51
|
Li C, Song R. The regulation of zein biosynthesis in maize endosperm. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1443-1453. [PMID: 31897513 DOI: 10.1007/s00122-019-03520-z] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Accepted: 12/18/2019] [Indexed: 05/06/2023]
Abstract
We review the current knowledge regarding the regulation of zein storage proteins biosynthesis and protein body formation, which are crucial processes for the successful accumulation of nutrients in maize kernels. Storage proteins in the seeds of crops in the grass family (Poaceae) are a major source of dietary protein for humans. In maize (Zea mays), proteins are the second largest nutrient component in the kernels, accounting for ~ 10% of the kernel weight. Over half of the storage proteins in maize kernels are zeins, which lack two essential amino acids, lysine and tryptophan. This deficiency limits the use of maize proteins in the food and feed industries. Zeins are encoded by a large super-gene family. During endosperm development, zeins accumulate in protein bodies, which are derived from the rough endoplasmic reticulum. In recent years, our knowledge of the pathways of zein biosynthesis and their deposition within the endosperm has been greatly expanded. In this review, we summarize the current understanding of zeins, including the genes encoding these proteins, their expression patterns and transcriptional regulation, the process of protein body formation, and other biological processes affecting zein accumulation.
Collapse
Affiliation(s)
- Chaobin Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China
| | - Rentao Song
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
52
|
Liu Y, Liu N, Deng X, Liu D, Li M, Cui D, Hu Y, Yan Y. Genome-wide analysis of wheat DNA-binding with one finger (Dof) transcription factor genes: evolutionary characteristics and diverse abiotic stress responses. BMC Genomics 2020; 21:276. [PMID: 32245398 PMCID: PMC7118883 DOI: 10.1186/s12864-020-6691-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 03/24/2020] [Indexed: 12/31/2022] Open
Abstract
Background DNA binding with one finger (Dof) transcription factors play important roles in plant growth and abiotic stress responses. Although genome-wide identification and analysis of the DOF transcription factor family has been reported in other species, no relevant studies have emerged in wheat. The aim of this study was to investigate the evolutionary and functional characteristics associated with plant growth and abiotic stress responses by genome-wide analysis of the wheat Dof transcription factor gene family. Results Using the recently released wheat genome database (IWGSC RefSeq v1.0), we identified 96 wheat Dof gene family members, which were phylogenetically clustered into five distinct subfamilies. Gene duplication analysis revealed a broad and heterogeneous distribution of TaDofs on the chromosome groups 1 to 7, and obvious tandem duplication genes were present on chromosomes 2 and 3.Members of the same gene subfamily had similar exon-intron structures, while members of different subfamilies had obvious differences. Functional divergence analysis indicated that type-II functional divergence played a major role in the differentiation of the TaDof gene family. Positive selection analysis revealed that the Dof gene family experienced different degrees of positive selection pressure during the process of evolution, and five significant positive selection sites (30A, 31 T, 33A, 102G and 104S) were identified. Additionally, nine groups of coevolving amino acid sites, which may play a key role in maintaining the structural and functional stability of Dof proteins, were identified. The results from the RNA-seq data and qRT-PCR analysis revealed that TaDof genes exhibited obvious expression preference or specificity in different organs and developmental stages, as well as in diverse abiotic stress responses. Most TaDof genes were significantly upregulated by heat, PEG and heavy metal stresses. Conclusions The genome-wide analysis and identification of wheat DOF transcription factor family and the discovery of important amino acid sites are expected to provide new insights into the structure, evolution and function of the plant Dof gene family.
Collapse
Affiliation(s)
- Yue Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Nannan Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Mengfei Li
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Dada Cui
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China
| | - Yingkao Hu
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China.
| | - Yueming Yan
- College of Life Science, Capital Normal University, Xisanhuan Beilu No. 105, 100048, Beijing, People's Republic of China. .,Hubei Collaborative Innovation Center for Grain Industry (HCICGI), Yangtze University, Jingzhou, 434025, China.
| |
Collapse
|
53
|
Utsugi S, Ashikawa I, Nakamura S, Shibasaka M. TaABI5, a wheat homolog of Arabidopsis thaliana ABA insensitive 5, controls seed germination. JOURNAL OF PLANT RESEARCH 2020; 133:245-256. [PMID: 32048094 DOI: 10.1007/s10265-020-01166-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/20/2020] [Indexed: 05/25/2023]
Abstract
Abscisic acid (ABA) response element (ABRE)-binding factors (ABFs) are basic region/leucine zipper motif (bZIP) transcription factors that regulate the expression of ABA-induced genes containing ABRE in their promoters. The amino acid sequence of the wheat bZIP protein, TaABI5, showed high homology to that of Arabidopsis ABA insensitive 5 (ABI5). TaABI5 was classified into the clade of ABI5s in Arabidopsis and rice, unlike TRAB1 of rice, Wabi5 of wheat, and HvABI5 of barley in the bZIP Group A family, by a phylogenetic analysis. TaABI5 was strongly expressed in seeds during the late ripening and maturing stages; however, its expression level markedly decreased after germination. An in situ hybridization analysis showed that TaABI5 mRNA accumulated in seed embryos, particularly the scutellum. In a transient assay using wheat aleurone cells, TaABI5 activated the promoter of Em containing ABRE, which is an embryogenesis abundant protein gene, indicating that TaABI5 acts as a transcription factor in wheat seeds. Furthermore, the seeds of transgenic Arabidopsis lines introduced with 35S:TaABI5 exhibited high sensitivity to ABA and the inhibition of germination. The seed dormancy of the transgenic Arabidopsis lines was stronger than that of Col. These results support TaABI5 playing an important role in mature seeds, particularly before seed germination, and acting as a functional ortholog to Arabidopsis ABI5.
Collapse
Affiliation(s)
- Shigeko Utsugi
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan.
| | - Ikuo Ashikawa
- Institute of Crop Science, NARO, 2-1-2 Kannonndai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Shingo Nakamura
- Institute of Crop Science, NARO, 2-1-2 Kannonndai, Tsukuba, Ibaraki, 305-8518, Japan
| | - Mineo Shibasaka
- Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, Okayama, 710-0046, Japan
| |
Collapse
|
54
|
The DOF Transcription Factors in Seed and Seedling Development. PLANTS 2020; 9:plants9020218. [PMID: 32046332 PMCID: PMC7076670 DOI: 10.3390/plants9020218] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 01/28/2023]
Abstract
The DOF (DNA binding with one finger) family of plant-specific transcription factors (TF) was first identified in maize in 1995. Since then, DOF proteins have been shown to be present in the whole plant kingdom, including the unicellular alga Chlamydomonas reinhardtii. The DOF TF family is characterised by a highly conserved DNA binding domain (DOF domain), consisting of a CX2C-X21-CX2C motif, which is able to form a zinc finger structure. Early in the study of DOF proteins, their relevance for seed biology became clear. Indeed, the PROLAMIN BINDING FACTOR (PBF), one of the first DOF proteins characterised, controls the endosperm-specific expression of the zein genes in maize. Subsequently, several DOF proteins from both monocots and dicots have been shown to be primarily involved in seed development, dormancy and germination, as well as in seedling development and other light-mediated processes. In the last two decades, the molecular network underlying these processes have been outlined, and the main molecular players and their interactions have been identified. In this review, we will focus on the DOF TFs involved in these molecular networks, and on their interaction with other proteins.
Collapse
|
55
|
Tolosa LN, Zhang Z. The Role of Major Transcription Factors in Solanaceous Food Crops under Different Stress Conditions: Current and Future Perspectives. PLANTS 2020; 9:plants9010056. [PMID: 31906447 PMCID: PMC7020414 DOI: 10.3390/plants9010056] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/09/2019] [Accepted: 12/21/2019] [Indexed: 01/08/2023]
Abstract
Plant growth, development, and productivity are adversely affected by environmental stresses such as drought (osmotic stress), soil salinity, cold, oxidative stress, irradiation, and diverse diseases. These impacts are of increasing concern in light of climate change. Noticeably, plants have developed their adaptive mechanism to respond to environmental stresses by transcriptional activation of stress-responsive genes. Among the known transcription factors, DoF, WRKY, MYB, NAC, bZIP, ERF, ARF and HSF are those widely associated with abiotic and biotic stress response in plants. Genome-wide identification and characterization analyses of these transcription factors have been almost completed in major solanaceous food crops, emphasizing these transcription factor families which have much potential for the improvement of yield, stress tolerance, reducing marginal land and increase the water use efficiency of solanaceous crops in arid and semi-arid areas where plant demand more water. Most importantly, transcription factors are proteins that play a key role in improving crop yield under water-deficient areas and a place where the severity of pathogen is very high to withstand the ongoing climate change. Therefore, this review highlights the role of major transcription factors in solanaceous crops, current and future perspectives in improving the crop traits towards abiotic and biotic stress tolerance and beyond. We have tried to accentuate the importance of using genome editing molecular technologies like CRISPR/Cas9, Virus-induced gene silencing and some other methods to improve the plant potential in giving yield under unfavorable environmental conditions.
