51
|
Webb JD, Coleman ML, Pugh CW. Hypoxia, hypoxia-inducible factors (HIF), HIF hydroxylases and oxygen sensing. Cell Mol Life Sci 2009; 66:3539-54. [PMID: 19756382 PMCID: PMC11115642 DOI: 10.1007/s00018-009-0147-7] [Citation(s) in RCA: 175] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 01/08/2023]
Abstract
This article outlines the need for a homeostatic response to alterations in cellular oxygenation. It describes work on erythropoietin control that led to the discovery of the hypoxia-inducible transcription factor (HIF-1) and the parallel recognition that this system was responsive to a widespread oxygen-sensing mechanism. Subsequently, multiple HIF isoforms have been shown to have overlapping but non-redundant functions, controlling expression of genes involved in diverse processes such as angiogenesis, vascular tone, metal transport, glycolysis, mitochondrial function, cell growth and survival. The major role of prolyl and asparaginyl hydroxylation in regulating HIFs is described, as well as the identification of PHD1-3 and FIH as the oxygen-sensing enzymes responsible for these hydroxylations. Current understanding of other processes that modulate overall HIF activity, including influences from other signalling mechanisms such as kinases and nitric oxide levels, and the existence of a variety of feedback loops are outlined. The effects of some mutations in this pathway are documented as is knowledge of other substrates for these enzymes. The importance of PHD1-3 and FIH, and the large family of 2-oxoglutarate and iron(II)-dependent dioxygenases of which they are a part, in biology and medicine are discussed.
Collapse
Affiliation(s)
- James D. Webb
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - Mathew L. Coleman
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| | - Christopher W. Pugh
- Henry Wellcome Building for Molecular Physiology, University of Oxford, Roosevelt Drive, Headington, Oxford, OX3 7BN UK
| |
Collapse
|
52
|
Ortiz-Masiá D, Hernández C, Quintana E, Velázquez M, Cebrián S, Riaño A, Calatayud S, Esplugues JV, Barrachina MD. iNOS-derived nitric oxide mediates the increase in TFF2 expression associated with gastric damage: role of HIF-1. FASEB J 2009; 24:136-45. [PMID: 19741170 DOI: 10.1096/fj.09-137489] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Trefoil (TFF) peptides are involved in gastrointestinal mucosal restitution. An hypoxia inducible factor 1 (HIF-1)-dependent induction of TFF genes has been reported in gastric epithelial cells. Nitric oxide (NO) is associated with mucosal damage and modulates HIF-1 activity. The aim of the present study was to analyze the role of iNOS-derived NO in HIF-1alpha stabilization and TFF gene expression in damaged gastric mucosa. Aspirin caused gastric injury that peaked 6 h after dosing and returned to normality at 24 h. iNOS mRNA expression occurs in the corpus in parallel with damage. Blockade of iNOS activity did not modify gastric lesions induced by aspirin but delayed mucosal healing. Aspirin induced HIF-1alpha stabilization and TFF2 mRNA up-regulation in the mucosa, but these effects were diminished when iNOS activity was inhibited. Results obtained using a coculture setup showed that iNOS-derived NO from activated macrophages induced HIF-1alpha stabilization, TFF gene expression, and accelerated wound healing in cultured epithelial cells. Finally, transient silencing of endogenous HIF-1alpha in epithelial cells significantly undermined activated macrophage-induced TFF gene expression. Evidence suggests that the iNOS-derived NO associated with NSAID-induced gastric injury is implicated in mucosal restitution via the HIF-1-mediated induction of TFF genes.
Collapse
Affiliation(s)
- Dolores Ortiz-Masiá
- Department of Pharmacology, Faculty of Medicine, University of Valencia, Avda. Blasco Ibáñez 15-17, Valencia, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
53
|
Igwe EI, Essler S, Al-Furoukh N, Dehne N, Brüne B. Hypoxic transcription gene profiles under the modulation of nitric oxide in nuclear run on-microarray and proteomics. BMC Genomics 2009; 10:408. [PMID: 19725949 PMCID: PMC2743718 DOI: 10.1186/1471-2164-10-408] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2009] [Accepted: 09/02/2009] [Indexed: 11/10/2022] Open
Abstract
Background Microarray analysis still is a powerful tool to identify new components of the transcriptosome. It helps to increase the knowledge of targets triggered by stress conditions such as hypoxia and nitric oxide. However, analysis of transcriptional regulatory events remain elusive due to the contribution of altered mRNA stability to gene expression patterns as well as changes in the half-life of mRNAs, which influence mRNA expression levels and their turn over rates. To circumvent these problems, we have focused on the analysis of newly transcribed (nascent) mRNAs by nuclear run on (NRO), followed by microarray analysis. Results We identified 196 genes that were significantly regulated by hypoxia, 85 genes affected by nitric oxide and 292 genes induced by the cotreatment of macrophages with both NO and hypoxia. Fourteen genes (Bnip3, Ddit4, Vegfa, Trib3, Atf3, Cdkn1a, Scd1, D4Ertd765e, Sesn2, Son, Nnt, Lst1, Hps6 and Fxyd5) were common to all treatments but with different levels of expression in each group. We observed that 162 transcripts were regulated only when cells were co-treated with hypoxia and NO but not with either treatment alone, pointing to the importance of a crosstalk between hypoxia and NO. In addition, both array and proteomics data supported a consistent repression of hypoxia-regulated targets by NO. Conclusion By eliminating the interference of steady state mRNA in gene expression profiling, we obtained a smaller number of significantly regulated transcripts in our study compared to published microarray data and identified previously unknown hypoxia-induced targets. Gene analysis profiling corroborated the interplay between NO- and hypoxia-induced signaling.
Collapse
Affiliation(s)
- Emeka I Igwe
- Institute of Biochemistry I/ZAFES, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany.
| | | | | | | | | |
Collapse
|
54
|
Tsuruda T, Hatakeyama K, Masuyama H, Sekita Y, Imamura T, Asada Y, Kitamura K. Pharmacological stimulation of soluble guanylate cyclase modulates hypoxia-inducible factor-1alpha in rat heart. Am J Physiol Heart Circ Physiol 2009; 297:H1274-80. [PMID: 19684186 DOI: 10.1152/ajpheart.00503.2009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mechanical load and ischemia induce a series of adaptive physiological responses by activating the expression of O(2)-regulated genes, such as hypoxia inducible factor-1alpha (HIF-1alpha). The aim of this study was to explore the interaction between HIF-1alpha and soluble guanylate cyclase (sGC) and its second messenger cGMP in cultured cardiomyocytes exposed to hypoxia and in pressure-overloaded heart. In cultured cardiomyocytes of neonatal rats, either sGC stimulator BAY 41-2272 or cGMP analog 8-bromo-cGMP decreased the hypoxia (1% O(2)/5% CO(2))-induced HIF-1alpha expression, whereas the inhibition of protein kinase G by KT-5823 reversed the effect of BAY 41-2272 on the expression under hypoxic conditions. In pressure-overloaded heart induced by suprarenal aortic constriction (AC) in 7-wk-old male Wistar rats, the administration of BAY 41-2272 (2 mg.kg(-1).day(-1)) for 14 days significantly suppressed the protein expression of HIF-1alpha (P < 0.05), vascular endothelial growth factor (P < 0.01), and the number of capillary vessels (P < 0.01) induced by pressure overload. This study suggests that the pharmacological sGC-cGMP stimulation modulates the HIF-1alpha expression in response to hypoxia or mechanical load in the heart.
Collapse
Affiliation(s)
- Toshihiro Tsuruda
- Faculty of Medicine, Department of Internal Medicine, Circulatory and Body Fluid Regulation, University of Miyazaki, Miyazaki, Japan.
| | | | | | | | | | | | | |
Collapse
|
55
|
Torii S, Okamura N, Suzuki Y, Ishizawa T, Yasumoto KI, Sogawa K. Cyclic AMP represses the hypoxic induction of hypoxia-inducible factors in PC12 cells. J Biochem 2009; 146:839-44. [PMID: 19671538 DOI: 10.1093/jb/mvp129] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is a master regulator for hypoxic activation of genes for angiogenesis, hormone synthesis, glycolysis and cell survival. In addition to hypoxic stimulus, various effectors and reagents were reported to affect HIF-1 activity. Here, we show that cyclic AMP (cAMP) down-regulates the HIF-1 activity in pheochromocytoma PC12 cells but not in Hep3B and HeLa cells. Hypoxia response element-dependent reporter activity was decreased by the addition of dibutyryl cAMP. Expression of protein kinase A (PKA) catalytic alpha-subunits repressed the HIF-1 activity. HIF-1alpha and HLF (HIF-2alpha or EPAS1) protein levels were decreased by the treatment with dibutyryl cAMP. Although CREB was served as a negative factor for the HIF-1 activity, it may not be a major PKA target in the cAMP-dependent HIF-alpha repression pathway. Induction of hypoxia responsive genes was suppressed by dibutyryl cAMP. Our results provide additional insight into a regulatory mechanism of hypoxic response.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Torii S, Kobayashi K, Takahashi M, Katahira K, Goryo K, Matsushita N, Yasumoto KI, Fujii-Kuriyama Y, Sogawa K. Magnesium deficiency causes loss of response to intermittent hypoxia in paraganglion cells. J Biol Chem 2009; 284:19077-89. [PMID: 19433582 DOI: 10.1074/jbc.m109.004424] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Magnesium deficiency is suggested to contribute to many age-related diseases. Hypoxia-inducible factor 1alpha (HIF-1alpha) is known to be a master regulator of hypoxic response. Here we show that hypomagnesemia suppresses reactive oxygen species (ROS)-induced HIF-1alpha activity in paraganglion cells of the adrenal medulla and carotid body. In PC12 cells cultured in the low magnesium medium and treated with cobalt chloride (CoCl(2)) or exposed to intermittent hypoxia, ROS-mediated HIF-1alpha activity was suppressed. This suppression was due to up-regulation of inhibitory PAS (Per/Arnt/Sim) domain protein (IPAS) that was caused by NF-kappaB activation, which resulted from ROS and calcium influx mainly through the T-type calcium channels. Induction of tyrosine hydroxylase, a target of HIF-1, by CoCl(2) injection was suppressed in the adrenal medulla of magnesium-deficient mice because of up-regulation of IPAS. Also in the carotid body of magnesium-deficient mice, CoCl(2) and chronic intermittent hypoxia failed to enhance the tyrosine hydroxylase expression. These results demonstrate that serum magnesium levels are a key determinant for ROS-induced hypoxic responses.
