51
|
Schmidt S, Debant A. Function and regulation of the Rho guanine nucleotide exchange factor Trio. Small GTPases 2014; 5:e29769. [PMID: 24987837 DOI: 10.4161/sgtp.29769] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Rho GTPases oscillate between an inactive GDP-bound state and an active GTP-bound state. They are activated by Rho Guanine nucleotide Exchange Factors (GEF), which accelerate the GDP to GTP exchange. RhoGEFs fall into two different classes: the Dbl family and the DOCK family of proteins. In this review, we focus on the function and regulation of the Dbl family RhoGEF Trio. Trio and its paralog Kalirin are unique within this family in that they display two GEF domains of distinct specificity. Trio is a major regulator of neuronal development, and its function is conserved through evolution. Moreover, Trio plays an important role in cell adhesion and in signaling pathways elicited by Gαq protein-coupled receptors. Combined, these observations suggest that Trio has a major role in cellular physiology. Of note, Trio is an essential gene for mouse development, with a prominent role in the development of the nervous system. Finally, Trio expression is significantly increased in different types of tumors and it has been proposed that it could participate in oncogenesis.
Collapse
Affiliation(s)
- Susanne Schmidt
- Centre de Recherche en Biochimie Macromoléculaire; CNRS - UMR 5237; Université de Montpellier; Montpellier, France
| | - Anne Debant
- Centre de Recherche en Biochimie Macromoléculaire; CNRS - UMR 5237; Université de Montpellier; Montpellier, France
| |
Collapse
|
52
|
Tu CL, You M. Obligatory roles of filamin A in E-cadherin-mediated cell-cell adhesion in epidermal keratinocytes. J Dermatol Sci 2013; 73:142-51. [PMID: 24120284 DOI: 10.1016/j.jdermsci.2013.09.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 08/02/2013] [Accepted: 09/18/2013] [Indexed: 12/28/2022]
Abstract
BACKGROUND Extracellular Ca(2+) (Cao(2+))-induced E-cadherin-mediated cell-cell adhesion plays a critical role in promoting differentiation in epidermal keratinocytes. Our previous studies show that the calcium-sensing receptor (CaR) regulates keratinocyte cell-cell adhesion and differentiation via Rho A-mediated signaling. CaR forms a protein complex with Rho A, guanine nucleotide exchange factor Trio, and a cytoskeletal actin-binding protein, filamin A, at the cell-cell junctions in response to elevated Cao(2+) levels. Filamin A has the ability to interact directly with CaR, Trio, and Rho and mediate CaR-dependent signaling events. OBJECTIVE This study was conducted to investigate the roles of filamin A and Trio in regulating Cao(2+)-induced Rho activation and intercellular adhesion. METHODS Expression of filamin A and Trio in keratinocytes was inhibited by siRNA. Its effects on Cao(2+)-dependent junction formation and adhesion complex formation were evaluated by fluorescence immunostaining and immunoprecipitation. Endogenous Rho activity and expression of keratinocyte differentiation markers were also examined. The significance of the physical interactions of filamin A with Trio and Rho was assessed in dominant-negative inhibition studies. RESULTS Inhibiting filamin A expression blocked the formation of CaR-Rho A-Trio-E-cadherin protein complex. Knockdown of filamin A or Trio inhibited Cao(2+)-induced membrane localization and activation of Rho A, formation of the E-cadherin-catenin adhesion complex, and keratinocyte terminal differentiation. Expressing dominant-negative peptides disruptive to the endogenous filamin-Trio, filamin-Rho, and CaR-filamin interactions suppressed the formation of adherens junctions. CONCLUSION Through physical interactions with CaR, Trio and Rho, filamin A generates a scaffold for organizing a signaling complex that promotes E-cadherin-mediated cell-cell adhesion and keratinocyte differentiation.
Collapse
Affiliation(s)
- Chia-Ling Tu
- Endocrine Unit, Veteran Affairs Medical Center and University of California, San Francisco, CA, USA.
| | - Michael You
- Endocrine Unit, Veteran Affairs Medical Center and University of California, San Francisco, CA, USA
| |
Collapse
|
53
|
Cook DR, Rossman KL, Der CJ. Rho guanine nucleotide exchange factors: regulators of Rho GTPase activity in development and disease. Oncogene 2013; 33:4021-35. [PMID: 24037532 DOI: 10.1038/onc.2013.362] [Citation(s) in RCA: 299] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/25/2013] [Accepted: 06/26/2013] [Indexed: 12/16/2022]
Abstract
The aberrant activity of Ras homologous (Rho) family small GTPases (20 human members) has been implicated in cancer and other human diseases. However, in contrast to the direct mutational activation of Ras found in cancer and developmental disorders, Rho GTPases are activated most commonly in disease by indirect mechanisms. One prevalent mechanism involves aberrant Rho activation via the deregulated expression and/or activity of Rho family guanine nucleotide exchange factors (RhoGEFs). RhoGEFs promote formation of the active GTP-bound state of Rho GTPases. The largest family of RhoGEFs is comprised of the Dbl family RhoGEFs with 70 human members. The multitude of RhoGEFs that activate a single Rho GTPase reflects the very specific role of each RhoGEF in controlling distinct signaling mechanisms involved in Rho activation. In this review, we summarize the role of Dbl RhoGEFs in development and disease, with a focus on Ect2 (epithelial cell transforming squence 2), Tiam1 (T-cell lymphoma invasion and metastasis 1), Vav and P-Rex1/2 (PtdIns(3,4,5)P3 (phosphatidylinositol (3,4,5)-triphosphate)-dependent Rac exchanger).
Collapse
Affiliation(s)
- D R Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - K L Rossman
- 1] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [2] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| | - C J Der
- 1] Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA [2] Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA [3] Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
54
|
Abstract
Myoblast fusion is a critical process that contributes to the growth of muscle during development and to the regeneration of myofibers upon injury. Myoblasts fuse with each other as well as with multinucleated myotubes to enlarge the myofiber. Initial studies demonstrated that myoblast fusion requires extracellular calcium and changes in cell membrane topography and cytoskeletal organization. More recent studies have identified several cell-surface and intracellular proteins that mediate myoblast fusion. Furthermore, emerging evidence suggests that myoblast fusion is also regulated by the activation of specific cell-signaling pathways that lead to the expression of genes whose products are essential for the fusion process and for modulating the activity of molecules that are involved in cytoskeletal rearrangement. Here, we review the roles of the major signaling pathways in mammalian myoblast fusion.
Collapse
Affiliation(s)
- Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, School of Medicine, University of Louisville, Louisville, KY 40202, USA
| | | | | |
Collapse
|
55
|
Miyamoto Y, Torii T, Yamamori N, Ogata T, Tanoue A, Yamauchi J. Akt and PP2A reciprocally regulate the guanine nucleotide exchange factor Dock6 to control axon growth of sensory neurons. Sci Signal 2013; 6:ra15. [PMID: 23462102 DOI: 10.1126/scisignal.2003661] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
During neuronal development, axons navigate long distances, eventually forming precise connections with such targets as peripheral tissues. Dock6 is a guanine nucleotide exchange factor (GEF) that activates the Rho family guanosine triphosphatases Rac1 and Cdc42 to regulate the actin cytoskeleton. We found that phosphorylation of Ser(1194) in Dock6 inhibited its GEF activity and suppressed axonal growth of embryonic sensory neurons and axon regeneration of postnatal sensory neurons in vitro and in vivo. At early developmental stages, when axons are growing, the protein phosphatase PP2A interacted with and dephosphorylated Dock6, thereby increasing the activity of Dock6. At later developmental stages, the abundance of the kinase Akt increased, resulting in the binding of Akt to Dock6 and the phosphorylation of Dock6 at Ser(1194). In dorsal root ganglion neurons from mice lacking Dock6, reintroduction of Dock6 with a nonphosphorylatable S1194A mutation rescued axon extension but not branch number, whereas reintroduction of Dock6 with a phosphomimetic S1194E mutation resulted in premature branching. Thus, the phosphorylation status of Dock6 at Ser(1194) determines whether it promotes axon extension or branching in sensory neurons, revealing interplay between kinase and phosphatase action on a Rho-GEF during axon growth.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo 157-8535, Japan
| | | | | | | | | | | |
Collapse
|
56
|
Miller MB, Yan Y, Eipper BA, Mains RE. Neuronal Rho GEFs in synaptic physiology and behavior. Neuroscientist 2013; 19:255-73. [PMID: 23401188 DOI: 10.1177/1073858413475486] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In the mammalian brain, the majority of excitatory synapses are housed in micron-sized dendritic protrusions called spines, which can undergo rapid changes in shape and number in response to increased or decreased synaptic activity. These dynamic alterations in dendritic spines require precise control of the actin cytoskeleton. Within spines, multidomain Rho guanine nucleotide exchange factors (Rho GEFs) coordinate activation of their target Rho GTPases by a variety of pathways. In this review, we focus on the handful of disease-related Rho GEFs (Kalirin; Trio; Tiam1; P-Rex1,2; RasGRF1,2; Collybistin) localized at synapses and known to affect electrophysiology, spine morphology, and animal behavior. The goal is to integrate structure/function studies with measurements of synaptic function and behavioral phenotypes in animal models.