Collapse
Affiliation(s)
- Lemessa Negasa Tolosa
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
| | - Zhengbin Zhang
- Key Laboratory of Agricultural Water Resources, Hebie Laboratory of Agricultural Water Saving, Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Shijiazhuang 050021, China;
- University of Chinese Academy Sciences, Beijing 100049, China
- Innovation Academy for Seed Design, Chinese Academy of Sciences CAS, Beijing 100101, China
- Correspondence:
| |
Collapse
|
56
|
Shen Q, Huang H, Zhao Y, Xie L, He Q, Zhong Y, Wang Y, Wang Y, Tang K. The Transcription Factor Aabzip9 Positively Regulates the Biosynthesis of Artemisinin in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2019; 10:1294. [PMID: 31787989 PMCID: PMC6855008 DOI: 10.3389/fpls.2019.01294] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 09/18/2019] [Indexed: 05/26/2023]
Abstract
Artemisinin-based therapies are the only effective treatment for malaria, which reached to 219 million cases and killed 435,000 people in 2017. To meet the growing demand for artemisinin and make it accessible to the poorest, genetic engineering of Artemisia annua becomes one of the most promising approaches to improve artemisinin yield. In this work, AabZIP9 transcription factor has been identified and characterized. The expression profile of AabZIP9 revealed that it was clustered with the artemisinin specific biosynthetic pathway genes ADS, CYP71AV1, DBR2, and ALDH1. Furthermore, the transiently dual-LUC analysis showed that the activation of ADS promoter was enhanced by AabZIP9. Meanwhile, yeast one-hybrid assay showed that AabZIP9 was able to bind to the "ACGT" cis-element present in both ADS and CYP71AV1 promoters. AabZIP9 gene was driven by the constitutive CaMV35S promoter and the glandular trichome specific CYP71AV1 promoter and stably transformed into A. annua plants. The transcript level of AabZIP9 was increased in both of the 35S and CYP71AV1 driven transgenic plants compared with the wild type or GUS control plants. All the transgenic A. annua plants overexpressing AabZIP9 showed elevated transcript level of ADS, but the transcription levels of CYP71AV1, DBR2, and ALDH1 have no significant change in both types of transgenic plants. The significantly upregulated ADS promoted the accumulation of artemisinin, dihydroartemisinic acid, and artemisinic acid biosynthesis in the transgenic A. annua plants. These results suggest that AabZIP9 can positively regulate the biosynthesis of artemisinin.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Kexuan Tang
- *Correspondence: Yuliang, Wang ; Kexuan Tang,
| |
Collapse
|
57
|
Curtis TY, Raffan S, Wan Y, King R, Gonzalez-Uriarte A, Halford NG. Contrasting gene expression patterns in grain of high and low asparagine wheat genotypes in response to sulphur supply. BMC Genomics 2019; 20:628. [PMID: 31370780 PMCID: PMC6676566 DOI: 10.1186/s12864-019-5991-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/23/2019] [Indexed: 01/09/2023] Open
Abstract
Background Free asparagine is the precursor for acrylamide formation during cooking and processing of grains, tubers, beans and other crop products. In wheat grain, free asparagine, free glutamine and total free amino acids accumulate to high levels in response to sulphur deficiency. In this study, RNA-seq data were acquired for the embryo and endosperm of two genotypes of bread wheat, Spark and SR3, growing under conditions of sulphur sufficiency and deficiency, and sampled at 14 and 21 days post anthesis (dpa). The aim was to provide new knowledge and understanding of the genetic control of asparagine accumulation and breakdown in wheat grain. Results There were clear differences in gene expression patterns between the genotypes. Sulphur responses were greater at 21 dpa than 14 dpa, and more evident in SR3 than Spark. TaASN2 was the most highly expressed asparagine synthetase gene in the grain, with expression in the embryo much higher than in the endosperm, and higher in Spark than SR3 during early development. There was a trend for genes encoding enzymes of nitrogen assimilation to be more highly expressed in Spark than SR3 when sulphur was supplied. TaASN2 expression in the embryo of SR3 increased in response to sulphur deficiency at 21 dpa, although this was not observed in Spark. This increase in TaASN2 expression was accompanied by an increase in glutamine synthetase gene expression and a decrease in asparaginase gene expression. Asparagine synthetase and asparaginase gene expression in the endosperm responded in the opposite way. Genes encoding regulatory protein kinases, SnRK1 and GCN2, both implicated in regulating asparagine synthetase gene expression, also responded to sulphur deficiency. Genes encoding bZIP transcription factors, including Opaque2/bZIP9, SPA/bZIP25 and BLZ1/OHP1/bZIP63, all of which contain SnRK1 target sites, were also expressed. Homeologues of many genes showed differential expression patterns and responses, including TaASN2. Conclusions Data on the genetic control of free asparagine accumulation in wheat grain and its response to sulphur supply showed grain asparagine levels to be determined in the embryo, and identified genes encoding signalling and metabolic proteins involved in asparagine metabolism that respond to sulphur availability. Electronic supplementary material The online version of this article (10.1186/s12864-019-5991-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Tanya Y Curtis
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.,Present Address: Curtis Analytics Ltd, Daniel Hall Building, Rothamsted RoCRE, Harpenden, AL5 2JQ, UK
| | - Sarah Raffan
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Yongfang Wan
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Robert King
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Asier Gonzalez-Uriarte
- Computational and Analytical Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.,Present Address: The European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Nigel G Halford
- Plant Sciences Department, Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK.
| |
Collapse
|
58
|
NAC-type transcription factors regulate accumulation of starch and protein in maize seeds. Proc Natl Acad Sci U S A 2019; 116:11223-11228. [PMID: 31110006 DOI: 10.1073/pnas.1904995116] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Grain starch and protein are synthesized during endosperm development, prompting the question of what regulatory mechanism underlies the synchronization of the accumulation of secondary and primary gene products. We found that two endosperm-specific NAC transcription factors, ZmNAC128 and ZmNAC130, have such a regulatory function. Knockdown of expression of ZmNAC128 and ZmNAC130 with RNA interference (RNAi) caused a shrunken kernel phenotype with significant reduction of starch and protein. We could show that ZmNAC128 and ZmNAC130 regulate the transcription of Bt2 and then reduce its protein level, a rate-limiting step in starch synthesis of maize endosperm. Lack of ZmNAC128 and ZmNAC130 also reduced accumulation of zeins and nonzeins by 18% and 24% compared with nontransgenic siblings, respectively. Although ZmNAC128 and ZmNAC130 affected expression of zein genes in general, they specifically activated transcription of the 16-kDa γ-zein gene. The two transcription factors did not dimerize with each other but exemplified redundancy, whereas individual discovery of their function was not amenable to conventional genetics but illustrated the power of RNAi. Given that both the Bt2 and the 16-kDa γ-zein genes were activated by ZmNAC128 or ZmNAC130, we could identify a core binding site ACGCAA contained within their target promoter regions by combining Dual-Luciferase Reporter and Electrophoretic Mobility Shift assays. Consistent with these properties, transcriptomic profiling uncovered that lack of ZmNAC128 and ZmNAC130 had a pleiotropic effect on the utilization of carbohydrates and amino acids.
Collapse
|
59
|
Moehs CP, Austill WJ, Holm A, Large TAG, Loeffler D, Mullenberg J, Schnable PS, Skinner W, van Boxtel J, Wu L, McGuire C. Development of Decreased-Gluten Wheat Enabled by Determination of the Genetic Basis of lys3a Barley. PLANT PHYSIOLOGY 2019; 179:1692-1703. [PMID: 30696748 PMCID: PMC6446766 DOI: 10.1104/pp.18.00771] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 01/17/2019] [Indexed: 05/08/2023]
Abstract
Celiac disease is the most common food-induced enteropathy in humans, with a prevalence of approximately 1% worldwide. It is induced by digestion-resistant, proline- and glutamine-rich seed storage proteins, collectively referred to as gluten, found in wheat (Triticum aestivum). Related prolamins are present in barley (Hordeum vulgare) and rye (Secale cereale). The incidence of both celiac disease and a related condition called nonceliac gluten sensitivity is increasing. This has prompted efforts to identify methods of lowering gluten in wheat, one of the most important cereal crops. Here, we used bulked segregant RNA sequencing and map-based cloning to identify the genetic lesion underlying a recessive, low-prolamin mutation (lys3a) in diploid barley. We confirmed the mutant identity by complementing the lys3a mutant with a transgenic copy of the wild-type barley gene and then used targeting-induced local lesions in genomes to identify induced single-nucleotide polymorphisms in the three homeologs of the corresponding wheat gene. Combining inactivating mutations in the three subgenomes of hexaploid bread wheat in a single wheat line lowered gliadin and low-molecular-weight glutenin accumulation by 50% to 60% and increased free and protein-bound lysine by 33%.
Collapse
Affiliation(s)
| | | | - Aaron Holm
- Arcadia Biosciences, Davis, California 95618
| | | | | | | | - Patrick S Schnable
- Data2Bio, 2079 Roy J. Carver Co-Lab, Ames, Iowa 50011
- 2035B Roy J. Carver Co-Lab, Iowa State University, Ames, Iowa 50011
| | | | | | - Liying Wu
- Arcadia Biosciences, Davis, California 95618
| | | |
Collapse
|
60
|
Jin X, Bai C, Bassie L, Nogareda C, Romagosa I, Twyman RM, Christou P, Zhu C. ZmPBF and ZmGAMYB transcription factors independently transactivate the promoter of the maize (Zea mays) β-carotene hydroxylase 2 gene. THE NEW PHYTOLOGIST 2019; 222:793-804. [PMID: 30489637 DOI: 10.1111/nph.15614] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 11/21/2018] [Indexed: 05/26/2023]
Abstract
The maize (Zea mays) enzyme β-carotene hydroxylase 2 (ZmBCH2) controls key steps in the conversion of β-carotene to zeaxanthin in the endosperm. The ZmBCH2 gene has an endosperm-preferred and developmentally regulated expression profile, but the detailed regulatory mechanism is unknown. To gain insight into the regulation of ZmBCH2, we isolated 2036 bp of the 5'-flanking region containing the 263 bp 5'-untranslated region (5'-UTR) including the first intron. We linked this to the β-glucuronidase reporter gene gusA. We found that high-level expression of gusA in rice seeds requires the 5'-UTR for enhanced activation. Truncated variants of the ZmBCH2 promoter retained their seed-preferred expression profile as long as a prolamin box and AACA motif were present. We identified candidate genes encoding the corresponding transcription factors (ZmPBF and ZmGAMYB) and confirmed that their spatiotemporal expression profiles are similar to ZmBCH2. Both ZmPBF and ZmGAMYB can transactivate ZmBCH2 expression in maize endosperm. To eliminate potential confounding effects in maize, we characterized the regulation of the minimal promoter region of ZmBCH2 in transgenic rice. This revealed that ZmPBF and ZmGAMYB independently transactivate the ZmBCH2 promoter. The mechanism that underpins our data provides an exciting new strategy for the control of target gene expression in engineered plants.
Collapse
Affiliation(s)
- Xin Jin
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain
| | - Chao Bai
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, 10081, China
| | - Ludovic Bassie
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain
| | - Carmina Nogareda
- Department of Animal Science, ETSEA, University of Lleida-Agrotecnio Center, Lleida, 25198, Spain
| | - Ignacio Romagosa
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain
| | | | - Paul Christou
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain
- ICREA, Catalan Institute for Research and Advanced Studies, Passeig Lluís Companys 23, Barcelona, 08010, Spain
| | - Changfu Zhu
- Department of Plant Production and Forestry Science, University of Lleida-Agrotecnio Center, Av. Alcalde Rovira Roure, 191, Lleida, 25198, Spain
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| |
Collapse
|
61
|
Boudet J, Merlino M, Plessis A, Gaudin JC, Dardevet M, Perrochon S, Alvarez D, Risacher T, Martre P, Ravel C. The bZIP transcription factor SPA Heterodimerizing Protein represses glutenin synthesis in Triticum aestivum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:858-871. [PMID: 30444293 DOI: 10.1111/tpj.14163] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 10/31/2018] [Indexed: 05/12/2023]
Abstract
The quality of wheat grain is mainly determined by the quantity and composition of its grain storage proteins (GSPs). Grain storage proteins consist of low- and high-molecular-weight glutenins (LMW-GS and HMW-GS, respectively) and gliadins. The synthesis of these proteins is essentially regulated at the transcriptional level and by the availability of nitrogen and sulfur. The regulation network has been extensively studied in barley where BLZ1 and BLZ2, members of the basic leucine zipper (bZIP) family, activate the synthesis of hordeins. To date, in wheat, only the ortholog of BLZ2, Storage Protein Activator (SPA), has been identified as playing a major role in the regulation of GSP synthesis. Here, the ortholog of BLZ1, named SPA Heterodimerizing Protein (SHP), was identified and its involvement in the transcriptional regulation of the genes coding for GSPs was analyzed. In gel mobility shift assays, SHP binds cis-motifs known to bind to bZIP family transcription factors in HMW-GS and LMW-GS promoters. Moreover, we showed by transient expression assays in wheat endosperm that SHP acts as a repressor of the activity of these gene promoters. This result was confirmed in transgenic lines overexpressing SHP, which were grown with low and high nitrogen supply. The phenotype of SHP-overexpressing lines showed a lower quantity of both LMW-GS and HMW-GS, while the quantity of gliadin was unchanged, whatever the nitrogen availability. Thus, the gliadin/glutenin ratio was increased, which suggests that gliadin and glutenin genes may be differently regulated.