Collapse
Affiliation(s)
- Satoru Torii
- Department of Biomolecular Sciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai 980-8578, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Yang GY, Taboada S, Liao J. Induced nitric oxide synthase as a major player in the oncogenic transformation of inflamed tissue. Methods Mol Biol 2009; 512:119-156. [PMID: 19347276 DOI: 10.1007/978-1-60327-530-9_8] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nitric oxide (NO) is a free radical that is involved in the inflammatory process and carcinogenesis. There are four nitric oxide synthase enzymes involved in NO production: induced nitric oxide synthase (iNOS), endothelial NO synthase (eNOS), neural NO synthase (nNOS), and mitochondrial NOS. iNOS is an inducible and key enzyme in the inflamed tissue. Recent literatures indicate that NO as well as iNOS and eNOS can modulate cancer-related events including nitro-oxidative stress, apoptosis, cell cycle, angio-genesis, invasion, and metastasis. This chapter focuses on linking NO/iNOS/eNOS to inflammation and carcinogenesis from experimental evidence to potential targets on cancer prevention and treatment.
Collapse
Affiliation(s)
- Guang-Yu Yang
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | | |
Collapse
|
58
|
Hare GMT, Tsui AKY, McLaren AT, Ragoonanan TE, Yu J, Mazer CD. Anemia and cerebral outcomes: many questions, fewer answers. Anesth Analg 2008; 107:1356-70. [PMID: 18806052 DOI: 10.1213/ane.0b013e318184cfe9] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A number of clinical studies have associated acute anemia with cerebral injury in perioperative patients. Evidence of such injury has been observed near the currently accepted transfusion threshold (hemoglobin [Hb] concentration, 7-8 g/dL), and well above the threshold for cerebral tissue hypoxia (Hb 3-4 g/dL). However, hypoxic and nonhypoxic mechanisms of anemia-induced cerebral injury have not been clearly elucidated. In addition, protective mechanisms which may minimize cerebral injury during acute anemia have not been well defined. Vasodilatory mechanisms, including nitric oxide (NO), may help to maintain cerebral oxygen delivery during anemia as all three NO synthase (NOS) isoforms (neuronal, endothelial, and inducible NOS) have been shown to be up-regulated in different experimental models of acute hemodilutional anemia. Recent experimental evidence has also demonstrated an increase in an important transcription factor, hypoxia inducible factor (HIF)-1alpha, in the cerebral cortex of anemic rodents at clinically relevant Hb concentrations (Hb 6-7 g/dL). This suggests that cerebral oxygen homeostasis may be in jeopardy during acute anemia. Under hypoxic conditions, cytoplasmic HIF-1alpha degradation is inhibited, thereby allowing it to accumulate, dimerize, and translocate into the nucleus to promote transcription of a number of hypoxic molecules. Many of these molecules, including erythropoietin, vascular endothelial growth factor, and inducible NOS have also been shown to be up-regulated in the anemic brain. In addition, HIF-1alpha transcription can be increased by nonhypoxic mediators including cytokines and vascular hormones. Furthermore, NOS-derived NO may also stabilize HIF-1alpha in the absence of tissue hypoxia. Thus, during anemia, HIF-1alpha has the potential to regulate cerebral cellular responses under both hypoxic and normoxic conditions. Experimental studies have demonstrated that HIF-1alpha may have either neuroprotective or neurotoxic capacity depending on the cell type in which it is up-regulated. In the current review, we characterize these cellular processes to promote a clearer understanding of anemia-induced cerebral injury and protection. Potential mechanisms of anemia-induced injury include cerebral emboli, tissue hypoxia, inflammation, reactive oxygen species generation, and excitotoxicity. Potential mechanisms of cerebral protection include NOS/NO-dependent optimization of cerebral oxygen delivery and cytoprotective mechanisms including HIF-1alpha, erythropoietin, and vascular endothelial growth factor. The overall balance of these activated cellular mechanisms may dictate whether or not their up-regulation leads to cytoprotection or cellular injury during anemia. A clearer understanding of these mechanisms may help us target therapies that will minimize anemia-induced cerebral injury in perioperative patients.
Collapse
Affiliation(s)
- Gregory M T Hare
- Department of Anesthesia, University of Toronto, St. Michael's Hospital, 30 Bond Street, Toronto, ON M5B 1W8, Canada.
| | | | | | | | | | | |
Collapse
|
59
|
iNOS as a therapeutic target for treatment of human tumors. Nitric Oxide 2008; 19:217-24. [PMID: 18515106 DOI: 10.1016/j.niox.2008.05.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 05/02/2008] [Accepted: 05/05/2008] [Indexed: 01/25/2023]
Abstract
Nitric oxide synthase (NOS) has been shown to be overexpressed in a number of human tumors compared to normal tissues and therefore potentially represents an exploitable target in future anticancer therapies. To achieve this, there will be a need to profile tumors to identify those expressing high levels of NOS; alternatively, endogenous (low) levels of NOS could be modulated by induction or through gene therapy approaches. NOS consists of a reductase domain which shares a high degree of sequence homology with P450 reductase and this domain supplies reducing equivalents to a haem containing oxygenase domain that is responsible for the production of nitric oxide. Thus, there are a number of routes of exploitation. Firstly, to take advantage of the reductase domain to activate bioreductive drugs as has been exemplified with tirapazamine and now extended to AQ4N (1,4-bis{2-(dimethylamino-N-oxide)ethylamino}5,8-dihydroxy-anthracene-9,10-dione). Secondly, to take advantage of nitric oxide production for its ability to increase the sensitivity of resistant hypoxic cells to radiation. Lastly, to utilize inhibition of HIF-1 to amplify NO based therapies. In this review we provide examples/evidence of how these objectives can be achieved.
Collapse
|
60
|
Martínez-Romero R, Martínez-Lara E, Aguilar-Quesada R, Peralta A, Oliver FJ, Siles E. PARP-1 modulates deferoxamine-induced HIF-1α accumulation through the regulation of nitric oxide and oxidative stress. J Cell Biochem 2008; 104:2248-60. [DOI: 10.1002/jcb.21781] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
61
|
Weigert A, Brüne B. Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 2008; 19:95-102. [PMID: 18486631 DOI: 10.1016/j.niox.2008.04.021] [Citation(s) in RCA: 113] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 04/18/2008] [Indexed: 12/31/2022]
Abstract
Decreased oxygen availability evokes adaptive responses, which are primarily under the gene regulatory control of hypoxia inducible factor-1 (HIF-1). Hypoxic cores of a growing tumor cell mass use this signaling circuit to gain access to further blood and nutrient supply that guarantees their continuing growth. Interestingly, NO shares with hypoxia the ability to block prolyl-hydroxylase (PHD) activity, and thus the ability to stabilize hypoxia inducible factor 1 alpha (HIF-1 alpha). Under these conditions NO mimics hypoxia, which might contribute to tumor development. Stimulating/triggering innate immune responses associated with macrophage activation often correlated with iNOS induction and massive NO release, which is known to kill NO-sensitive tumors. However, this safeguard mechanism will only be effective if all tumor cells are eliminated because apoptotic death of tumor cells implies mechanisms to stop macrophages from attacking the survivors. Apoptotic cells release factors, among others sphingosine-1-phosphate (S1P), which reprogram macrophages. Macrophage reprogramming shifts responses from a M1 and thus pro-inflammatory and killing phenotype, to a M2 phenotype, which is anti-inflammatory and pro-angiogenic. These polarized tumor associated macrophages (TAM) are actively contributing to tumor development. Apparently NO uses distinct signaling pathways that could serve as an explanation to understand how NO affects tumor development. Some of these pathways, especially the ability of NO to mimic hypoxia at the level of HIF-1 alpha, as well as the role of macrophage polarization by apoptotic cells with accompanying changes in the iNOS versus arginase ratio and activities, will be discussed to better understand how NO affects tumor growth.