Collapse
Affiliation(s)
- Megan B Miller
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT 06030-3401, USA
| | | | | | | |
Collapse
|
57
|
Tyrosine phosphorylation of the Rho guanine nucleotide exchange factor Trio regulates netrin-1/DCC-mediated cortical axon outgrowth. Mol Cell Biol 2012; 33:739-51. [PMID: 23230270 DOI: 10.1128/mcb.01264-12] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The chemotropic guidance cue netrin-1 mediates attraction of migrating axons during central nervous system development through the receptor Deleted in Colorectal Cancer (DCC). Downstream of netrin-1, activated Rho GTPases Rac1 and Cdc42 induce cytoskeletal rearrangements within the growth cone. The Rho guanine nucleotide exchange factor (GEF) Trio is essential for Rac1 activation downstream of netrin-1/DCC, but the molecular mechanisms governing Trio activity remain elusive. Here, we demonstrate that Trio is phosphorylated by Src family kinases in the embryonic rat cortex in response to netrin-1. In vitro, Trio was predominantly phosphorylated at Tyr(2622) by the Src kinase Fyn. Though the phospho-null mutant Trio(Y2622F) retained GEF activity toward Rac1, its expression impaired netrin-1-induced Rac1 activation and DCC-mediated neurite outgrowth in N1E-115 neuroblastoma cells. Trio(Y2622F) impaired netrin-1-induced axonal extension in cultured cortical neurons and was unable to colocalize with DCC in growth cones, in contrast to wild-type Trio. Furthermore, depletion of Trio in cortical neurons reduced the level of cell surface DCC in growth cones, which could be restored by expression of wild-type Trio but not Trio(Y2622F). Together, these findings demonstrate that Trio(Y2622) phosphorylation is essential for the regulation of the DCC/Trio signaling complex in cortical neurons during netrin-1-mediated axon outgrowth.
Collapse
|
58
|
Vaqué JP, Dorsam RT, Feng X, Iglesias-Bartolome R, Forsthoefel DJ, Chen Q, Debant A, Seeger MA, Ksander BR, Teramoto H, Gutkind JS. A genome-wide RNAi screen reveals a Trio-regulated Rho GTPase circuitry transducing mitogenic signals initiated by G protein-coupled receptors. Mol Cell 2012. [PMID: 23177739 DOI: 10.1016/j.molcel.2012.10.018] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Activating mutations in GNAQ and GNA11, encoding members of the Gα(q) family of G protein α subunits, are the driver oncogenes in uveal melanoma, and mutations in Gq-linked G protein-coupled receptors have been identified recently in numerous human malignancies. How Gα(q) and its coupled receptors transduce mitogenic signals is still unclear because of the complexity of signaling events perturbed upon Gq activation. Using a synthetic-biology approach and a genome-wide RNAi screen, we found that a highly conserved guanine nucleotide exchange factor, Trio, is essential for activating Rho- and Rac-regulated signaling pathways acting on JNK and p38, and thereby transducing proliferative signals from Gα(q) to the nucleus independently of phospholipase C-β. Indeed, whereas many biological responses elicited by Gq depend on the transient activation of second-messenger systems, Gq utilizes a hard-wired protein-protein-interaction-based signaling circuitry to achieve the sustained stimulation of proliferative pathways, thereby controlling normal and aberrant cell growth.
Collapse
Affiliation(s)
- Jose P Vaqué
- Oral and Pharyngeal Cancer Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892-4340, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Zhu Y, Wang C, Lan J, Yu J, Jin C, Huang H. Phosphorylation of Tara by Plk1 is essential for faithful chromosome segregation in mitosis. Exp Cell Res 2012; 318:2344-52. [PMID: 22820163 DOI: 10.1016/j.yexcr.2012.07.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 06/27/2012] [Accepted: 07/04/2012] [Indexed: 11/16/2022]
Abstract
Trio-associated repeat on actin (Tara) is an F-actin binding protein and regulates actin cytoskeletal organization. In our previous study, we have found that Tara associates with telomeric repeat binding factor 1 (TRF1) and mediates the function of TRF1 in mitotic regulation. We also found that overexpression HECTD3, a member of HECT E3 ubiquitin ligases, enhances the ubiquitination of Tara in vivo and promotes the degradation of Tara, and such degradation of Tara facilitates cell cycle progression. However, less is known about the post-translational modification of Tara in mitosis. Here we show that Tara is a novel Polo-like kinase 1 (Plk1) target protein. Plk1 interacts with and phosphorylates Tara in vivo and in vitro. Actually, the Thr-457 in Tara was a bona fide in vivo phosphorylation site for Plk1. Interestingly, we found that the centrosomal localization of Tara depended on the Thr-457 phosphorylation and the kinase activity of Plk1. Furthermore, overexpression of non-phosphorylatable mutant of Tara caused aberrant mitosis delay in HeLa cells. Our study demonstrated that Plk1-mediated phospho-dependent centrosomal localization of Tara is important for faithful chromosome segregation, and provided novel insights into understanding on the role of Plk1 in cooperation with Tara in mitotic progression.
Collapse
Affiliation(s)
- Yuanyuan Zhu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
60
|
Abstract
Small Rho-GTPases are enzymes that are bound to GDP or GTP, which determines their inactive or active state, respectively. The exchange of GDP for GTP is catalyzed by so-called Rho-guanine nucleotide exchange factors (GEFs). Rho-GEFs are characterized by a Dbl-homology (DH) and adjacent Pleckstrin-homology (PH) domain that serves as enzymatic unit for the GDP/GTP exchange. Rho-GEFs show different GTPase specificities, meaning that a particular GEF can activate either multiple GTPases or only one specific GTPase. We recently reported that the Rho-GEF Trio, known to be able to exchange GTP on Rac1, RhoG and RhoA, regulates lamellipodia formation to mediate cell spreading and migration in a Rac1-dependent manner. In this commentary, we review the current knowledge of Trio in several aspects of cell biology.
Collapse
Affiliation(s)
- Jos van Rijssel
- Department of Molecular Cell Biology, Sanquin Research and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, the Netherlands
| | | |
Collapse
|
61
|
Miller NLG, Lawson C, Chen XL, Lim ST, Schlaepfer DD. Rgnef (p190RhoGEF) knockout inhibits RhoA activity, focal adhesion establishment, and cell motility downstream of integrins. PLoS One 2012; 7:e37830. [PMID: 22649559 PMCID: PMC3359313 DOI: 10.1371/journal.pone.0037830] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 04/24/2012] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Cell migration is a highly regulated process that involves the formation and turnover of cell-matrix contact sites termed focal adhesions. Rho-family GTPases are molecular switches that regulate actin and focal adhesion dynamics in cells. Guanine nucleotide exchange factors (GEFs) activate Rho-family GTPases. Rgnef (p190RhoGEF) is a ubiquitous 190 kDa GEF implicated in the control of colon carcinoma and fibroblast cell motility. PRINCIPAL FINDINGS Rgnef exon 24 floxed mice (Rgnef(flox)) were created and crossed with cytomegalovirus (CMV)-driven Cre recombinase transgenic mice to inactivate Rgnef expression in all tissues during early development. Heterozygous Rgnef(WT/flox) (Cre+) crosses yielded normal Mendelian ratios at embryonic day 13.5, but Rgnef(flox/flox) (Cre+) mice numbers at 3 weeks of age were significantly less than expected. Rgnef(flox/flox) (Cre+) (Rgnef-/-) embryos and primary mouse embryo fibroblasts (MEFs) were isolated and verified to lack Rgnef protein expression. When compared to wildtype (WT) littermate MEFs, loss of Rgnef significantly inhibited haptotaxis migration, wound closure motility, focal adhesion number, and RhoA GTPase activation after fibronectin-integrin stimulation. In WT MEFs, Rgnef activation occurs within 60 minutes upon fibronectin plating of cells associated with RhoA activation. Rgnef-/- MEF phenotypes were rescued by epitope-tagged Rgnef re-expression. CONCLUSIONS Rgnef-/- MEF phenotypes were due to Rgnef loss and support an essential role for Rgnef in RhoA regulation downstream of integrins in control of cell migration.
Collapse
Affiliation(s)
| | | | | | | | - David D. Schlaepfer
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
62
|
Lee JW, Yeo SG, Kang BH, Lee HK, Kim JW, Lee SH, Kim KS, Cheon DS. Echovirus 30 induced neuronal cell death through TRIO-RhoA signaling activation. PLoS One 2012; 7:e36656. [PMID: 22586486 PMCID: PMC3346726 DOI: 10.1371/journal.pone.0036656] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2011] [Accepted: 04/05/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Echovirus 30 (Echo30) is one of the most frequently identified human enteroviruses (EVs) causing aseptic meningitis and encephalitis. However the mechanism underlying the pathogenesis of Echo30 infection with significant clinical outcomes is not completely understood. The aim of this investigation is to illustrate molecular pathologic alteration in neuronal cells induced by Echo30 infection using clinical isolate from young patient with neurologic involvement. METHODOLOGY/PRINCIPAL FINDINGS To characterize the neuronal cellular response to Echo30 infection, we performed a proteomic analysis based on two-dimensional gel electrophoresis (2-DE) and MALDI-TOF/TOF Mass Spectrophotometric (MS) analysis. We identified significant alteration of several protein expression levels in Echo30-infected SK-N-SH cells. Among these proteins, we focused on an outstanding up-regulation of Triple functional domain (TRIO) in Echo30-infected SK-N-SH cells. Generally, TRIO acts as a key component in the regulation of axon guidance and cell migration. In this study, we determined that TRIO plays a role in the novel pathways in Echo30 induced neuronal cell death. CONCLUSIONS/SIGNIFICANCE Our finding shows that TRIO plays a critical role in neuronal cell death by Echo30 infection. Echo30 infection activates TRIO-guanine nucleotide exchange factor (GEF) domains (GEFD2) and RhoA signaling in turn. These results suggest that Echo30 infection induced neuronal cell death by activation of the TRIO-RhoA signaling. We expect the regulation of TRIO-RhoA signaling may represent a new therapeutic approach in treating aseptic meningitis and encephalitis induced by Echo30.