Collapse
Affiliation(s)
- Julie Boudet
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Marielle Merlino
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Anne Plessis
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | | | - Mireille Dardevet
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Sibille Perrochon
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - David Alvarez
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Thierry Risacher
- Biogemma, Centre de Recherche de Chappes, 63720, Chappes, France
| | - Pierre Martre
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| | - Catherine Ravel
- UMR GDEC, INRA, Clermont Auvergne University, 63000, Clermont-Ferrand, France
| |
Collapse
|
62
|
Li J, Wang K, Li G, Li Y, Zhang Y, Liu Z, Ye X, Xia X, He Z, Cao S. Dissecting conserved cis-regulatory modules of Glu-1 promoters which confer the highly active endosperm-specific expression via stable wheat transformation. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.cj.2018.08.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
63
|
Castelli S, Mascheretti I, Cosentino C, Lazzari B, Pirona R, Ceriotti A, Viotti A, Lauria M. Uniparental and transgressive expression of α-zeins in maize endosperm of o2 hybrid lines. PLoS One 2018; 13:e0206993. [PMID: 30439980 PMCID: PMC6237297 DOI: 10.1371/journal.pone.0206993] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/23/2018] [Indexed: 11/18/2022] Open
Abstract
The α-zein gene family encodes the most abundant storage proteins of maize (Zea mays) endosperm. Members of this family are expressed in a parent-of-origin manner. To characterize this phenomenon further, we investigated the expression of a subset of α-zein polypeptides in reciprocal crosses between o2 lines that were characterized by a simplified α-zein pattern. Maize lines that suppressed the expression of α-zeins when used as female parents were identified. The suppression was cross-specific, occurring only when specific genetic backgrounds were combined. Four α-zein sequences that were sensitive to uniparental expression were isolated. Molecular characterization of these α-zeins confirmed that their expression or suppression depended on the genetic proprieties of the endosperm tissue instead of their parental origin. DNA methylation analysis of both maternally and paternally expressed α-zeins revealed no clear correlation between this epigenetic marker and parent-of-origin allelic expression, suggesting that an additional factor(s) is involved in this process. Genetic analyses revealed that the ability of certain lines to suppress α-zein expression was unstable after one round of heterozygosity with non-suppressing lines. Interestingly, α-zeins also showed a transgressive expression pattern because unexpressed isoforms were reactivated in both F2 and backcross plants. Collectively, our results suggest that parent-of-origin expression of specific α-zein alleles depends on a complex interaction between genotypes in a manner that is reminiscent of paramutation-like phenomena.
Collapse
Affiliation(s)
- Silvana Castelli
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Iride Mascheretti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Cristian Cosentino
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Barbara Lazzari
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Raul Pirona
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Aldo Ceriotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
| | - Angelo Viotti
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| | - Massimiliano Lauria
- Istituto di Biologia e Biotecnologia Agraria, CNR, Via Alfonso Corti, Milano, Italy
- * E-mail: (AV); (ML)
| |
Collapse
|
64
|
Zhan J, Li G, Ryu CH, Ma C, Zhang S, Lloyd A, Hunter BG, Larkins BA, Drews GN, Wang X, Yadegari R. Opaque-2 Regulates a Complex Gene Network Associated with Cell Differentiation and Storage Functions of Maize Endosperm. THE PLANT CELL 2018; 30:2425-2446. [PMID: 30262552 PMCID: PMC6241275 DOI: 10.1105/tpc.18.00392] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 09/11/2018] [Accepted: 09/27/2018] [Indexed: 05/19/2023]
Abstract
Development of the cereal endosperm involves cell differentiation processes that enable nutrient uptake from the maternal plant, accumulation of storage products, and their utilization during germination. However, little is known about the regulatory mechanisms that link cell differentiation processes with those controlling storage product synthesis and deposition, including the activation of zein genes by the maize (Zea mays) bZIP transcription factor Opaque-2 (O2). Here, we mapped in vivo binding sites of O2 in B73 endosperm and compared the results with genes differentially expressed in B73 and B73o2 We identified 186 putative direct O2 targets and 1677 indirect targets, encoding a broad set of gene functionalities. Examination of the temporal expression patterns of O2 targets revealed at least two distinct modes of O2-mediated gene activation. Two O2-activated genes, bZIP17 and NAKED ENDOSPERM2 (NKD2), encode transcription factors, which can in turn coactivate other O2 network genes with O2. NKD2 (with its paralog NKD1) was previously shown to be involved in regulation of aleurone development. Collectively, our results provide insights into the complexity of the O2-regulated network and its role in regulation of endosperm cell differentiation and function.
Collapse
Affiliation(s)
- Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Guosheng Li
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Choong-Hwan Ryu
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Chuang Ma
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Alan Lloyd
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Brenda G Hunter
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Brian A Larkins
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, Nebraska 68588
| | - Gary N Drews
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Xiangfeng Wang
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, Arizona 85721
| |
Collapse
|
65
|
Li C, Yue Y, Chen H, Qi W, Song R. The ZmbZIP22 Transcription Factor Regulates 27-kD γ-Zein Gene Transcription during Maize Endosperm Development. THE PLANT CELL 2018; 30:2402-2424. [PMID: 30242039 PMCID: PMC6241260 DOI: 10.1105/tpc.18.00422] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/05/2018] [Accepted: 09/19/2018] [Indexed: 05/18/2023]
Abstract
Zeins are the most abundant storage proteins in maize (Zea mays) kernels, thereby affecting the nutritional quality and texture of this crop. 27-kD γ-zein is highly expressed and plays a crucial role in protein body formation. Several transcription factors (TFs) (O2, PBF1, OHP1, and OHP2) regulate the expression of the 27-kD γ-zein gene, but the complexity of its transcriptional regulation is not fully understood. Here, using probe affinity purification and mass spectrometry analysis, we identified ZmbZIP22, a TF that binds to the 27-kD γ-zein promoter. ZmbZIP22 is a bZIP-type TF that is specifically expressed in endosperm. ZmbZIP22 bound directly to the ACAGCTCA box in the 27-kD γ-zein promoter and activated its expression in wild tobacco (Nicotiana benthamiana) cells. 27-kD γ-zein gene expression was significantly reduced in CRISPR/Cas9-generated zmbzip22 mutants. ChIP-seq (chromatin immunoprecipitation coupled to high-throughput sequencing) confirmed that ZmbZIP22 binds to the 27-kD γ-zein promoter in vivo and identified additional direct targets of ZmbZIP22. ZmbZIP22 can interact with PBF1, OHP1, and OHP2, but not O2. Transactivation assays using various combinations of these TFs revealed multiple interaction modes for the transcriptional activity of the 27-kD γ-zein promoter. Therefore, ZmbZIP22 regulates 27-kD γ-zein gene expression together with other known TFs.
Collapse
Affiliation(s)
- Chaobin Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yihong Yue
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Hanjun Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Rentao Song
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Joint International Research Laboratory of Crop Molecular Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
- Center for Crop Functional Genomics and Molecular Breeding, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
66
|
Zhang S, Zhan J, Yadegari R. Maize opaque mutants are no longer so opaque. PLANT REPRODUCTION 2018; 31:319-326. [PMID: 29978299 PMCID: PMC6105308 DOI: 10.1007/s00497-018-0344-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 06/23/2018] [Indexed: 05/02/2023]
Abstract
The endosperm of angiosperms is a zygotic seed organ that stores nutrient reserves to support embryogenesis and seed germination. Cereal endosperm is also a major source of human calories and an industrial feedstock. Maize opaque endosperm mutants commonly exhibit opaque, floury kernels, along with other abnormal seed and/or non-seed phenotypes. The opaque endosperm phenotype is sometimes accompanied by a soft kernel texture and increased nutritional quality, including a higher lysine content, which are valuable agronomic traits that have drawn attention of maize breeders. Recently, an increasing number of genes that underlie opaque mutants have been cloned, and their characterization has begun to shed light on the molecular basis of the opaque endosperm phenotype. These mutants are categorized by disruption of genes encoding zein or non-zein proteins localized to protein bodies, enzymes involved in endosperm metabolic processes, or transcriptional regulatory proteins associated with endosperm storage programs.
Collapse
Affiliation(s)
- Shanshan Zhang
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Junpeng Zhan
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA
| | - Ramin Yadegari
- School of Plant Sciences, University of Arizona, Tucson, AZ, 85721, USA.
| |
Collapse
|
67
|
Zhou J, Liu D, Deng X, Zhen S, Wang Z, Yan Y. Effects of water deficit on breadmaking quality and storage protein compositions in bread wheat (Triticum aestivum L.). JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018. [PMID: 29532474 DOI: 10.1002/jsfa.8968] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
BACKGROUND Water deficiency affects grain proteome dynamics and storage protein compositions, resulting in changes in gluten viscoelasticity. In this study, the effects of field water deficit on wheat breadmaking quality and grain storage proteins were investigated. RESULTS Water deficiency produced a shorter grain-filling period, a decrease in grain number, grain weight and grain yield, a reduced starch granule size and increased protein content and glutenin macropolymer contents, resulting in superior dough properties and breadmaking quality. Reverse phase ultra-performance liquid chromatography analysis showed that the total gliadin and glutenin content and the accumulation of individual components were significantly increased by water deficiency. Two-dimensional gel electrophoresis detected 144 individual storage protein spots with significant accumulation changes in developing grains under water deficit. Comparative proteomic analysis revealed that water deficiency resulted in significant upregulation of 12 gliadins, 12 high-molecular-weight glutenin subunits and 46 low-molecular-weight glutenin subunits. Quantitative real-time polymerase chain reaction analysis revealed that the expression of storage protein biosynthesis-related transcription factors Dof and Spa was upregulated by water deficiency. CONCLUSION The present results illustrated that water deficiency leads to increased accumulation of storage protein components and upregulated expression of Dof and Spa, resulting in an improvement in glutenin strength and breadmaking quality. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jiaxing Zhou
- College of Life Science, Capital Normal University, Beijing, China
| | - Dongmiao Liu
- College of Life Science, Capital Normal University, Beijing, China
| | - Xiong Deng
- College of Life Science, Capital Normal University, Beijing, China
| | - Shoumin Zhen
- College of Life Science, Capital Normal University, Beijing, China
| | - Zhimin Wang
- College of Agricultural and Biotechnology, China Agricultural University, Beijing, China
| | - Yueming Yan
- College of Life Science, Capital Normal University, Beijing, China
| |
Collapse
|
68
|
Feng F, Song R. O11 is multi-functional regulator in maize endosperm. PLANT SIGNALING & BEHAVIOR 2018; 13:e1451709. [PMID: 29533128 PMCID: PMC5933909 DOI: 10.1080/15592324.2018.1451709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 03/06/2018] [Indexed: 05/30/2023]
Abstract
As a highly developed tissue, maize endosperm accumulates nutrients abundantly and supports embryo development. In a recent study, we constructed a regulatory network centered around Opaque11 (O11). This network unified cellular development, nutrient metabolism and stress responses during endosperm development. Here we discuss the evidences that O11 might have a regulatory role in cold stress response during seed development. Furthermore, we discuss the functional divergence between maize O11 and its Arabidopsis orthologue ZHOUPI, which might explain some of the differences in endosperm development between monocotyledonous and dicotyledonous seeds.
Collapse
Affiliation(s)
- Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, China
| |
Collapse
|
69
|
Yang Q, Chen Q, Zhu Y, Li T. Identification of MdDof genes in apple and analysis of their response to biotic or abiotic stress. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:528-541. [PMID: 32290992 DOI: 10.1071/fp17288] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 11/07/2017] [Indexed: 06/11/2023]
Abstract
As a classic plant-specific transcription factor family - the Dof domain proteins - are involved in a variety of biological processes in organisms ranging from unicellular Chlamydomonas to higher plants. However, there are limited reports of MdDof (Malus domestica Borkh. DNA-binding One Zinc Finger) domain proteins in fruit trees, especially in apple. In this study we identified 54 putative Dof transcription factors in the apple genome. We analysed the gene structures, protein motifs, and chromosome locations of each of the MdDof genes. Next, we characterised all 54 MdDofs their expression patterns under different abiotic and biotic stress conditions. It was found that MdDof6,26 not only played an important role in the biotic/abiotic stress but may also be involved in many molecular functions. Further, both in flower development and pollen tube growth it was found that the relative expression of MdDof24 increased rapidly, also with gene ontology analysis it was indicated that MdDof24 was involved in the chemical reaction and flower development pathways. Taken together, our results provide useful clues as to the function of MdDof genes in apple and serve as a reference for studies of Dof zinc finger genes in other plants.
