51
|
Lv J, Chen YQ, Ding AM, Lei B, Yu J, Gao XM, Dai CB, Sun YH. Control of axillary bud growth in tobacco through toxin gene expression system. Sci Rep 2021; 11:17513. [PMID: 34471163 PMCID: PMC8410782 DOI: 10.1038/s41598-021-96976-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 08/11/2021] [Indexed: 11/09/2022] Open
Abstract
The control of axillary bud development after removing the terminal buds (topping) of plants is a research hotspot, and the control of gene expression, like switching on and off, allows us to further study biological traits of interest, such as plant branching and fertility. In this study, a toxin gene control system for plants based on dexamethasone (DEX) induction was constructed, and the positive transgenic tobacco exhibited growth retardation in the application area (axillary bud). The expression level of the lethal Diphtheria toxin A (DTA) gene under different DEX concentrations at different application days was analyzed. The highest expression levels appeared at 5 days after the leaf injection of DEX. The DTA transcripts were induced by 5 µM DEX and peaked in response to 50 µM DEX at 5 days after leaf injection. Here, a chemical induction system, combined with a toxin gene, were used to successfully control the growth of tobacco axillary buds after topping. The DTA expression system under DEX induction was sensitive and efficient, therefore, can be used to control axillary bud growth and development in tobacco.
Collapse
Affiliation(s)
- Jing Lv
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ya-Qiong Chen
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
- Kunming Tobacco Monopoly Administration, Kunming, 650000, China
| | - An-Ming Ding
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Bo Lei
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Jing Yu
- Molecular Genetics Key Laboratory of China Tobacco, Guizhou Academy of Tobacco Science, Guiyang, 550081, China
| | - Xiao-Ming Gao
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China
| | - Chang-Bo Dai
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| | - Yu-He Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
- Key Laboratory for Tobacco Gene Resources, State Tobacco Monopoly Administration, Qingdao, 266101, China.
| |
Collapse
|
52
|
Zhan J, Chu Y, Wang Y, Diao Y, Zhao Y, Liu L, Wei X, Meng Y, Li F, Ge X. The miR164-GhCUC2-GhBRC1 module regulates plant architecture through abscisic acid in cotton. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:1839-1851. [PMID: 33960609 PMCID: PMC8428825 DOI: 10.1111/pbi.13599] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 03/11/2021] [Accepted: 03/28/2021] [Indexed: 05/06/2023]
Abstract
Branching determines cotton architecture and production, but the underlying regulatory mechanisms remain unclear. Here, we report that the miR164-GhCUC2 (CUP-SHAPED COTYLEDON2) module regulates lateral shoot development in cotton and Arabidopsis. We generated OE-GhCUC2m (overexpression GhCUC2m) and STTM164 (short tandem target mimic RNA of miR164) lines in cotton and heterologous expression lines for gh-miR164, GhCUC2 and GhCUC2m in Arabidopsis to study the mechanisms controlling lateral branching. GhCUC2m overexpression resulted in a short-branch phenotype similar to STTM164. In addition, heterologous expression of GhCUC2m led to decreased number and length of branches compared with wild type, opposite to the effects of the OE-gh-pre164 line in Arabidopsis. GhCUC2 interacted with GhBRC1 and exhibited similar negative regulation of branching. Overexpression of GhBRC1 in the brc1-2 mutant partially rescued the mutant phenotype and decreased branch number. GhBRC1 directly bound to the NCED1 promoter and activated its transcription, leading to local abscisic acid (ABA) accumulation and response. Mutation of the NCED1 promoter disrupted activation by GhBRC1. This finding demonstrates a direct relationship between BRC1 and ABA signalling and places ABA downstream of BRC1 in the control of branching development. The miR164-GhCUC2-GhBRC1-GhNCED1 module provides a clear regulatory axis for ABA signalling to control plant architecture.
Collapse
Affiliation(s)
- Jingjing Zhan
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yu Chu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Ye Wang
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yangyang Diao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yanyan Zhao
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Lisen Liu
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Xi Wei
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Yuan Meng
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
| | - Fuguang Li
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| | - Xiaoyang Ge
- State Key Laboratory of Cotton BiologyInstitute of Cotton Research of Chinese Academy of Agricultural SciencesAnyangChina
- Zhengzhou Research BaseState Key Laboratory of Cotton BiologyZhengzhou UniversityZhengzhouChina
| |
Collapse
|
53
|
López H, Schmitz G, Thoma R, Theres K. Super determinant1A, a RAWULdomain-containing protein, modulates axillary meristem formation and compound leaf development in tomato. THE PLANT CELL 2021; 33:2412-2430. [PMID: 34009392 PMCID: PMC8364250 DOI: 10.1093/plcell/koab121] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/22/2021] [Indexed: 05/28/2023]
Abstract
Shoot branching and complex leaf development relies on the establishment of boundaries that precedes the formation of axillary meristems (AMs) and leaflets. The tomato (Solanum lycopersicum) super determinant mutant is compromised in both processes, due to a mutation in Sde1A. Sde1A encodes a protein with a RAWUL domain, which is also present in Polycomb Group Repressive Complex 1 (PRC1) RING finger proteins and WD Repeat Domain 48 proteins. Genetic analysis revealed that Sde1A and Bmi1A cooperate, whereas Bmi1C antagonizes both activities, indicating the existence of functionally opposing PRC1 complexes that interact with Sde1A. Sde1A is expressed at early stages of boundary development in a small group of cells in the center of the leaf-axil boundary, but its activity is required for meristem formation at later stages. This suggests that Sde1A and Bmi1A promote AM formation and complex leaf development by safeguarding a pool of cells in the developing boundary zones. Genetic and protein interaction analyses showed that Sde1A and Lateral suppressor (Ls) are components of the same genetic pathway. In contrast to ls, sde1a mutants are not compromised in inflorescence branching, suggesting that Sde1A is a potential target for breeding tomato cultivars with reduced side-shoot formation during vegetative development.
Collapse
Affiliation(s)
- Hernán López
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Gregor Schmitz
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Rahere Thoma
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, Cologne D-50931, Germany
| |
Collapse
|
54
|
Feng J, Cheng L, Zhu Z, Yu F, Dai C, Liu Z, Guo WW, Wu XM, Kang C. GRAS transcription factor LOSS OF AXILLARY MERISTEMS is essential for stamen and runner formation in wild strawberry. PLANT PHYSIOLOGY 2021; 186:1970-1984. [PMID: 33890635 PMCID: PMC8331164 DOI: 10.1093/plphys/kiab184] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 04/03/2021] [Indexed: 05/19/2023]
Abstract
Axillary bud development is a major factor that impacts plant architecture. A runner is an elongated shoot that develops from axillary bud and is frequently used for clonal propagation of strawberry. However, the genetic control underlying runner production is largely unknown. Here, we identified and characterized loss of axillary meristems (lam), an ethyl methanesulfonate-induced mutant of the diploid woodland strawberry (Fragaria vesca) that lacked stamens in flowers and had reduced numbers of branch crowns and runners. The reduced branch crown and runner phenotypes were caused by a failure of axillary meristem initiation. The causative mutation of lam was located in FvH4_3g41310, which encodes a GRAS transcription factor, and was validated by a complementation test. lamCR mutants generated by CRISPR/Cas9 produced flowers without stamens and had fewer runners than the wild-type. LAM was broadly expressed in meristematic tissues. Gibberellic acid (GA) application induced runner outgrowth from the remaining buds in lam, but failed to do so at the empty axils of lam. In contrast, treatment with the GA biosynthesis inhibitor paclobutrazol converted the runners into branch crowns. Moreover, genetic studies indicated that lam is epistatic to suppressor of runnerless (srl), a mutant of FveRGA1 in the GA pathway, during runner formation. Our results demonstrate that LAM is required for stamen and runner formation and acts sequentially with GA from bud initiation to runner outgrowth, providing insights into the molecular regulation of these economically important organs in strawberry.
Collapse
Affiliation(s)
- Jia Feng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Laichao Cheng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhenying Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Feiqi Yu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Cheng Dai
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742, USA
| | - Wen-Wu Guo
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiao-Meng Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunying Kang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Author for communication:
| |
Collapse
|
55
|
Guo M, Long Y, Xu L, Zhang W, Liu T, Zhang C, Hou X, Li Y. CELL CYCLE SEITCH 52 regulates tillering by interacting with LATERAL SUPPRESSOR in non-heading Chinese cabbage. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 309:110934. [PMID: 34134841 DOI: 10.1016/j.plantsci.2021.110934] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 04/28/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
With the discovery of essential genes regulating tillering, such as MONOCULM 1 (MOC1) in rice and LATERAL SUPPRESSOR (LAS in Arabidopsis, LS in tomato), research on tillering mechanisms has made great progress; however, the study of tillering in non-heading Chinese cabbage (NHCC) is rare. Here, we report that BcLAS, as a member of the GRAS family, plays an important role in the tillering of NHCC during its vegetative growth. BcLAS was almost not expressed in other examed parts except leaf axils throughout life. When the expression of BcLAS was silenced utilizing virus-induced gene silencing (VIGS) technology, we found that the tiller number of 'Maertou' decreased sharply. In 'Suzhouqing', overexpression of BcLAS significantly promoted tillering. BcCCS52, the orthologue to CELL CYCLE SEITCH 52 (CCS52), interacts with BcLAS. Downregulation of the expression of BcCCS52 promoted tillering of 'Suzhouqing'; therefore, we conclude that BcCCS52 plays a negative role in tillering regulation. Our findings reveal the tillering regulation mechanism of NHCCs at the vegetative stage and report an orthologue of CCS52 regulating tillering in NHCC.
Collapse
Affiliation(s)
- Mingliang Guo
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Yan Long
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Lanlan Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Wei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Changwei Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (East China), Ministry of Agriculture and Rural Affairs of the P.R. China, China; Engineering Research Center of Germplasm Enhancement and Utilization of Horticultural Crops, Ministry of Education of the P.R. China, Nanjing, 210095, China.
| |
Collapse
|
56
|
Genome-Wide Identification of GRAS Gene Family and Their Responses to Abiotic Stress in Medicago sativa. Int J Mol Sci 2021; 22:ijms22147729. [PMID: 34299352 PMCID: PMC8304046 DOI: 10.3390/ijms22147729] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/16/2021] [Indexed: 02/02/2023] Open
Abstract
Alfalfa (Medicago sativa) is a high-quality legume forage crop worldwide, and alfalfa production is often threatened by abiotic environmental stresses. GRAS proteins are important transcription factors that play a vital role in plant development, as well as in response to environmental stress. In this study, the availability of alfalfa genome "Zhongmu No.1" allowed us to identify 51 GRAS family members, i.e., MsGRAS. MsGRAS proteins could be classified into nine subgroups with distinct conserved domains, and tandem and segmental duplications were observed as an expansion strategy of this gene family. In RNA-Seq analysis, 14 MsGRAS genes were not expressed in the leaf or root, 6 GRAS genes in 3 differentially expressed gene clusters were involved in the salinity stress response in the leaf. Moreover, qRT-PCR results confirmed that MsGRAS51 expression was induced under drought stress and hormone treatments (ABA, GA and IAA) but down-regulated in salinity stress. Collectively, our genome-wide characterization, evolutionary, and expression analysis suggested that the MsGRAS proteins might play crucial roles in response to abiotic stresses and hormonal cues in alfalfa. For the breeding of alfalfa, it provided important information on stress resistance and functional studies on MsGRAS and hormone signaling.