Collapse
Affiliation(s)
- June-Woo Lee
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
| | - Sang-Gu Yeo
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
| | - Byung-Hak Kang
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
| | - Hoe-Kyu Lee
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
| | - Jin-Won Kim
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
| | - Sun-Hwa Lee
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
| | - Ki-Sang Kim
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
| | - Doo-Sung Cheon
- Division of Enteric and Hepatitis Viruses, Center for Infectious Diseases, National Institutes of Health, Osong, Korea
- * E-mail:
| |
Collapse
|
63
|
Abstract
The fusion of myoblasts into multinucleate syncytia plays a fundamental role in muscle function, as it supports the formation of extended sarcomeric arrays, or myofibrils, within a large volume of cytoplasm. Principles learned from the study of myoblast fusion not only enhance our understanding of myogenesis, but also contribute to our perspectives on membrane fusion and cell-cell fusion in a wide array of model organisms and experimental systems. Recent studies have advanced our views of the cell biological processes and crucial proteins that drive myoblast fusion. Here, we provide an overview of myoblast fusion in three model systems that have contributed much to our understanding of these events: the Drosophila embryo; developing and regenerating mouse muscle; and cultured rodent muscle cells.
Collapse
Affiliation(s)
- Susan M Abmayr
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
64
|
Portales-Casamar E, Briançon-Marjollet A, Fromont S, Triboulet R, Debant A. Identification of novel neuronal isoforms of the Rho-GEF Trio. Biol Cell 2012; 98:183-93. [PMID: 16033331 DOI: 10.1042/bc20050009] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION The large family of GEFs (guanine nucleotide-exchange factors) for Rho GTPases activate the GTPases by accelerating their GDP/GTP exchange. The multidomain protein Trio is the founding member of an intriguing subfamily of Rho-GEFs exhibiting two Rho-GEF and numerous additional domains. The members of the Trio family play an important role in neuronal physiology, and their structural organization is very well conserved through evolution. It has previously been shown that all the members, except mammalian Trio, display several isoforms, the functions of which have been well established. RESULTS In this study, we have identified, by a combination of different approaches, novel Trio isoforms that have been generated by alternative splicing, giving rise to proteins that exhibit one or two Rho-GEF domains (GEFDs). These isoforms are specifically expressed in the nervous system, at a higher level than the full-length Trio, which is ubiquitously expressed. In addition, we show that all the GEFD1-containing isoforms induce neurite outgrowth in neuroblastoma cells. CONCLUSIONS We have identified neuronal specific isoforms of Trio which could be essential for Trio function in neuronal morphology.
Collapse
|
65
|
Plageman TF, Chauhan BK, Yang C, Jaudon F, Shang X, Zheng Y, Lou M, Debant A, Hildebrand JD, Lang RA. A Trio-RhoA-Shroom3 pathway is required for apical constriction and epithelial invagination. Development 2011; 138:5177-88. [PMID: 22031541 DOI: 10.1242/dev.067868] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Epithelial invagination is a common feature of embryogenesis. An example of invagination morphogenesis occurs during development of the early eye when the lens placode forms the lens pit. This morphogenesis is accompanied by a columnar-to-conical cell shape change (apical constriction or AC) and is known to be dependent on the cytoskeletal protein Shroom3. Because Shroom3-induced AC can be Rock1/2 dependent, we hypothesized that during lens invagination, RhoA, Rock and a RhoA guanine nucleotide exchange factor (RhoA-GEF) would also be required. In this study, we show that Rock activity is required for lens pit invagination and that RhoA activity is required for Shroom3-induced AC. We demonstrate that RhoA, when activated and targeted apically, is sufficient to induce AC and that RhoA plays a key role in Shroom3 apical localization. Furthermore, we identify Trio as a RhoA-GEF required for Shroom3-dependent AC in MDCK cells and in the lens pit. Collectively, these data indicate that a Trio-RhoA-Shroom3 pathway is required for AC during lens pit invagination.
Collapse
Affiliation(s)
- Timothy F Plageman
- The Visual Systems Group, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Cook DR, Solski PA, Bultman SJ, Kauselmann G, Schoor M, Kuehn R, Friedman LS, Cowley DO, Van Dyke T, Yeh JJ, Johnson L, Der CJ. The ect2 rho Guanine nucleotide exchange factor is essential for early mouse development and normal cell cytokinesis and migration. Genes Cancer 2011; 2:932-42. [PMID: 22701760 PMCID: PMC3374631 DOI: 10.1177/1947601912437035] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Revised: 12/14/2011] [Accepted: 12/18/2011] [Indexed: 12/23/2022] Open
Abstract
Ect2 is a member of the human Dbl family of guanine nucleotide exchange factors (RhoGEFs) that serve as activators of Rho family small GTPases. Although Ect2 is one of at least 25 RhoGEFs that can activate the RhoA small GTPase, cell culture studies using established cell lines determined that Ect2 is essential for mammalian cell cytokinesis and proliferation. To address the function of Ect2 in normal mammalian development, we performed gene targeting to generate Ect2 knockout mice. The heterozygous Ect2(+/-) mice showed normal development and life span, indicating that Ect2 haplodeficiency was not deleterious for development or growth. In contrast, Ect2(-/-) embryos were not found at birth or postimplantation stages. Ect2(-/-) blastocysts were recovered at embryonic day 3.5 but did not give rise to viable outgrowths in culture, indicating that Ect2 is required for peri-implantation development. To further assess the importance of Ect2 in normal cell physiology, we isolated primary fibroblasts from Ect2(fl/fl) embryos (MEFs) and ablated Ect2 using adenoviral delivery of Cre recombinase. We observed a significant increase in multinucleated cells and accumulation of cells in G2/M phase, consistent with a role for Ect2 in cytokinesis. Ect2 deficiency also caused enlargement of the cytoplasm and impaired cell migration. Finally, although Ect2-dependent activation of RhoA has been implicated in cytokinesis, Ect2 can also activate Rac1 and Cdc42 to cause growth transformation. Surprisingly, ectopic expression of constitutively activated RhoA, Rac1, or Cdc42, known substrates of Ect2, failed to phenocopy Ect2 and did not rescue the defect in cytokinesis caused by loss of Ect2. In summary, our results establish the unique role of Ect2 in development and normal cell proliferation.
Collapse
Affiliation(s)
- Danielle R. Cook
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Solski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott J. Bultman
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | | | - Ralf Kuehn
- TaconicArtemis GmbH, Cologne, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich, Germany
- Institute of Developmental Genetics, Helmholtz Center Munich, Munich,Germany
| | - Lori S. Friedman
- Exelixis Inc., South San Francisco, CA, USA
- Genentech Inc., South San Francisco, CA, USA
| | - Dale O. Cowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Terry Van Dyke
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jen Jen Yeh
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Leisa Johnson
- Exelixis Inc., South San Francisco, CA, USA
- Genentech Inc., South San Francisco, CA, USA
| | - Channing J. Der
- Division of Chemical Biology and Medicinal Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
67
|
Chiu TT, Jensen TE, Sylow L, Richter EA, Klip A. Rac1 signalling towards GLUT4/glucose uptake in skeletal muscle. Cell Signal 2011; 23:1546-54. [DOI: 10.1016/j.cellsig.2011.05.022] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Accepted: 05/31/2011] [Indexed: 12/27/2022]
|
68
|
Molecular and cellular mechanisms of mammalian cell fusion. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2011; 713:33-64. [PMID: 21432013 DOI: 10.1007/978-94-007-0763-4_4] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The fusion of one cell with another occurs in development, injury and disease. Despite the diversity of fusion events, five steps in sequence appear common. These steps include programming fusion-competent status, chemotaxis, membrane adhesion, membrane fusion, and post-fusion resetting. Recent advances in the field start to reveal the molecules involved in each step. This review focuses on some key molecules and cellular events of cell fusion in mammals. Increasing evidence demonstrates that membrane lipid rafts, adhesion proteins and actin rearrangement are critical in the final step of membrane fusion. Here we propose a new model for the formation and expansion of membrane fusion pores based on recent observations on myotube formation. In this model, membrane lipid rafts first recruit adhesion molecules and align with opposing membranes, with the help of a cortical actin "wall" as a rigid supportive platform. Second, the membrane adhesion proteins interact with each other and trigger actin rearrangement, which leads to rapid dispersion of lipid rafts and flow of a highly fluidic phospholipid bilayer into the site. Finally, the opposing phospholipid bilayers are then pushed into direct contact leading to the formation of fusion pores by the force generated through actin polymerization. The actin polymerization generated force also drives the expansion of the fusion pores. However, several key questions about the process of cell fusion still remain to be explored. The understanding of the mechanisms of cell fusion may provide new opportunities in correcting development disorders or regenerating damaged tissues by inhibiting or promoting molecular events associated with fusion.
Collapse
|
69
|
Tolias KF, Duman JG, Um K. Control of synapse development and plasticity by Rho GTPase regulatory proteins. Prog Neurobiol 2011; 94:133-48. [PMID: 21530608 PMCID: PMC3129138 DOI: 10.1016/j.pneurobio.2011.04.011] [Citation(s) in RCA: 210] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 04/13/2011] [Accepted: 04/15/2011] [Indexed: 12/21/2022]
Abstract
Synapses are specialized cell-cell contacts that mediate communication between neurons. Most excitatory synapses in the brain are housed on dendritic spines, small actin-rich protrusions extending from dendrites. During development and in response to environmental stimuli, spines undergo marked changes in shape and number thought to underlie processes like learning and memory. Improper spine development, in contrast, likely impedes information processing in the brain, since spine abnormalities are associated with numerous brain disorders. Elucidating the mechanisms that regulate the formation and plasticity of spines and their resident synapses is therefore crucial to our understanding of cognition and disease. Rho-family GTPases, key regulators of the actin cytoskeleton, play essential roles in orchestrating the development and remodeling of spines and synapses. Precise spatio-temporal regulation of Rho GTPase activity is critical for their function, since aberrant Rho GTPase signaling can cause spine and synapse defects as well as cognitive impairments. Rho GTPases are activated by guanine nucleotide exchange factors (GEFs) and inhibited by GTPase-activating proteins (GAPs). We propose that Rho-family GEFs and GAPs provide the spatiotemporal regulation and signaling specificity necessary for proper Rho GTPase function based on the following features they possess: (i) existence of multiple GEFs and GAPs per Rho GTPase, (ii) developmentally regulated expression, (iii) discrete localization, (iv) ability to bind to and organize specific signaling networks, and (v) tightly regulated activity, perhaps involving GEF/GAP interactions. Recent studies describe several Rho-family GEFs and GAPs that uniquely contribute to spinogenesis and synaptogenesis. Here, we highlight several of these proteins and discuss how they occupy distinct biochemical niches critical for synaptic development.