Collapse
Affiliation(s)
- Andreas Weigert
- Institute of Biochemistry I/ZAFES, Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | |
Collapse
|
62
|
Görlach A, Kietzmann T. Superoxide and derived reactive oxygen species in the regulation of hypoxia-inducible factors. Methods Enzymol 2008; 435:421-46. [PMID: 17998067 DOI: 10.1016/s0076-6879(07)35022-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Superoxide and its derived reactive oxygen species (ROS) have been considered for a long time to be generated as toxic byproducts of metabolic events. More recently, it has been acknowledged that ROS generated in low amounts are also able to act as signaling molecules in a variety of responses. One of the major pathways regulated by the ambient concentration of oxygen relies on the activity of hypoxia-inducible transcription factors (HIF). Originally described to be only induced and activated under hypoxia, accumulating evidence suggests that HIFs play a more general role in the response to a variety of cellular activators and stressors, many of which use ROS as signal transducers. Indeed, ROS have been found to modulate the levels of HIF not only under hypoxia, but also in response to many factors and under different stress conditions. However, the underlying regulatory mechanisms by which superoxide and derived ROS control HIF are only slowly beginning to be elucidated. We summarize here current knowledge about the mechanisms by which ROS can regulate HIF and give additional information about useful methods to determine ROS under various conditions.
Collapse
Affiliation(s)
- Agnes Görlach
- Experimental Pediatric Cardiology, German Heart Center Munich, Munich, Germany
| | | |
Collapse
|
63
|
Ishii K, Shiine M, Shimizu Y, Hoshino SI, Abe H, Sogawa K, Kobayashi N. Control of Photobleaching in Photodynamic Therapy Using the Photodecarbonylation Reaction of Ruthenium Phthalocyanine Complexes via Stepwise Two-Photon Excitation. J Phys Chem B 2008; 112:3138-43. [DOI: 10.1021/jp076118k] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Kazuyuki Ishii
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Masahiko Shiine
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Yoshitaka Shimizu
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Shun-ichi Hoshino
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Hisaku Abe
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Kazuhiro Sogawa
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| | - Nagao Kobayashi
- Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba Meguro-ku, Tokyo 153-8505, Japan, Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan, and Department of Biomolecular Science, Graduate School of Life Sciences, Tohoku University, Sendai 980-8578, Japan
| |
Collapse
|
64
|
Avdagić N, Nakas-Ićindić E, Rasić S, Hadzović-Dzuvo A, Zaciragić A, Valjevac A. The effects of inducible nitric oxide synthase inhibitor L-N6-(1-iminoethyl) lysine in gentamicin-induced acute tubular necrosis in rats. Bosn J Basic Med Sci 2008; 7:345-51. [PMID: 18039194 DOI: 10.17305/bjbms.2007.3025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The aim of this study was to investigate the role of inducible nitric oxide synthase (iNOS) in gentamicin-induced acute tubular necrosis in rats using the iNOS inhibitor L-N6-(1-iminoethyl) lysine (L-NIL). Wistar rats, both sexes (n=18), were equally divided into three groups. Gentamicin group received intraperitoneally (i.p.) gentamicin in 0.9 % NaCl at a dose of 80 mg/kg/day for five consecutive days. L-NIL+gentamicin group received L-NIL at a dose of 3 mg/kg i.p. 36, 24 and 12 h before first dose of gentamicin. Control group received 0.9 % NaCl i.p. for five consecutive days at the equal volume as gentamicin group. Griess reaction was used for determination plasma level of NO. Semiquantitative histological analysis was used for the evaluation of kidney damage level. The plasma NO level and the level of kidney damage were statistically higher in gentamicin group in comparison to the control group (p=0.046). Application of L-NIL prior to gentamicin led to certain decrease in the plasma level of NO as well as in the level of kidney damage. Application of L-NIL, prior to gentamicin administration, did not provide complete protective effects of L-NIL on the kidney, which was demonstrated on kidney sections. The lack of anticipated protective effect of L-NIL on kidney tissue might be explained with the fact that we have used L-NIL prior but not during/after gentamicin administration. It would be necessary to examine the effects of L-NIL administration not only before, but as well during and possibly after the administration of gentamicin.
Collapse
Affiliation(s)
- Nesina Avdagić
- Institute of Physiology and Biochemistry, Faculty of Medicine, University of Sarajevo, Cekalusa 90, 71000 Sarajevo, Bosnia and Herzegovina
| | | | | | | | | | | |
Collapse
|
65
|
Cook KM, Schofield CJ. Therapeutic Strategies that Target the HIF System. Angiogenesis 2008. [DOI: 10.1007/978-0-387-71518-6_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
66
|
Kaluz S, Kaluzová M, Stanbridge EJ. Does inhibition of degradation of hypoxia-inducible factor (HIF) α always lead to activation of HIF? lessons learnt from the effect of proteasomal inhibition on HIF activity. J Cell Biochem 2008; 104:536-44. [DOI: 10.1002/jcb.21644] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
67
|
Hypoxia-inducible factors: Crosstalk between their protein stability and protein degradation. Cancer Lett 2007; 257:145-56. [DOI: 10.1016/j.canlet.2007.08.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2007] [Revised: 08/02/2007] [Accepted: 08/06/2007] [Indexed: 11/21/2022]
|
68
|
Essential factors associated with hepatic angiogenesis. Life Sci 2007; 81:1555-64. [DOI: 10.1016/j.lfs.2007.09.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2007] [Revised: 09/17/2007] [Accepted: 09/25/2007] [Indexed: 01/20/2023]
|
69
|
Wang F, Zhang R, Xia T, Hsu E, Cai Y, Gu Z, Hankinson O. Inhibitory effects of nitric oxide on invasion of human cancer cells. Cancer Lett 2007; 257:274-82. [PMID: 17869411 PMCID: PMC2763642 DOI: 10.1016/j.canlet.2007.08.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2007] [Revised: 08/01/2007] [Accepted: 08/01/2007] [Indexed: 10/22/2022]
Abstract
Hypoxia increased the ability of two human cancer cell lines, PC-3M and T24, to invade through Matrigel, while sodium nitroprusside (SNP), a nitric oxide (NO) donor, strongly inhibited this invasion, along with down-regulating HIF-1alpha. SNP also inhibited the function of mitochondria in PC-3M cells, and mitochondrion-specific inhibitors reduced the invasion of these cells. Furthermore, knocking down either Rieske iron-sulfur protein (Fe-S) of mitochondrial complex III or HIF-1beta in these cells decreased their invasive potential. Our findings suggest that NO inhibits invasion of cancer cells via both inhibition of HIF-1, and impairment of mitochondria.
Collapse
Affiliation(s)
- Feng Wang
- Department of Pathology and Laboratory Medicine, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | |
Collapse
|
70
|
Sumbayev VV, Yasinska IM. Mechanisms of hypoxic signal transduction regulated by reactive nitrogen species. Scand J Immunol 2007; 65:399-406. [PMID: 17444949 DOI: 10.1111/j.1365-3083.2007.01919.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Recent reports devoted to the field of oxygen sensing outline that signalling molecules such as nitric oxide/nitric oxide derived species as well as cytokines and other inflammatory mediators participate in hypoxic signal transduction. In the present review, we summarize the current knowledge about the role of nitric oxide and reactive nitrogen species (RNS) derived from it in hypoxic signal transduction and particularly in accumulation/de-accumulation of hypoxia inducible factor 1 alpha (HIF-1alpha) protein, which is critical not only for cellular adaptation to low oxygen availability but also for generation of inflammatory and innate immune responses. After brief description of nitric oxide and other RNS as multifunctional messengers we analyse and discuss the RNS-dependent accumulation of HIF-1alpha protein under normoxia followed by discussion of the mechanisms of nitric oxide (NO)-dependent enzyme-regulated degradation of HIF-1alpha protein under low oxygen availability.
Collapse
Affiliation(s)
- V V Sumbayev
- Medway School of Pharmacy, University of Kent and Greenwich, Kent, UK.
| | | |
Collapse
|
71
|
Zhao Q, Du J, Gu H, Teng X, Zhang Q, Qin H, Liu N. Effects of YC-1 on hypoxia-inducible factor 1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. Pancreas 2007; 34:242-7. [PMID: 17312464 DOI: 10.1097/01.mpa.0000250135.95144.b6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVES To investigate the effects of 3-(5'-hydroxymethyl-2'-furyl)-1-benzyl indazole (YC-1) on HIF-1-driven transcription activity, cell proliferative vitality, and apoptosis in hypoxic human pancreatic cancer cells. METHODS Human pancreatic cancer PC-3 cells were incubated under normoxic or hypoxic conditions. YC-1 was added to the media with different concentrations. The HIF-1alpha protein expression was detected by means of immunocytochemical staining and Western blotting. Semiquantitative reverse transcriptase polymerase chain reaction was used to determine the mRNA expression of HIF-1alpha, vascular endothelial growth factor (VEGF), and glucose phosphate isomerase (GPI). A 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay and flow cytometry were used to detect the cells' proliferative vitality and apoptosis. RESULTS Hypoxic PC-3 cells expressed a higher level of HIF-alpha protein in nucleus compared with the normoxic controls. When the dose of YC-1 was at 100 micromol/L, the expression location of HIF-alpha shifted from nucleus to cytoplasm. Western blotting revealed that YC-1 reduced the level of HIF-1alpha protein expression, and the inhibitory effect was dose dependent. Moreover, YC-1 dose dependently inhibited mRNA expression levels of VEGF and GPI in hypoxic cells. YC-1 inhibited proliferative vitality and induced apoptosis of hypoxic PC-3 cells in a dose-dependent manner. CONCLUSIONS YC-1 inhibits HIF-1alpha expression in hypoxic pancreatic cancer cells, which is accompanied by the translocation of HIF-1alpha from nucleus to cytoplasm, decreased mRNA expression of VEGF and GPI, reduced cell proliferative vitality, and increased apoptosis. These results suggest that HIF-1 is a potential therapeutic target for pancreatic cancer.