Collapse
|
57
|
Liu X, Chen J, Zhang X. Genetic regulation of shoot architecture in cucumber. HORTICULTURE RESEARCH 2021; 8:143. [PMID: 34193859 PMCID: PMC8245548 DOI: 10.1038/s41438-021-00577-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/31/2021] [Accepted: 04/12/2021] [Indexed: 05/08/2023]
Abstract
Cucumber (Cucumis sativus L.) is an important vegetable crop species with great economic value. Shoot architecture determines the visual appearance of plants and has a strong impact on crop management and yield. Unlike most model plant species, cucumber undergoes vegetative growth and reproductive growth simultaneously, in which leaves are produced from the shoot apical meristem and flowers are generated from leaf axils, during the majority of its life, a feature representative of the Cucurbitaceae family. Despite substantial advances achieved in understanding the regulation of plant form in Arabidopsis thaliana, rice, and maize, our understanding of the mechanisms controlling shoot architecture in Cucurbitaceae crop species is still limited. In this review, we focus on recent progress on elucidating the genetic regulatory pathways underlying the determinant/indeterminant growth habit, leaf shape, branch outgrowth, tendril identity, and vine length determination in cucumber. We also discuss the potential of applying biotechnology tools and resources for the generation of ideal plant types with desired architectural features to improve cucumber productivity and cultivation efficiency.
Collapse
Affiliation(s)
- Xiaofeng Liu
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Jiacai Chen
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Xiaolan Zhang
- State Key Laboratories of Agrobiotechnology, Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
58
|
Li G, Tan M, Ma J, Cheng F, Li K, Liu X, Zhao C, Zhang D, Xing L, Ren X, Han M, An N. Molecular mechanism of MdWUS2-MdTCP12 interaction in mediating cytokinin signaling to control axillary bud outgrowth. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:4822-4838. [PMID: 34113976 DOI: 10.1093/jxb/erab163] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/08/2021] [Indexed: 05/25/2023]
Abstract
Shoot branching is an important factor that influences the architecture of apple trees and cytokinin is known to promote axillary bud outgrowth. The cultivar 'Fuji', which is grown on ~75% of the apple-producing area in China, exhibits poor natural branching. The TEOSINTE BRANCHED1/CYCLOIDEA/PCF (TCP) family genes BRANCHED1/2 (BRC1/2) are involved in integrating diverse factors that function locally to inhibit shoot branching; however, the molecular mechanism underlying the cytokinin-mediated promotion of branching that involves the repression of BRC1/2 remains unclear. In this study, we found that apple WUSCHEL2 (MdWUS2), which interacts with the co-repressor TOPLESS-RELATED9 (MdTPR9), is activated by cytokinin and regulates branching by inhibiting the activity of MdTCP12 (a BRC2 homolog). Overexpressing MdWUS2 in Arabidopsis or Nicotiana benthamiana resulted in enhanced branching. Overexpression of MdTCP12 inhibited axillary bud outgrowth in Arabidopsis, indicating that it contributes to the regulation of branching. In addition, we found that MdWUS2 interacted with MdTCP12 in vivo and in vitro and suppressed the ability of MdTCP12 to activate the transcription of its target gene, HOMEOBOX PROTEIN 53b (MdHB53b). Our results therefore suggest that MdWUS2 is involved in the cytokinin-mediated inhibition of MdTCP12 that controls bud outgrowth, and hence provide new insights into the regulation of shoot branching by cytokinin.
Collapse
Affiliation(s)
- Guofang Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Ming Tan
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Juanjuan Ma
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Fang Cheng
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Ke Li
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaojie Liu
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Caiping Zhao
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Dong Zhang
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Libo Xing
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Xiaolin Ren
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Mingyu Han
- College of Horticulture, Northwest A & F University, Yangling, Shaanxi 712100, China
| | - Na An
- College of Life Science, Northwest A & F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
59
|
Gioppato HA, Dornelas MC. Plant design gets its details: Modulating plant architecture by phase transitions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 163:1-14. [PMID: 33799013 DOI: 10.1016/j.plaphy.2021.03.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Plants evolved different strategies to better adapt to the environmental conditions in which they live: the control of their body architecture and the timing of phase change are two important processes that can improve their fitness. As they age, plants undergo two major phase changes (juvenile to adult and adult to reproductive) that are a response to environmental and endogenous signals. These phase transitions are accompanied by alterations in plant morphology and also by changes in physiology and the behavior of gene regulatory networks. Six main pathways involving environmental and endogenous cues that crosstalk with each other have been described as responsible for the control of plant phase transitions: the photoperiod pathway, the autonomous pathway, the vernalization pathway, the temperature pathway, the GA pathway, and the age pathway. However, studies have revealed that sugar is also involved in phase change and the control of branching behavior. In this review, we discuss recent advances in plant biology concerning the genetic and molecular mechanisms that allow plants to regulate phase transitions in response to the environment. We also propose connections between phase transition and plant architecture control.
Collapse
Affiliation(s)
- Helena Augusto Gioppato
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil
| | - Marcelo Carnier Dornelas
- University of Campinas (UNICAMP), Biology Institute, Plant Biology Department, Rua Monteiro Lobato, 255 CEP 13, 083-862, Campinas, SP, Brazil.
| |
Collapse
|
60
|
Hamano K, Sato S, Arai M, Negishi Y, Nakamura T, Komatsu T, Naragino T, Suzuki S. Inhibition of lateral shoot formation by RNA interference and chemically induced mutations to genes expressed in the axillary meristem of Nicotiana tabacum L. BMC PLANT BIOLOGY 2021; 21:236. [PMID: 34044782 PMCID: PMC8157709 DOI: 10.1186/s12870-021-03008-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Lateral branches vigorously proliferate in tobacco after the topping of the inflorescence portions of stems for the maturation of the leaves to be harvested. Therefore, tobacco varieties with inhibited lateral shoot formation are highly desired by tobacco farmers. RESULTS Genetic inhibition of lateral shoot formation was attempted in tobacco. Two groups of genes were examined by RNA interference. The first group comprised homologs of the genes mediating lateral shoot formation in other plants, whereas the second group included genes highly expressed in axillary bud primordial stages. Although "primary" lateral shoots that grew after the plants were topped off when flower buds emerged were unaffected, the growth of "secondary" lateral shoots, which were detected on the abaxial side of the primary lateral shoot base, was significantly suppressed in the knock-down lines of NtLs, NtBl1, NtREV, VE7, and VE12. Chemically induced mutations to NtLs, NtBl1, and NtREV similarly inhibited the development of secondary and "tertiary" lateral shoots, but not primary lateral shoots. The mutations to NtLs and NtBl1 were incorporated into an elite variety by backcrossing. The agronomic characteristics of the backcross lines were examined in field trials conducted in commercial tobacco production regions. The lines were generally suitable for tobacco leaf production and may be useful as new tobacco varieties. CONCLUSION The suppressed expression of NtLs, NtBl1, NtREV, VE7, or VE12 inhibited the development of only the secondary and tertiary lateral shoots in tobacco. The mutant lines may benefit tobacco farmers by minimizing the work required to remove secondary and tertiary lateral shoots that emerge when farmers are harvesting leaves, which is a labor-intensive process.
Collapse
Affiliation(s)
- Kaori Hamano
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan.
| | - Seiki Sato
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Masao Arai
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Yuta Negishi
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Takashi Nakamura
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Tomoyuki Komatsu
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Tsuyoshi Naragino
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| | - Shoichi Suzuki
- Leaf Tobacco Research Center, Japan Tobacco Inc., 1900 Idei, Oyama, Tochigi, 323-0808, Japan
| |
Collapse
|
61
|
Yan F, Gong Z, Hu G, Ma X, Bai R, Yu R, Zhang Q, Deng W, Li Z, Wuriyanghan H. Tomato SlBL4 plays an important role in fruit pedicel organogenesis and abscission. HORTICULTURE RESEARCH 2021; 8:78. [PMID: 33790250 PMCID: PMC8012377 DOI: 10.1038/s41438-021-00515-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/08/2021] [Accepted: 02/06/2021] [Indexed: 05/21/2023]
Abstract
Abscission, a cell separation process, is an important trait that influences grain and fruit yield. We previously reported that BEL1-LIKE HOMEODOMAIN 4 (SlBL4) is involved in chloroplast development and cell wall metabolism in tomato fruit. In the present study, we showed that silencing SlBL4 resulted in the enlargement and pre-abscission of the tomato (Solanum lycopersicum cv. Micro-TOM) fruit pedicel. The anatomic analysis showed the presence of more epidermal cell layers and no obvious abscission zone (AZ) in the SlBL4 RNAi lines compared with the wild-type plants. RNA-seq analysis indicated that the regulation of abscission by SlBL4 was associated with the altered abundance of genes related to key meristems, auxin transporters, signaling components, and cell wall metabolism. Furthermore, SlBL4 positively affected the auxin concentration in the abscission zone. A dual-luciferase reporter assay revealed that SlBL4 activated the transcription of the JOINTLESS, OVATE, PIN1, and LAX3 genes. We reported a novel function of SlBL4, which plays key roles in fruit pedicel organogenesis and abscission in tomatoes.
Collapse
Affiliation(s)
- Fang Yan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhehao Gong
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Guojian Hu
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Xuesong Ma
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Runyao Bai
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Ruonan Yu
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China
| | - Qiang Zhang
- School of Biology and Basic Medical Sciences, Soochow University, Suzhou, China
| | - Wei Deng
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China
| | - Zhengguo Li
- Key Laboratory of Plant Hormones and Development Regulation of Chongqing, School of Life Sciences, Chongqing University, 401331, Chongqing, China.
- Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, 401331, Chongqing, China.
| | - Hada Wuriyanghan
- Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, School of Life Science, Inner Mongolia University, Hohhot, 010021, China.
| |
Collapse
|
62
|
Guo M, Xu L, Long Y, Huang F, Liu T, Li Y, Hou X. BcHTT4 Inhibits Branching of Non-Heading Chinese Cabbage at the Vegetative Stage. PLANTS 2021; 10:plants10030510. [PMID: 33803447 PMCID: PMC7999546 DOI: 10.3390/plants10030510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/03/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
Branching is speculated to contribute to the plant architecture and crop yield. As a quantitative trait, branching is regulated by multiple genes in non-heading Chinese cabbage (NHCC). Several related candidate genes have been discovered in previous studies on the branching of NHCC, but their specific functions and regulatory mechanisms still need to be verified and explored. In this study, we found that the expression of BcHTT4, the ortholog to HEAT-INDUCED TAS1 TARGET4 (HTT4) in Arabidopsis, was significantly different between ‘Suzhouqing’ (common type) and ‘Maertou’ (multiple shoot branching type) in NHCC, which was consistent with the previous transcriptome sequencing results. The silencing of BcHTT4 expression in non-heading Chinese cabbage promotes axillary bud growth at the vegetative stage. When BcHTT4 is overexpressed in Arabidopsis, branching will decrease. In further study, we found that BcHTT4 interacts with immunophilin BcFKBP13 in vivo and in vitro through yeast two-hybrid analysis and bimolecular fluorescence complementation (BiFC) assays. Moreover, quantitative real-time PCR analysis showed that when the expression of BcHTT4 was silenced in ‘Suzhouqing’, the expression of BcFKBP13 also decreased significantly. Our findings reveal that BcHTT4 is involved in the branching mechanism and interacts with immunophilin BcFKBP13 in NHCC.
Collapse
Affiliation(s)
- Mingliang Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing 210095, China; (M.G.); (L.X.); (Y.L.); (F.H.); (T.L.); (Y.L.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Lanlan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing 210095, China; (M.G.); (L.X.); (Y.L.); (F.H.); (T.L.); (Y.L.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Yan Long
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing 210095, China; (M.G.); (L.X.); (Y.L.); (F.H.); (T.L.); (Y.L.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Feiyi Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing 210095, China; (M.G.); (L.X.); (Y.L.); (F.H.); (T.L.); (Y.L.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Tongkun Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing 210095, China; (M.G.); (L.X.); (Y.L.); (F.H.); (T.L.); (Y.L.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Ying Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing 210095, China; (M.G.); (L.X.); (Y.L.); (F.H.); (T.L.); (Y.L.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
| | - Xilin Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture, Nanjing 210095, China; (M.G.); (L.X.); (Y.L.); (F.H.); (T.L.); (Y.L.)