Collapse
Affiliation(s)
- Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuju Chen
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yuandi Zhu
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
70
|
Gaur VS, Kumar L, Gupta S, Jaiswal JP, Pandey D, Kumar A. Identification and characterization of finger millet OPAQUE2 transcription factor gene under different nitrogen inputs for understanding their role during accumulation of prolamin seed storage protein. 3 Biotech 2018. [PMID: 29527450 DOI: 10.1007/s13205-018-1150-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
In this study, we report the isolation and characterization of the mRNA encoding OPAQUE2 (O2) like TF of finger millet (FM) (Eleusine coracana) (EcO2). Full-length EcO2 mRNA was isolated using conserved primers designed by aligning O2 mRNAs of different cereals followed by 3' and 5' RACE (Rapid Amplification of cDNA Ends). The assembled full-length EcO2 mRNA was found to contain an ORF of 1248-nt coding the 416 amino acids O2 protein. Domain analysis revealed the presence of the BLZ and bZIP-C domains which is a characteristic feature of O2 proteins. Phylogenetic analysis of EcO2 protein with other bZIP proteins identified using finger millet transcriptome data and O2 proteins of other cereals showed that EcO2 shared high sequence similarity with barley BLZ1 protein. Transcripts of EcO2 were detected in root, stem, leaves, and seed development stages. Furthermore, to investigate nitrogen responsiveness and the role of EcO2 in regulating seed storage protein gene expression, the expression profiles of EcO2 along with an α-prolamin gene were studied during the seed development stages of two FM genotypes (GE-3885 and GE-1437) differing in grain protein content (13.8 and 6.2%, respectively) grown under increasing nitrogen inputs. Compared to GE-1437, the EcO2 was relatively highly expressed during the S2 stage of seed development which further increased as nitrogen input was increased. The Ecα-prolamin gene was strongly induced in the high protein genotype (GE-3885) at all nitrogen inputs. These results indicate the presence of nitrogen responsiveness regulatory elements which might play an important role in accumulating protein in FM genotypes through modulating EcO2 expression by sensing plant nitrogen status.
Collapse
Affiliation(s)
- Vikram Singh Gaur
- College of Agriculture, JNKVV, Waraseoni, Balaghat, Madhya Pradesh India
| | - Lallan Kumar
- 2Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 India
| | - Supriya Gupta
- 2Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 India
| | - J P Jaiswal
- 3Department of Genetics and Plant Breeding, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 India
| | - Dinesh Pandey
- 2Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 India
| | - Anil Kumar
- 2Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, 263145 India
| |
Collapse
|
71
|
Feng F, Qi W, Lv Y, Yan S, Xu L, Yang W, Yuan Y, Chen Y, Zhao H, Song R. OPAQUE11 Is a Central Hub of the Regulatory Network for Maize Endosperm Development and Nutrient Metabolism. THE PLANT CELL 2018; 30:375-396. [PMID: 29436476 PMCID: PMC5868688 DOI: 10.1105/tpc.17.00616] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/22/2018] [Accepted: 02/06/2018] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) endosperm is a primary tissue for nutrient storage and is highly differentiated during development. However, the regulatory networks of endosperm development and nutrient metabolism remain largely unknown. Maize opaque11 (o11) is a classic seed mutant with a small and opaque endosperm showing decreased starch and protein accumulation. We cloned O11 and found that it encodes an endosperm-specific bHLH transcription factor (TF). Loss of function of O11 significantly affected transcription of carbohydrate/amino acid metabolism and stress response genes. Genome-wide binding site analysis revealed 9885 O11 binding sites distributed over 6033 genes. Using chromatin immunoprecipitation sequencing (ChIP-seq) coupled with RNA sequencing (RNA-seq) assays, we identified 259 O11-modulated target genes. O11 was found to directly regulate key TFs in endosperm development (NKD2 and ZmDOF3) and nutrient metabolism (O2 and PBF). Moreover, O11 directly regulates cyPPDKs and multiple carbohydrate metabolic enzymes. O11 is an activator of ZmYoda, suggesting its regulatory function through the MAPK pathway in endosperm development. Many stress-response genes are also direct targets of O11. In addition, 11 O11-interacting proteins were identified, including ZmIce1, which coregulates stress response targets and ZmYoda with O11. Therefore, this study reveals an endosperm regulatory network centered around O11, which coordinates endosperm development, metabolism and stress responses.
Collapse
Affiliation(s)
- Fan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yuanda Lv
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Shumei Yan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Liming Xu
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Wenyao Yang
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yue Yuan
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Yihan Chen
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Han Zhao
- Institute of Biotechnology, Jiangsu Provincial Key Laboratory of Agrobiology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, Plant Science Center, School of Life Sciences, Shanghai University, Shanghai 200444, China
- National Maize Improvement Center of China, China Agricultural University, Beijing 100193, China
| |
Collapse
|
72
|
Kawaura K, Miura M, Kamei Y, Ikeda TM, Ogihara Y. Molecular characterization of gliadins of Chinese Spring wheat in relation to celiac disease elicitors. Genes Genet Syst 2018; 93:9-20. [PMID: 29343665 DOI: 10.1266/ggs.17-00034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The wheat seed storage proteins gliadin and glutenin are encoded by multigenes. Gliadins are further classified into α-, γ-, δ- and ω-gliadins. Genes encoding α-gliadins belong to a large multigene family, whose members are located on the homoeologous group 6 chromosomes at the Gli-2 loci. Genes encoding other gliadins are located on the homoeologous group 1 chromosomes at the Gli-1 loci. Two-dimensional polyacrylamide gel electrophoresis (2-DE) was used to characterize and profile the gliadins. The gliadins in aneuploid Chinese Spring wheat lines were then compared in this study. Gliadin proteins separated into 70 spots after 2-DE and a total of 10, 10 and 16 spots were encoded on chromosomes 6A, 6B and 6D, respectively, which suggested that they were α-gliadins. Similarly, six, three and seven spots were encoded on chromosomes 1A, 1B and 1D, respectively, which indicated that they were γ-gliadins. Spots that could not be assigned to chromosomes were N-terminally sequenced and were all determined to be α-gliadins or γ-gliadins. The 2-DE profiles showed that specific α-gliadin spots assigned to chromosome 6D were lost in tetrasomic chromosome 2A lines. Furthermore, western blotting against the Glia-α9 peptide, an epitope for celiac disease (CD), suggested that α-gliadins harboring the CD epitope on chromosome 6D were absent in the tetrasomic chromosome 2A lines. Systematic analysis of α-gliadins using 2-DE, quantitative RT-PCR and genomic PCR revealed that tetrasomic 2A lines carry deletion of a chromosome segment at the Gli-D2 locus. This structural alteration at the Gli-D2 locus may provide a genetic resource in breeding programs for the reduction of CD immunotoxicity.
Collapse
Affiliation(s)
- Kanako Kawaura
- Kihara Institute for Biological Research, Yokohama City University
| | - Mayuko Miura
- Kihara Institute for Biological Research, Yokohama City University
| | - Yoko Kamei
- Kihara Institute for Biological Research, Yokohama City University
| | - Tatsuya M Ikeda
- Western Region Agricultural Research Center, National Agriculture and Food Research Organization
| | - Yasunari Ogihara
- Kihara Institute for Biological Research, Yokohama City University
| |
Collapse
|
73
|
Wang C, Wu J, Zhang Y, Lu J. Muscadinia rotundifolia 'Noble' defense response to Plasmopara viticola inoculation by inducing phytohormone-mediated stilbene accumulation. PROTOPLASMA 2018; 255:95-107. [PMID: 28653245 DOI: 10.1007/s00709-017-1118-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/02/2017] [Indexed: 05/20/2023]
Abstract
Downy mildew (DM), one of the most devastating grape diseases worldwide, is caused by the biotrophic oomycete Plasmopara viticola (Pv). In general, grapevine responds to Pv infection with the accumulation of phytoalexins as part of the innate immune system, and diverse phytoalexins are induced on grapevines with different DM-resistance levels in response to Pv invasion. However, the regulation of phytoalexin biosynthesis during grapevine against Pv is still unclear. Herein, we detected stilbenes by UPLC-ESI-MS/MS and found that resveratrol was accumulated to higher level and earlier in the DM-immune Muscadinia rotundifolia 'Noble' than that in the DM-susceptible Vitis vinifera 'Thompson Seedless' after Pv inoculation. Additionally, a considerable amount of pterostilbene and ε-viniferin was found in 'Noble', while a little was detected in 'Thompson Seedless'. Resveratrol was glycosylated into piceid both in 'Noble' and 'Thompson Seedless' after Pv inoculation. The qPCR analysis of gene expression indicated that the resveratrol-synthesis gene (STS) was induced by Pv inoculation earlier in 'Noble' than that in 'Thompson Seedless', while the pterostilbene-synthesis gene (ROMT) was induced in 'Noble' but not in 'Thompson Seedless' at all. The piceid-synthesis gene (GT) was generally up-regulated in both cultivars. Sequence analysis of STS, ROMT, and GT promoters revealed that they contained cis-regulatory elements responsive to phytohormones and pathogens. Following Pv inoculation, the level of SA, MeJA, and ABA was found to be consistently higher in 'Noble' than those in 'Thompson Seedless'. The results of exogenous hormone elicitation further demonstrated that the accumulation of stilbenes was regulated by phytohormones. The earlier and higher accumulation of phytohormones and consequent induction of stilbene synthesis may play an important role in grapevine defense against downy mildew disease.
Collapse
Affiliation(s)
- Chaoxia Wang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiao Wu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Yali Zhang
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China
| | - Jiang Lu
- The Viticulture and Enology Program, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, 10008, People's Republic of China.
- Center for Viticulture and Enology, School of Agriculture Biology, Shanghai Jiao Tong University, Shanghai, 200024, People's Republic of China.
| |
Collapse
|
74
|
Xiong W, Wang C, Zhang X, Yang Q, Shao R, Lai J, Du C. Highly interwoven communities of a gene regulatory network unveil topologically important genes for maize seed development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:1143-1156. [PMID: 29072883 DOI: 10.1111/tpj.13750] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/10/2017] [Accepted: 10/17/2017] [Indexed: 06/07/2023]
Abstract
The complex interactions between transcription factors (TFs) and their target genes in a spatially and temporally specific manner are crucial to all cellular processes. Reconstruction of gene regulatory networks (GRNs) from gene expression profiles can help to decipher TF-gene regulations in a variety of contexts; however, the inevitable prediction errors of GRNs hinder optimal data mining of RNA-Seq transcriptome profiles. Here we perform an integrative study of Zea mays (maize) seed development in order to identify key genes in a complex developmental process. First, we reverse engineered a GRN from 78 maize seed transcriptome profiles. Then, we studied collective gene interaction patterns and uncovered highly interwoven network communities as the building blocks of the GRN. One community, composed of mostly unknown genes interacting with opaque2, brittle endosperm1 and shrunken2, contributes to seed phenotypes. Another community, composed mostly of genes expressed in the basal endosperm transfer layer, is responsible for nutrient transport. We further integrated our inferred GRN with gene expression patterns in different seed compartments and at various developmental stages and pathways. The integration facilitated a biological interpretation of the GRN. Our yeast one-hybrid assays verified six out of eight TF-promoter bindings in the reconstructed GRN. This study identified topologically important genes in interwoven network communities that may be crucial to maize seed development.