Collapse
Affiliation(s)
- Qiu Zhao
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | | | | | | | | | | | | |
Collapse
|
72
|
Affiliation(s)
- William G. Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115; Howard Hughes Medical Institute, Chevy Chase, Maryland 20815;
| |
Collapse
|
73
|
Abstract
Decreased oxygen availability evokes adaptive responses, which are primarily under the gene regulatory control of hypoxia-inducible factor 1 (HIF-1). HIF-1 is a heterodimer composed of the basic helix-loop-helix Per-ARNT-Sim (bHLH-PAS) protein HIF-1alpha (alpha) and the aryl hydrocarbon nuclear translocator (ARNT), also known as HIF-1beta (beta). The HIF-1 transcriptional system senses decreased oxygen availability and transmits this signal into pathophysiological responses, such as angiogenesis, erythropoiesis, vasomotor control, an altered energy metabolism, and/or cell survival decisions. It is now appreciated that nitric oxide (NO) and/or derived reactive nitrogen species (RNS) participate in stability control of HIF-1alpha. Although initial observations showed that NO inhibits hypoxia-induced HIF-1alpha stabilization and HIF-1 transcriptional activation, later studies revealed that the exposure of cells from different species to chemically diverse NO donors, or conditions of endogenous NO formation, induced HIF-1alpha accumulation, HIF-1-DNA binding, and activation of downstream target gene expression under normoxic conditions. The opposing effects of NO under hypoxia versus normoxia are discussed based on direct and indirect reaction properties of NO, taking metal interactions as well as secondary reaction products, generated in the presence of oxygen or superoxide, into account. Considering HIF-1alpha as a target that is controlled by the bioavailability of NO helps in the understanding of how signaling mechanisms are attributed to physiological and pathological transmission of NO actions with broad implications for medicine.
Collapse
|
74
|
Abstract
Neovascularization, the natural physiological process of formation of new blood vessels, is extremely important for ameliorating the function of the heart that undergoes ischemic stress. This process is potentially important for the treatment of ischemic heart and limb diseases, which includes formation of capillaries (angiogenesis) and collateral arteries. Ischemia or coronary artery occlusion induces vascular endothelial growth factor (VEGF) in the experimental rat myocardial infarction model, and this molecule encourages development of coronary collateral circulation and retention of the blood supply to the ischemic area. Restoration of the blood supply to the ischemic area prevents cardiomyocyte death and cardiac remodeling. Among the various triggers and enhancers of angiogenesis, hypoxic or ischemic preconditioning, as well as pharmacologic agents such as statin and resveratrol, have been identified as important stimuli for the induction of new vessel growth. It has already been demonstrated that the VEGF family and its receptor system is the fundamental regulator in the redox cell signaling of angiogenesis. This review article will focus on the role of reactive oxygen species in the process of myocardial angiogenesis.
Collapse
Affiliation(s)
- Nilanjana Maulik
- Molecular Cardiology and Angiogenesis Laboratory, Department of Surgery, University of Connecticut Medical Center, Farmington, Connecticut 06030-1110, USA.
| |
Collapse
|
75
|
Berchner-Pfannschmidt U, Yamac H, Trinidad B, Fandrey J. Nitric oxide modulates oxygen sensing by hypoxia-inducible factor 1-dependent induction of prolyl hydroxylase 2. J Biol Chem 2006; 282:1788-96. [PMID: 17060326 DOI: 10.1074/jbc.m607065200] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The transcription factor complex hypoxia-inducible factor 1 (HIF-1) plays a crucial role in cellular adaptation to low oxygen availability. O(2)-dependent HIF prolyl hydroxylases (PHDs) modify HIF-1alpha, which is sent to proteasomal degradation under normoxia. Reduced activity of PHDs under hypoxia allows stabilization of HIF-1alpha and induction of HIF-1 target gene expression. Like hypoxia, nitric oxide (NO) was found to inhibit normoxic PHD activity leading to HIF-1alpha accumulation. In contrast under hypoxia, NO reduced HIF-1alpha levels due to enhanced PHD activity. Herein, we studied the role of NO in regulating PHD expression and the consequences thereof for HIF-1alpha degradation. We report a biphasic response of HIF-1alpha and PHDs to NO treatment both under normoxia and hypoxia. In the early phase, NO inhibits PHD activity that leads to HIF-1alpha accumulation, whereas in the late phase, increased PHD levels reduce HIF-1alpha. NO induces expression of PHD2 and -3 mRNA and protein under normoxia and hypoxia in a strictly HIF-1-dependent manner. NO-treated cells with elevated PHD levels displayed delayed HIF-1alpha accumulation and accelerated degradation of HIF-1alpha upon reoxygenation. Subsequent suppression of PHD2 and -3 expression using small interfering RNA revealed that PHD2 was exclusively responsible for regulating HIF-1alpha degradation under NO treatment. In conclusion, we identified the induction of PHD2 as an underlying mechanism of NO-induced degradation of HIF-1alpha.
Collapse
|
76
|
Abstract
AbstractSufficient oxygen supply is crucial for the development and physiology of mammalian cells and tissues. When simple diffusion of oxygen becomes inadequate to provide the necessary flow of substrate, evolution has provided cells with tools to detect and respond to hypoxia by upregulating the expression of specific genes, which allows an adaptation to hypoxia-induced stress conditions. The modulation of cell signaling by hypoxia is an emerging area of research that provides insight into the orchestration of cell adaptation to a changing environment. Cell signaling and adaptation processes are often accompanied by rapid and/or chronic remodeling of membrane lipids by activated lipases. This review highlights the bi-directional relation between hypoxia and lipid signaling mechanisms.
Collapse
Affiliation(s)
- Andrea Huwiler
- Pharmazentrum Frankfurt, Klinikum der Johann-Wolfgang-Goethe-Universität, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | | |
Collapse
|
77
|
McLaren AT, Marsden PA, Mazer CD, Baker AJ, Stewart DJ, Tsui AKY, Li X, Yucel Y, Robb M, Boyd SR, Liu E, Yu J, Hare GMT. Increased expression of HIF-1alpha, nNOS, and VEGF in the cerebral cortex of anemic rats. Am J Physiol Regul Integr Comp Physiol 2006; 292:R403-14. [PMID: 16973934 DOI: 10.1152/ajpregu.00403.2006] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
This study tested the hypothesis that specific hypoxic molecules, including hypoxia-inducible factor-1alpha (HIF-1alpha), neuronal nitric oxide synthase (nNOS), and vascular endothelial growth factor (VEGF), are upregulated within the cerebral cortex of acutely anemic rats. Isoflurane-anesthetized rats underwent acute hemodilution by exchanging 50% of their blood volume with pentastarch. Following hemodilution, mean arterial pressure and arterial Pa(O(2)) values did not differ between control and anemic rats while the hemoglobin concentration decreased to 57 +/- 2 g/l. In anemic rats, cerebral cortical HIF-1alpha protein levels were increased, relative to controls (1.7 +/- 0.5-fold, P < 0.05). This increase was associated with an increase in mRNA levels for VEGF, erythropoietin, CXCR4, iNOS, and nNOS (P < 0.05 for all), but not endothelial NOS. Cerebral cortical nNOS and VEGF protein levels were increased in anemic rats, relative to controls (2.0 +/- 0.2- and 1.5 +/- 0.4-fold, respectively, P < 0.05 for both). Immunohistochemistry demonstrated increased HIF-1alpha and VEGF staining in perivascular regions of the anemic cerebral cortex and an increase in the number of nNOS-positive cerebral cortical cells (3.2 +/- 1.0-fold, P < 0.001). The nNOS-positive cells costained with the neuronal marker, Neu-N, but not with the astrocytic marker glial fibrillary acidic protein (GFAP). These nNOS-positive neurons frequently sent axonal projections toward cerebral blood vessels. Conversely, VEGF immunostaining colocalized with both neuronal (NeuN) and astrocytic markers (GFAP). In conclusion, acute normotensive, normoxemic hemodilution increased the levels of HIF-1alpha protein and mRNA for HIF-1-responsive molecules. nNOS and VEGF protein levels were also increased within the cerebral cortex of anemic rats at clinically relevant hemoglobin concentrations.