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
- Key Laboratory of Southern Vegetable Crop Genetic Improvement, Ministry of Agriculture, Nanjing 210095, China
- Correspondence: ; Tel.: +86-25-8439-5756
| |
Collapse
|
63
|
Transcriptional profiling of two contrasting genotypes uncovers molecular mechanisms underlying salt tolerance in alfalfa. Sci Rep 2021; 11:5210. [PMID: 33664362 PMCID: PMC7933430 DOI: 10.1038/s41598-021-84461-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/12/2021] [Indexed: 11/22/2022] Open
Abstract
Alfalfa is an important forage crop that is moderately tolerant to salinity; however, little is known about its salt-tolerance mechanisms. We studied root and leaf transcriptomes of a salt-tolerant (G03) and a salt-sensitive (G09) genotype, irrigated with waters of low and high salinities. RNA sequencing led to 1.73 billion high-quality reads that were assembled into 418,480 unigenes; 35% of which were assigned to 57 Gene Ontology annotations. The unigenes were assigned to pathway databases for understanding high-level functions. The comparison of two genotypes suggested that the low salt tolerance index for transpiration rate and stomatal conductance of G03 compared to G09 may be due to its reduced salt uptake under salinity. The differences in shoot biomass between the salt-tolerant and salt-sensitive lines were explained by their differential expressions of genes regulating shoot number. Differentially expressed genes involved in hormone-, calcium-, and redox-signaling, showed treatment- and genotype-specific differences and led to the identification of various candidate genes involved in salinity stress, which can be investigated further to improve salinity tolerance in alfalfa. Validation of RNA-seq results using qRT-PCR displayed a high level of consistency between the two experiments. This study provides valuable insight into the molecular mechanisms regulating salt tolerance in alfalfa.
Collapse
|
64
|
Geng Y, Cai C, McAdam SAM, Banks JA, Wisecaver JH, Zhou Y. A De Novo Transcriptome Assembly of Ceratopteris richardii Provides Insights into the Evolutionary Dynamics of Complex Gene Families in Land Plants. Genome Biol Evol 2021; 13:6157829. [PMID: 33681974 PMCID: PMC7975763 DOI: 10.1093/gbe/evab042] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2021] [Indexed: 01/26/2023] Open
Abstract
As the closest extant sister group to seed plants, ferns are an important reference point to study the origin and evolution of plant genes and traits. One bottleneck to the use of ferns in phylogenetic and genetic studies is the fact that genome-level sequence information of this group is limited, due to the extreme genome sizes of most ferns. Ceratopteris richardii (hereafter Ceratopteris) has been widely used as a model system for ferns. In this study, we generated a transcriptome of Ceratopteris, through the de novo assembly of the RNA-seq data from 17 sequencing libraries that are derived from two sexual types of gametophytes and five different sporophyte tissues. The Ceratopteris transcriptome, together with 38 genomes and transcriptomes from other species across the Viridiplantae, were used to uncover the evolutionary dynamics of orthogroups (predicted gene families using OrthoFinder) within the euphyllophytes and identify proteins associated with the major shifts in plant morphology and physiology that occurred in the last common ancestors of euphyllophytes, ferns, and seed plants. Furthermore, this resource was used to identify and classify the GRAS domain transcriptional regulators of many developmental processes in plants. Through the phylogenetic analysis within each of the 15 GRAS orthogroups, we uncovered which GRAS family members are conserved or have diversified in ferns and seed plants. Taken together, the transcriptome database and analyses reported here provide an important platform for exploring the evolution of gene families in land plants and for studying gene function in seed-free vascular plants.
Collapse
Affiliation(s)
- Yuan Geng
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Chao Cai
- Purdue University Libraries and School of Information Studies, Purdue University, West Lafayette, Indiana, USA
| | - Scott A M McAdam
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jo Ann Banks
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| | - Jennifer H Wisecaver
- Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA.,Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Yun Zhou
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana, USA.,Purdue Center for Plant Biology, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
65
|
Du J, Lu S, Chai M, Zhou C, Sun L, Tang Y, Nakashima J, Kolape J, Wen Z, Behzadirad M, Zhong T, Sun J, Zhang Y, Wang Z. Functional characterization of PETIOLULE-LIKE PULVINUS (PLP) gene in abscission zone development in Medicago truncatula and its application to genetic improvement of alfalfa. PLANT BIOTECHNOLOGY JOURNAL 2021; 19:351-364. [PMID: 32816361 PMCID: PMC7868985 DOI: 10.1111/pbi.13469] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/29/2020] [Accepted: 08/07/2020] [Indexed: 05/05/2023]
Abstract
Alfalfa (Medicago sativa L.) is one of the most important forage crops throughout the world. Maximizing leaf retention during the haymaking process is critical for achieving superior hay quality and maintaining biomass yield. Leaf abscission process affects leaf retention. Previous studies have largely focused on the molecular mechanisms of floral organ, pedicel and seed abscission but scarcely touched on leaf and petiole abscission. This study focuses on leaf and petiole abscission in the model legume Medicago truncatula and its closely related commercial species alfalfa. By analysing the petiolule-like pulvinus (plp) mutant in M. truncatula at phenotypic level (breakstrength and shaking assays), microscopic level (scanning electron microscopy and cross-sectional analyses) and molecular level (expression level and expression pattern analyses), we discovered that the loss of function of PLP leads to an absence of abscission zone (AZ) formation and PLP plays an important role in leaflet and petiole AZ differentiation. Microarray analysis indicated that PLP affects abscission process through modulating genes involved in hormonal homeostasis, cell wall remodelling and degradation. Detailed analyses led us to propose a functional model of PLP in regulating leaflet and petiole abscission. Furthermore, we cloned the PLP gene (MsPLP) from alfalfa and produced RNAi transgenic alfalfa plants to down-regulate the endogenous MsPLP. Down-regulation of MsPLP results in altered pulvinus structure with increased leaflet breakstrength, thus offering a new approach to decrease leaf loss during alfalfa haymaking process.
Collapse
Affiliation(s)
- Juan Du
- Noble Research InstituteArdmoreOKUSA
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Shaoyun Lu
- College of Life SciencesSouth China Agricultural UniversityGuangzhouChina
| | - Maofeng Chai
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Chuanen Zhou
- School of Life ScienceShandong UniversityQingdaoChina
| | - Liang Sun
- Noble Research InstituteArdmoreOKUSA
| | | | | | - Jaydeep Kolape
- Noble Research InstituteArdmoreOKUSA
- Morrison Microscopy Core Research FacilityCenter for BiotechnologyUniversity of Nebraska‐LincolnNEUSA
| | - Zhaozhu Wen
- Noble Research InstituteArdmoreOKUSA
- College of AgricultureHunan Agricultural UniversityHunanChina
| | - Marjan Behzadirad
- Institute for Agricultural BiosciencesOklahoma State UniversityArdmoreOKUSA
| | - Tianxiu Zhong
- College of Forestry and Landscape ArchitectureSouth China Agricultural UniversityGuangzhouChina
| | - Juan Sun
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| | - Yunwei Zhang
- College of Grassland Science and TechnologyChina Agricultural UniversityBeijingChina
| | - Zeng‐Yu Wang
- Noble Research InstituteArdmoreOKUSA
- Grassland Agri‐Husbandry Research CenterCollege of Grassland ScienceQingdao Agricultural UniversityQingdaoChina
| |
Collapse
|
66
|
Genome-Wide Characterization of Cucumber (Cucumis sativus L.) GRAS Genes and Their Response to Various Abiotic Stresses. HORTICULTURAE 2020. [DOI: 10.3390/horticulturae6040110] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The GRAS (gibberellic acid insensitive, repressor of GAI, and scarecrow) proteins are a family of plant-specific transcription factors that regulate plant growth, development, and stress response. Currently, the role of GRAS transcription factors in various abiotic stress responses has not been systematically studied in cucumber (Cucumis sativus L.), a popular vegetable crop. Here, we provide a comprehensive bioinformatics analysis of the 35 GRAS genes identified in the cucumber genome. In this study, cucumber genotypes, i.e., “CG104”, which is stress-tolerant, and genotype “CG37”, which is stress-sensitive, were examined to provide insight on potential differences in the GRAS-regulated abiotic stress pathways. Transcriptional analysis by RNA-seq or qRT-PCR of these two genotypes revealed common and divergent functions of CsGRAS genes regulated by low and high temperatures, salinity, and by exposure to the phytohormones gibberellin (GA) and abscisic acid (ABA). Notably, CsGRAS2 (DELLA) and CsGRAS26 (LISCL) were regulated by all abiotic stresses and hormone treatments, suggesting that they may function in the biological cross-talk between multiple signaling pathways. This study provides candidate genes for improving cucumber tolerance to various environmental stresses.
Collapse
|
67
|
Establishment of the Embryonic Shoot Meristem Involves Activation of Two Classes of Genes with Opposing Functions for Meristem Activities. Int J Mol Sci 2020; 21:ijms21165864. [PMID: 32824181 PMCID: PMC7461597 DOI: 10.3390/ijms21165864] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 08/12/2020] [Indexed: 11/16/2022] Open
Abstract
The shoot meristem, a stem-cell-containing tissue initiated during plant embryogenesis, is responsible for continuous shoot organ production in postembryonic development. Although key regulatory factors including KNOX genes are responsible for stem cell maintenance in the shoot meristem, how the onset of such factors is regulated during embryogenesis is elusive. Here, we present evidence that the two KNOX genes STM and KNAT6 together with the two other regulatory genes BLR and LAS are functionally important downstream genes of CUC1 and CUC2, which are a redundant pair of genes that specify the embryonic shoot organ boundary. Combined expression of STM with any of KNAT6, BLR, and LAS can efficiently rescue the defects of shoot meristem formation and/or separation of cotyledons in cuc1cuc2 double mutants. In addition, CUC1 and CUC2 are also required for the activation of KLU, a cytochrome P450-encoding gene known to restrict organ production, and KLU counteracts STM in the promotion of meristem activity, providing a possible balancing mechanism for shoot meristem maintenance. Together, these results establish the roles for CUC1 and CUC2 in coordinating the activation of two classes of genes with opposite effects on shoot meristem activity.
Collapse
|
68
|
Xu X, Feng G, Liang Y, Shuai Y, Liu Q, Nie G, Yang Z, Hang L, Zhang X. Comparative transcriptome analyses reveal different mechanism of high- and low-tillering genotypes controlling tiller growth in orchardgrass (Dactylis glomerata L.). BMC PLANT BIOLOGY 2020; 20:369. [PMID: 32758131 PMCID: PMC7409468 DOI: 10.1186/s12870-020-02582-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/27/2020] [Indexed: 05/12/2023]
Abstract
BACKGROUND Tillering is an important agronomic trait underlying the yields and reproduction of orchardgrass (Dactylis glomerata), an important perennial forage grass. Although some genes affecting tiller initiation have been identified, the tillering regulatory network is still largely unknown, especially in perennial forage grasses. Thus, unraveling the regulatory mechanisms of tillering in orchardgrass could be helpful in developing selective strategies for high-yield perennial grasses. In this study, we generated high-throughput RNA-sequencing data from multiple tissues of tillering stage plants to identify differentially expressed genes (DEGs) between high- and low-tillering orchardgrass genotypes. Gene Ontology and pathway enrichment analyses connecting the DEGs to tillering number diversity were conducted. RESULTS In the present study, approximately 26,282 DEGs were identified between two orchardgrass genotypes, AKZ-NRGR667 (a high-tillering genotype) and D20170203 (a low-tillering genotype), which significantly differed in tiller number. Pathway enrichment analysis indicated that DEGs related to the biosynthesis of three classes of phytohormones, i.e., strigolactones (SLs), abscisic acid (ABA), and gibberellic acid (GA), as well as nitrogen metabolism dominated such differences between the high- and low-tillering genotypes. We also confirmed that under phosphorus deficiency, the expression level of the major SL biosynthesis genes encoding DWARF27 (D27), 9-cis-beta-carotene 9',10'-cleaving dioxygenase (CCD7), carlactone synthase (CCD8), and more axillary branching1 (MAX1) proteins in the high-tillering orchardgrass genotype increased more slowly relative to the low-tillering genotype. CONCLUSIONS Here, we used transcriptomic data to study the tillering mechanism of perennial forage grasses. We demonstrated that differential expression patterns of genes involved in SL, ABA, and GA biosynthesis may differentiate high- and low-tillering orchardgrass genotypes at the tillering stage. Furthermore, the core SL biosynthesis-associated genes in high-tillering orchardgrass were more insensitive than the low-tillering genotype to phosphorus deficiency which can lead to increases in SL biosynthesis, raising the possibility that there may be distinct SL biosynthesis way in tillering regulation in orchardgrass. Our research has revealed some candidate genes involved in the regulation of tillering in perennial grasses that is available for establishment of new breeding resources for high-yield perennial grasses and will serve as a new resource for future studies into molecular mechanism of tillering regulation in orchardgrass.