Collapse
Affiliation(s)
- Kimberley F Tolias
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | | | | |
Collapse
|
70
|
Nile AH, Bankaitis VA, Grabon A. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. CLINICAL LIPIDOLOGY 2010; 5:867-897. [PMID: 21603057 PMCID: PMC3097519 DOI: 10.2217/clp.10.67] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Inositol and phosphoinositide signaling pathways represent major regulatory systems in eukaryotes. The physiological importance of these pathways is amply demonstrated by the variety of diseases that involve derangements in individual steps in inositide and phosphoinositide production and degradation. These diseases include numerous cancers, lipodystrophies and neurological syndromes. Phosphatidylinositol transfer proteins (PITPs) are emerging as fascinating regulators of phosphoinositide metabolism. Recent advances identify PITPs (and PITP-like proteins) to be coincidence detectors, which spatially and temporally coordinate the activities of diverse aspects of the cellular lipid metabolome with phosphoinositide signaling. These insights are providing new ideas regarding mechanisms of inherited mammalian diseases associated with derangements in the activities of PITPs and PITP-like proteins.
Collapse
Affiliation(s)
- Aaron H Nile
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Vytas A Bankaitis
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| | - Aby Grabon
- Department of Cell & Developmental Biology, Lineberger Comprehensive Cancer Center School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-27090, USA
| |
Collapse
|
71
|
Neubrand VE, Thomas C, Schmidt S, Debant A, Schiavo G. Kidins220/ARMS regulates Rac1-dependent neurite outgrowth by direct interaction with the RhoGEF Trio. J Cell Sci 2010; 123:2111-23. [PMID: 20519585 DOI: 10.1242/jcs.064055] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neurite extension depends on extracellular signals that lead to changes in gene expression and rearrangement of the actin cytoskeleton. A factor that might orchestrate these signalling pathways with cytoskeletal elements is the integral membrane protein Kidins220/ARMS, a downstream target of neurotrophins. Here, we identified Trio, a RhoGEF for Rac1, RhoG and RhoA, which is involved in neurite outgrowth and axon guidance, as a binding partner of Kidins220. This interaction is direct and occurs between the N-terminus of Trio and the ankyrin repeats of Kidins220. Trio and Kidins220 colocalise at the tips of neurites in NGF-differentiated PC12 cells, where F-actin and Rac1 also accumulate. Expression of the ankyrin repeats of Kidins220 in PC12 cells inhibits NGF-dependent and Trio-induced neurite outgrowth. Similar results are seen in primary hippocampal neurons. Our data indicate that Kidins220 might localise Trio to specific membrane sites and regulate its activity, leading to Rac1 activation and neurite outgrowth.
Collapse
Affiliation(s)
- Veronika E Neubrand
- Molecular NeuroPathobiology, Cancer Research UK London Research Institute, London, UK.
| | | | | | | | | |
Collapse
|
72
|
Peng YJ, He WQ, Tang J, Tao T, Chen C, Gao YQ, Zhang WC, He XY, Dai YY, Zhu NC, Lv N, Zhang CH, Qiao YN, Zhao LP, Gao X, Zhu MS. Trio is a key guanine nucleotide exchange factor coordinating regulation of the migration and morphogenesis of granule cells in the developing cerebellum. J Biol Chem 2010; 285:24834-44. [PMID: 20516067 DOI: 10.1074/jbc.m109.096537] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Orchestrated regulation of neuronal migration and morphogenesis is critical for neuronal development and establishment of functional circuits, but its regulatory mechanism is incompletely defined. We established and analyzed mice with neural-specific knock-out of Trio, a guanine nucleotide exchange factor with multiple guanine nucleotide exchange factor domains. Knock-out mice showed defective cerebella and severe signs of ataxia. Mutant cerebella had no granule cells in the internal granule cell layer due to aberrant granule cell migration as well as abnormal neurite growth. Trio-deficient granule cells showed reduced extension of neurites and highly branched and misguided processes with perturbed stabilization of actin and microtubules. Trio deletion caused down-regulation of the activation of Rac1, RhoA, and Cdc42, and mutant granule cells appeared to be unresponsive to neurite growth-promoting molecules such as Netrin-1 and Semaphorin 6A. These results suggest that Trio may be a key signal module for the orchestrated regulation of neuronal migration and morphogenesis during cerebellar development. Trio may serve as a signal integrator decoding extrinsic signals to Rho GTPases for cytoskeleton organization.
Collapse
Affiliation(s)
- Ya-Jing Peng
- Model Animal Research Center and Moe Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Linnemann A, van der Ven PFM, Vakeel P, Albinus B, Simonis D, Bendas G, Schenk JA, Micheel B, Kley RA, Fürst DO. The sarcomeric Z-disc component myopodin is a multiadapter protein that interacts with filamin and alpha-actinin. Eur J Cell Biol 2010; 89:681-92. [PMID: 20554076 DOI: 10.1016/j.ejcb.2010.04.004] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/28/2022] Open
Abstract
Here we introduce myopodin as a novel filamin C binding partner. Corroborative yeast two-hybrid and biochemical analyses indicate that the central part of myopodin that shows high homology to the closely related protein synaptopodin and that is common to all its currently known or predicted variants interacts with filamin C immunoglobulin-like domains 20-21. A detailed characterization of the previously described interaction between myopodin and alpha-actinin demonstrates for the first time that myopodin contains three independent alpha-actinin-binding sites. Newly developed myopodin-specific antibodies reveal expression at the earliest stages of in vitro differentiation of human skeletal muscle cells preceding the expression of sarcomeric alpha-actinin. Myopodin colocalizes with filamin and alpha-actinin during all stages of muscle development. By contrast, colocalization with its previously identified binding partner zyxin is restricted to early developmental stages. Genetic and cellular analyses of skeletal muscle provided direct evidence for an alternative transcriptional start site in exon three, corroborating the expression of a myopodin variant lacking the PDZ domain encoded by exons 1 and 2 in skeletal muscle. We conclude that myopodin is a multiadapter protein of the sarcomeric Z-disc that links nascent myofibrils to the sarcolemma via zyxin, and might play a role in early assembly and stabilization of the Z-disc. Mutations in FLNC, ACTN2 and several other genes encoding Z-disc-related proteins cause myopathy and cardiomyopathy. Its localization and its association with the myopathy-associated proteins filamin C and alpha-actinin make myopodin an interesting candidate for a muscle disease gene.
Collapse
Affiliation(s)
- Anja Linnemann
- Institute for Cell Biology, Department of Molecular Cell Biology, University of Bonn, Bonn, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Bach AS, Enjalbert S, Comunale F, Bodin S, Vitale N, Charrasse S, Gauthier-Rouvière C. ADP-ribosylation factor 6 regulates mammalian myoblast fusion through phospholipase D1 and phosphatidylinositol 4,5-bisphosphate signaling pathways. Mol Biol Cell 2010; 21:2412-24. [PMID: 20505075 PMCID: PMC2903670 DOI: 10.1091/mbc.e09-12-1063] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Here we show that ARF6 is associated with the multiproteic complex that contains M-cadherin, Trio, and Rac1 and accumulates at sites of myoblast fusion. ARF6 silencing inhibits the association of Trio and Rac1 with M-cadherin. Moreover, we demonstrate that ARF6 regulates myoblast fusion through Phospholipase D activation and PI(4,5)P2 production. Myoblast fusion is an essential step during myoblast differentiation that remains poorly understood. M-cadherin–dependent pathways that signal through Rac1 GTPase activation via the Rho-guanine nucleotide exchange factor (GEF) Trio are important for myoblast fusion. The ADP-ribosylation factor (ARF)6 GTPase has been shown to bind to Trio and to regulate Rac1 activity. Moreover, Loner/GEP100/BRAG2, a GEF of ARF6, has been involved in mammalian and Drosophila myoblast fusion, but the specific role of ARF6 has been not fully analyzed. Here, we show that ARF6 activity is increased at the time of myoblast fusion and is required for its implementation in mouse C2C12 myoblasts. Specifically, at the onset of myoblast fusion, ARF6 is associated with the multiproteic complex that contains M-cadherin, Trio, and Rac1 and accumulates at sites of myoblast fusion. ARF6 silencing inhibits the association of Trio and Rac1 with M-cadherin. Moreover, we demonstrate that ARF6 regulates myoblast fusion through phospholipase D (PLD) activation and phosphatidylinositol 4,5-bis-phosphate production. Together, these data indicate that ARF6 is a critical regulator of C2C12 myoblast fusion and participates in the regulation of PLD activities that trigger both phospholipids production and actin cytoskeleton reorganization at fusion sites.