Collapse
Affiliation(s)
- Wenwei Xiong
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| | - Chunlei Wang
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Xiangbo Zhang
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Qinghua Yang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruixin Shao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jinsheng Lai
- National Maize Improvement Center, China Agricultural University, Beijing, 100083, China
| | - Chunguang Du
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Department of Biology, Montclair State University, Montclair, NJ, 07043, USA
| |
Collapse
|
75
|
Evans AF, O'Brien SR, Ma R, Hager AG, Riggins CW, Lambert KN, Riechers DE. Biochemical characterization of metabolism-based atrazine resistance in Amaranthus tuberculatus and identification of an expressed GST associated with resistance. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1238-1249. [PMID: 28218978 PMCID: PMC5595711 DOI: 10.1111/pbi.12711] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2016] [Revised: 02/02/2017] [Accepted: 02/08/2017] [Indexed: 05/08/2023]
Abstract
Rapid detoxification of atrazine in naturally tolerant crops such as maize (Zea mays) and grain sorghum (Sorghum bicolor) results from glutathione S-transferase (GST) activity. In previous research, two atrazine-resistant waterhemp (Amaranthus tuberculatus) populations from Illinois, U.S.A. (designated ACR and MCR), displayed rapid formation of atrazine-glutathione (GSH) conjugates, implicating elevated rates of metabolism as the resistance mechanism. Our main objective was to utilize protein purification combined with qualitative proteomics to investigate the hypothesis that enhanced atrazine detoxification, catalysed by distinct GSTs, confers resistance in ACR and MCR. Additionally, candidate AtuGST expression was analysed in an F2 population segregating for atrazine resistance. ACR and MCR showed higher specific activities towards atrazine in partially purified ammonium sulphate and GSH affinity-purified fractions compared to an atrazine-sensitive population (WCS). One-dimensional electrophoresis of these fractions displayed an approximate 26-kDa band, typical of GST subunits. Several phi- and tau-class GSTs were identified by LC-MS/MS from each population, based on peptide similarity with GSTs from Arabidopsis. Elevated constitutive expression of one phi-class GST, named AtuGSTF2, correlated strongly with atrazine resistance in ACR and MCR and segregating F2 population. These results indicate that AtuGSTF2 may be linked to a metabolic mechanism that confers atrazine resistance in ACR and MCR.
Collapse
Affiliation(s)
- Anton F. Evans
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Sarah R. O'Brien
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Rong Ma
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Aaron G. Hager
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Chance W. Riggins
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Kris N. Lambert
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - Dean E. Riechers
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
76
|
Ma S, Ding Z, Li P. Maize network analysis revealed gene modules involved in development, nutrients utilization, metabolism, and stress response. BMC PLANT BIOLOGY 2017; 17:131. [PMID: 28764653 PMCID: PMC5540570 DOI: 10.1186/s12870-017-1077-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 07/19/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND The advent of big data in biology offers opportunities while poses challenges to derive biological insights. For maize, a large amount of publicly available transcriptome datasets have been generated but a comprehensive analysis is lacking. RESULTS We constructed a maize gene co-expression network based on the graphical Gaussian model, using massive RNA-seq data. The network, containing 20,269 genes, assembles into 964 gene modules that function in a variety of plant processes, such as cell organization, the development of inflorescences, ligules and kernels, the uptake and utilization of nutrients (e.g. nitrogen and phosphate), the metabolism of benzoxazionids, oxylipins, flavonoids, and wax, and the response to stresses. Among them, the inflorescences development module is enriched with domestication genes (like ra1, ba1, gt1, tb1, tga1) that control plant architecture and kernel structure, while multiple other modules relate to diverse agronomic traits. Contained within these modules are transcription factors acting as known or potential expression regulators for the genes within the same modules, suggesting them as candidate regulators for related biological processes. A comparison with an established Arabidopsis network revealed conserved gene association patterns for specific modules involved in cell organization, nutrients uptake & utilization, and metabolism. The analysis also identified significant divergences between the two species for modules that orchestrate developmental pathways. CONCLUSIONS This network sheds light on how gene modules are organized between different species in the context of evolutionary divergence and highlights modules whose structure and gene content can provide important resources for maize gene functional studies with application potential.
Collapse
Affiliation(s)
- Shisong Ma
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui China
| | - Zehong Ding
- The Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan China
| | - Pinghua Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai’an, Shandong China
| |
Collapse
|
77
|
Bromilow S, Gethings LA, Buckley M, Bromley M, Shewry PR, Langridge JI, Clare Mills EN. A curated gluten protein sequence database to support development of proteomics methods for determination of gluten in gluten-free foods. J Proteomics 2017; 163:67-75. [PMID: 28385663 PMCID: PMC5479479 DOI: 10.1016/j.jprot.2017.03.026] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 03/20/2017] [Accepted: 03/28/2017] [Indexed: 12/11/2022]
Abstract
The unique physiochemical properties of wheat gluten enable a diverse range of food products to be manufactured. However, gluten triggers coeliac disease, a condition which is treated using a gluten-free diet. Analytical methods are required to confirm if foods are gluten-free, but current immunoassay-based methods can unreliable and proteomic methods offer an alternative but require comprehensive and well annotated sequence databases which are lacking for gluten. A manually a curated database (GluPro V1.0) of gluten proteins, comprising 630 discrete unique full length protein sequences has been compiled. It is representative of the different types of gliadin and glutenin components found in gluten. An in silico comparison of their coeliac toxicity was undertaken by analysing the distribution of coeliac toxic motifs. This demonstrated that whilst the α-gliadin proteins contained more toxic motifs, these were distributed across all gluten protein sub-types. Comparison of annotations observed using a discovery proteomics dataset acquired using ion mobility MS/MS showed that more reliable identifications were obtained using the GluPro V1.0 database compared to the complete reviewed Viridiplantae database. This highlights the value of a curated sequence database specifically designed to support the proteomic workflows and the development of methods to detect and quantify gluten. SIGNIFICANCE We have constructed the first manually curated open-source wheat gluten protein sequence database (GluPro V1.0) in a FASTA format to support the application of proteomic methods for gluten protein detection and quantification. We have also analysed the manually verified sequences to give the first comprehensive overview of the distribution of sequences able to elicit a reaction in coeliac disease, the prevalent form of gluten intolerance. Provision of this database will improve the reliability of gluten protein identification by proteomic analysis, and aid the development of targeted mass spectrometry methods in line with Codex Alimentarius Commission requirements for foods designed to meet the needs of gluten intolerant individuals.
Collapse
Affiliation(s)
- Sophie Bromilow
- School of Biological Sciences, Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, M17DN, UK
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - Mike Buckley
- School of Earth and Environmental Sciences, Manchester Institute of Biotechnology, University of Manchester, M17DN, UK
| | - Mike Bromley
- Genon Laboratories Limited, Cragg Vale, Halifax, UK
| | | | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow SK9 4AX, UK
| | - E N Clare Mills
- School of Biological Sciences, Manchester Institute of Biotechnology, Manchester Academic Health Sciences Centre, University of Manchester, M17DN, UK.
| |
Collapse
|
78
|
Rouhian S, Ahmadi DN, Sorkheh K. Development of Dof (DNA binding with one finger) transcription factor gene-specific primers through data mining as a functional marker and their use for genetic diversity study in barley (Hordeum vulgare L.) germplasm. Genes Genomics 2017. [DOI: 10.1007/s13258-016-0510-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
79
|
Peng J, Qi X, Chen X, Li N, Yu J. ZmDof30 Negatively Regulates the Promoter Activity of the Pollen-Specific Gene Zm908. FRONTIERS IN PLANT SCIENCE 2017; 8:685. [PMID: 28507558 PMCID: PMC5410603 DOI: 10.3389/fpls.2017.00685] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 04/13/2017] [Indexed: 05/20/2023]
Abstract
The maize (Zea mays) pollen-predominant gene Zm908, a novel small-peptide gene, was reported to play critical roles in pollen germination and pollen tube growth in our previous work. In this study, we aimed to explore the regulatory mechanism of Zm908. The putative promoter of Zm908 was cloned and analyzed. The activity analysis of a series of promoter truncations in different tissues of transgenic tobacco plants indicated that the Zm908 promoter is pollen-specific and that the -126 to -68 region is crucial for pollen expression. The 5' deletion analysis of the -126 to -68 region revealed that the -126 to -102 region functions as a transcriptional suppression element. ZmDof30, which is predominantly expressed in pollen and whole anthers, was cloned and characterized. ZmDof30-GFP localized to the nuclei of maize protoplasts and possessed no transcriptional activation activity in a yeast system. ZmDof30 could bind to the AAAG elements in p184 sequence containing the -126 to +58 region of the Zm908 promoter in vitro and in vivo, and negatively regulated p184 activity in tobacco leaves. Collectively, ZmDof30 may function as a Zm908 transcriptional repressor in pollen, and these results may provide a better understanding of the regulation of the Zm908 gene. Additionally, the pollen-specific Zm908 promoter may be valuable for genetically engineering male sterility.
Collapse
Affiliation(s)
| | | | | | | | - Jingjuan Yu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural UniversityBeijing, China
| |
Collapse
|
80
|
Yang F, Li W, Jiang N, Yu H, Morohashi K, Ouma WZ, Morales-Mantilla DE, Gomez-Cano FA, Mukundi E, Prada-Salcedo LD, Velazquez RA, Valentin J, Mejía-Guerra MK, Gray J, Doseff AI, Grotewold E. A Maize Gene Regulatory Network for Phenolic Metabolism. MOLECULAR PLANT 2017; 10:498-515. [PMID: 27871810 DOI: 10.1016/j.molp.2016.10.020] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Revised: 09/20/2016] [Accepted: 10/31/2016] [Indexed: 05/23/2023]
Abstract
The translation of the genotype into phenotype, represented for example by the expression of genes encoding enzymes required for the biosynthesis of phytochemicals that are important for interaction of plants with the environment, is largely carried out by transcription factors (TFs) that recognize specific cis-regulatory elements in the genes that they control. TFs and their target genes are organized in gene regulatory networks (GRNs), and thus uncovering GRN architecture presents an important biological challenge necessary to explain gene regulation. Linking TFs to the genes they control, central to understanding GRNs, can be carried out using gene- or TF-centered approaches. In this study, we employed a gene-centered approach utilizing the yeast one-hybrid assay to generate a network of protein-DNA interactions that participate in the transcriptional control of genes involved in the biosynthesis of maize phenolic compounds including general phenylpropanoids, lignins, and flavonoids. We identified 1100 protein-DNA interactions involving 54 phenolic gene promoters and 568 TFs. A set of 11 TFs recognized 10 or more promoters, suggesting a role in coordinating pathway gene expression. The integration of the gene-centered network with information derived from TF-centered approaches provides a foundation for a phenolics GRN characterized by interlaced feed-forward loops that link developmental regulators with biosynthetic genes.