Collapse
Affiliation(s)
- Xiaoheng Xu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Guangyan Feng
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Yueyang Liang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yang Shuai
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Qiuxu Liu
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Gang Nie
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Zhongfu Yang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Linkai Hang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| | - Xinquan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
69
|
Ponraj U, Theres K. Keep a distance to be different: axillary buds initiating at a distance from the shoot apical meristem are crucial for the perennial lifestyle of Arabis alpina. THE NEW PHYTOLOGIST 2020; 227:116-131. [PMID: 32112411 DOI: 10.1111/nph.16512] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/18/2020] [Indexed: 05/11/2023]
Abstract
In many seed plants, perennialism is achieved through axillary buds and side shoots that remain vegetative. This work aimed to analyse the pattern of axillary bud (AB) formation in the perennial model plant Arabis alpina and to study the role of the LATERAL SUPPRESSOR (AaLAS) gene. This study combines stereomicroscopic analysis with RNA sequencing to monitor the correlation between patterns of AB formation and gene expression. The role of AaLAS was studied using an RNA interference (RNAi) approach. During vegetative development, ABs initiate at a distance from the shoot apical meristem (SAM), whereas after floral induction, they initiate adjacent to the SAM. Dormant buds are established before the onset of vernalization. Transcript profiles of ABs initiated at a distance differed from those in the SAM, whereas those of buds initiated in close proximity were similar. Knockdown of AaLAS leads to the loss of dormant buds and vegetative side shoots, strongly compromising the perennial life cycle. AB formation is regulated differently during vegetative and reproductive development. New meristems that possess different gene expression profiles from those in the SAM are established at a distance from the SAM. AaLAS is essential for the perennial life cycle by modulating the establishment of dormant buds and vegetative side shoots.
Collapse
Affiliation(s)
- Udhaya Ponraj
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50931, Cologne, Germany
| | - Klaus Theres
- Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, D-50931, Cologne, Germany
| |
Collapse
|
70
|
Cao X, Jiao Y. Control of cell fate during axillary meristem initiation. Cell Mol Life Sci 2020; 77:2343-2354. [PMID: 31807816 PMCID: PMC11105066 DOI: 10.1007/s00018-019-03407-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/21/2019] [Accepted: 11/28/2019] [Indexed: 01/17/2023]
Abstract
Axillary meristems (AMs) are located in the leaf axil and can establish new growth axes. Whereas their neighboring cells are differentiated, the undifferentiated cells in the AM endow the AM with the same developmental potential as the shoot apical meristem. The AM is, therefore, an excellent system to study stem cell fate maintenance in plants. In this review, we summarize the current knowledge of AM initiation. Recent findings have shown that AMs derive from a stem cell lineage that is maintained in the leaf axil. This review covers AM progenitor cell fate maintenance, reactivation, and meristem establishment. We also highlight recent work that links transcription factors, phytohormones, and epigenetic regulation to AM initiation.
Collapse
Affiliation(s)
- Xiuwei Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuling Jiao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
71
|
Lin Q, Zhang Z, Wu F, Feng M, Sun Y, Chen W, Cheng Z, Zhang X, Ren Y, Lei C, Zhu S, Wang J, Zhao Z, Guo X, Wang H, Wan J. The APC/C TE E3 Ubiquitin Ligase Complex Mediates the Antagonistic Regulation of Root Growth and Tillering by ABA and GA. THE PLANT CELL 2020; 32:1973-1987. [PMID: 32265265 PMCID: PMC7268805 DOI: 10.1105/tpc.20.00101] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/11/2020] [Accepted: 04/02/2020] [Indexed: 05/20/2023]
Abstract
The antagonistic regulation of seed germination by the phytohormones abscisic acid (ABA) and gibberellic acid (GA) has been well-established. However, how these phytohormones antagonistically regulate root growth and branching (tillering in rice, Oryza sativa) remains obscure. Rice TILLER ENHANCER (TE) encodes an activator of the APC/CTE E3 ubiquitin ligase complex that represses tillering but promotes seed germination. In this study, we identified a dual role of GA and APC/CTE in regulating root growth. High GA levels can activate APC/CTE to promote the degradation of rice SHORT-ROOT1 (OsSHR1, a key factor promoting root growth) in the root meristem (RM) or MONOCULM1 (MOC1, a key factor promoting tillering) in the axillary meristem (AM), leading to restricted root growth and tillering, while low GA levels can activate the role of APC/CTE in stimulating RM cell division to promote root growth. In addition, moderate enhancement of ABA signaling helps maintain the RM and AM size, sustaining root growth and tillering by antagonizing the GA-promoted degradation of OsSHR1 and MOC1 through the SnRK2-APC/CTE regulatory module. We conclude that APC/CTE plays a key role in regulating plant architecture by mediating the crosstalk between ABA and GA signaling pathways.
Collapse
Affiliation(s)
- Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhe Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Fuqing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Miao Feng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yao Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weiwei Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhijun Cheng
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yulong Ren
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shanshan Zhu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jie Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhichao Zhao
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
72
|
Lu X, Liu W, Xiang C, Li X, Wang Q, Wang T, Liu Z, Zhang J, Gao L, Zhang W. Genome-Wide Characterization of GRAS Family and Their Potential Roles in Cold Tolerance of Cucumber ( Cucumis sativus L.). Int J Mol Sci 2020; 21:E3857. [PMID: 32485801 PMCID: PMC7312588 DOI: 10.3390/ijms21113857] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022] Open
Abstract
Cucumber (Cucumis sativus L.) is one of the most important cucurbit vegetables but is often subjected to stress during cultivation. GRAS (gibberellic acid insensitive, repressor of GAI, and scarecrow) genes encode a family of transcriptional factors that regulate plant growth and development. In the model plant Arabidopsis thaliana, GRAS family genes function in formation of axillary meristem and root radial structure, phytohormone (gibberellin) signal transduction, light signal transduction and abiotic/biological stress. In this study, a gene family was comprehensively analyzed from the aspects of evolutionary tree, gene structure, chromosome location, evolutionary and expression pattern by means of bioinformatics; 37 GRAS gene family members have been screened from cucumber. We reconstructed an evolutionary tree based on multiple sequence alignment of the typical GRAS domain and conserved motif sequences with those of other species (A. thaliana and Solanum lycopersicum). Cucumber GRAS family was divided into 10 groups according to the classification of Arabidopsis and tomato genes. We conclude that tandem and segmental duplication have played important roles in the expansion and evolution of the cucumber GRAS (CsaGRAS) family. Expression patterns of CsaGRAS genes in different tissues and under cold treatment, combined with gene ontology annotation and interaction network analysis, revealed potentially different functions for CsaGRAS genes in response to cold tolerance, with members of the SHR, SCR and DELLA subfamilies likely playing important roles. In conclusion, this study provides valuable information and candidate genes for improving cucumber tolerance to cold stress.
Collapse
Affiliation(s)
- Xiaohong Lu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Wenqian Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Chenggang Xiang
- College of Life Science and Technology, HongHe University, Mengzi 661100, China;
| | - Xiaojun Li
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Qing Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Tao Wang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Zixi Liu
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Jiali Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Lihong Gao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| | - Wenna Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, China Agricultural University, Beijing 100193, China; (X.L.); (W.L.); (X.L.); (Q.W.); (T.W.); (Z.L.); (J.Z.); (L.G.)
| |
Collapse
|
73
|
Genome-Wide Analysis of the GRAS Gene Family in Barley ( Hordeum vulgare L.). Genes (Basel) 2020; 11:genes11050553. [PMID: 32423019 PMCID: PMC7290968 DOI: 10.3390/genes11050553] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 04/28/2020] [Accepted: 05/12/2020] [Indexed: 11/16/2022] Open
Abstract
The GRAS (named after first three identified proteins within this family, GAI, RGA, and SCR) family contains plant-specific genes encoding transcriptional regulators that play a key role in gibberellin (GA) signaling, which regulates plant growth and development. Even though GRAS genes have been characterized in some plant species, little research is known about the GRAS genes in barley (Hordeum vulgare L.). In this study, we observed 62 GRAS members from barley genome, which were grouped into 12 subgroups by using phylogenomic analysis together with the GRAS genes from Arabidopsis (Arabidopsis thaliana), maize (Zea mays), and rice (Oryza sativa). Chromosome localization and gene structure analysis suggested that duplication events and abundant presence of intronless genes might account for the massive expansion of GRAS gene family in barley. The analysis of RNA-seq data indicates the expression pattern of GRAS genes in various tissues at different stages in barley. Noteworthy, our qRT-PCR analysis showed the expression of 18 candidate GRAS genes abundantly in the developing inflorescence, indicating their potential roles in the barley inflorescence development and reproduction. Collectively, our evolutionary and expression analysis of GRAS family are useful for future functional characterization of GA signaling in barley and agricultural improvement.
Collapse
|
74
|
Zheng Y, Ge J, Bao C, Chang W, Liu J, Shao J, Liu X, Su L, Pan L, Zhou DX. Histone Deacetylase HDA9 and WRKY53 Transcription Factor Are Mutual Antagonists in Regulation of Plant Stress Response. MOLECULAR PLANT 2020; 12:1090-1102. [PMID: 31048024 DOI: 10.1016/j.molp.2019.04.008] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 04/24/2019] [Accepted: 04/25/2019] [Indexed: 05/06/2023]
Abstract
Epigenetic regulation of gene expression is important for plant adaptation to environmental changes. Previous results showed that Arabidopsis RPD3-like histone deacetylase HDA9 is known to function in repressing plant response to stress in Arabidopsis. However, how HDA9 targets to specific chromatin loci and controls gene expression networks involved in plant response to stress remains largely unclear. Here, we show that HDA9 represses stress tolerance response by interacting with and regulating the DNA binding and transcriptional activity of WRKY53, which functions as a high-hierarchy positive regulator of stress response. We found that WRKY53 is post-translationally modified by lysine acetylation at multiple sites, some of which are removed by HDA9, resulting in inhibition of WRKY53 transcription activity. Conversely, WRKY53 negatively regulates HDA9 histone deacetylase activity. Collectively, our results indicate that HDA9 and WRK53 are reciprocal negative regulators of each other's activities, illustrating how the functional interplay between a chromatin regulator and a transcription factor regulates stress tolerance in plants.