Collapse
Affiliation(s)
- Anne-Sophie Bach
- Universités Montpellier 2 et 1, Centre de Recherche en Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5237, Institut Fédératif de Recherche 122 1919 Route de Mende, 34293 Montpellier, France
| | | | | | | | | | | | | |
Collapse
|
75
|
Krauss RS. Regulation of promyogenic signal transduction by cell-cell contact and adhesion. Exp Cell Res 2010; 316:3042-9. [PMID: 20471976 DOI: 10.1016/j.yexcr.2010.05.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Revised: 05/07/2010] [Accepted: 05/08/2010] [Indexed: 01/25/2023]
Abstract
Skeletal myoblast differentiation involves acquisition of the muscle-specific transcriptional program and morphological changes, including fusion into multinucleated myofibers. Differentiation is regulated by extracellular signaling cues, including cell-cell contact and adhesion. Cadherin and Ig adhesion receptors have been implicated in distinct but overlapping stages of myogenesis. N-cadherin signals through the Ig receptor Cdo to activate p38 MAP kinase, while the Ig receptor neogenin signals to activate FAK; both processes promote muscle-specific gene expression and myoblast fusion. M-cadherin activates Rac1 to enhance fusion. Specific Ig receptors (Kirre and Sns) are essential for myoblast fusion in Drosophila, also signaling through Rac, and vertebrate orthologs of Kirre and Sns have partially conserved function. Mice lacking specific cytoplasmic signaling factors activated by multiple receptors (e.g., Rac1) have strong muscle phenotypes in vivo. In contrast, mice lacking individual adhesion receptors that lie upstream of these factors have modest phenotypes. Redundancy among receptors may account for this. Many of the mammalian Ig receptors and cadherins associate with each other, and multivalent interactions within these complexes may require removal of multiple components to reveal dramatic defects in vivo. Nevertheless, it is possible that the murine adhesion receptors rate-limiting in vivo have not yet been identified or fully assessed.
Collapse
Affiliation(s)
- Robert S Krauss
- Department of Developmental and Regenerative Biology, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
76
|
Kiraly DD, Eipper-Mains JE, Mains RE, Eipper BA. Synaptic plasticity, a symphony in GEF. ACS Chem Neurosci 2010; 1:348-365. [PMID: 20543890 PMCID: PMC2882301 DOI: 10.1021/cn100012x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 03/03/2010] [Indexed: 02/06/2023] Open
Abstract
Dendritic spines are the postsynaptic sites for the majority of excitatory synapses in the mammalian forebrain. While many spines display great stability, others change shape in a matter of seconds to minutes. These rapid alterations in dendritic spine number and size require tight control of the actin cytoskeleton, the main structural component of dendritic spines. The ability of neurons to alter spine number and size is essential for the expression of neuronal plasticity. Within spines, guanine nucleotide exchange factors (GEFs) act as critical regulators of the actin cytoskeleton by controlling the activity of Rho-GTPases. In this review we focus on the Rho-GEFs expressed in the nucleus accumbens and localized to the postsynaptic density, and thus positioned to effect rapid alterations in the structure of dendritic spines. We review literature that ties these GEFs to different receptor systems and intracellular signaling cascades and discuss the effects these interactions are likely to have on synaptic plasticity.
Collapse
Affiliation(s)
- Drew D Kiraly
- Department of Neuroscience, University of Connecticut Health Center, Farmington, CT
| | | | | | | |
Collapse
|
77
|
Cárdenas C, Juretić N, Bevilacqua JA, García IE, Figueroa R, Hartley R, Taratuto AL, Gejman R, Riveros N, Molgó J, Jaimovich E. Abnormal distribution of inositol 1,4,5‐trisphosphate receptors in human muscle can be related to altered calcium signals and gene expression in Duchenne dystrophy‐derived cells. FASEB J 2010; 24:3210-21. [DOI: 10.1096/fj.09-152017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- César Cárdenas
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nevenka Juretić
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jorge A. Bevilacqua
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Programa de Anatomía y Biología del DesarrolloInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Departamento de Neurología y NeurocirugíaHospital Clínico Universidad de Chile Independencia Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Isaac E. García
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Reinaldo Figueroa
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ricardo Hartley
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Ana L. Taratuto
- Departamento de NeuropatologíaInstituto de Investigaciones NeurológicasFLENI Buenos Aires Argentina
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Roger Gejman
- Departamento de Anatomía PatológicaFacultad de MedicinaPontificia Universidad Católica de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Nora Riveros
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Jordi Molgó
- Department of PhysiologyUniversity of Pennsylvania Philadelphia Pennsylvania USA
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| | - Enrique Jaimovich
- Centro de Estudios Moleculares de la CélulaInstituto de Ciencias BiomédicasFacultad de MedicinaUniversidad de Chile Santiago Chile
- Centre National de la Recherche ScientifiqueInstitut de Neurobiologie Alfred FessardFRC2118Laboratoire de Neurobiologie Cellulaire et Moléculaire UPR9040 Gif sur Yvette France
| |
Collapse
|
78
|
Deshmukh K, Anamika K, Srinivasan N. Evolution of domain combinations in protein kinases and its implications for functional diversity. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2009; 102:1-15. [PMID: 20026163 DOI: 10.1016/j.pbiomolbio.2009.12.009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2009] [Accepted: 12/10/2009] [Indexed: 01/01/2023]
Abstract
Protein kinases phosphorylating Ser/Thr/Tyr residues in several cellular proteins exert tight control over their biological functions. They constitute the largest protein family in most eukaryotic species. Protein kinases classified based on sequence similarity in their catalytic domains, cluster into subfamilies, which share gross functional properties. Many protein kinases are associated or tethered covalently to domains that serve as adapter or regulatory modules, aiding substrate recruitment, specificity, and also serve as scaffolds. Hence the modular organisation of the protein kinases serves as guidelines to their functional and molecular properties. Analysis of genomic repertoires of protein kinases in eukaryotes have revealed wide spectrum of domain organisation across various subfamilies of kinases. Occurrence of organism-specific novel domain combinations suggests functional diversity achieved by protein kinases in order to regulate variety of biological processes. In addition, domain architecture of protein kinases revealed existence of hybrid protein kinase subfamilies and their emerging roles in the signaling of eukaryotic organisms. In this review we discuss the repertoire of non-kinase domains tethered to multi-domain kinases in the metazoans. Similarities and differences in the domain architectures of protein kinases in these organisms indicate conserved and unique features that are critical to functional specialization.
Collapse
Affiliation(s)
- Krupa Deshmukh
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India
| | | | | |
Collapse
|
79
|
Raeker MO, Bieniek AN, Ryan AS, Tsai HJ, Zahn KM, Russell MW. Targeted deletion of the zebrafish obscurin A RhoGEF domain affects heart, skeletal muscle and brain development. Dev Biol 2009; 337:432-43. [PMID: 19931525 DOI: 10.1016/j.ydbio.2009.11.018] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2008] [Revised: 10/28/2009] [Accepted: 11/11/2009] [Indexed: 10/20/2022]
Abstract
Obscurin is a giant structural and signaling protein that participates in the assembly and structural integrity of striated myofibrils. Previous work has examined the physical interactions between obscurin and other cytoskeletal elements but its in vivo role in cell signaling, including the functions of its RhoGTPase Exchange Factor (RhoGEF) domain have not been characterized. In this study, morpholino antisense oligonucleotides were used to create an in-frame deletion of the active site of the obscurin A RhoGEF domain in order to examine its functions in zebrafish development. Cardiac myocytes in the morphant embryos lacked the intercalated disks that were present in controls by 72 and, in the more severely affected embryos, the contractile filaments were not organized into mature sarcomeres. Neural abnormalities included delay or loss of retinal lamination. Rescue of the phenotype with co-injection of mini-obscurin A expression constructs demonstrated that the observed effects were due to the loss of small GTPase activation by obscurin A. The immature phenotype of the cardiac myocytes and the retinal neuroblasts observed in the morphant embryos suggests that obscurin A-mediated small GTPase signaling promotes tissue-specific cellular differentiation. This is the first demonstration of the importance of the obscurin A-mediated RhoGEF signaling in vertebrate organogenesis and highlights the central role of obscurin A in striated muscle and neural development.
Collapse
Affiliation(s)
- Maide O Raeker
- Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, MI, USA
| | | | | | | | | | | |
Collapse
|
80
|
Rochlin K, Yu S, Roy S, Baylies MK. Myoblast fusion: when it takes more to make one. Dev Biol 2009; 341:66-83. [PMID: 19932206 DOI: 10.1016/j.ydbio.2009.10.024] [Citation(s) in RCA: 177] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2009] [Revised: 10/14/2009] [Accepted: 10/14/2009] [Indexed: 01/09/2023]
Abstract
Cell-cell fusion is a crucial and highly regulated event in the genesis of both form and function of many tissues. One particular type of cell fusion, myoblast fusion, is a key cellular process that shapes the formation and repair of muscle. Despite its importance for human health, the mechanisms underlying this process are still not well understood. The purpose of this review is to highlight the recent literature pertaining to myoblast fusion and to focus on a comparison of these studies across several model systems, particularly the fly, zebrafish and mouse. Advances in technical analysis and imaging have allowed identification of new fusion genes and propelled further characterization of previously identified genes in each of these systems. Among the cellular steps identified as critical for myoblast fusion are migration, recognition, adhesion, membrane alignment and membrane pore formation and resolution. Importantly, striking new evidence indicates that orthologous genes govern several of these steps across these species. Taken together, comparisons across three model systems are illuminating a once elusive process, providing exciting new insights and a useful framework of genes and mechanisms.
Collapse
Affiliation(s)
- Kate Rochlin
- Program in Developmental Biology, Sloan-Kettering Institute, New York, NY 10065, USA
| | | | | | | |
Collapse
|
81
|
Miyamoto Y, Yamauchi J. Cellular signaling of Dock family proteins in neural function. Cell Signal 2009; 22:175-82. [PMID: 19796679 DOI: 10.1016/j.cellsig.2009.09.036] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 08/24/2009] [Accepted: 09/13/2009] [Indexed: 12/11/2022]
Abstract
Dock180-related proteins are genetically conserved from Drosophila and C. elegans to mammals and are atypical types of guanine-nucleotide exchange factors (GEFs) for Rac and/or Cdc42 of small GTPases of the Rho family. Eleven members of the family occur in mammalian cells, each playing key roles in many aspects of essential cellular functions such as regulation of cytoskeletal organization, phagocytosis, cell migration, polarity formation, and differentiation. This review will summarize the newly accumulated findings concerning the Dock180-related proteins' molecular and cellular functions, emphasizing the roles of these proteins in neuronal cells and glial cells as well as their interactions in the central and peripheral nervous systems.