Collapse
Affiliation(s)
- Fan Yang
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Wei Li
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Nan Jiang
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Haidong Yu
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Kengo Morohashi
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Wilberforce Zachary Ouma
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Molecular, Cellular, and Developmental Biology (MCDB) Graduate Program, The Ohio State University, Columbus, OH 43210, USA
| | - Daniel E Morales-Mantilla
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Success in Graduate Education (SiGuE) Program, The Ohio State University, Columbus, OH 43210, USA
| | - Fabio Andres Gomez-Cano
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Eric Mukundi
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - Luis Daniel Prada-Salcedo
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Roberto Alers Velazquez
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Success in Graduate Education (SiGuE) Program, The Ohio State University, Columbus, OH 43210, USA
| | - Jasmin Valentin
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA; Success in Graduate Education (SiGuE) Program, The Ohio State University, Columbus, OH 43210, USA
| | - Maria Katherine Mejía-Guerra
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA
| | - John Gray
- Department of Biological Sciences, University of Toledo, Toledo, OH 43560, USA
| | - Andrea I Doseff
- Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA; Department of Physiology and Cell Biology, Heart and Lung Research Institute, The Ohio State University, Columbus, OH 43210, USA
| | - Erich Grotewold
- Center for Applied Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA; Department of Molecular Genetics, The Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
81
|
Passricha N, Saifi S, Ansari MW, Tuteja N. Prediction and validation of cis-regulatory elements in 5' upstream regulatory regions of lectin receptor-like kinase gene family in rice. PROTOPLASMA 2017; 254:669-684. [PMID: 27193099 DOI: 10.1007/s00709-016-0979-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/29/2016] [Indexed: 05/10/2023]
Abstract
Lectin receptor-like kinases (LecRLKs) play crucial roles in regulating plant growth and developmental processes in response to stress. In transcriptional gene regulation for normal cellular functions, cis-acting regulatory elements (CREs) direct the temporal and spatial gene expression with respect to environmental stimuli. A complete insightful of the transcriptional gene regulation system relies on effective functional analysis of CREs. Here, we analyzed the potential putative CREs present in the promoters of rice LecRLKs genes by using PlantCARE database. The CREs in LecRLKs promoters are associated with plant growth/development, light response, plant hormonal regulation processes, various stress responses, hormonal response like ABA, root-specific expression responsive, drought responsive, and cell and organ specific regulatory elements. The effect of methylation on these cis-regulatory elements was also analyzed. Real-time analysis of rice seedling under various stress conditions showed the expression levels of selected LecRLK genes superimposing the number of different CREs present in 5' upstream region. The overall results showed that the possible CREs function in the selective expression/regulation of LecRLKs gene family and during rice plant development under stress.
Collapse
MESH Headings
- Base Sequence
- Computer Simulation
- CpG Islands/genetics
- Databases, Genetic
- Gene Expression Profiling
- Gene Expression Regulation, Plant/radiation effects
- Genes, Plant
- Light
- Models, Biological
- Multigene Family
- Oligonucleotide Array Sequence Analysis
- Oryza/drug effects
- Oryza/enzymology
- Oryza/genetics
- Oryza/radiation effects
- Plant Development/drug effects
- Plant Development/genetics
- Plant Development/radiation effects
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plant Proteins/metabolism
- Promoter Regions, Genetic
- Protein Kinases/genetics
- Protein Kinases/metabolism
- Receptors, Mitogen/genetics
- Receptors, Mitogen/metabolism
- Regulatory Sequences, Nucleic Acid/genetics
- Reproducibility of Results
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
Collapse
Affiliation(s)
- Nishat Passricha
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Shabnam Saifi
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India
| | - Mohammad W Ansari
- Zakir Husain Delhi College, University of Delhi, Jawahar Lal Nehru Marg, New Delhi, 110002, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, ArunaAsaf Ali Marg, New Delhi, 110067, India.
- Amity Institute of Microbial Technology, Amity University, Noida, 201313, India.
| |
Collapse
|
82
|
Qi X, Li S, Zhu Y, Zhao Q, Zhu D, Yu J. ZmDof3, a maize endosperm-specific Dof protein gene, regulates starch accumulation and aleurone development in maize endosperm. PLANT MOLECULAR BIOLOGY 2017; 93:7-20. [PMID: 27709320 DOI: 10.1007/s11103-016-0543-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 09/09/2016] [Indexed: 05/03/2023]
Abstract
To explore the function of Dof transcription factors during kernel development in maize, we first identified Dof genes in the maize genome. We found that ZmDof3 was exclusively expressed in the endosperm of maize kernel and had the features of a Dof transcription factor. Suppression of ZmDof3 resulted in a defective kernel phenotype with reduced starch content and a partially patchy aleurone layer. The expression levels of starch synthesis-related genes and aleurone differentiation-associated genes were down-regulated in ZmDof3 knockdown kernels, indicating that ZmDof3 plays an important role in maize endosperm development. The maize endosperm, occupying a large proportion of the kernel, plays an important role in seed development and germination. Current knowledge regarding the regulation of endosperm development is limited. Dof proteins, a family of plant-specific transcription factors, play critical roles in diverse biological processes. In this study, an endosperm-specific Dof protein gene, ZmDof3, was identified in maize through genome-wide screening. Suppression of ZmDof3 resulted in a defective kernel phenotype. The endosperm of ZmDof3 knockdown kernels was loosely packed with irregular starch granules observed by electronic microscope. Through genome-wide expression profiling, we found that down-regulated genes were enriched in GO terms related to carbohydrate metabolism. Moreover, ZmDof3 could bind to the Dof core element in the promoter of starch biosynthesis genes Du1 and Su2 in vitro and in vivo. In addition, the aleurone at local position in mature ZmDof3 knockdown kernels varied from one to three layers, which consisted of smaller and irregular cells. Further analyses showed that knockdown of ZmDof3 reduced the expression of Nkd1, which is involved in aleurone cell differentiation, and that ZmDof3 could bind to the Dof core element in the Nkd1 promoter. Our study reveals that ZmDof3 functions in maize endosperm development as a positive regulator in the signaling system controlling starch accumulation and aleurone development.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Shixue Li
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Yaxi Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Qian Zhao
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Dengyun Zhu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China
| | - Jingjuan Yu
- State Key Laboratory for Agrobiotechnology, College of Biological Sciences, China Agricultural University, No. 2 Yuanmingyuan West Road, Beijing, 100193, China.
| |
Collapse
|
83
|
Wang N, Zhong X, Cong Y, Wang T, Yang S, Li Y, Gai J. Genome-wide Analysis of Phosphoenolpyruvate Carboxylase Gene Family and Their Response to Abiotic Stresses in Soybean. Sci Rep 2016; 6:38448. [PMID: 27924923 PMCID: PMC5141416 DOI: 10.1038/srep38448] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/07/2016] [Indexed: 11/09/2022] Open
Abstract
Phosphoenolpyruvate carboxylase (PEPC) plays an important role in assimilating atmospheric CO2 during C4 and crassulacean acid metabolism photosynthesis, and also participates in various non-photosynthetic processes, including fruit ripening, stomatal opening, supporting carbon-nitrogen interactions, seed formation and germination, and regulation of plant tolerance to stresses. However, a comprehensive analysis of PEPC family in Glycine max has not been reported. Here, a total of ten PEPC genes were identified in soybean and denominated as GmPEPC1-GmPEPC10. Based on the phylogenetic analysis of the PEPC proteins from 13 higher plant species including soybean, PEPC family could be classified into two subfamilies, which was further supported by analyses of their conserved motifs and gene structures. Nineteen cis-regulatory elements related to phytohormones, abiotic and biotic stresses were identified in the promoter regions of GmPEPC genes, indicating their roles in soybean development and stress responses. GmPEPC genes were expressed in various soybean tissues and most of them responded to the exogenously applied phytohormones. GmPEPC6, GmPEPC8 and GmPEPC9 were significantly induced by aluminum toxicity, cold, osmotic and salt stresses. In addition, the enzyme activities of soybean PEPCs were also up-regulated by these treatments, suggesting their potential roles in soybean response to abiotic stresses.
Collapse
Affiliation(s)
- Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Xiujuan Zhong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yahui Cong
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Tingting Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Songnan Yang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement/National Center for Soybean Improvement/Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture)/Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
84
|
Transcriptome-Based Analysis of Dof Family Transcription Factors and Their Responses to Abiotic Stress in Tea Plant ( Camellia sinensis). Int J Genomics 2016; 2016:5614142. [PMID: 27872842 PMCID: PMC5107859 DOI: 10.1155/2016/5614142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/06/2016] [Indexed: 11/18/2022] Open
Abstract
Tea plant (Camellia sinensis (L.) O. Kuntze) is affected by abiotic stress during its growth and development. DNA-binding with one finger (Dof) transcription factors (TFs) play important roles in abiotic stress tolerance of plants. In this study, a total of 29 putative Dof TFs were identified based on transcriptome of tea plant, and the conserved domains and common motifs of these CsDof TFs were predicted and analyzed. The 29 CsDof proteins were divided into 7 groups (A, B1, B2, C1, C2.1, C2.2, and D2), and the interaction networks of Dof proteins in C. sinensis were established according to the data in Arabidopsis. Gene expression was analyzed in “Yingshuang” and “Huangjinya” under four experimental stresses by qRT-PCR. CsDof genes were expressed differentially and related to different abiotic stress conditions. In total, our results might suggest that there is a potential relationship between CsDof factors and tea plant stress resistance.
Collapse
|
85
|
Kang WH, Kim S, Lee HA, Choi D, Yeom SI. Genome-wide analysis of Dof transcription factors reveals functional characteristics during development and response to biotic stresses in pepper. Sci Rep 2016; 6:33332. [PMID: 27653666 PMCID: PMC5032028 DOI: 10.1038/srep33332] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 08/25/2016] [Indexed: 11/10/2022] Open
Abstract
The DNA-binding with one zinc finger proteins (Dofs) are a plant-specific family of transcription factors. The Dofs are involved in a variety of biological processes such as phytohormone production, seed development, and environmental adaptation. Dofs have been previously identified in several plants, but not in pepper. We identified 33 putative Dof genes in pepper (CaDofs). To gain an overview of the CaDofs, we analyzed phylogenetic relationships, protein motifs, and evolutionary history. We divided the 33 CaDofs, containing 25 motifs, into four major groups distributed on eight chromosomes. We discovered an expansion of the CaDofs dated to a recent duplication event. Segmental duplication that occurred before the speciation of the Solanaceae lineages was predominant among the CaDofs. The global gene-expression profiling of the CaDofs by RNA-seq analysis showed distinct temporal and pathogen-specific variation during development and response to biotic stresses (two TMV strains, PepMoV, and Phytophthora capsici), suggesting functional diversity among the CaDofs. These results will provide the useful clues into the responses of Dofs in biotic stresses and promote a better understanding of their multiple function in pepper and other species.
Collapse
Affiliation(s)
- Won-Hee Kang
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| | - Seungill Kim
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Hyun-Ah Lee
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Doil Choi
- Department of Plant Science, Plant Genomics and Breeding Institute, College of Agriculture and Life Sciences, Seoul National University, Seoul 151-921, South Korea
| | - Seon-In Yeom
- Department of Agricultural Plant Science, Institute of Agriculture &Life Science, Gyeongsang National University, 660-701, South Korea
| |
Collapse
|
86
|
Dong C, Hu H, Xie J. Genome-wide analysis of the DNA-binding with one zinc finger (Dof) transcription factor family in bananas. Genome 2016; 59:1085-1100. [PMID: 27831816 DOI: 10.1139/gen-2016-0081] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. In this study, we report a genome-wide search for Musa acuminata Dof (MaDof) genes and their expression profiles at different developmental stages and in response to various abiotic stresses. In addition, a complete overview of the Dof gene family in bananas is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 74 full-length protein-coding MaDof genes unevenly distributed on 11 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that MaDof genes can be classified into four subgroups (StDof I, II, III, and IV). The detailed genomic information of the MaDof gene homologs in the present study provides opportunities for functional analyses to unravel the exact role of the genes in plant growth and development.