Collapse
Affiliation(s)
- Yu Zheng
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China.
| | - Jingyu Ge
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Chun Bao
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Wenwen Chang
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Jingjing Liu
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Jingjie Shao
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Xiaoyun Liu
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lufang Su
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Lei Pan
- Institute for Interdisciplinary Research and Hubei Province Engineering Research Center of Legume Plants, Jianghan University, Wuhan 430056, China
| | - Dao-Xiu Zhou
- Institute of Plant Sciences Paris-Saclay, CNRS, INRAE, Université Paris-Saclay, Orsay 91405, France.
| |
Collapse
|
75
|
Li P, Su T, Zhang B, Li P, Xin X, Yue X, Cao Y, Wang W, Zhao X, Yu Y, Zhang D, Yu S, Zhang F. Identification and fine mapping of qSB.A09, a major QTL that controls shoot branching in Brassica rapa ssp. chinensis Makino. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:1055-1068. [PMID: 31919538 DOI: 10.1007/s00122-020-03531-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 01/02/2020] [Indexed: 06/10/2023]
Abstract
QTL mapping plus bulked segregant analysis revealed a major QTL for shoot branching in non-heading Chinese cabbage. The candidate gene was then identified using sequence alignment and expression analysis. Shoot branching is a complex quantitative trait that contributes to plant architecture and ultimately yield. Although many studies have examined branching in grain crops, the genetic control of shoot branching in vegetable crops such as Brassica rapa L. ssp. chinensis remains poorly understood. In this study, we used bulked segregant analysis (BSA) of an F2 population to detect a major quantitative trait locus (QTL) for shoot branching, designated shoot branching 9 (qSB.A09) on the long arm of chromosome A09 in Brassica rapa L. ssp. chinensis. In addition, traditional QTL mapping of the F2 population revealed six QTLs in different regions. Of these, the mapping region on chromosome A09 was consistent with the results of BSA-seq analysis, as well as being stable over the 2-year study period, explaining 19.37% and 22.18% of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants, qSB.A09 was further delimited to a 127-kb genomic region harboring 28 annotated genes. We subsequently identified the GRAS transcription factor gene Bra007056 as a potential candidate gene; Bra007056 is an ortholog of MONOCULM 1 (MOC1), the key gene that controls tillering in rice. Quantitative RT-PCR further revealed that expression of Bra007056 was positively correlated with the shoot branching phenotype. Furthermore, an insertion/deletion marker specific to Bra007056 co-segregated with the shoot branching trait in the F2 populations. Overall, these results provide the basis for elucidating the molecular mechanism of shoot branching in Brassica rapa ssp. chinensis Makino.
Collapse
Affiliation(s)
- Pan Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Tongbing Su
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Bin Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Peirong Li
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiaoyun Xin
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiaozhen Yue
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yunyun Cao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Weihong Wang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Xiuyun Zhao
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Yangjun Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Deshuang Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| | - Fenglan Zhang
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agriculture and Forestry Science (BAAFS), Beijing, 100097, China.
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, 100097, China.
- Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing, 100097, China.
| |
Collapse
|
76
|
Atif MJ, Ahanger MA, Amin B, Ghani MI, Ali M, Cheng Z. Mechanism of Allium Crops Bulb Enlargement in Response to Photoperiod: A Review. Int J Mol Sci 2020; 21:E1325. [PMID: 32079095 PMCID: PMC7072895 DOI: 10.3390/ijms21041325] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 12/17/2022] Open
Abstract
The photoperiod marks a varied set of behaviors in plants, including bulbing. Bulbing is controlled by inner signals, which can be stimulated or subdued by the ecological environment. It had been broadly stated that phytohormones control the plant development, and they are considered to play a significant part in the bulb formation. The past decade has witnessed significant progress in understanding and advancement about the photoperiodic initiation of bulbing in plants. A noticeable query is to what degree the mechanisms discovered in bulb crops are also shared by other species and what other qualities are also dependent on photoperiod. The FLOWERING LOCUS T (FT) protein has a role in flowering; however, the FT genes were afterward reported to play further functions in other biological developments (e.g., bulbing). This is predominantly applicable in photoperiodic regulation, where the FT genes seem to have experienced significant development at the practical level and play a novel part in the switch of bulb formation in Alliums. The neofunctionalization of FT homologs in the photoperiodic environments detects these proteins as a new class of primary signaling mechanisms that control the growth and organogenesis in these agronomic-related species. In the present review, we report the underlying mechanisms regulating the photoperiodic-mediated bulb enlargement in Allium species. Therefore, the present review aims to systematically review the published literature on the bulbing mechanism of Allium crops in response to photoperiod. We also provide evidence showing that the bulbing transitions are controlled by phytohormones signaling and FT-like paralogues that respond to independent environmental cues (photoperiod), and we also show that an autorelay mechanism involving FT modulates the expression of the bulbing-control gene. Although a large number of studies have been conducted, several limitations and research gaps have been identified that need to be addressed in future studies.
Collapse
Affiliation(s)
- Muhammad Jawaad Atif
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- Vegetable Crops Program, National Agricultural Research Centre, Islamabad 44000, Pakistan
| | | | - Bakht Amin
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Muhammad Imran Ghani
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
- College of Natural Resource and Environment, Northwest A&F University, Yangling 712100, China
| | - Muhammad Ali
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| | - Zhihui Cheng
- Department of Vegetable Science, College of Horticulture, Northwest A&F University, Yangling 712100, China; (M.J.A.); (B.A.); (M.I.G.); (M.A.)
| |
Collapse
|
77
|
Xu X, Feng G, Huang L, Yang Z, Liu Q, Shuai Y, Zhang X. Genome-wide identification, structural analysis and expression profiles of GRAS gene family in orchardgrass. Mol Biol Rep 2020; 47:1845-1857. [PMID: 32026320 DOI: 10.1007/s11033-020-05279-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 01/24/2020] [Indexed: 11/24/2022]
Abstract
The GRAS gene family is a family of transcription factors that regulates plant growth and development. Despite being well-studied in many plant species, little is known about this gene family in orchardgrass (Dactylis glomerata L.), one of the top four economically important perennial forage grasses cultivated worldwide. We identified 46 GRAS genes in orchardgrass and analyzed their characteristics by phylogenetic, gene structural, motifs and expression patterns analysis. The phylogenetic analysis of eight species revealed that DgGRAS family had the evolutional conservation and closer homology relationship with the GRAS family of rice, barley and Brachypodium distachyon. Moreover, 46 DgGRAS proteins were divided into eight subfamilies based on the tree topology and rice or Arabidopsis classification, and LISCL subfamily was the largest one. Besides, we found that the motif 15 may be unique to the orchardgrass LISCL subfamily, and the motif 6 and motif 17 had indispensable functions in the orchardgrass LISCL subfamily. We further analyzed the expression profiles of DgGRAS genes at mature and seeding stage. And we found that DgGRAS17 played an important role in the growth and development no matter what stage it was at. DgGRAS5, DgGRAS28, DgGRAS31, DgGRAS42 and DgGRAS44 got involved in processes of the growth and development at seeding stage instead of mature stage. These results indicated that the major expression patterns and detailed functions of the DgGRAS genes varied with developmental stages. Taken together, this is the first systematic analysis of the GRAS gene family in the orchardgrass genome and the results provide insights into the potential functions of GRAS genes.
Collapse
Affiliation(s)
- Xiaoheng Xu
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guangyan Feng
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Linkai Huang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Zhongfu Yang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qiuxu Liu
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yang Shuai
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xinquan Zhang
- Department of Grassland Science, Sichuan Agricultural University, Chengdu, Sichuan, China.
| |
Collapse
|
78
|
Shan Z, Luo X, Wu M, Wei L, Fan Z, Zhu Y. Genome-wide identification and expression of GRAS gene family members in cassava. BMC PLANT BIOLOGY 2020; 20:46. [PMID: 31996133 PMCID: PMC6990482 DOI: 10.1186/s12870-020-2242-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 01/08/2020] [Indexed: 05/28/2023]
Abstract
BACKGROUND Cassava is highly tolerant to stressful conditions, especially drought stress conditions; however, the mechanisms underlying this tolerance are poorly understood. The GRAS gene family is a large family of transcription factors that are involved in regulating the growth, development, and stress responses of plants. Currently, GRAS transcription factors have not been systematically studied in cassava, which is the sixth most important crop in the world. RESULTS Seventy-seven MeGRAS genes were identified from the cassava genome database. Phylogenetic analysis revealed that the MeGRAS proteins could be divided into 14 subfamilies. The gene structure and motif compositions of the proteins were considerably conserved within the same subfamily. Duplication events, particularly segmental duplication, were identified as the main driving force for GRAS gene expansion in cassava. Global expression analysis revealed that MeGRAS genes exhibited similar or distinct expression profiles within different tissues among different varieties. Moreover, qRT-PCR analysis revealed the expression patterns of MeGRAS genes in response to abiotic stress (drought, salt, cold, and H2O2), and the results suggest that these genes may have multiple functions. CONCLUSION This study is the first to provide comprehensive information on GRAS gene family members in cassava. The data will increase our understanding of both the molecular basis and the effects of GRAS genes. In addition, the results will contribute further to identifying the responses to various environmental conditions and provide insights into the potential functions of GRAS genes.
Collapse
Affiliation(s)
- Zhongying Shan
- Agricultural College, Guangxi University, Nanning, 530005 China
- College of Ecology and Garden Architecture, Dezhou University, Dezhou, 253023 China
| | - Xinglu Luo
- Agricultural College, Guangxi University, Nanning, 530005 China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Nanning, 530004 China
| | - Meiyan Wu
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Limei Wei
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Zhupeng Fan
- Agricultural College, Guangxi University, Nanning, 530005 China
| | - Yanmei Zhu
- Agricultural College, Guangxi University, Nanning, 530005 China
| |
Collapse
|
79
|
Nutan KK, Rathore RS, Tripathi AK, Mishra M, Pareek A, Singla-Pareek SL. Integrating the dynamics of yield traits in rice in response to environmental changes. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:490-506. [PMID: 31410470 DOI: 10.1093/jxb/erz364] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 07/29/2019] [Indexed: 05/23/2023]
Abstract
Reductions in crop yields as a consequence of global climate change threaten worldwide food security. It is therefore imperative to develop high-yielding crop plants that show sustainable production under stress conditions. In order to achieve this aim through breeding or genetic engineering, it is crucial to have a complete and comprehensive understanding of the molecular basis of plant architecture and the regulation of its sub-components that contribute to yield under stress. Rice is one of the most widely consumed crops and is adversely affected by abiotic stresses such as drought and salinity. Using it as a model system, in this review we present a summary of our current knowledge of the physiological and molecular mechanisms that determine yield traits in rice under optimal growth conditions and under conditions of environmental stress. Based on physiological functioning, we also consider the best possible combination of genes that may improve grain yield under optimal as well as environmentally stressed conditions. The principles that we present here for rice will also be useful for similar studies in other grain crops.
Collapse
Affiliation(s)
- Kamlesh Kant Nutan
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ray Singh Rathore
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Amit Kumar Tripathi
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Manjari Mishra
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Sneh Lata Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, India
| |
Collapse
|
80
|
Yu H, Cui H, Chen J, Li X. Regulation of Aegilops tauschii Coss Tiller Bud Growth by Plant Density: Transcriptomic, Physiological and Phytohormonal Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:1166. [PMID: 32849721 PMCID: PMC7403227 DOI: 10.3389/fpls.2020.01166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/20/2020] [Indexed: 05/08/2023]
Abstract
Aegilops tauschii Coss is one of the most hazardous weeds that severely infests wheat fields in China. The tillering ability of Ae. tauschii strongly affects the occurrence and spread by influencing its seed output. In this study, Ae. tauschii was sown at low plant density (LPD) and high plant density (HPD) to investigate the effect of plant density on tiller bud outgrowth and its potential regulators using RNA-Seq. Additionally, the chlorophyll content and photosynthesis, soluble sugar and phytohormone levels were also determined at different plant densities. The results showed that an increased plant density significantly inhibited the elongation of tiller buds in the axil of the first leaf at 15 days after planting, with 7.69 mm at LPD and 1.69 mm at HPD. A total of seven putative tiller-related genes were selected and validated using quantitative real-time PCR. Furthermore, chlorophyll levels, photosynthetic efficiency, and soluble sugar contents were distinctly inhibited by HPD in Ae. tauschii, which may be responsible for the restriction of tiller bud growth. In addition, differentially expressed genes (DEGs) were markedly enriched in indole-3-acetic acid (IAA), abscisic acid (ABA), and gibberellin metabolism and signaling. Accordingly, the levels of ABA and gibberellin A3 in Ae. tauschii were strikingly higher at HPD compared with those at LPD, yet the reverse tendency was observed for IAA. Undoubtedly, such results will be highly beneficial for illuminating the underlying regulators of the Ae. tauschii tillering response to plant density and may provide new ideas for the control of this weed in the future.