Collapse
Affiliation(s)
- Yuki Miyamoto
- Department of Pharmacology, National Research Institute for Child Health and Development, Setagaya, Tokyo, Japan
| | | |
Collapse
|
82
|
Bouquier N, Vignal E, Charrasse S, Weill M, Schmidt S, Léonetti JP, Blangy A, Fort P. A cell active chemical GEF inhibitor selectively targets the Trio/RhoG/Rac1 signaling pathway. ACTA ACUST UNITED AC 2009; 16:657-66. [PMID: 19549603 DOI: 10.1016/j.chembiol.2009.04.012] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2009] [Revised: 04/13/2009] [Accepted: 04/29/2009] [Indexed: 11/18/2022]
Abstract
RhoGEFs (guanine nucleotide exchange factors of the Rho GTPase family) are upstream regulators of cell adhesion and migration pathways, thus representing attractive yet relatively unexplored targets for the development of anti-invasive drugs. We screened for chemical inhibitors of TrioN, the N-terminal GEF domain of the multidomain Trio protein, and identified ITX3 as a nontoxic inhibitor. In transfected mammalian cells, ITX3 blocked TrioN-mediated dorsal membrane ruffling and Rac1 activation while having no effect on GEF337-, Tiam1-, or Vav2-mediated RhoA or Rac1 activation. ITX3 specifically inhibited endogenous TrioN activity, as evidenced by its ability to inhibit neurite outgrowth in nerve growth factor (NGF)-stimulated PC12 cells or C2C12 differentiation into myotubes. This study introduces a selective cell active inhibitor of the Trio/RhoG/Rac1 pathway and validates RhoGEFs as druggable targets.
Collapse
Affiliation(s)
- Nathalie Bouquier
- Centre de Recherche de Biochimie Macromoléculaire, Universités Montpellier I et II, CNRS, 34293 Montpellier, France
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Ford-Speelman DL, Roche JA, Bowman AL, Bloch RJ. The rho-guanine nucleotide exchange factor domain of obscurin activates rhoA signaling in skeletal muscle. Mol Biol Cell 2009; 20:3905-17. [PMID: 19605563 DOI: 10.1091/mbc.e08-10-1029] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Obscurin is a large ( approximately 800-kDa), modular protein of striated muscle that concentrates around the M-bands and Z-disks of each sarcomere, where it is well positioned to sense contractile activity. Obscurin contains several signaling domains, including a rho-guanine nucleotide exchange factor (rhoGEF) domain and tandem pleckstrin homology domain, consistent with a role in rho signaling in muscle. We investigated the ability of obscurin's rhoGEF domain to interact with and activate small GTPases. Using a combination of in vitro and in vivo approaches, we found that the rhoGEF domain of obscurin binds selectively to rhoA, and that rhoA colocalizes with obscurin at the M-band in skeletal muscle. Other small GTPases, including rac1 and cdc42, neither associate with the rhoGEF domain of obscurin nor concentrate at the level of the M-bands. Furthermore, overexpression of the rhoGEF domain of obscurin in adult skeletal muscle selectively increases rhoA expression and activity in this tissue. Overexpression of obscurin's rhoGEF domain and its effects on rhoA alter the expression of rho kinase and citron kinase, both of which can be activated by rhoA in other tissues. Injuries to rodent hindlimb muscles caused by large-strain lengthening contractions increases rhoA activity and displaces it from the M-bands to Z-disks, similar to the effects of overexpression of obscurin's rhoGEF domain. Our results suggest that obscurin's rhoGEF domain signals at least in part by inducing rhoA expression and activation, and altering the expression of downstream kinases in vitro and in vivo.
Collapse
Affiliation(s)
- Diana L Ford-Speelman
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | | | | | | |
Collapse
|
84
|
The atypical Rac activator Dock180 (Dock1) regulates myoblast fusion in vivo. Proc Natl Acad Sci U S A 2008; 105:15446-51. [PMID: 18820033 DOI: 10.1073/pnas.0805546105] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Dock1 (also known as Dock180) is a prototypical member of a new family of atypical Rho GTPase activators. Genetic studies in Drosophila and Caenorhabditis elegans have demonstrated that Dock1 orthologues in these organisms have a crucial role in activating Rac GTPase signaling. We generated mutant alleles of the closely related Dock1 and Dock5 genes to study their function in mammals. We report that while Dock5 is dispensable for normal mouse embryogenesis, Dock1 has an essential role in embryonic development. A dramatic reduction of all skeletal muscle tissues is observed in Dock1-null embryos. Mechanistically, this embryonic defect is attributed to a strong deficiency in myoblast fusion, which is detectable both in vitro and in vivo. Furthermore, we have uncovered a contribution of Dock5 toward myofiber development. These studies identify Dock1 and Dock5 as critical regulators of the fusion step during primary myogenesis in mammals and demonstrate that a specific component of the myoblast fusion machinery identified in Drosophila plays an evolutionarily conserved role in higher vertebrates.
Collapse
|
85
|
Pervasive sex-linked effects on transcription regulation as revealed by expression quantitative trait loci mapping in lake whitefish species pairs (Coregonus sp., Salmonidae). Genetics 2008; 179:1903-17. [PMID: 18660540 DOI: 10.1534/genetics.107.086306] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Mapping of expression quantitative trait loci (eQTL) is a powerful means for elucidating the genetic architecture of gene regulation. Yet, eQTL mapping has not been applied toward investigating the regulation architecture of genes involved in the process of population divergence, ultimately leading to speciation events. Here, we conducted an eQTL mapping experiment to compare the genetic architecture of transcript regulation in adaptive traits, differentiating the recently evolved limnetic (dwarf) and benthic (normal) species pairs of lake whitefish. The eQTL were mapped in three data sets derived from an F(1) hybrid-dwarf backcrossed family: the entire set of 66 genotyped individuals and the two sexes treated separately. We identified strikingly more eQTL in the female data set (174), compared to both male (54) and combined (33) data sets. The majority of these genes were not differentially expressed between male and female progeny of the backcross family, thus providing evidence for a strong pleiotropic sex-linked effect in transcriptomic regulation. The subtelomeric region of a linkage group segregating in females encompassed >50% of all eQTL, which exhibited the most pronounced additive effects. We also conducted a direct comparison of transcriptomic profiles between pure dwarf and normal progeny reared in controlled conditions. We detected 34 differentially expressed transcripts associated with eQTL segregating only in sex-specific data sets and mostly belonging to functional groups that differentiate dwarf and normal whitefish in natural populations. Therefore, these eQTL are not related to interindividual variation, but instead to the adaptive and historical genetic divergence between dwarf and normal whitefish. This study exemplifies how the integration of genetic and transcriptomic data offers a strong means for dissecting the functional genomic response to selection by separating mapping family-specific effects from genetic factors under selection, potentially involved in the phenotypic divergence of natural populations.
Collapse
|
86
|
Borisov AB, Raeker MO, Russell MW. Developmental expression and differential cellular localization of obscurin and obscurin-associated kinase in cardiac muscle cells. J Cell Biochem 2008; 103:1621-35. [PMID: 18041765 PMCID: PMC2833968 DOI: 10.1002/jcb.21551] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Obscurin and obscurin-associated kinase are two products of the obscurin transcriptional unit that encodes a recently identified giant muscle-specific protein obscurin. In this study, we characterized the developmental expression and cellular localization of obscurin and obscurin-associated kinase in cardiac muscle cells. We cloned murine obscurin-associated kinase and found that it is abundantly expressed in the heart as two isotypes encoded by 2.2 and 4.9 kb sequences. The 2.2 kb isotype of the kinase was more prominently expressed than the 4.9 kb isotype. Both obscurin and the kinase-like domains were progressively upregulated since the early stages of cardiac development. Obscurin-associated kinase was expressed at higher levels than obscurin at early stages of cardiomyogenesis. Increasing intensity of obscurin expression in the developing heart positively correlated with progressive cell differentiation and was higher in the ventricles compared to the atria. These data were supported by the results of experiments with primary cardiac cell cultures. Obscurin localization changed from a weakly immunopositive diffuse pattern in poorly differentiated cells to an intensely immunolabeled cross-striated distribution at the level of mid-A-bands and Z-disks during the assembly of the myofibrillar contractile apparatus. In dividing myocytes, unlike the interphase cells, obscurin translocated from disassembling myofibrils into a diffuse granulated pattern segregated separately from alpha-actinin-immunopositive aggregates. Obscurin-associated kinase was localized mainly to cell nuclei with increasing incorporation into the Z-disks during differentiation. Our results suggest that these two novel proteins are involved in the progression of cardiac myogenesis during the transition to advanced stages of heart development.
Collapse
Affiliation(s)
- Andrei B Borisov
- Division of Pediatric Cardiology, Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109-0204, USA. <>
| | | | | |
Collapse
|
87
|
Adams MS, Gammill LS, Bronner-Fraser M. Discovery of transcription factors and other candidate regulators of neural crest development. Dev Dyn 2008; 237:1021-33. [PMID: 18351660 PMCID: PMC3097249 DOI: 10.1002/dvdy.21513] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Neural crest cells migrate long distances and form divergent derivatives in vertebrate embryos. Despite previous efforts to identify genes up-regulated in neural crest populations, transcription factors have proved to be elusive due to relatively low expression levels and often transient expression. We screened newly induced neural crest cells for early target genes with the aim of identifying transcriptional regulators and other developmentally important genes. This yielded numerous candidate regulators, including 14 transcription factors, many of which were not previously associated with neural crest development. Quantitative real-time polymerase chain reaction confirmed up-regulation of several transcription factors in newly induced neural crest populations in vitro. In a secondary screen by in situ hybridization, we verified the expression of >100 genes in the neural crest. We note that several of the transcription factors and other genes from the screen are expressed in other migratory cell populations and have been implicated in diverse forms of cancer.
