for antiviral agents. Trends Biotechnol 1998; 16:190-6. [PMID: 9586242 PMCID: PMC7127214 DOI: 10.1016/s0167-7799(97)01167-0] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Programmed ribosomal frameshifting is used by many viruses to regulate the production of structural and enzymatic proteins. Altering the frameshifting efficiencies disrupts the virus life cycle and eliminates or reduces virus production. Ribosomal frameshifting therefore provides a unique target on which antiviral agents can function. This article describes a series of rapid assay strategies that have been developed and used to identify potential antiviral agents that target programmed -1 ribosomal frameshifting.
Collapse
Affiliation(s)
- Jonathan D Dinman
- Department of Molecular Genetics and Microbiology, and the Graduate Program in Molecular Biosciences, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Maria J Ruiz-Echevarria
- Department of Molecular Genetics and Microbiology, and the Graduate Program in Molecular Biosciences, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Stuart W Peltz
- Department of Molecular Genetics and Microbiology, and the Graduate Program in Molecular Biosciences, University of Medicine and Dentistry of New Jersey, Robert Wood Johnson Medical School, 675 Hoes Lane, Piscataway, NJ 08854, USA
- Cancer Institute of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| |
Collapse
|
79
|
Cui Y, Dinman JD, Kinzy TG, Peltz SW. The Mof2/Sui1 protein is a general monitor of translational accuracy. Mol Cell Biol 1998; 18:1506-16. [PMID: 9488467 PMCID: PMC108865 DOI: 10.1128/mcb.18.3.1506] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Although it is essential for protein synthesis to be highly accurate, a number of cases of directed ribosomal frameshifting have been reported in RNA viruses, as well as in procaryotic and eucaryotic genes. Changes in the efficiency of ribosomal frameshifting can have major effects on the ability of cells to propagate viruses which use this mechanism. Furthermore, studies of this process can illuminate the mechanisms involved in the maintenance of the normal translation reading frame. The yeast Saccharomyces cerevisiae killer virus system uses programmed -1 ribosomal frameshifting to synthesize its gene products. Strains harboring the mof2-1 allele demonstrated a fivefold increase in frameshifting and prevented killer virus propagation. In this report, we present the results of the cloning and characterization of the wild-type MOF2 gene. mof2-1 is a novel allele of SUI1, a gene previously shown to play a role in translation initiation start site selection. Strains harboring the mof2-1 allele demonstrated a mutant start site selection phenotype and increased efficiency of programmed -1 ribosomal frameshifting and conferred paromomycin sensitivity. The increased frameshifting observed in vivo was reproduced in extracts prepared from mof2-1 cells. Addition of purified wild-type Mof2p/Sui1p reduced frameshifting efficiencies to wild-type levels. Expression of the human SUI1 homolog in yeast corrects all of the mof2-1 phenotypes, demonstrating that the function of this protein is conserved throughout evolution. Taken together, these results suggest that Mof2p/Sui1p functions as a general modulator of accuracy at both the initiation and elongation phases of translation.
Collapse
Affiliation(s)
- Y Cui
- Department of Molecular Genetics and Microbiology, Robert Wood Johnson Medical School, UMDNJ, Piscataway, New Jersey 08854, USA
| | | | | | | |
Collapse
|
80
|
Tumer NE, Parikh BA, Li P, Dinman JD. The pokeweed antiviral protein specifically inhibits Ty1-directed +1 ribosomal frameshifting and retrotransposition in Saccharomyces cerevisiae. J Virol 1998; 72:1036-42. [PMID: 9444997 PMCID: PMC124575 DOI: 10.1128/jvi.72.2.1036-1042.1998] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Programmed ribosomal frameshifting is a molecular mechanism that is used by many RNA viruses to produce Gag-Pol fusion proteins. The efficiency of these frameshift events determines the ratio of viral Gag to Gag-Pol proteins available for viral particle morphogenesis, and changes in ribosomal frameshift efficiencies can severely inhibit virus propagation. Since ribosomal frameshifting occurs during the elongation phase of protein translation, it is reasonable to hypothesize that agents that affect the different steps in this process may also have an impact on programmed ribosomal frameshifting. We examined the molecular mechanisms governing programmed ribosomal frameshifting by using two viruses of the yeast Saccharomyces cerevisiae. Here, we present evidence that pokeweed antiviral protein (PAP), a single-chain ribosomal inhibitory protein that depurinates an adenine residue in the alpha-sarcin loop of 25S rRNA and inhibits translocation, specifically inhibits Ty1-directed +1 ribosomal frameshifting in intact yeast cells and in an in vitro assay system. Using an in vivo assay for Ty1 retrotransposition, we show that PAP specifically inhibits Ty1 retrotransposition, suggesting that Ty1 viral particle morphogenesis is inhibited in infected cells. PAP does not affect programmed -1 ribosomal frameshift efficiencies, nor does it have a noticeable impact on the ability of cells to maintain the M1-dependent killer virus phenotype, suggesting that -1 ribosomal frameshifting does not occur after the peptidyltransferase reaction. These results provide the first evidence that PAP has viral RNA-specific effects in vivo which may be responsible for the mechanism of its antiviral activity.
Collapse
Affiliation(s)
- N E Tumer
- Center for Agricultural Molecular Biology, and Department of Plant Pathology, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, USA
| | | | | | | |
Collapse
|