Collapse
|
81
|
Wang TT, Yu TF, Fu JD, Su HG, Chen J, Zhou YB, Chen M, Guo J, Ma YZ, Wei WL, Xu ZS. Genome-Wide Analysis of the GRAS Gene Family and Functional Identification of GmGRAS37 in Drought and Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2020; 11:604690. [PMID: 33424904 PMCID: PMC7793673 DOI: 10.3389/fpls.2020.604690] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/23/2020] [Indexed: 05/05/2023]
Abstract
GRAS genes, which form a plant-specific transcription factor family, play an important role in plant growth and development and stress responses. However, the functions of GRAS genes in soybean (Glycine max) remain largely unknown. Here, 117 GRAS genes distributed on 20 chromosomes were identified in the soybean genome and were classified into 11 subfamilies. Of the soybean GRAS genes, 80.34% did not have intron insertions, and 54 pairs of genes accounted for 88.52% of duplication events (61 pairs). RNA-seq analysis demonstrated that most GmGRASs were expressed in 14 different soybean tissues examined and responded to multiple abiotic stresses. Results from quantitative real-time PCR analysis of six selected GmGRASs suggested that GmGRAS37 was significantly upregulated under drought and salt stress conditions and abscisic acid and brassinosteroid treatment; therefore, this gene was selected for further study. Subcellular localization analysis revealed that the GmGRAS37 protein was located in the plasma membrane, nucleus, and cytosol. Soybean hairy roots overexpressing GmGRAS37 had improved resistance to drought and salt stresses. In addition, these roots showed increased transcript levels of several drought- and salt-related genes. The results of this study provide the basis for comprehensive analysis of GRAS genes and insight into the abiotic stress response mechanism in soybean.
Collapse
Affiliation(s)
- Ting-Ting Wang
- College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Tai-Fei Yu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jin-Dong Fu
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong-Gang Su
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Yong-Bin Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Ming Chen
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Jun Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant Protection, Northwest A&F University, Yangling, China
| | - You-Zhi Ma
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
| | - Wen-Liang Wei
- College of Agriculture, Yangtze University, Jingzhou, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, China
- Engineering Research Center of Ecology and Agricultural Use of Wetland, Ministry of Education, Yangtze University, Jingzhou, China
- Wen-Liang Wei,
| | - Zhao-Shi Xu
- Institute of Crop Science, Chinese Academy of Agricultural Sciences (CAAS)/National Key Facility for Crop Gene Resources and Genetic Improvement, Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture, Beijing, China
- *Correspondence: Zhao-Shi Xu,
| |
Collapse
|
82
|
Identification and Expression Analysis of GRAS Transcription Factors to Elucidate Candidate Genes Related to Stolons, Fruit Ripening and Abiotic Stresses in Woodland Strawberry ( Fragaria vesca). Int J Mol Sci 2019; 20:ijms20184593. [PMID: 31533278 PMCID: PMC6770801 DOI: 10.3390/ijms20184593] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2019] [Revised: 09/12/2019] [Accepted: 09/14/2019] [Indexed: 12/17/2022] Open
Abstract
The cultivated strawberry (Fragaria × ananassa), an allo-octoploid with non-climacteric fleshy fruits, is a popular Rosaceae horticultural crop worldwide that is mainly propagated via stolons during cultivation. Woodland strawberry (Fragaria vesca), one of the four diploid progenitor species of cultivated strawberry, is widely used as a model plant in the study of Rosaceae fruit trees, non-climacteric fruits and stolons. One GRAS transcription factor has been shown to regulate stolon formation; the other GRAS proteins in woodland strawberry remain unknown. In this study, we identified 54 FveGRAS proteins in woodland strawberry, and divided them into 14 subfamilies. Conserved motif analysis revealed that the motif composition of FveGRAS proteins was conserved within each subfamily, but diverged widely among subfamilies. We found 56 orthologous pairs of GRAS proteins between woodland strawberry and Arabidopsis thaliana, 47 orthologous pairs between woodland strawberry and rice and 92 paralogous pairs within woodland strawberry. The expression patterns of FveGRAS genes in various organs and tissues, and changes therein under cold, heat and GA3 treatments, were characterized using transcriptomic analysis. The results showed that 34 FveGRAS genes were expressed with different degrees in at least four organs, including stolons; only a few genes displayed organ-specific expression. The expression levels of 16 genes decreased, while that of four genes increased during fruit ripening; FveGRAS54 showed the largest increase in expression. Under cold, heat and GA3 treatments, around half of the FveGRAS genes displayed increased or decreased expression to some extent, suggesting differing functions of these FveGRAS genes in the responses to cold, heat and GAs. This study provides insight into the potential functions of FveGRAS genes in woodland strawberry. A few FveGRAS genes were identified as candidate genes for further study, in terms of their functions in stolon formation, fruit ripening and abiotic stresses.
Collapse
|
83
|
Niu X, Chen S, Li J, Liu Y, Ji W, Li H. Genome-wide identification of GRAS genes in Brachypodium distachyon and functional characterization of BdSLR1 and BdSLRL1. BMC Genomics 2019; 20:635. [PMID: 31387534 PMCID: PMC6683515 DOI: 10.1186/s12864-019-5985-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 07/19/2019] [Indexed: 12/02/2022] Open
Abstract
Background As one of the most important transcription factor families, GRAS proteins are involved in numerous regulatory processes, especially plant growth and development. However, they have not been systematically analyzed in Brachypodium distachyon, a new model grass. Results In this study, 48 BdGRAS genes were identified. Duplicated genes account for 41.7% of them and contribute to the expansion of this gene family. 33, 39, 35 and 35 BdGRAS genes were identified by synteny with their orthologs in rice, sorghum, maize and wheat genome, respectively, indicating close relationships among these species. Based on their phylogenic relationships to GRAS genes in rice and maize, BdGRAS genes can be divided into ten subfamilies in which members of the same subfamily showed similar protein sequences, conserved motifs and gene structures, suggesting possible conserved functions. Although expression variation is high, some BdGRAS genes are tissue-specific, phytohormones- or abiotic stresses-responsive, and they may play key roles in development, signal transduction pathways and stress responses. In addition, DELLA genes BdSLR1 and BdSLRL1 were functionally characterized to play a role in plant growth via the GA signal pathway, consistent with GO annotations and KEGG pathway analyses. Conclusions Systematic analyses of BdGRAS genes indicated that members of the same subfamily may play similar roles. This was supported by the conserved functions of BdSLR1 and BdSLRL1 in GA pathway. These results laid a foundation for further functional elucidation of BdGRAS genes, especially, BdSLR1 and BdSLRL1. Electronic supplementary material The online version of this article (10.1186/s12864-019-5985-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Xin Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Shoukun Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Jiawei Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Yue Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| | - Haifeng Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
84
|
Li A, Chen G, Yu X, Zhu Z, Zhang L, Zhou S, Hu Z. The tomato MADS-box gene SlMBP9 negatively regulates lateral root formation and apical dominance by reducing auxin biosynthesis and transport. PLANT CELL REPORTS 2019; 38:951-963. [PMID: 31062133 DOI: 10.1007/s00299-019-02417-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/29/2019] [Indexed: 06/09/2023]
Abstract
Overexpression of SlMBP9 reduced auxin biosynthesis and transport, and negatively regulated lateral root formation and apical dominance. MADS-box transcription factors play a critical role in plant development. In this study, we describe SlMBP9, a novel MADS-box gene that is expressed in the roots of tomato plants. Tomato lines that over- or under-expressed SlMBP9 were generated using a transgenic approach. The number of lateral roots (LRs) were reduced in SlMBP9-overexpressing lines but slightly increased in SlMBP9-silenced lines. A physiological index revealed that the auxin content significantly decreased in the root maturation zone of the overexpression lines. In addition, gene expression analysis revealed that the expression of the polar auxin transporter genes PIN1 and ABCB19/MDR1 and genes involved in auxin biosynthesis was downregulated in the stems of overexpression lines, which is consistent with the reduced accumulation of auxin in the root maturation zone. Exogenous indole-3-acetic acid (auximone) rescued the lateral root phenotypes of the SlMBP9-overexpressing lines. Overexpression of SlMBP9 resulted in dwarf plants, enhanced lateral buds and reduced the gibberellin content in the stems. Together, these results suggest that SlMBP9 plays a negative role in the process of auxin biosynthesis and transport.
Collapse
Affiliation(s)
- Anzhou Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zhiguo Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Lincheng Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Room 523-1, Campus B, 174 Shapingba Main Street, Chongqing, 400044, People's Republic of China.
| |
Collapse
|
85
|
Heo S, Chung YS. Validation of MADS-box genes from apple fruit pedicels during early fruit abscission by transcriptome analysis and real-time PCR. Genes Genomics 2019; 41:1241-1251. [PMID: 31350732 DOI: 10.1007/s13258-019-00852-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2019] [Accepted: 07/12/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Fruit abscission in an isolated region called abscission zone (AZ) is regulated by several genes including JOINTLESS, MACROCALYX and SEPALLATA, MADS-box genes, in tomato. OBJECTIVE The surviving central pedicels and the abscised lateral pedicels were examined in fruit clusters in order to investigate apple MADS-box genes from fruit pedicels of self-abscising apple 'Saika' during early fruit abscission. METHODS After performing RNA-Seq, transcription profiling was conducted on the MADS-box genes from apple central and lateral pedicels. The JOINTLESS homolog of apple (MdJOINTLESS) was amplified using degenerate primers annealing to a highly conserved domain based on the orthologous genes of various crops, including JOINTLESS gene of tomato. The expression pattern of MdJOINTLESS was investigated in central and lateral pedicles by real-time PCR. RESULTS Some homologs were found which similar to JOINTLESS, MACROCALYX and SEPALLATA of tomato MADS-box genes from transcriptome analysis and RACE. Using phylogenetic analyses with the MADS-box gene family, MdJOINTLESS was classified into the SHORT VEGETATIVE PHASE (SVP) clade that included Arabidopsis and other crops. The expression level of MdJOINTLESS in central pedicel was more than twice as high as that of lateral pedicel. CONCLUSION In the current study, we could find apple homologs of JOINTLESS, MACROCALYX, SEPALLATA, which were known to regulate pedicel AZ development in tomato. Furthermore, MdJOINTLESS might contribute to auxin gradation, influencing hierarchical ranking of auxin transport between fruit pedicels of self-abscising apple.
Collapse
Affiliation(s)
- Seong Heo
- Apple Research Institute, National Institute of Horticultural and Herbal Science, Rural Development Administration, Gunwi, 39000, South Korea
- Department of Plant Science, Seoul National University, Seoul, 08826, South Korea
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, 63243, South Korea.
| |
Collapse
|
86
|
Patharkar OR, Walker JC. Connections between abscission, dehiscence, pathogen defense, drought tolerance, and senescence. PLANT SCIENCE 2019; 284:25-29. [PMID: 31084875 DOI: 10.1016/j.plantsci.2019.03.016] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 05/22/2023]
|
87
|
Muntha ST, Zhang L, Zhou Y, Zhao X, Hu Z, Yang J, Zhang M. Phytochrome A signal transduction 1 and CONSTANS-LIKE 13 coordinately orchestrate shoot branching and flowering in leafy Brassica juncea. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:1333-1343. [PMID: 30578711 PMCID: PMC6576096 DOI: 10.1111/pbi.13057] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 10/22/2018] [Accepted: 12/04/2018] [Indexed: 05/21/2023]
Abstract
Branching is a major determinant of crop yield, and enables vigorous shoot growth and the production of a dense canopy. Phytochrome A signal transduction 1 (PAT1) positively regulates phytochrome A signal transduction in response to light, but its effects on branching remain unknown. In this study, we mapped PAT1, and revealed a previously unknown role related to branching and flowering in leafy Brassica juncea. Earlier and increased branching was observed when PAT1 expression was down-regulated, implying that PAT1 negatively regulates shoot branching. Additionally, down-regulated PAT1 expression reversed the inhibited branching induced by far-red light, suggesting PAT1 is involved in the shade avoidance response. PAT1 negatively regulated branching only after bud initiation. The observed interaction between PAT1 and BRC1 implied that PAT1 influences bud outgrowth in a BRC1-dependent manner. Biochemical and genetic evidence indicate that PAT1 directly interacts with CONSTANS-LIKE 13 (COL13), which negatively regulates flowering, with the resulting PAT1-COL13 complex mediating shoot branching and flowering. Our findings reveal a new crosstalk modality between phytochrome signalling and flowering pathways during the regulation of shoot branching and flowering. The data presented herein may be useful for future studies involving the editing of the GRAS family transcription factor PAT1 gene to enhance crop productivity and enable earlier harvesting.