Collapse
Affiliation(s)
- Anya T McLaren
- Department of Anesthesia, Cara Phelan Trauma Research Centre, University of Toronto, St. Michael's Hospital, 30 Bond St., Toronto, Ontario, M5B 1W8, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Hoffman DL, Salter JD, Brookes PS. Response of mitochondrial reactive oxygen species generation to steady-state oxygen tension: implications for hypoxic cell signaling. Am J Physiol Heart Circ Physiol 2006; 292:H101-8. [PMID: 16963616 DOI: 10.1152/ajpheart.00699.2006] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mitochondria are proposed to play an important role in hypoxic cell signaling. One currently accepted signaling paradigm is that the mitochondrial generation of reactive oxygen species (ROS) increases in hypoxia. This is paradoxical, because oxygen is a substrate for ROS generation. Although the response of isolated mitochondrial ROS generation to [O(2)] has been examined previously, such investigations did not apply rigorous control over [O(2)] within the hypoxic signaling range. With the use of open-flow respirometry and fluorimetry, the current study determined the response of isolated rat liver mitochondrial ROS generation to defined steady-state [O(2)] as low as 0.1 microM. In mitochondria respiring under state 4 (quiescent) or state 3 (ATP turnover) conditions, decreased ROS generation was always observed at low [O(2)]. It is concluded that the biochemical mechanism to facilitate increased ROS generation in response to hypoxia in cells is not intrinsic to the mitochondrial respiratory chain alone but may involve other factors. The implications for hypoxic cell signaling are discussed.
Collapse
Affiliation(s)
- David L Hoffman
- Box 604 Anesthesiology, Univ. of Rochester Medical Center, 601 Elmwood Ave., Rochester, NY 14642, USA
| | | | | |
Collapse
|
79
|
Nagle DG, Zhou YD. Natural product-derived small molecule activators of hypoxia-inducible factor-1 (HIF-1). Curr Pharm Des 2006; 12:2673-88. [PMID: 16842166 PMCID: PMC2907550 DOI: 10.2174/138161206777698783] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key mediator of oxygen homeostasis that was first identified as a transcription factor that is induced and activated by decreased oxygen tension. Upon activation, HIF-1 upregulates the transcription of genes that promote adaptation and survival under hypoxic conditions. HIF-1 is a heterodimer composed of an oxygen-regulated subunit known as HIF-1alpha and a constitutively expressed HIF-1beta subunit. In general, the availability and activity of the HIF-1alpha subunit determines the activity of HIF-1. Subsequent studies have revealed that HIF-1 is also activated by environmental and physiological stimuli that range from iron chelators to hormones. Preclinical studies suggest that HIF-1 activation may be a valuable therapeutic approach to treat tissue ischemia and other ischemia/hypoxia-related disorders. The focus of this review is natural product-derived small molecule HIF-1 activators. Natural products, relatively low molecular weight organic compounds produced by plants, animals, and microbes, have been and continue to be a major source of new drugs and molecular probes. The majority of known natural product-derived HIF-1 activators were discovered through the pharmacological evaluation of specifically selected individual compounds. On the other hand, the combination of natural products chemistry with appropriate high-throughput screening bioassays may yield novel natural product-derived HIF-1 activators. Potent natural product-derived HIF-1 activators that exhibit a low level of toxicity and side effects hold promise as new treatment options for diseases such as myocardial and peripheral ischemia, and as chemopreventative agents that could be used to reduce the level of ischemia/reperfusion injury following heart attack and stroke.
Collapse
Affiliation(s)
- Dale G. Nagle
- Joint Corresponding Authors to whom correspondence should be addressed. Dale G. Nagle: Tel. (662) 915-7026. Fax: (662) 915-6975. . Yu-Dong Zhou: Tel: (662) 915-1577. Fax: (662) 915-7062.
| | - Yu-Dong Zhou
- Joint Corresponding Authors to whom correspondence should be addressed. Dale G. Nagle: Tel. (662) 915-7026. Fax: (662) 915-6975. . Yu-Dong Zhou: Tel: (662) 915-1577. Fax: (662) 915-7062.
| |
Collapse
|
80
|
Sumbayev VV, Yasinska IM. Peroxynitrite as an alternative donor of oxygen in HIF-1alpha proline hydroxylation under low oxygen availability. Free Radic Res 2006; 40:631-5. [PMID: 16753841 DOI: 10.1080/10715760600649648] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
In the last years, nitric oxide (NO) mediated signaling became an integral component in understanding physiological and pathophysiological processes of cell proliferation, death or cellular adaptation. Among other activities, NO affects multiple targets that allow regulation of gene expression. Recently, NO was found to attenuate accumulation of hypoxia inducible factor-1alpha (HIF-1alpha) under hypoxic conditions because of several mechanisms: redistribution of oxygen toward non-respiratory oxygen-dependent targets (like HIF-1alpha proline hydroxylases--PHDs, which perform hydroxylation of Pro402/564 of HIF-1alpha leading to its proteasomal degradation); in addition, peroxynitrite formed during interactions between NO and mitochondria derived superoxide leads to an increase in cytosolic iron/2-oxoglutarate (2-OG), which required for PHD activation. Here, we propose a hypothesis that peroxynitrite, formed in the cells upon exposure to NO under low oxygen availability, serves as an alternative donor of oxygen for activated PHDs so they can perform HIF-1alpha proline hydroxylation to de-accumulate the protein.
Collapse
Affiliation(s)
- Vadim V Sumbayev
- Department of Biochemistry, Mechnikov Odessa National University, Odessa, Ukraine.
| | | |
Collapse
|
81
|
Abstract
Nitric oxide (NO) and nitric oxide synthases are ubiquitous in malignant tumours and are known to exert both pro- and anti-tumour effects. We summarize our current understanding of the role of NO in tumour progression, especially in relation to angiogenesis and vascular functions. We also discuss potential strategies for cancer treatment that modulate NO production and/or its downstream signalling pathways.
Collapse
Affiliation(s)
- Dai Fukumura
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts 02114, USA.
| | | | | |
Collapse
|
82
|
Natarajan R, Jones DG, Fisher BJ, Wallace TJ, Ghosh S, Fowler AA. Hypoxia inducible factor-1: regulation by nitric oxide in posthypoxic microvascular endothelium. Biochem Cell Biol 2006; 83:597-607. [PMID: 16234848 DOI: 10.1139/o05-047] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microvascular endothelial cells provide a critical regulatory interface between blood constituents and tissue. Hypoxia inducible factor-1 (HIF-1) is a key transcription factor required for expression of hypoxia-dependent genes. We employed a model of hypoxia and reoxygenation (H/R) using the dermal microvascular endothelial cell line HMEC-1 to examine the effects of altered oxygen concentrations on microvascular HIF-1 expression and nitric oxide (NO) formation. Hypoxia increased inducible NO synthase (iNOS) mRNA in a time-dependent manner in HMEC-1. However, endothelial NO synthase mRNA progressively declined during hypoxia. H/R promoted significant increases in cellular nitrite levels that were significantly abrogated by the specific iNOS inhibitor N6-(1-iminoethyl)-L-lysine, di hy drochloride. Exogenous NO promoted stabilization of the alpha subunit of HIF-1 and produced functional DNA binding. Exposure of HMEC-1 to H/R resulted in previously unrecognized biphasic HIF-1alpha stabilization during reoxygenation. When the iNOS gene was silenced through the use of iNOS-specific small interfering RNA, HIF-1alpha stabilization and HIF-1 activation were dramatically diminished, suggesting that inducible NOS-derived NO is a key factor sustaining HIF-1 activation during both hypoxia and reoxygenation.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Center for Vascular Inflammation Research, Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Box 980050, Virginia CommonwealthUniversity, Richmond, VA 23298, USA.
| | | | | | | | | | | |
Collapse
|
83
|
Fujiuchi S, Yamazaki Y, Fujita Y, Nishigaki Y, Taked A, Yamamoto Y, Fijikane T, Shimizu T, Osanai S, Takahashi T, Kikuchi K. S-nitrosoglutathione (SNOG) accumulates hypoxia inducible factor-l alpha in main pulmonary artery endothelial cells but not in micro pulmonary vessel endothelial cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 580:63-71; discussion 351-9. [PMID: 16683699 DOI: 10.1007/0-387-31311-7_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Affiliation(s)
- S Fujiuchi
- Department of Clinical Research, Dohoku National Hospital, National Hospital Organization, 7 chome Hanasaki , Asahikawa 070-8644, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Köhl R, Zhou J, Brüne B. Reactive oxygen species attenuate nitric-oxide-mediated hypoxia-inducible factor-1alpha stabilization. Free Radic Biol Med 2006; 40:1430-42. [PMID: 16631533 DOI: 10.1016/j.freeradbiomed.2005.12.012] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2005] [Revised: 12/12/2005] [Accepted: 12/13/2005] [Indexed: 01/20/2023]
Abstract
Tissue hypoxia/ischemia are major pathophysiological determinants. Conditions of decreased oxygen availability provoke accumulation and activation of hypoxia-inducible factor-1 (HIF-1). Recent reports demonstrate a crucial role of HIF-1 for inflammatory events. Regulation of hypoxic responses by the inflammatory mediators nitric oxide (NO) and reactive oxygen species (ROS) is believed to be of pathophysiolgical relevance. It is reported that hypoxic stabilization of HIF-1alpha can be antagonized by NO due to its ability to attenuate mitochondrial electron transport. Likely, the formation of ROS could contribute to this effect. As conflicting results emerged from several studies showing either decreased or increased ROS production during hypoxia, we used experiments mimicking hypoxic intracellular ROS changes by using the redox cycling agent 2,3-dimethoxy-1,4-naphthoquinone (DMNQ), which generates superoxide inside cells. Treatment of A549, HEK293, HepG2, and COS cells with DMNQ resulted in a concentration-dependent raise in ROS which correlated with HIF-1alpha accumulation. By using a HIF-1alpha-von Hippel-Lindau tumor suppressor protein binding assay, we show that ROS produced by DMNQ impaired prolyl hydroxylase activity. When HIF-1alpha is stabilized by NO, low concentrations of DMNQ (<1 microM) revealed no effect, intermediate concentrations of 1 to 40 microM DMNQ attenuated HIF-1alpha accumulation and higher concentrations of DMNQ promoted HIF-1alpha stability. Attenuation of NO-induced HIF-1alpha stability regulation by ROS was mediated by an active proteasomal degradation pathway. In conclusion, we propose that scavenging of NO by ROS and vice versa attenuate HIF-1alpha accumulation in a concentration-dependent manner. This is important to fully elucidate HIF-1alpha regulation under inflammatory conditions.