Collapse
Affiliation(s)
- MS Adams
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA
| | - LS Gammill
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN
| | - M Bronner-Fraser
- Division of Biology 139-74, California Institute of Technology, Pasadena, CA
| |
Collapse
|
88
|
Trio mediates netrin-1-induced Rac1 activation in axon outgrowth and guidance. Mol Cell Biol 2008; 28:2314-23. [PMID: 18212043 DOI: 10.1128/mcb.00998-07] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The chemotropic guidance cue netrin-1 promotes neurite outgrowth through its receptor Deleted in Colorectal Cancer (DCC) via activation of Rac1. The guanine nucleotide exchange factor (GEF) linking netrin-1/DCC to Rac1 activation has not yet been identified. Here, we show that the RhoGEF Trio mediates Rac1 activation in netrin-1 signaling. We found that Trio interacts with the netrin-1 receptor DCC in mouse embryonic brains and that netrin-1-induced Rac1 activation in brain is impaired in the absence of Trio. Trio(-/-) cortical neurons fail to extend neurites in response to netrin-1, while they are able to respond to glutamate. Accordingly, netrin-1-induced commissural axon outgrowth is reduced in Trio(-/-) spinal cord explants, and the guidance of commissural axons toward the floor plate is affected by the absence of Trio. The anterior commissure is absent in Trio-null embryos, and netrin-1/DCC-dependent axonal projections that form the internal capsule and the corpus callosum are defective in the mutants. Taken together, these findings establish Trio as a GEF that mediates netrin-1 signaling in axon outgrowth and guidance through its ability to activate Rac1.
Collapse
|
89
|
Sarkisian MR, Bartley CM, Rakic P. Trouble making the first move: interpreting arrested neuronal migration in the cerebral cortex. Trends Neurosci 2008; 31:54-61. [PMID: 18201775 DOI: 10.1016/j.tins.2007.11.009] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2007] [Revised: 11/30/2007] [Accepted: 11/30/2007] [Indexed: 12/29/2022]
Abstract
Postmitotic cortical neurons that fail to initiate migration can remain near their site of origin and form persistent periventricular nodular heterotopia (PH). In human telencephalon, this malformation is most commonly associated with Filamin-A (FLNa) mutations. The lack of genetic animal models that reliably produce PH has delayed our understanding of the underlying molecular mechanisms. This review examines PH pathogenesis using a new mouse model. Although PH have not been observed in Flna-deficient mice generated thus far, the loss of MEKK4, a regulator of Flna, produces striking PH in mice and offers insight into the mechanisms involved in neuronal migration initiation. Elucidating the basic functions of FLNa and associated molecules is crucial for understanding the causes of PH and for developing prevention for at-risk patients.
Collapse
Affiliation(s)
- Matthew R Sarkisian
- Department of Neurobiology and Kavli Institute of Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA
| | | | | |
Collapse
|
90
|
Yu J, Lan J, Zhu Y, Li X, Lai X, Xue Y, Jin C, Huang H. The E3 ubiquitin ligase HECTD3 regulates ubiquitination and degradation of Tara. Biochem Biophys Res Commun 2008; 367:805-12. [PMID: 18194665 DOI: 10.1016/j.bbrc.2008.01.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Accepted: 01/03/2008] [Indexed: 11/26/2022]
Abstract
Tara was identified as an interacting partner of guanine nucleotide exchange factor Trio and TRF1. Tara is proposed to be involved in many important fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation. Yet, its exact roles required further elucidation. Here, we identify a novel Tara-binding protein HECTD3, a putative member of HECT E3 ubiquitin ligases. HECTD3 directly binds Tara in vitro and forms a complex with Tara in vivo. Overexpression of HECTD3 enhances the ubiquitination of Tara in vivo and promotes the turnover of Tara, whereas depletion of HECTD3 by small interfering RNA decreases Tara degradation. Furthermore, depletion of HECTD3 leads to multipolar spindle formation. All these findings suggest that HECTD3 may facilitate cell cycle progression via regulating ubiquitination and degradation of Tara.
Collapse
Affiliation(s)
- Jian Yu
- The First Affiliated Hospital of Zhejiang University Medical School, Hangzhou 310003, China
| | | | | | | | | | | | | | | |
Collapse
|
91
|
de Curtis I. Functions of Rac GTPases during neuronal development. Dev Neurosci 2008; 30:47-58. [PMID: 18075254 DOI: 10.1159/000109851] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2006] [Accepted: 02/27/2007] [Indexed: 12/11/2022] Open
Abstract
The small GTPases of the Rho family are important regulators of the actin cytoskeleton and are critical for several aspects of neuronal development including the establishment of neuronal polarity, extension of axon and dendrites, neurite branching, axonal navigation and synapse formation. The aim of this review is to present evidence supporting the function of Rac and Rac-related proteins in different aspects of neuronal maturation, based on work performed with organisms including nematodes, Drosophila, Xenopus and mice, and with primary cultures of developing neurons. Three of the 4 vertebrate Rac-related genes, namely Rac1, Rac3 and RhoG, are expressed in the nervous system, and several data support an essential role of all 3 GTPases in distinct aspects of neuronal development and function. Two important points emerge from the analysis presented: highly homologous Rac-related proteins may perform different functions in the developing nervous system; on the other hand, the data also indicate that similar GTPases may perform redundant functions in vivo.
Collapse
Affiliation(s)
- Ivan de Curtis
- Cell Adhesion Unit, San Raffaele Scientific Institute, Milan, Italy.
| |
Collapse
|
92
|
Backer S, Hidalgo-Sánchez M, Offner N, Portales-Casamar E, Debant A, Fort P, Gauthier-Rouvière C, Bloch-Gallego E. Trio controls the mature organization of neuronal clusters in the hindbrain. J Neurosci 2007; 27:10323-32. [PMID: 17898204 PMCID: PMC6673147 DOI: 10.1523/jneurosci.1102-07.2007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the embryonic development of the hindbrain, movements of neuronal clusters allow the formation of mature "pools", in particular for inferior olivary (ION) and facial motor (fMN) nuclei. The cellular mechanisms of neuron clustering remain uncharacterized. We report that the absence of the Rho-guanine exchange factor Trio, which can activate both RhoG and Rac1 in vivo, prevents the proper formation of ION and fMN subnuclei. Rac1, but not RhoG, appears to be a downstream actor in Trio-induced lamellation. In addition, we report that Cadherin-11 is expressed by a subset of neurons through the overall period of ION and fMN parcellations, and defects observed in trio mutant mice are located specifically in Cadherin-11-expressing regions. Moreover, endogenous Cadherin-11 is found in a complex with Trio when lamellation occurs. Altogether, those results establish a link between Trio activity, the subsequent Rac1 activation, and neuronal clusters organization, as well as a possible recruitment of the Cadherin-11 adhesive receptor to form a complex with Trio.
Collapse
Affiliation(s)
- Stéphanie Backer
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 8104, 75014 Paris, France
- Inserm, Unité 567, 75014 Paris, France, and
| | - Matías Hidalgo-Sánchez
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 8104, 75014 Paris, France
- Inserm, Unité 567, 75014 Paris, France, and
| | - Nicolas Offner
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 8104, 75014 Paris, France
- Inserm, Unité 567, 75014 Paris, France, and
| | - Elodie Portales-Casamar
- Centre de Recherche de Biochimie Macromoléculaire/CNRS, Formation de Recherche en Evolution 2593, 34293 Montpellier Cedex, France
| | - Anne Debant
- Centre de Recherche de Biochimie Macromoléculaire/CNRS, Formation de Recherche en Evolution 2593, 34293 Montpellier Cedex, France
| | - Philippe Fort
- Centre de Recherche de Biochimie Macromoléculaire/CNRS, Formation de Recherche en Evolution 2593, 34293 Montpellier Cedex, France
| | - Cécile Gauthier-Rouvière
- Centre de Recherche de Biochimie Macromoléculaire/CNRS, Formation de Recherche en Evolution 2593, 34293 Montpellier Cedex, France
| | - Evelyne Bloch-Gallego
- Institut Cochin, Université Paris Descartes, Centre National de la Recherche Scientifique (CNRS), Unité Mixte de Recherche 8104, 75014 Paris, France
- Inserm, Unité 567, 75014 Paris, France, and
| |
Collapse
|
93
|
Ferraro F, Ma XM, Sobota JA, Eipper BA, Mains RE. Kalirin/Trio Rho guanine nucleotide exchange factors regulate a novel step in secretory granule maturation. Mol Biol Cell 2007; 18:4813-25. [PMID: 17881726 PMCID: PMC2096607 DOI: 10.1091/mbc.e07-05-0503] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The molecular mechanisms involved in the maturation of secretory granules, organelles that store hormones and neuropeptides, are poorly understood. As granule content proteins are processed, the composition of granule membranes changes, yielding constitutive-like secretion of immature content proteins and producing secretagogue-responsive mature granules. Constitutive-like secretion was not previously recognized as a process subject to regulation. We show that Kalirin and Trio, homologous Rho guanine nucleotide exchange factors (GEFs), which interact with a secretory granule resident protein, modulate cargo secretion from immature granules. Some of the Kalirin and Trio isoforms expressed in neuroendocrine cells colocalize with immature granules. Overexpression of their N-terminal GEF domain (GEF1) enhances secretion from immature granules, depleting cells of secretory cargo in the absence of secretagogue. This response requires GEF1 activity and is mimicked by Kalirin/Trio substrates Rac1 and RhoG. Accordingly, selective pharmacological inhibition of endogenous GEF1 activity decreases secretagogue-independent release of hormone precursors, accumulating product peptide in mature secretory granules. Kalirin/Trio modulation of cargo secretion from immature granules provides secretory cells with an extra layer of control over the sets of peptides released. Control of this step enhances the range of physiological responses that can be elicited, whereas lack of control could have pathological consequences.