Collapse
Affiliation(s)
- Chen Dong
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.,Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Huigang Hu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.,Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| | - Jianghui Xie
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China.,Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture, Zhanjiang 524091, China; South Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Science, Zhanjiang 524091, China
| |
Collapse
|
87
|
Maize endosperm-specific transcription factors O2 and PBF network the regulation of protein and starch synthesis. Proc Natl Acad Sci U S A 2016; 113:10842-7. [PMID: 27621432 DOI: 10.1073/pnas.1613721113] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The maize endosperm-specific transcription factors opaque2 (O2) and prolamine-box binding factor (PBF) regulate storage protein zein genes. We show that they also control starch synthesis. The starch content in the PbfRNAi and o2 mutants was reduced by ∼5% and 11%, respectively, compared with normal genotypes. In the double-mutant PbfRNAi;o2, starch was decreased by 25%. Transcriptome analysis reveals that >1,000 genes were affected in each of the two mutants and in the double mutant; these genes were mainly enriched in sugar and protein metabolism. Pyruvate orthophosphate dikinase 1 and 2 (PPDKs) and starch synthase III (SSIII) are critical components in the starch biosynthetic enzyme complex. The expression of PPDK1, PPDK2, and SSIII and their protein levels are further reduced in the double mutants as compared with the single mutants. When the promoters of these genes were analyzed, we found a prolamine box and an O2 box that can be additively transactivated by PBF and O2. Starch synthase IIa (SSIIa, encoding another starch synthase for amylopectin) and starch branching enzyme 1 (SBEI, encoding one of the two main starch branching enzymes) are not directly regulated by PBF and O2, but their protein levels are significantly decreased in the o2 mutant and are further decreased in the double mutant, indicating that o2 and PbfRNAi may affect the levels of some other transcription factor(s) or mRNA regulatory factor(s) that in turn would affect the transcript and protein levels of SSIIa and SBEI These findings show that three important traits-nutritional quality, calories, and yield-are linked through the same transcription factors.
Collapse
|
88
|
Divergent Transactivation of Maize Storage Protein Zein Genes by the Transcription Factors Opaque2 and OHPs. Genetics 2016; 204:581-591. [PMID: 27474726 PMCID: PMC5068848 DOI: 10.1534/genetics.116.192385] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 07/25/2016] [Indexed: 11/18/2022] Open
Abstract
Maize transcription factors (TFs) opaque2 (O2) and the O2 heterodimerizing proteins (OHP1 and OHP2) originated from an ancient segmental duplication. The 22-kDa (z1C) and 19-kDa (z1A, z1B, and z1D) α-zeins are the most abundant storage proteins in maize endosperm. O2 is known to regulate α-zein gene expression, but its target motifs in the 19-kDa α-zein gene promoters have not been identified. The mechanisms underlying the regulation of α-zein genes by these TFs are also not well understood. In this study, we found that the O2 binding motifs in the α-zein gene promoters are quite flexible, with ACGT being present in the z1C and z1A promoters and a variant, ACAT, being present in the z1B and z1D promoters. OHPs recognized and transactivated all of the α-zein promoters, although to much lower levels than did O2. In the presence of O2, the suppression of OHPs did not cause a significant reduction in the transcription of α-zein genes, but in the absence of O2, OHPs were critical for the expression of residual levels of α-zeins. These findings demonstrated that O2 is the primary TF and that OHPs function as minor TFs in this process. This relationship is the converse of that involved in 27-kDa γ-zein gene regulation, indicating that the specificities of O2 and the OHPs for regulating zein genes diverged after gene duplication. The prolamine-box binding factor by itself has limited transactivation activity, but it promotes the binding of O2 to O2 motifs, resulting in the synergistic transactivation of α-zein genes.
Collapse
|
89
|
Genome-wide identification and characterization of the Dof gene family in moso bamboo (Phyllostachys heterocycla var. pubescens). Genes Genomics 2016. [DOI: 10.1007/s13258-016-0418-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
90
|
Qiao Z, Qi W, Wang Q, Feng Y, Yang Q, Zhang N, Wang S, Tang Y, Song R. ZmMADS47 Regulates Zein Gene Transcription through Interaction with Opaque2. PLoS Genet 2016; 12:e1005991. [PMID: 27077660 PMCID: PMC4831773 DOI: 10.1371/journal.pgen.1005991] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 03/24/2016] [Indexed: 11/19/2022] Open
Abstract
Zeins, the predominent storage proteins in maize endosperm, are encoded by multiple genes and gene families. However, only a few transcriptional factors for zein gene regulation have been functionally characterized. In this study, a MADS-box protein, namely ZmMADS47, was identified as an Opaque2 (O2) interacting protein via yeast two-hybrid screening. The N-terminal portion of ZmMADS47 contains a nuclear localization signal (NLS), and its C-terminal portion contains a transcriptional activation domain (AD). Interestingly, the transcriptional activation activity is blocked in its full length form, suggesting conformational regulation of the AD. Molecular and RNA-seq analyses of ZmMADS47 RNAi lines revealed down regulation of α-zein and 50-kD γ-zein genes. ZmMADS47 binds the CATGT motif in promoters of these zein genes, but ZmMADS47 alone is not able to transactivate the promoters. However, when both O2 and ZmMADS47 are present, the transactivation of these promoters was greatly enhanced. This enhancement was dependent on the AD function of ZmMADS47 and the interaction between ZmMADS47 and O2, but it was independent from the AD function of O2. Therefore, it appears interaction with O2 activates ZmMADS47 on zein gene promoters. A newly identified transcription factor of seed storage proteins can engage its transactivation ability after interacting with another seed storage protein transcription factor in maize.
Collapse
Affiliation(s)
- Zhenyi Qiao
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Weiwei Qi
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- Coordinated Crop Biology Research Center (CBRC), Beijing, China
| | - Qian Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ya’nan Feng
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Qing Yang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Nan Zhang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Shanshan Wang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Yuanping Tang
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
| | - Rentao Song
- Shanghai Key Laboratory of Bio-Energy Crops, School of Life Sciences, Shanghai University, Shanghai, China
- Coordinated Crop Biology Research Center (CBRC), Beijing, China
- National Maize Improvement Center of China, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
91
|
Abraham Z, Iglesias-Fernández R, Martínez M, Rubio-Somoza I, Díaz I, Carbonero P, Vicente-Carbajosa J. A Developmental Switch of Gene Expression in the Barley Seed Mediated by HvVP1 (Viviparous-1) and HvGAMYB Interactions. PLANT PHYSIOLOGY 2016; 170:2146-58. [PMID: 26858366 PMCID: PMC4825118 DOI: 10.1104/pp.16.00092] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 02/04/2016] [Indexed: 05/06/2023]
Abstract
The accumulation of storage compounds in the starchy endosperm of developing cereal seeds is highly regulated at the transcriptional level. These compounds, mainly starch and proteins, are hydrolyzed upon germination to allow seedling growth. The transcription factor HvGAMYB is a master activator both in the maturation phase of seed development and upon germination, acting in combination with other transcription factors. However, the precise mechanism controlling the switch from maturation to germination programs remains unclear. We report here the identification and molecular characterization of Hordeum vulgare VIVIPAROUS1 (HvVP1), orthologous to ABA-INSENSITIVE3 from Arabidopsis thaliana HvVP1 transcripts accumulate in the endosperm and the embryo of developing seeds at early stages and in the embryo and aleurone of germinating seeds up to 24 h of imbibition. In transient expression assays, HvVP1 controls the activation of Hor2 and Amy6.4 promoters exerted by HvGAMYB. HvVP1 interacts with HvGAMYB in Saccharomyces cerevisiae and in the plant nuclei, hindering its interaction with other transcription factors involved in seed gene expression programs, like BPBF. Similarly, this interaction leads to a decrease in the DNA binding of HvGAMYB and the Barley Prolamine-Box binding Factor (BPBF) to their target sequences. Our results indicate that the HvVP1 expression pattern controls the full Hor2 expression activated by GAMYB and BPBF in the developing endosperm and the Amy6.4 activation in postgerminative reserve mobilization mediated by GAMYB. All these data demonstrate the participation of HvVP1 in antagonistic gene expression programs and support its central role as a gene expression switch during seed maturation and germination.
Collapse
Affiliation(s)
- Zamira Abraham
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Raquel Iglesias-Fernández
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Manuel Martínez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Ignacio Rubio-Somoza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Isabel Díaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| | - Jesús Vicente-Carbajosa
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, and Escuela Técnica Superior de Ingenieros Agrónomos, Campus de Montegancedo, Universidad Politécnica de Madrid, Pozuelo de Alarcón, 28223 Madrid, Spain
| |
Collapse
|
92
|
Locus- and Site-Specific DNA Methylation of 19 kDa Zein Genes in Maize. PLoS One 2016; 11:e0146416. [PMID: 26741504 PMCID: PMC4704816 DOI: 10.1371/journal.pone.0146416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/16/2015] [Indexed: 01/06/2023] Open
Abstract
An interesting question in maize development is why only a single zein gene is highly expressed in each of the 19-kDa zein gene clusters (A and B types), z1A2-1 and z1B4, in the immature endosperm. For instance, epigenetic marks could provide a structural difference. Therefore, we investigated the DNA methylation of the arrays of gene copies in both promoter and gene body regions of leaf (non-expressing tissue as a control), normal endosperm, and cultured endosperm. Although we could show that expressed genes have much lower methylation levels in promoter regions than silent ones in both leaf and normal endosperm, there was surprisingly also a difference in the pattern of the z1A and z1B gene clusters. The expression of z1B gene is suppressed by increased DNA methylation and activated with reduced DNA methylation, whereas z1A gene expression is not. DNA methylation in gene coding regions is higher in leaf than in endosperm, whereas no significant difference is observed in gene bodies between expressed and non-expressed gene copies. A median CHG methylation (25–30%) appears to be optimal for gene expression. Moreover, tissue-cultured endosperm can reset the DNA methylation pattern and tissue-specific gene expression. These results reveal that DNA methylation changes of the 19-kDa zein genes is subject to plant development and tissue culture treatment, but varies in different chromosomal locations, indicating that DNA methylation changes do not apply to gene expression in a uniform fashion. Because tissue culture is used to produce transgenic plants, these studies provide new insights into variation of gene expression of integrated sequences.
Collapse
|
93
|
Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK. Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea. FRONTIERS IN PLANT SCIENCE 2016; 7:302. [PMID: 27047499 PMCID: PMC4803732 DOI: 10.3389/fpls.2016.00302] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 05/17/2023]
Abstract
Identification of potential genes/alleles governing complex seed-protein content (SPC) is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study), high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism) discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium) decay] was utilized. This led to identification of seven most effective genomic loci (genes) associated [10-20% with 41% combined PVE (phenotypic variation explained)] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line) mapping population (ICC 12299 × ICC 4958) by selective genotyping. The seed-specific expression, including differential up-regulation (>four fold) of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with a high level of contrasting SPC (21-22%) was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait was found to be the most promising in chickpea. The informative functionally relevant molecular tags scaled-down essentially have potential to accelerate marker-assisted genetic improvement by developing nutritionally rich chickpea cultivars with enhanced SPC.