Collapse
Affiliation(s)
- Roman Köhl
- Institute of Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe-University, Frankfurt, Germany
| | | | | |
Collapse
|
85
|
Castello PR, David PS, McClure T, Crook Z, Poyton RO. Mitochondrial cytochrome oxidase produces nitric oxide under hypoxic conditions: implications for oxygen sensing and hypoxic signaling in eukaryotes. Cell Metab 2006; 3:277-87. [PMID: 16581005 DOI: 10.1016/j.cmet.2006.02.011] [Citation(s) in RCA: 354] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2005] [Revised: 11/17/2005] [Accepted: 02/17/2006] [Indexed: 11/18/2022]
Abstract
Eukaryotic cells respond to low-oxygen concentrations by upregulating hypoxic nuclear genes (hypoxic signaling). Although it has been shown previously that the mitochondrial respiratory chain is required for hypoxic signaling, its underlying role in this process has been unclear. Here, we find that yeast and rat liver mitochondria produce nitric oxide (NO) at dissolved oxygen concentrations below 20 microM. This NO production is nitrite (NO2-) dependent, requires an electron donor, and is carried out by cytochrome c oxidase in a pH-dependent fashion. Mitochondrial NO production in yeast is influenced by the YHb flavohemoglobin NO oxidoreductase, stimulates expression of the hypoxic nuclear gene CYC7, and is accompanied by an increase in protein tyrosine nitration. These findings demonstrate an alternative role for the mitochondrial respiratory chain under hypoxic or anoxic conditions and suggest that mitochondrially produced NO is involved in hypoxic signaling, possibly via a pathway that involves protein tyrosine nitration.
Collapse
Affiliation(s)
- Pablo R Castello
- The Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, Colorado 80309, USA
| | | | | | | | | |
Collapse
|
86
|
Tuncer MC, Hatipoglu ES, Ozturk H, Kervancioglu P, Buyukbayram H. The Effects of L-Arginine on Neurological Function, Histopathology, and Expression of Hypoxia-Inducible Factor-1 Alpha following Spinal Cord Ischemia in Rats. Eur Surg Res 2006; 37:323-9. [PMID: 16465055 DOI: 10.1159/000090331] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2005] [Accepted: 10/27/2005] [Indexed: 11/19/2022]
Abstract
The aim of this study was to investigate the effects of L-arginine (L-Arg) on neurological function, histopathology, and expression of hypoxia-inducible factor-1 alpha (HIF-1alpha) following spinal cord ischemia in rats, and the interaction between therapy with the nitric oxide donor L-Arg and up-regulation of the expression of HIF-1alpha. Thirty Wistar rats weighing between 200 and 250 g were divided into three groups, each containing 10 rats: group 1, sham operation; group 2, untreated ischemia-reperfusion (I-R); group 3, I-R plus L-Arg treatment. Spinal cord ischemia was applied for 20 min. There were no significant differences in mean arterial pressures, temperatures, and blood gas levels among the groups. In group 2, malondialdehyde values were significantly increased compared with groups 1 and 3. The rats with aortic occlusion in group 2 had paraplegia or paraparesis. In group 3, all animals were neurologically intact. In group 3, spinal motor neurons did not decrease significantly, and little proliferation of microglia was observed compared with those in group 2. In group 2, spinal motor neurons in ventral gray matter decreased significantly compared with those in groups 1 and 3. HIF-1alpha-positive immunostaining was mildly detected in group 2 animals. The expression of immunoreactive cells was intensely increased in spinal cord tissue from I-R/L-Arg rats. In conclusion, our findings suggest that HIF-1alpha-positive immunostaining may be critical factors in the pathophysiology of inflammatory spinal cord injury induced by I-R. Nitric oxide may play an important role in the immunohistochemical expression of these molecules, and the neuroprotective benefit of L-Arg may be attributed to preventing neural cell necrosis.
Collapse
Affiliation(s)
- M Cudi Tuncer
- Department of Anatomy, Dicle University, Medical School, Diyarbakir, Turkey.
| | | | | | | | | |
Collapse
|
87
|
Zhou J, Köhl R, Herr B, Frank R, Brüne B. Calpain mediates a von Hippel-Lindau protein-independent destruction of hypoxia-inducible factor-1alpha. Mol Biol Cell 2006; 17:1549-58. [PMID: 16421254 PMCID: PMC1415322 DOI: 10.1091/mbc.e05-08-0770] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hypoxia-inducible factor 1 (HIF-1) is controlled through stability regulation of its alpha subunit, which is expressed under hypoxia but degraded under normoxia. Degradation of HIF-1alpha requires association of the von Hippel Lindau protein (pVHL) to provoke ubiquitination followed by proteasomal digestion. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha under normoxia but destabilizes the protein under hypoxia. To understand the role of NO under hypoxia we made use of pVHL-deficient renal carcinoma cells (RCC4) that show a high steady state HIF-1alpha expression under normoxia. Exposing RCC4 cells to hypoxia in combination with the NO donor DETA-NO (2,2'-(hydroxynitrosohydrazono) bis-ethanimine), but not hypoxia or DETA-NO alone, decreased HIF-1alpha protein and attenuated HIF-1 transactivation. Mechanistically, we noticed a role of calpain because calpain inhibitors reversed HIF-1alpha degradation. Furthermore, chelating intracellular calcium attenuated HIF-1alpha destruction by hypoxia/DETA-NO, whereas a calcium increase was sufficient to lower the amount of HIF-1alpha even under normoxia. An active role of calpain in lowering HIF-1alpha amount was also evident in pVHL-containing human embryonic kidney cells when the calcium pump inhibitor thapsigargin reduced HIF-1alpha that was stabilized by the prolyl hydroxylase inhibitor dimethyloxalylglycine (DMOG). We conclude that calcium contributes to HIF-1alpha destruction involving the calpain system.
Collapse
Affiliation(s)
- Jie Zhou
- Institute of Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe-University Frankfurt, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
88
|
Milkiewicz M, Ispanovic E, Doyle JL, Haas TL. Regulators of angiogenesis and strategies for their therapeutic manipulation. Int J Biochem Cell Biol 2005; 38:333-57. [PMID: 16309946 DOI: 10.1016/j.biocel.2005.10.006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Revised: 10/05/2005] [Accepted: 10/11/2005] [Indexed: 12/19/2022]
Abstract
Angiogenesis provides a mechanism by which delivery of oxygen and nutrients is adapted to compliment changes in tissue mass or metabolic activity. However, maladaptive angiogenesis is integral to the process of several diseases common in Western countries, including tumor growth, vascular insufficiency, diabetic retinopathy and rheumatoid arthritis. Understanding the process of capillary growth, including the identification and functional analyses of key pro- and anti-angiogenic factors, provides knowledge that can be applied to improve/reverse these pathological states. Initially, angiogenesis research focused predominantly on vascular endothelial growth factor (VEGF) as a main player in the angiogenesis cascade. It is apparent now that participation of multiple angiogenic factors and signal pathways is critical to enable effective growth and maturation of nascent capillaries. The purpose of this review is to focus on recent progress in identifying angiogenesis signaling pathways that show promise as targets for successful induction or inhibition of capillary growth. The strategies applied to achieve these contradictory tasks are discussed within the framework of our existing fundamental knowledge of angiogenesis signaling cascades, with an emphasis on comparing the employment of distinctive tactics in modulation of these pathways. Innovative developments that are presented include: (1) inducing a pleiotropic response via activation or inhibition of angiogenic transcription factors; (2) modulation of nitric oxide tissue concentration; (3) manipulating the kallikrein-kinin system; (4) use of endothelial progenitor cells as a means to either directly contribute to capillary growth or to be used as a vehicle to deliver "suicide genes" to tumor tissue.