Collapse
Affiliation(s)
- Sidra Tul Muntha
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable SciencesZhejiang UniversityHangzhouChina
| | - Lili Zhang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable SciencesZhejiang UniversityHangzhouChina
| | - Yufeng Zhou
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable SciencesZhejiang UniversityHangzhouChina
| | - Xuan Zhao
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable SciencesZhejiang UniversityHangzhouChina
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable SciencesZhejiang UniversityHangzhouChina
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth, Development & Quality ImprovementMinistry of AgricultureHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhouChina
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular BreedingInstitute of Vegetable SciencesZhejiang UniversityHangzhouChina
- Key Laboratory of Horticultural Plant Growth, Development & Quality ImprovementMinistry of AgricultureHangzhouChina
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative BiologyHangzhouChina
| |
Collapse
|
88
|
SLR1 inhibits MOC1 degradation to coordinate tiller number and plant height in rice. Nat Commun 2019; 10:2738. [PMID: 31227696 PMCID: PMC6588547 DOI: 10.1038/s41467-019-10667-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 05/14/2019] [Indexed: 11/15/2022] Open
Abstract
The breeding of cereals with altered gibberellin (GA) signaling propelled the ‘Green Revolution’ by generating semidwarf plants with increased tiller number. The mechanism by which GAs promote shoot height has been studied extensively, but it is not known what causes the inverse relationship between plant height and tiller number. Here we show that rice tiller number regulator MONOCULM 1 (MOC1) is protected from degradation by binding to the DELLA protein SLENDER RICE 1 (SLR1). GAs trigger the degradation of SLR1, leading to stem elongation and also to the degradation of MOC1, and hence a decrease in tiller number. This discovery provides a molecular explanation for the coordinated control of plant height and tiller number in rice by GAs, SLR1 and MOC1. Due to reduced gibberellin sensitivity, modern rice cultivars are shorter than traditional varieties but produce more tillers and have higher yields. Here Liao et al. show that gibberellin contributes to decreased tiller number by degrading the MOC1 protein that suppresses bud outgrowth.
Collapse
|
89
|
Basile A, Fambrini M, Tani C, Shukla V, Licausi F, Pugliesi C. The
Ha‐ROXL
gene is required for initiation of axillary and floral meristems in sunflower. Genesis 2019; 57:e23307. [DOI: 10.1002/dvg.23307] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 05/09/2019] [Accepted: 05/11/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Alice Basile
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Marco Fambrini
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Camilla Tani
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| | - Vinay Shukla
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
| | - Francesco Licausi
- Institute of Life SciencesScuola Superiore Sant'Anna Pisa Italy
- Department of BiologyUniversity of Pisa Pisa Italy
| | - Claudio Pugliesi
- Department of Agriculture, Food and Environment (DAFE)University of Pisa Pisa Italy
| |
Collapse
|
90
|
Duan E, Wang Y, Li X, Lin Q, Zhang T, Wang Y, Zhou C, Zhang H, Jiang L, Wang J, Lei C, Zhang X, Guo X, Wang H, Wan J. OsSHI1 Regulates Plant Architecture Through Modulating the Transcriptional Activity of IPA1 in Rice. THE PLANT CELL 2019; 31:1026-1042. [PMID: 30914468 PMCID: PMC6533028 DOI: 10.1105/tpc.19.00023] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 05/20/2023]
Abstract
Tillering and panicle branching are important determinants of plant architecture and yield potential in rice (Oryza sativa). IDEAL PLANT ARCHITECTURE1 (IPA1) encodesSQUAMOSA PROMOTER BINDING PROTEIN-LIKE14, which acts as a key transcription factor regulating tiller outgrowth and panicle branching by directly activating the expression of O. sativa TEOSINTE BRANCHED1 (OsTB1) and O. sativa DENSE AND ERECT PANICLE1 (OsDEP1), thereby influencing grain yield in rice. Here, we report the identification of a rice mutant named shi1 that is characterized by dramatically reduced tiller number, enhanced culm strength, and increased panicle branch number. Map-based cloning revealed that O. sativa SHORT INTERNODES1 (OsSHI1) encodes a plant-specific transcription factor of the SHI family with a characteristic family-specific IGGH domain and a conserved zinc-finger DNA binding domain. Consistent with the mutant phenotype, OsSHI1 is predominantly expressed in axillary buds and young panicle, and its encoded protein is exclusively targeted to the nucleus. We show that OsSHI1 physically interacts with IPA1 both in vitro and in vivo. Moreover, OsSHI1 could bind directly to the promoter regions of both OsTB1 and OsDEP1 through a previously unrecognized cis-element (T/GCTCTAC motif). OsSHI1 repressed the transcriptional activation activity of IPA1 by affecting its DNA binding activity toward the promoters of both OsTB1 and OsDEP1, resulting in increased tiller number and diminished panicle size. Taken together, our results demonstrate that OsSHI1 regulates plant architecture through modulating the transcriptional activity of IPA1 and provide insight into the establishment of plant architecture in rice.
Collapse
Affiliation(s)
- Erchao Duan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Yihua Wang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Li
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Qibing Lin
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ting Zhang
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yupeng Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Huan Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiulin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Cailin Lei
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xin Zhang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiuping Guo
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haiyang Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing 210095, China
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
91
|
Jáquez-Gutiérrez M, Atarés A, Pineda B, Angarita P, Ribelles C, García-Sogo B, Sánchez-López J, Capel C, Yuste-Lisbona FJ, Lozano R, Moreno V. Phenotypic and genetic characterization of tomato mutants provides new insights into leaf development and its relationship to agronomic traits. BMC PLANT BIOLOGY 2019; 19:141. [PMID: 30987599 PMCID: PMC6466659 DOI: 10.1186/s12870-019-1735-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 03/20/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Tomato mutants altered in leaf morphology are usually identified in the greenhouse, which demands considerable time and space and can only be performed in adequate periods. For a faster but equally reliable scrutiny method we addressed the screening in vitro of 971 T-DNA lines. Leaf development was evaluated in vitro in seedlings and shoot-derived axenic plants. New mutants were characterized in the greenhouse to establish the relationship between in vitro and in vivo leaf morphology, and to shed light on possible links between leaf development and agronomic traits, a promising field in which much remains to be discovered. RESULTS Following the screening in vitro of tomato T-DNA lines, putative mutants altered in leaf morphology were evaluated in the greenhouse. The comparison of results in both conditions indicated a general phenotypic correspondence, showing that in vitro culture is a reliable system for finding mutants altered in leaf development. Apart from providing homogeneous conditions, the main advantage of screening in vitro lies in the enormous time and space saving. Studies on the association between phenotype and nptII gene expression showed co-segregation in two lines (P > 99%). The use of an enhancer trap also allowed identifying gain-of-function mutants through reporter expression analysis. These studies suggested that genes altered in three other mutants were T-DNA tagged. New mutants putatively altered in brassinosteroid synthesis or perception, mutations determining multiple pleiotropic effects, lines affected in organ curvature, and the first tomato mutant with helical growth were discovered. Results also revealed new possible links between leaf development and agronomic traits, such as axillary branching, flower abscission, fruit development and fruit cracking. Furthermore, we found that the gene tagged in mutant 2635-MM encodes a Sterol 3-beta-glucosyltransferase. Expression analysis suggested that abnormal leaf development might be due to the lack-off-function of this gene. CONCLUSION In vitro culture is a quick, efficient and reliable tool for identifying tomato mutants altered in leaf morphology. The characterization of new mutants in vivo revealed new links between leaf development and some agronomic traits. Moreover, the possible implication of a gene encoding a Sterol 3-beta-glucosyltransferase in tomato leaf development is reported.
Collapse
Affiliation(s)
- Marybel Jáquez-Gutiérrez
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Alejandro Atarés
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Pilar Angarita
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad Ciencias de la Salud, Universidad Cooperativa de Colombia, Carrera 35#36-99, Barrio Barzal, Villavicencio, Colombia
| | - Carlos Ribelles
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| | - Jorge Sánchez-López
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
- Facultad de Agronomía, Universidad Autónoma de Sinaloa, Km 17.5 Carretera Culiacán-El Dorado, C.P 80000 Culiacán, Sinaloa Mexico
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Rafael Lozano
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, 04120 Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universitat Politècnica de València – Consejo Superior de Investigaciones Científicas, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain
| |
Collapse
|
92
|
Yao H, Skirpan A, Wardell B, Matthes MS, Best NB, McCubbin T, Durbak A, Smith T, Malcomber S, McSteen P. The barren stalk2 Gene Is Required for Axillary Meristem Development in Maize. MOLECULAR PLANT 2019; 12:374-389. [PMID: 30690173 DOI: 10.1016/j.molp.2018.12.024] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 12/08/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
The diversity of plant architecture is determined by axillary meristems (AMs). AMs are produced from small groups of stem cells in the axils of leaf primordia and generate vegetative branches and reproductive inflorescences. Previous studies identified genes critical for AM development that function in auxin biosynthesis, transport, and signaling. barren stalk1 (ba1), a basic helix-loop-helix transcription factor, acts downstream of auxin to control AM formation. Here, we report the cloning and characterization of barren stalk2 (ba2), a mutant that fails to produce ears and has fewer branches and spikelets in the tassel, indicating that ba2 functions in reproductive AM development. Furthermore, the ba2 mutation suppresses tiller growth in the teosinte branched1 mutant, indicating that ba2 also plays an essential role in vegetative AM development. The ba2 gene encodes a protein that co-localizes and heterodimerizes with BA1 in the nucleus. Characterization of the genetic interaction between ba2 and ba1 demonstrates that ba1 shows a gene dosage effect in ba2 mutants, providing further evidence that BA1 and BA2 act together in the same pathway. Characterization of the molecular and genetic interaction between ba2 and additional genes required for the regulation of ba1 further supports this finding. The ba1 and ba2 genes are orthologs of rice genes, LAX PANICLE1 (LAX1) and LAX2, respectively, hence providing insights into pathways controlling AMs development in grasses.
Collapse
Affiliation(s)
- Hong Yao
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Andrea Skirpan
- Department of Biology, Penn State University, University Park, PA 16802, USA
| | - Brian Wardell
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Michaela S Matthes
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Norman B Best
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Tyler McCubbin
- Division of Biological Sciences, Interdisciplinary Plant Group, Columbia, MO 65211, USA
| | - Amanda Durbak
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Taylor Smith
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA
| | - Simon Malcomber
- Department of Biological Sciences, California State University, Long Beach, CA 90840, USA
| | - Paula McSteen
- Division of Biological Sciences, Interdisciplinary Plant Group, Bond Life Sciences Center, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
93
|
Zhang H, Mi L, Xu L, Yu C, Li C, Chen C. Genome-wide identification, characterization, interaction network and expression profile of GRAS gene family in sweet orange (Citrus sinensis). Sci Rep 2019; 9:2156. [PMID: 30770885 PMCID: PMC6377710 DOI: 10.1038/s41598-018-38185-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/16/2018] [Indexed: 12/31/2022] Open
Abstract
GRAS genes are suggested to be grouped into plant-specific transcriptional regulatory families that have been reported to participate in multiple processes, including plant development, phytohormone signaling, the formation of symbiotic relationships, and response to environmental signals. GRAS genes have been characterized in a number of plant species, but little is known about this gene family in Citrus sinensis. In this study, we identified a total of 50 GRAS genes and characterized the gene structures, conserved motifs, genome localizations and cis-elements within their promoter regions. According to their structural and phylogenetic features, the identified sweet orange GRAS members were divided into 11 subgroups, of which subfamily CsGRAS34 was sweet orange-specific. Based on publicly available RNA-seq data generated from callus, flower, leaf and fruit in sweet orange, we found that some sweet orange GRAS genes exhibited tissue-specific expression patterning. Three of the six members of subfamily AtSHR, particularly CsGRAS9, and two of the six members of subfamily AtPAT1 were preferentially expressed in leaf. Moreover, protein-protein interactions with CsGRAS were predicted. Gene expression analysis was performed under conditions of phosphate deficiency, and GA3 and NaCl treatment to identify the potential functions of GRAS members in regulating stress and hormone responses. This study provides the first comprehensive understanding of the GRAS gene family in the sweet orange genome. As such, the study generates valuable information for further gene function analysis and identifying candidate genes to improve abiotic stress tolerance in citrus plants.