Collapse
Affiliation(s)
- Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Deepak Bajaj
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Shouvik Das
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Swarup K. Parida
- National Institute of Plant Genome ResearchNew Delhi, India
- *Correspondence: Swarup K. Parida, ;
| |
Collapse
|
94
|
Mansilla N, Garcia L, Gonzalez DH, Welchen E. AtCOX10, a protein involved in haem o synthesis during cytochrome c oxidase biogenesis, is essential for plant embryogenesis and modulates the progression of senescence. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6761-75. [PMID: 26246612 DOI: 10.1093/jxb/erv381] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cytochrome c oxidase (CcO) biogenesis requires several accessory proteins implicated, among other processes, in copper and haem a insertion. In yeast, the farnesyltransferase Cox10p that catalyses the conversion of haem b to haem o is the limiting factor in haem a biosynthesis and is essential for haem a insertion in CcO. In this work, we characterized AtCOX10, a putative Cox10p homologue from Arabidopsis thaliana. AtCOX10 was localized in mitochondria and was able to restore growth of a yeast Δcox10 null mutant on non-fermentable carbon sources, suggesting that it also participates in haem o synthesis. Plants with T-DNA insertions in the coding region of both copies of AtCOX10 could not be recovered, and heterozygous mutant plants showed seeds with embryos arrested at early developmental stages that lacked CcO activity. Heterozygous mutant plants exhibited lower levels of CcO activity and cyanide-sensitive respiration but normal levels of total respiration at the expense of an increase in alternative respiration. AtCOX10 seems to be implicated in the onset and progression of senescence, since heterozygous mutant plants showed a faster decrease in chlorophyll content and photosynthetic performance than wild-type plants after natural and dark-induced senescence. Furthermore, complementation of mutants by expressing AtCOX10 under its own promoter allowed us to obtain plants with T-DNA insertions in both AtCOX10 copies, which showed phenotypic characteristics comparable to those of wild type. Our results highlight the relevance of haem o synthesis in plants and suggest that this process is a limiting factor that influences CcO activity levels, mitochondrial respiration, and plant senescence.
Collapse
Affiliation(s)
- Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Centro Científico Tecnológico Santa Fe - Colectora Ruta Nacional Nº 168 Km 0, Paraje El Pozo, 3000 Santa Fe, Argentina
| |
Collapse
|
95
|
Venkatesh J, Park SW. Genome-wide analysis and expression profiling of DNA-binding with one zinc finger (Dof) transcription factor family in potato. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 94:73-85. [PMID: 26046625 DOI: 10.1016/j.plaphy.2015.05.010] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 05/16/2015] [Accepted: 05/16/2015] [Indexed: 05/12/2023]
Abstract
DNA-binding with one finger (Dof) domain proteins are a multigene family of plant-specific transcription factors involved in numerous aspects of plant growth and development. Here, we report a genome-wide search for Solanum tuberosum Dof (StDof) genes and their expression profiles at various developmental stages and in response to various abiotic stresses. In addition, a complete overview of Dof gene family in potato is presented, including the gene structures, chromosomal locations, cis-regulatory elements, conserved protein domains, and phylogenetic inferences. Based on the genome-wide analysis, we identified 35 full-length protein-coding StDof genes, unevenly distributed on 10 chromosomes. Phylogenetic analysis with Dof members from diverse plant species showed that StDof genes can be classified into four subgroups (StDofI, II, III, and IV). qPCR expression analysis of StDof gene transcripts showed the distinct expression patterns of StDof genes in various potato organs, and tuber developmental stages analyzed. Many StDof genes were upregulated in response to drought, salinity, and ABA treatments. Overall, the StDof gene expression pattern and the number of over-represented cis-acting elements in the promoter regions of the StDof genes indicate that most of the StDof genes have redundant functions. The detailed genomic information and expression profiles of the StDof gene homologs in the present study provide opportunities for functional analyses to unravel the genes' exact role in plant growth and development as well as in abiotic stress tolerance.
Collapse
Affiliation(s)
- Jelli Venkatesh
- Department of Bioresource and Food Science, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea
| | - Se Won Park
- Department of Bioresource and Food Science, Konkuk University, 1, Hwayang-dong, Gwangjin-gu, Seoul, Republic of Korea.
| |
Collapse
|
96
|
Noma S, Kawaura K, Hayakawa K, Abe C, Tsuge N, Ogihara Y. Comprehensive molecular characterization of the α/β-gliadin multigene family in hexaploid wheat. Mol Genet Genomics 2015; 291:65-77. [DOI: 10.1007/s00438-015-1086-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 06/23/2015] [Indexed: 10/23/2022]
|
97
|
Grimault A, Gendrot G, Chaignon S, Gilard F, Tcherkez G, Thévenin J, Dubreucq B, Depège-Fargeix N, Rogowsky PM. Role of B3 domain transcription factors of the AFL family in maize kernel filling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 236:116-25. [PMID: 26025525 DOI: 10.1016/j.plantsci.2015.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 05/20/2023]
Abstract
In the dicot Arabidopsis thaliana, the B3 transcription factors, ABA-INSENSITIVE 3 (ABI3), FUSCA 3 (FUS3) and LEAFY COTYLEDON 2 (LEC2) are key regulators of seed maturation. This raises the question of the role of ABI3/FUS3/LEC2 (AFL) proteins in cereals, where not only the embryo but also the persistent endosperm accumulates reserve substances. Among the five ZmAFL genes identified in the maize genome, ZmAFL2 and ZmAFL3/ZmVp1 closely resemble FUS3 and ABI3, respectively, in terms of their sequences, domain structure and gene activity profiles. Of the three genes that fall into the LEC2 phylogenetic sub-clade, ZmAFL5 and ZmAFL6 have constitutive gene activity, whereas ZmAFL4, like LEC2, has preferential gene activity in pollen and seed, although its seed gene activity is restricted to the endosperm during reserve accumulation. Knock down of ZmAFL4 gene activity perturbs carbon metabolism and reduces starch content in the developing endosperm at 20 DAP. ZmAFL4 and ZmAFL3/ZmVp1 trans-activate a maize oleosin promoter in a heterologous moss system. In conclusion our results suggest, based on gene activity profiles, that the functions of FUS3 and ABI3 could be conserved between dicot and monocot species. In contrast, LEC2 function may have partially diverged in cereals where our findings provide first evidence of the specialization of ZmAFL4 for roles in the endosperm.
Collapse
Affiliation(s)
- Aurélie Grimault
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Ghislaine Gendrot
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Sandrine Chaignon
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Françoise Gilard
- CNRS, UMR 9213, Institute of Plant Sciences Paris-Saclay, F-91405 Orsay, France
| | - Guillaume Tcherkez
- CNRS, UMR 9213, Institute of Plant Sciences Paris-Saclay, F-91405 Orsay, France
| | - Johanne Thévenin
- INRA, UMR 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Bertrand Dubreucq
- INRA, UMR 1318, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France; AgroParisTech, Institut Jean-Pierre Bourgin, Saclay Plant Sciences, Versailles, France
| | - Nathalie Depège-Fargeix
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France
| | - Peter M Rogowsky
- Université de Lyon, Ecole Normale Supérieure de Lyon, Université Lyon 1, Unité Reproduction et Développement des Plantes, F-69364 Lyon, France; INRA, UMR 879, Reproduction et Développement des Plantes, F-69364 Lyon, France; CNRS, UMR 5667, Reproduction et Développement des Plantes, F-69364 Lyon, France.
| |
Collapse
|
98
|
Lucas-Reina E, Romero-Campero FJ, Romero JM, Valverde F. An Evolutionarily Conserved DOF-CONSTANS Module Controls Plant Photoperiodic Signaling. PLANT PHYSIOLOGY 2015; 168:561-74. [PMID: 25897001 PMCID: PMC4453789 DOI: 10.1104/pp.15.00321] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 04/19/2015] [Indexed: 05/18/2023]
Abstract
The response to daylength is a crucial process that evolved very early in plant evolution, entitling the early green eukaryote to predict seasonal variability and attune its physiological responses to the environment. The photoperiod responses evolved into the complex signaling pathways that govern the angiosperm floral transition today. The Chlamydomonas reinhardtii DNA-Binding with One Finger (CrDOF) gene controls transcription in a photoperiod-dependent manner, and its misexpression influences algal growth and viability. In short days, CrDOF enhances CrCO expression, a homolog of plant CONSTANS (CO), by direct binding to its promoter, while it reduces the expression of cell division genes in long days independently of CrCO. In Arabidopsis (Arabidopsis thaliana), transgenic plants overexpressing CrDOF show floral delay and reduced expression of the photoperiodic genes CO and FLOWERING LOCUS T. The conservation of the DOF-CO module during plant evolution could be an important clue to understanding diversification by the inheritance of conserved gene toolkits in key developmental programs.
Collapse
Affiliation(s)
- Eva Lucas-Reina
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| | - Francisco J Romero-Campero
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| | - José M Romero
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| | - Federico Valverde
- Institute for Plant Biochemistry and Photosynthesis, Plant Development Unit, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, 41092 Seville, Spain (E.L.-R., J.M.R., F.V.); andDepartamento de Ciencias de la Computación e Inteligencia Artificial, Grupo de Investigación en Computación Natural, Universidad de Sevilla, 41012 Seville, Spain (F.J.R.-C.)
| |
Collapse
|
99
|
Abstract
We took a rather unique approach to investigate the conservation of gene expression of prolamin storage protein genes across two different subfamilies of the Poaceae. We took advantage of oat plants carrying single maize chromosomes in different cultivars, called oat–maize addition (OMA) lines, which permitted us to determine whether regulation of gene expression was conserved between the two species. We found that γ-zeins are expressed in OMA7.06, which carries maize chromosome 7 even in the absence of the trans-acting maize prolamin-box-binding factor (PBF), which regulates their expression. This is likely because oat PBF can substitute for the function of maize PBF as shown in our transient expression data, using a γ-zein promoter fused to green fluorescent protein (GFP). Despite this conservation, the younger, recently amplified prolamin genes in maize, absent in oat, are not expressed in the corresponding OMAs. However, maize can express the oldest prolamin gene, the wheat high-molecular weight glutenin Dx5 gene, even when maize Pbf is knocked down (through PbfRNAi), and/or another maize transcription factor, Opaque-2 (O2) is knocked out (in maize o2 mutant). Therefore, older genes are conserved in their regulation, whereas younger ones diverged during evolution and eventually acquired a new repertoire of suitable transcriptional activators.
Collapse
Affiliation(s)
- Nelson Garcia
- Waksman Institute of Microbiology, Rutgers University
| | - Wei Zhang
- Waksman Institute of Microbiology, Rutgers University
| | - Yongrui Wu
- Waksman Institute of Microbiology, Rutgers University Present address: National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology & Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
100
|
Zhang Z, Yang J, Wu Y. Transcriptional Regulation of Zein Gene Expression in Maize through the Additive and Synergistic Action of opaque2, Prolamine-Box Binding Factor, and O2 Heterodimerizing Proteins. THE PLANT CELL 2015; 27:1162-72. [PMID: 25901087 PMCID: PMC4558697 DOI: 10.1105/tpc.15.00035] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 05/18/2023]
Abstract
Maize (Zea mays) zeins are some of the most abundant cereal seed storage proteins (SSPs). Their abundance influences kernel hardness but compromises its nutritional quality. Transcription factors regulating the expression of zein and other SSP genes in cereals are endosperm-specific and homologs of maize opaque2 (O2) and prolamine-box binding factor (PBF). This study demonstrates that the ubiquitously expressed transcription factors, O2 heterodimerizing proteins (OHPs), specifically regulate 27-kD γ-zein gene expression (through binding to an O2-like box in its promoter) and interact with PBF. The zein content of double mutants OhpRNAi;o2 and PbfRNAi;o2 and the triple mutant PbfRNAi;OhpRNAi;o2 is reduced by 83, 89, and 90%, respectively, compared with the wild type. The triple mutant developed the smallest zein protein bodies, which were merely one-tenth the wild type's size. Total protein levels in these mutants were maintained in a relatively constant range through proteome rebalancing. These data show that OHPs, O2, and PBF are master regulators of zein storage protein synthesis, acting in an additive and synergistic mode. The differential expression patterns of OHP and O2 genes may cause the slight differences in the timing of 27-kD γ-zein and 22-kD α-zein accumulation during protein body formation.
Collapse
Affiliation(s)
- Zhiyong Zhang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|