Collapse
Affiliation(s)
- Francesco Ferraro
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Xin-Ming Ma
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Jacqueline A. Sobota
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Betty A. Eipper
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| | - Richard E. Mains
- Neuroscience Department, University of Connecticut Health Center, Farmington, CT 06030-3401
| |
Collapse
|
94
|
Gualdoni S, Albertinazzi C, Corbetta S, Valtorta F, de Curtis I. Normal levels of Rac1 are important for dendritic but not axonal development in hippocampal neurons. Biol Cell 2007; 99:455-64. [PMID: 17428196 DOI: 10.1042/bc20060119] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND INFORMATION Rho family GTPases are required for cytoskeletal reorganization and are considered important for the maturation of neurons. Among these proteins, Rac1 is known to play a crucial role in the regulation of actin dynamics, and a number of studies indicate the involvement of this protein in different steps of vertebrate neuronal maturation. There are two distinct Rac proteins expressed in neurons, namely the ubiquitous Rac1 and the neuron-specific Rac3. The specific functions of each of these GTPases during early neuronal development are largely unknown. RESULTS The combination of the knockout of Rac3 with Rac1 down-regulation by siRNA (small interfering RNA) has been used to show that down-regulation of Rac1 affects dendritic development in mouse hippocampal neurons, without affecting axons. F-actin levels are strongly decreased in neuronal growth cones following down-regulation of Rac1, and time-lapse analysis indicated that the reduction of Rac1 levels decreases growth-cone dynamics. CONCLUSIONS These results show that normal levels of endogenous Rac1 activity are critical for early dendritic development, whereas dendritic outgrowth is not affected in hippocampal neurons from Rac3-null mice. On the other hand, early axonal development appears normal after Rac1 down-regulation. Our findings also suggest that the initial establishment of neuronal polarity is not affected by Rac1 down-regulation.
Collapse
Affiliation(s)
- Sara Gualdoni
- Dibit, San Raffaele Scientific Institute, Milano, Italy
| | | | | | | | | |
Collapse
|
95
|
Biressi S, Molinaro M, Cossu G. Cellular heterogeneity during vertebrate skeletal muscle development. Dev Biol 2007; 308:281-93. [PMID: 17612520 DOI: 10.1016/j.ydbio.2007.06.006] [Citation(s) in RCA: 196] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2007] [Revised: 06/03/2007] [Accepted: 06/08/2007] [Indexed: 12/29/2022]
Abstract
Although skeletal muscles appear superficially alike at different anatomical locations, in reality there is considerably more diversity than previously anticipated. Heterogeneity is not only restricted to completely developed fibers, but is clearly apparent during development at the molecular, cellular and anatomical level. Multiple waves of muscle precursors with different features appear before birth and contribute to muscular diversification. Recent cell lineage and gene expression studies have expanded our knowledge on how skeletal muscle is formed and how its heterogeneity is generated. This review will present a comprehensive view of relevant findings in this field.
Collapse
Affiliation(s)
- Stefano Biressi
- Stem Cell Research Institute, DiBiT, San Raffaele Scientific Institute, 58 via Olgettina, 20132 Milan, Italy.
| | | | | |
Collapse
|
96
|
|
97
|
Li X, Lan J, Zhu Y, Yu J, Dou Z, Huang H. Expression, purification, and characterization of Tara, a novel telomere repeat-binding factor 1 (TRF1)-binding protein. Protein Expr Purif 2007; 55:84-92. [PMID: 17629495 DOI: 10.1016/j.pep.2007.05.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Revised: 04/29/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
Tara was originally identified as a binding protein of guanine nucleotide exchange factor Trio. Although Tara may be involved in many fundamental cellular processes, ranging from actin remodeling, directed cell movement, to cell cycle regulation, aging, and cancer, the exact molecular mechanisms are poorly understood. We expressed recombinant Tara in Escherichia coli and purified the protein to approximately 99% purity using affinity chromatography and gel-filtration chromatography. The identity of the purified protein was confirmed by mass spectrometry. Non-denaturing polyacrylamide gel electrophoresis and gel-filtration chromatography showed that Tara forms multimer in vitro. The purified Tara was used to generate polyclonal antibody, which could specifically recognize both the recombinant and endogenous Tara. Using the pull-down assay, we showed that the purified Tara interacted with TRF1, suggesting that the purified protein is functional and biologically active. The availability of purified Tara and anti-Tara antibody provides critical reagents for elucidating Tara's cellular function and its molecular mechanism.
Collapse
Affiliation(s)
- Xiaoxiao Li
- The First Affiliated Hospital of Zhejiang University Medical School, 79 Qingchun Road, Hangzhou 310003, China
| | | | | | | | | | | |
Collapse
|
98
|
Coisy-Quivy M, Sanguesa-Ferrer J, Weill M, Johnson DS, Donnay JM, Hipskind R, Fort P, Philips A. Identification of Rho GTPases implicated in terminal differentiation of muscle cells in ascidia. Biol Cell 2007; 98:577-88. [PMID: 16756514 DOI: 10.1042/bc20060032] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND INFORMATION Members of the Rho GTPase family mediate changes in the actin cytoskeleton and are also implicated in developmental processes, including myogenesis. Nevertheless, a comprehensive analysis of these proteins during myofibrillogenesis has never been performed in any organism. RESULTS Using the ascidian model to identify the role of Rho GTPases on myofibrillogenesis, we show that transcripts for all Rho GTPases are detected in muscle cells of the embryo. We find that activation of RhoA, TC10 and Cdc42 (cell division cycle 42) disturbs the polarity of muscle cells, whereas that of other Rho GTPases induced cell positioning defects. Moreover, dominant negative version of five Rho GTPases, RhoA, Rac2, RCL2 (Rac- and Cdc42-like 2), TC10 and WRCH (Wnt-1 responsive Cdc42 homologue), impaired the formation of mature myofibrils. CONCLUSIONS Taken together, our results show that several Rho GTPase-dependent pathways are required to control the spatial localization of muscle cells in the embryo and to coordinate myofibril assembly. This stresses the importance of analysing the entire Rho family when studying a new biological process.
Collapse
Affiliation(s)
- Marjorie Coisy-Quivy
- CRBM, CNRS-FRE2593, IFR122, 1919 route de Mende, 34293 Montpellier cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Charrasse S, Comunale F, Fortier M, Portales-Casamar E, Debant A, Gauthier-Rouvière C. M-cadherin activates Rac1 GTPase through the Rho-GEF trio during myoblast fusion. Mol Biol Cell 2007; 18:1734-43. [PMID: 17332503 PMCID: PMC1855016 DOI: 10.1091/mbc.e06-08-0766] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Cadherins are transmembrane glycoproteins that mediate Ca(2+)-dependent homophilic cell-cell adhesion and play crucial role during skeletal myogenesis. M-cadherin is required for myoblast fusion into myotubes, but its mechanisms of action remain unknown. The goal of this study was to cast some light on the nature of the M-cadherin-mediated signals involved in myoblast fusion into myotubes. We found that the Rac1 GTPase activity is increased at the time of myoblast fusion and it is required for this process. Moreover, we showed that M-cadherin-dependent adhesion activates Rac1 and demonstrated the formation of a multiproteic complex containing M-cadherin, the Rho-GEF Trio, and Rac1 at the onset of myoblast fusion. Interestingly, Trio knockdown efficiently blocked both the increase in Rac1-GTP levels, observed after M-cadherin-dependent contact formation, and myoblast fusion. We conclude that M-cadherin-dependent adhesion can activate Rac1 via the Rho-GEF Trio at the time of myoblast fusion.
Collapse
Affiliation(s)
- Sophie Charrasse
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Franck Comunale
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Mathieu Fortier
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Elodie Portales-Casamar
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Anne Debant
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| | - Cécile Gauthier-Rouvière
- Centre de Recherches de Biochimie Macromoléculaire, Centre National de la Recherche Scientifique, IFR 122, 34293 Montpellier, France
| |
Collapse
|
100
|
Chhatriwala MK, Betts L, Worthylake DK, Sondek J. The DH and PH domains of Trio coordinately engage Rho GTPases for their efficient activation. J Mol Biol 2007; 368:1307-20. [PMID: 17391702 PMCID: PMC1890047 DOI: 10.1016/j.jmb.2007.02.060] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 02/13/2007] [Accepted: 02/16/2007] [Indexed: 12/20/2022]
Abstract
Rho-family GTPases are activated by the exchange of bound GDP for GTP, a process that is catalyzed by Dbl-family guanine nucleotide exchange factors (GEFs). The catalytic unit of Dbl-family GEFs consists of a Dbl homology (DH) domain followed almost invariantly by a pleckstrin-homology (PH) domain. The majority of the catalytic interface forms between the switch regions of the GTPase and the DH domain, but full catalytic activity often requires the associated PH domain. Although PH domains are usually characterized as lipid-binding regions, they also participate in protein-protein interactions. For example, the DH-associated PH domain of Dbs must contact its cognate GTPases for efficient exchange. Similarly, the N-terminal DH/PH fragment of Trio, which catalyzes exchange on both Rac1 and RhoG, is fourfold more active in vitro than the isolated DH domain. Given continued uncertainty regarding functional roles of DH-associated PH domains, we have undertaken structural and functional analyses of the N-terminal DH/PH cassette of Trio. The crystal structure of this fragment of Trio bound to nucleotide-depleted Rac1 highlights the engagement of the PH domain with Rac1 and substitution of residues involved in this interface substantially diminishes activation of Rac1 and RhoG. Also, these mutations significantly reduce the ability of full-length Trio to induce neurite outgrowth dependent on RhoG activation in PC-12 cells. Overall, these studies substantiate a general role for DH-associated PH domains in engaging Rho GTPases directly for efficient guanine nucleotide exchange and support a parsimonious explanation for the essentially invariant linkage between DH and PH domains.
Collapse
Affiliation(s)
- Mariya K Chhatriwala
- Department of Pharmacology, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | | | |
Collapse
|