Collapse
Affiliation(s)
- Hua Zhang
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.,College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
| | - Limin Mi
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Long Xu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxiu Yu
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chen Li
- School of Basic Medicine, Hubei University of Medicine, Shiyan, Hubei, 442000, China
| | - Chunli Chen
- College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China. .,Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
94
|
Ho-Plágaro T, Molinero-Rosales N, Fariña Flores D, Villena Díaz M, García-Garrido JM. Identification and Expression Analysis of GRAS Transcription Factor Genes Involved in the Control of Arbuscular Mycorrhizal Development in Tomato. FRONTIERS IN PLANT SCIENCE 2019; 10:268. [PMID: 30930915 PMCID: PMC6429219 DOI: 10.3389/fpls.2019.00268] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/19/2019] [Indexed: 05/15/2023]
Abstract
The formation and functioning of arbuscular mycorrhizal (AM) symbiosis are complex and tightly regulated processes. Transcriptional regulation mechanisms have been reported to mediate gene expression changes closely associated with arbuscule formation, where nutrients move between the plant and fungus. Numerous genes encoding transcription factors (TFs), with those belonging to the GRAS family being of particular importance, are induced upon mycorrhization. In this study, a screening for candidate transcription factor genes differentially regulated in AM tomato roots showed that more than 30% of known GRAS tomato genes are upregulated upon mycorrhization. Some AM-upregulated GRAS genes were identified as encoding for transcription factors which are putative orthologs of previously identified regulators of mycorrhization in other plant species. The symbiotic role played by other newly identified AM-upregulated GRAS genes remains unknown. Preliminary results on the involvement of tomato SlGRAS18, SlGRAS38, and SlGRAS43 from the SCL3, SCL32, and SCR clades, respectively, in mycorrhization are presented. All three showed high transcript levels in the late stages of mycorrhization, and the analysis of promoter activity demonstrated that SlGRAS18 and SlGRAS43 are significantly induced in cells containing arbuscules. When SlGRAS18 and SlGRAS38 genes were silenced using RNA interference in hairy root composite tomato plants, a delay in mycorrhizal infection was observed, while an increase in mycorrhizal colonization was observed in SlGRAS43 RNAi roots. The possible mode of action of these TFs during mycorrhization is discussed, with a particular emphasis on the potential involvement of the SHR/SCR/SCL3 module of GRAS TFs in the regulation of gibberellin signaling during mycorrhization, which is analogous to other plant developmental processes.
Collapse
|
95
|
Zhang J, Hu Z, Wang Y, Yu X, Liao C, Zhu M, Chen G. Suppression of a tomato SEPALLATA MADS-box gene, SlCMB1, generates altered inflorescence architecture and enlarged sepals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:75-87. [PMID: 29807608 DOI: 10.1016/j.plantsci.2018.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/20/2018] [Accepted: 03/29/2018] [Indexed: 06/08/2023]
Abstract
The SEPALLATA (SEP) MADS-box transcription factors play essential roles in reproductive growth, especially in floral organ differentiation. Here, SlCMB1, a tomato SEP MADS-box gene, was isolated. SlCMB1 is noticeably expressed in inflorescences and flowers. Its transcript levels were higher in sepals than in other floral organs and decreased during sepal development. Tomato plants with reduced SlCMB1 mRNA levels displayed longer, branched and indeterminate inflorescences that exhibited a transition from reproductive to vegetative growth and enlarged and abnormally fused sepals. The transcript levels of genes known to regulate the development of inflorescence architecture and sepal size in tomato were dramatically changed. In addition, the expression levels of cell elongation-related and gibberellin biosynthetic genes also showed significant differences between the transgenic lines and the wild type, and the GA content of the peduncle in the transgenic lines was higher than that in the wild type. Yeast two-hybrid assay showed that SlCMB1 could interact individually with MC, J, AP2a and SlMBP21. Overall, our results indicate that SlCMB1 is an important regulator involved in the development of inflorescence architecture and sepal size in tomato plants.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Yunshu Wang
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Changguang Liao
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Mingku Zhu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
96
|
Zhang S, Yu H, Wang K, Zheng Z, Liu L, Xu M, Jiao Z, Li R, Liu X, Li J, Cui X. Detection of major loci associated with the variation of 18 important agronomic traits between Solanum pimpinellifolium and cultivated tomatoes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:312-323. [PMID: 29738097 DOI: 10.1111/tpj.13952] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Wild species can be used to improve various agronomic traits in cultivars; however, a limited understanding of the genetic basis underlying the morphological differences between wild and cultivated species hinders the integration of beneficial traits from wild species. In the present study, we generated and sequenced recombinant inbred lines (RILs, 201 F10 lines) derived from a cross between Solanum pimpinellifolium and Solanum lycopersicum tomatoes. Based on a high-resolution recombination bin map to uncover major loci determining the phenotypic variance between wild and cultivated tomatoes, 104 significantly associated loci were identified for 18 agronomic traits. On average, these loci explained ~39% of the phenotypic variance of the RILs. We further generated near-isogenic lines (NILs) for four identified loci, and the lines exhibited significant differences for the associated traits. We found that two loci could improve the flower number and inflorescence architecture in the cultivar following introgression of the wild-species alleles. These findings allowed us to construct a trait-locus network to help explain the correlations among different traits based on the pleiotropic or linked loci. Our results provide insights into the morphological changes between wild and cultivated tomatoes, and will help to identify key genes governing important agronomic traits for the molecular selection of elite tomato varieties.
Collapse
Affiliation(s)
- Shuaibin Zhang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hong Yu
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ketao Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- College of Horticulture, China Agricultural University, Beijing, 100193, China
| | - Zheng Zheng
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Industrial Crops Research Institute, Henan Academy of Agricultural Sciences, Huayuan Road 116, Zhengzhou, 450002, Henan, China
| | - Lei Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Xu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhicheng Jiao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Ren Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiyan Liu
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xia Cui
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
- Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
97
|
Abstract
The polyamines putrescine, spermidine and spermine have been implicated in a myriad of biological functions in many organisms. Research done during the last decades has accumulated a large body of evidence demonstrating that polyamines are key modulators of plant growth and development. Different experimental approaches have been employed including the measurement of endogenous polyamine levels and the activities of polyamine metabolic enzymes, the study of the effects resulting from exogenous polyamine applications and chemical or genetic manipulation of endogenous polyamine titers. This chapter reviews the role of PAs in seed germination, root development, plant architecture, in vitro plant regeneration, flowering and plant senescence. Evidence presented here indicates that polyamines should be regarded as plant growth regulators with potential applications in agriculture and plant biotechnology.
Collapse
|
98
|
Zhou S, Hu Z, Li F, Yu X, Naeem M, Zhang Y, Chen G. Manipulation of plant architecture and flowering time by down-regulation of the GRAS transcription factor SlGRAS26 in Solanum lycopersicum. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 271:81-93. [PMID: 29650160 DOI: 10.1016/j.plantsci.2018.03.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/14/2018] [Accepted: 03/16/2018] [Indexed: 05/03/2023]
Abstract
Previous studies suggest that GRAS transcription factors act as essential regulators, not only in plant growth and development but also in response to biotic and abiotic stresses. Recently, 53 GRAS proteins have been identified, but only a few of them have been functionally studied in tomato. Here, we isolated a novel GRAS transcription factor SlGRAS26, its down-regulation generated pleiotropic phenotypes, including reduced plant height with more lateral shoots, internode length, leaf size, even leaflets, accelerated flowering transition and decreased trichome number. Transcription analysis showed that down-regulation of SlGRAS26 altered vegetative growth by suppressing gibberellin (GA) biosynthesis genes and activating the GA inactivating genes, thereby reducing endogenous GA content in transgenic plants. SlGRAS26 may regulate the initiation of lateral buds by regulating the expression of Blind (BL) and BRC1b. The earlier initiation of flower buds in transgenic lines may be controlled by significant up-regulation of SFT, CO1, SBP3, SBP13, and SBP15 genes, related to flowering time. These results demonstrate that SlGRAS26 may play a vital role in the initiation of lateral and inflorescence meristems in tomato.
Collapse
Affiliation(s)
- Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Xiaohui Yu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Muhammad Naeem
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| | - Yanjie Zhang
- School of Life Sciences, Zhengzhou University, Zhengzhou 450001, People's Republic of China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, People's Republic of China.
| |
Collapse
|
99
|
Peng D, Tan X, Zhang L, Yuan D, Lin J, Liu X, Jiang Y, Zhou B. Increasing branch and seed yield through heterologous expression of the novel rice S-acyl transferase gene OsPAT15 in Brassica napus L. BREEDING SCIENCE 2018; 68:326-335. [PMID: 30100799 PMCID: PMC6081303 DOI: 10.1270/jsbbs.17126] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Accepted: 02/18/2018] [Indexed: 06/08/2023]
Abstract
Branching is a predominant element in the plant architecture of Brassica napus L. and represents an important determinant of seed yield. OsPAT15 (OsDHHC1), a novel DHHC-type zinc finger protein gene, was reported to regulate rice plant architecture by altering the tillering. However, whether heterologous overexpression of the OsPAT15 gene from the monocot rice into the dicot B. napus L. would have the same effect on branching or seed yield is unknown. In this study, the DHHC-type zinc finger protein gene OsPAT15 was determined to have sulfur acyl transferase activity in the akr1Δ yeast mutant in a complementation experiment. Heterologously expressing OsPAT15 transgenic B. napus L. plants were obtained using the Agrobacterium-mediated floral-dip transformation method. As anticipated, OsPAT15 transgenic plants exhibited branching and seed yield. Compared with non-transgenic plants, OsPAT15 transgenic plants had increased primary branches (1.58-1.76-fold) and siliques (1.86-1.89-fold), resulting in a significant increase in seed yield (around 2.39-2.51-fold). Therefore, overexpression of the sulfur acyl transferase gene OsPAT15 in B. napus L. could be used to increase seed yield and produce excellent varieties.
Collapse
Affiliation(s)
- Dan Peng
- Faculty of Life Science and Technology, Central South University of Forestry and Technology,
410004, Changsha,
China
- Forestry Biotechnology Hunan Key Laboratories,
410004, Changsha,
China
| | - Xiaofeng Tan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology,
410004, Changsha,
China
- Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Lin Zhang
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology,
410004, Changsha,
China
- Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Deyi Yuan
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Trees, Ministry of Education, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Cultivation and Protection for Non-Wood Forest Tree, Central South University of Forestry and Technology,
410004, Changsha,
China
- Collaborative Innovation Central of Cultivation and Utilization for Non-Wood Forest Tree Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Jianzhong Lin
- Key Laboratory of Plant Function Genomic for Development and Regulation, Hunan University,
410082, Changsha,
China
| | - Xuanming Liu
- Key Laboratory of Plant Function Genomic for Development and Regulation, Hunan University,
410082, Changsha,
China
| | - Yueqiao Jiang
- Faculty of Life Science and Technology, Central South University of Forestry and Technology,
410004, Changsha,
China
| | - Bo Zhou
- Faculty of Life Science and Technology, Central South University of Forestry and Technology,
410004, Changsha,
China
- Key Laboratory of Plant Function Genomic for Development and Regulation, Hunan University,
410082, Changsha,
China
- Forestry Biotechnology Hunan Key Laboratories,
410004, Changsha,
China
| |
Collapse
|
100
|
Pickersgill B. Parallel vs. Convergent Evolution in Domestication and Diversification of Crops in the Americas. Front Ecol Evol 2018. [DOI: 10.3389/fevo.2018.00056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|