Collapse
Affiliation(s)
- Malgorzata Milkiewicz
- School of Kinesiology and Health Sciences, York University, Toronto, Ont. M3J 1P3, Canada
| | | | | | | |
Collapse
|
89
|
Yeung HY, Lai KP, Chan HY, Mak NK, Wagner GF, Wong CKC. Hypoxia-inducible factor-1-mediated activation of stanniocalcin-1 in human cancer cells. Endocrinology 2005; 146:4951-60. [PMID: 16109785 DOI: 10.1210/en.2005-0365] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Stanniocalcin-1 (STC1) is an endocrine hormone originally discovered in the corpuscles of Stannius, endocrine glands on kidneys of bony fishes, and also has been identified in mammals. The mammalian STC1 gene is widely expressed in various tissues and appears to be involved in diverse biological processes. There is growing evidence to suggest that altered patterns of gene expression have a role in human cancer development. Recently STC1 has been identified as a stimulator of mitochondrial respiration and has been hypothesized to be functionally related to the Warburg effect, of which hypoxia-inducible factor (HIF)-1 plays a key role in reprogramming tumor metabolism. This prompted us to examine the involvement of HIF-1 in the regulation of STC1 expression in tumor hypoxia. Our data reveal that hypoxia can stimulate STC1 gene expression in various human cancer cell lines, including those derived from colon carcinomas, nasopharyngeal cancer (CNE-2, HONE-1, HK-1), and ovarian cancer (CaOV3, OVCAR3, SKOV3). By far, the greatest response was observed in CNE-2 cells. In further studies on CNE-2 cells, desferrioxamine, cobalt chloride, and O(2) depletion all increased HIF-1alpha protein and STC1 mRNA levels. Desferrioxamine treatment, when coupled with Fe replenishment, abolished these effects. RNA interference studies further confirmed that endogenous HIF-1alpha was a key factor in hypoxia-induced STC1 expression. The ability of vascular endothelial growth factor to stimulate STC1 expression in CNE-2 cells was comparatively low. Collectively, the present findings provide the first evidence of HIF-1 regulation of STC1 expression in human cancer cells. The studies have implications as to the role of STC1 in hypoxia induced adaptive responses in tumor cells.
Collapse
Affiliation(s)
- Ho Y Yeung
- Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong
| | | | | | | | | | | |
Collapse
|
90
|
Abstract
The hypoxia-inducible factor 1 (HIF-1) was initially identified as a transcription factor that regulated erythropoietin gene expression in response to a decrease in oxygen availability in kidney tissue. Subsequently, a family of oxygen-dependent protein hydroxylases was found to regulate the abundance and activity of three oxygen-sensitive HIFalpha subunits, which, as part of the HIF heterodimer, regulated the transcription of at least 70 different effector genes. In addition to responding to a decrease in tissue oxygenation, HIF is proactively induced, even under normoxic conditions, in response to stimuli that lead to cell growth, ultimately leading to higher oxygen consumption. The growing cell thus profits from an anticipatory increase in HIF-dependent target gene expression. Growth stimuli-activated signaling pathways that influence the abundance and activity of HIFs include pathways in which kinases are activated and pathways in which reactive oxygen species are liberated. These pathways signal to the HIF protein hydroxylases, as well as to HIF itself, by means of covalent or redox modifications and protein-protein interactions. The final point of integration of all of these pathways is the hypoxia-response element (HRE) of effector genes. Here, we provide comprehensive compilations of the known growth stimuli that promote increases in HIF abundance, of protein-protein interactions involving HIF, and of the known HIF effector genes. The consensus HRE derived from a comparison of the HREs of these HIF effectors will be useful for identification of novel HIF target genes, design of oxygen-regulated gene therapy, and prediction of effects of future drugs targeting the HIF system.
Collapse
Affiliation(s)
- Roland H Wenger
- Institute of Physiology, Center for Integrative Human Physiology, University of Zürich, CH-8057 Zürich, Switzerland.
| | | | | |
Collapse
|
91
|
Callapina M, Zhou J, Schmid T, Köhl R, Brüne B. NO restores HIF-1alpha hydroxylation during hypoxia: role of reactive oxygen species. Free Radic Biol Med 2005; 39:925-36. [PMID: 16140212 DOI: 10.1016/j.freeradbiomed.2005.05.009] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2004] [Revised: 05/02/2005] [Accepted: 05/09/2005] [Indexed: 12/24/2022]
Abstract
The activity of hypoxia-inducible factor 1 (HIF-1) is primarily determined by stability regulation of its alpha subunit, which is stabilized under hypoxia but degraded during normoxia. Hydroxylation of HIF-1alpha by prolyl hydroxylases (PHDs) recruits the von Hippel-Lindau (pVHL) E3 ubiquitin ligase complex to initiate proteolytic destruction of the alpha subunit. Hypoxic stabilization of HIF-1alpha has been reported to be antagonized by nitric oxide (NO). By using a HIF-1alpha-pVHL binding assay, we show that NO released from DETA-NO restored prolyl hydroxylase activity under hypoxia. Destabilization of HIF-1alpha by DETA-NO was reversed by free radical scavengers such as NAC and Tiron, thus pointing to the involvement of reactive oxygen species (ROS). Therefore, we examined the effects of ROS on HIF-1alpha stabilization. Treatment of cells under hypoxia with low concentrations of the superoxide generator 2,3-dimethoxy-1,4-naphthoquinone lowered HIF-1alpha protein stabilization. In vitro HIF-1alpha-pVHL interaction assays demonstrated that low-level ROS formation increased prolyl hydroxylase activity, an effect antagonized by ROS scavengers. While determining intracellular ROS formation we noticed that reduced ROS production under hypoxia was restored by the addition of DETA-NO. We propose that an increase in ROS formation contributes to HIF-1alpha destabilization by NO donors under hypoxia via modulation of PHD activity.
Collapse
Affiliation(s)
- Melvin Callapina
- Institute of Biochemistry I, Faculty of Medicine, Johann Wolfgang Goethe-University, 60590 Frankfurt, Germany
| | | | | | | | | |
Collapse
|
92
|
Abstract
Hypoxia-inducible factor (HIF) is a master transcriptional regulator of hypoxia-inducible genes and consists of a labile alpha subunit (such as HIF1alpha) and a stable beta subunit (such as HIF1beta or ARNT). In the presence of oxygen, HIFalpha family members are hydroxylated on one of two conserved prolyl residues by members of the egg-laying-defective nine (EGLN) family. Prolyl hydroxylation generates a binding site for a ubiquitin ligase complex containing the von Hippel-Lindau (VHL) tumor suppressor protein, which results in HIFalpha destruction. In addition, the HIFalpha transcriptional activation function is modulated further by asparagine hydroxylation by FIH (factor-inhibiting HIF), which affects recruitment of the coactivators p300 and CBP. These findings provide new mechanistic insights into oxygen sensing by metazoans and are the first examples of protein hydroxylation being used in intracellular signaling. The existence of three human EGLN family members, as well as other putative hydroxylases, raises the possibility that this signal is used in other contexts by other proteins.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA.
| |
Collapse
|
93
|
Bárdos JI, Ashcroft M. Negative and positive regulation of HIF-1: a complex network. Biochim Biophys Acta Rev Cancer 2005; 1755:107-20. [PMID: 15994012 DOI: 10.1016/j.bbcan.2005.05.001] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2004] [Revised: 05/27/2005] [Accepted: 05/31/2005] [Indexed: 10/25/2022]
Abstract
Hypoxia inducible factor-1 (HIF-1) is as a key transcriptional mediator of the hypoxic response in eukaryotic cells, regulating the expression of a myriad of genes involved in oxygen transport, glucose uptake and glycolysis and angiogenesis. Deregulation of HIF-1 activity occurs in many human cancers, usually at the level of the HIF-1alpha subunit. HIF-1 is regulated by a variety of mechanisms including transcription, translation post-translational modification, protein-protein interaction and degradation. Our understanding of the key signalling pathways that regulate HIF-1 has significantly progressed in recent years and has highlighted the potential for targeting the HIF-1 pathway as a basis for the development of new cancer therapies.
Collapse
Affiliation(s)
- Julia I Bárdos
- Cell Growth Regulation and Angiogenesis Laboratory, Cancer Research UK, Centre for Cancer Therapeutics, The Institute of Cancer Research, 15 Cotswold Road, Sutton SM2 5NG, UK
| | | |
Collapse
|
94
|
Hellwig-Bürgel T, Stiehl DP, Wagner AE, Metzen E, Jelkmann W. Review: hypoxia-inducible factor-1 (HIF-1): a novel transcription factor in immune reactions. J Interferon Cytokine Res 2005; 25:297-310. [PMID: 15957953 DOI: 10.1089/jir.2005.25.297] [Citation(s) in RCA: 206] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a dimeric transcriptional complex that has been recognized primarily for its role in the maintenance of oxygen and energy homoeostasis. The HIF-1alpha subunit is O(2) labile and is degraded by the proteasome following prolyl-hydroxylation and ubiquitination in normoxic cells. The present review summarizes evidence that HIF-1 is also involved in immune reactions. Immunomodulatory peptides, including interleukin-1 (IL-1) and tumor necrosis factor-alpha (TNF-alpha), stimulate HIF-1 dependent gene expression even in normoxic cells. Both the hypoxic and the cytokine-induced activation of HIF-1 involve the phosphatidylinositol- 3-kinase (PI3K) and the mitogen-activated protein kinase (MAPK) signaling pathways. In addition, heat shock proteins (HSP) and other cofactors interact with HIF-1 subunits. HIF-1 increases the transcription of several genes for proteins that promote blood flow and inflammation, including vascular endothelial growth factor (VEGF), heme oxygenase-1, endothelial and inducible nitric oxide synthase (NOS) and cyclooxygenase-2 (COX-2). The pharmacologic activation of the HIF-1 complex can be desirable in ischemic and inflammatory disorders. In contrast, HIF-1 blockade may be beneficial to prevent tumor angiogenesis and tumor growth.
Collapse
|
95
|
Hirota K, Semenza GL. Regulation of hypoxia-inducible factor 1 by prolyl and asparaginyl hydroxylases. Biochem Biophys Res Commun 2005; 338:610-6. [PMID: 16154531 DOI: 10.1016/j.bbrc.2005.08.193] [Citation(s) in RCA: 180] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2005] [Accepted: 08/25/2005] [Indexed: 11/26/2022]
Abstract
Hypoxia-inducible factor 1 (HIF-1) functions as a master regulator of oxygen homeostasis by mediating a wide range of cellular and systemic adaptive physiological responses to reduced oxygen availability. In this review, we will summarize recent progress in elucidating the molecular mechanisms of HIF-1 activation, focusing on the role of oxygen-dependent prolyl and asparaginyl hydroxylases in hypoxia signal transduction.
Collapse
Affiliation(s)
- Kiichi Hirota
- Department of Anesthesia, Kyoto University Hospital, Kyoto University, Kyoto 606-8507, Japan
| | | |
Collapse
|
96
|
Kaelin WG. The von Hippel-Lindau protein, HIF hydroxylation, and oxygen sensing. Biochem Biophys Res Commun 2005; 338:627-38. [PMID: 16153592 DOI: 10.1016/j.bbrc.2005.08.165] [Citation(s) in RCA: 167] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2005] [Accepted: 08/23/2005] [Indexed: 12/31/2022]
Abstract
The heterodimeric transcription factor HIF (hypoxia-inducible factor), consisting of a labile alpha-subunit and a stable beta-subunit, is a master regulator of genes involved in acute or chronic adaptation to low oxygen. Studies performed over the past 5 years revealed that HIFalpha-subunits are enzymatically hydroxylated in an oxygen-dependent manner. Hydroxylation of either of two conserved prolyl residues targets HIFalpha for destruction by a ubiquitin ligase containing the von Hippel-Lindau tumor suppressor protein whereas hydroxylation on a C-terminal asparagine affects HIF transactivation function. Pharmacological manipulation of HIF activity might be beneficial in diseases characterized by abnormal tissue oxygenation including myocardial infarction, cerebrovascular disease, and cancer.
Collapse
Affiliation(s)
- William G Kaelin
- Howard Hughes Medical Institute, Dana-Farber Cancer Institute and Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
97
|
Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 2005; 338:617-26. [PMID: 16139242 DOI: 10.1016/j.bbrc.2005.08.111] [Citation(s) in RCA: 274] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Accepted: 08/15/2005] [Indexed: 11/28/2022]
Abstract
Analysis of oxygen sensitive pathways that regulate the hypoxia inducible factor (HIF) transcriptional system has revealed a novel role for oxygenases in signalling hypoxia. The enzymes, which catalyse hydroxylation of specific prolyl and asparaginyl residues in the regulatory HIF-alpha subunits, belong to the superfamily of non-haem Fe(II)-dependent oxygenases that use the citric acid cycle intermediate 2-oxoglutarate (2OG) as a co-substrate. We review biochemical and physiological data that demonstrate a central role for these oxygenases in integrating multiple signals that coordinate cellular responses to hypoxia.
Collapse
Affiliation(s)
- Christopher J Schofield
- Oxford Centre for Molecular Sciences, Department of Chemistry, Mansfield Road, Oxford OX1 3TA, UK
| | | |
Collapse
|
98
|
Abstract
Hypoxia-inducible factor-1 (HIF-1) is a key regulator of cellular responses to reduced oxygen availability. The contribution of mitochondria in regulation of HIF-1alpha in hypoxic cells has received recent attention. We demonstrate that inhibition of electron transport complexes I, III, and IV diminished hypoxic HIF-1alpha accumulation in different tumor cell lines. Hypoxia-induced HIF-1alpha accumulation was not prevented by the antioxidants Trolox and N-acetyl-cysteine. Oligomycin, inhibitor of F(0)F(1)-ATPase, prevented hypoxia-induced HIF-1alpha protein accumulation and had no effect on HIF-1alpha induction by hypoxia-mimicking agents desferrioxamine or dimethyloxalylglycine. The inhibitory effect of mitochondrial respiratory chain inhibitors and oligomycin on hypoxic HIF-1alpha content was pronounced in cells exposed to hypoxia (1.5% O(2)) but decreased markedly when cells were exposed to severe oxygen deprivation (anoxia). Taken together, these results do not support the role for mitochondrial reactive oxygen species in HIF-1alpha regulation, but rather suggest that inhibition of electron transport chain and impaired oxygen consumption affect HIF-1alpha accumulation in hypoxic cells indirectly via effects on prolyl hydroxylase function.
Collapse
Affiliation(s)
- Yanqing Gong
- Dept. of Anatomy, School of Medicine, Case Western Reserve Univ., 10900 Euclid Ave., Cleveland, OH 44106, USA.
| | | |
Collapse
|
99
|
Callapina M, Zhou J, Schnitzer S, Metzen E, Lohr C, Deitmer JW, Brüne B. Nitric oxide reverses desferrioxamine- and hypoxia-evoked HIF-1α accumulation—Implications for prolyl hydroxylase activity and iron. Exp Cell Res 2005; 306:274-84. [PMID: 15878351 DOI: 10.1016/j.yexcr.2005.02.018] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2004] [Revised: 02/17/2005] [Accepted: 02/19/2005] [Indexed: 10/25/2022]
Abstract
Hypoxia inducible factor 1 (HIF-1) senses and coordinates cellular responses towards hypoxia. HIF-1 activity is primarily determined by stability regulation of its alpha subunit that is degraded by the 26S proteasome under normoxia due to hydroxylation by prolyl hydroxylases (PHDs) but is stabilized under hypoxia. Besides hypoxia, nitric oxide (NO) stabilizes HIF-1alpha and promotes hypoxia-responsive target gene expression under normoxia. However, in hypoxia, NO attenuates HIF-1alpha stabilization and gene activation. It was our intention to explain the contrasting behavior of NO under hypoxia. We used the iron chelator desferrioxamine (DFX) or hypoxia to accumulate HIF-1alpha in HEK293 cells. Once the protein accumulated, we supplied NO donors and followed HIF-1alpha disappearance. NO-evoked HIF-1alpha destabilization was reversed by proteasomal inhibition or by blocking PHD activity. By using the von Hippel Lindau (pVHL)-HIF-1alpha capture assay, we went on to demonstrate binding of pVHL to HIF-1alpha under DFX/NO but not DFX alone. Showing increased intracellular free iron under conditions of hypoxia/NO compared to hypoxia alone, we assume that increased free iron contributes to regain PHD activity. Variables that allow efficient PHD activation such as oxygen availability, iron content, or cofactor accessibility at that end allow NO to modulate HIF-1alpha accumulation.
Collapse
Affiliation(s)
- Melvin Callapina
- Faculty of Medicine, Institute of Biochemistry I, Johann Wolfgang Goethe-University, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | | | | | | | | | | | | |
Collapse
|
100
|
Ishii K, Takayanagi A, Shimizu S, Abe H, Sogawa K, Kobayashi N. In vitro photodynamic effects of phthalocyaninatosilicon covalently linked to 2,2,6,6-tetramethyl-1-piperidinyloxy radicals on cancer cells. Free Radic Biol Med 2005; 38:920-7. [PMID: 15749388 DOI: 10.1016/j.freeradbiomed.2004.12.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2004] [Revised: 10/15/2004] [Accepted: 12/10/2004] [Indexed: 11/18/2022]
Abstract
In this paper, we have investigated the ability to sensitize the phototoxicity toward HeLa cells in vitro, of tetra-tert-butylphthalocyaninatosilicon (SiPc) covalently linked to one or two 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO) radicals (R1c or R2c), which are shown as photosensitizers efficiently producing singlet oxygen (1Delta(g)). Addition of R1c or R2c encapsulated in liposomes to cultures, followed by irradiation with a 680-nm dye laser, resulted in a highly significant phototoxicity toward HeLa cells, in contrast to negligible phototoxicity observed with (dihydroxy)SiPc (R0). EPR measurements indicate that R1c and R2c exist in some degree as nitroxide radicals even in HeLa cells. Electronic absorption spectra indicate that the degree of aggregation increases in the order R2c<R1c<R0. Thus, the high phototoxicity of R1c and R2c toward HeLa cells is reasonably interpreted by both the large singlet oxygen yield and the inhibition of aggregation due to the bulky TEMPO radicals. This increase in photodynamic effect on HeLa cells is an unusual and important example for increasing the photobiological reaction yields using paramagnetic radicals.
Collapse
Affiliation(s)
- Kazuyuki Ishii
- Department of Chemistry, Graduate School of Science, Tohoku University, Sendai 980-8578, Japan
| | | | | | | | | | | |
Collapse
|