51
|
Masse JE, Wong B, Yen YM, Allain FHT, Johnson RC, Feigon J. The S. cerevisiae architectural HMGB protein NHP6A complexed with DNA: DNA and protein conformational changes upon binding. J Mol Biol 2002; 323:263-84. [PMID: 12381320 DOI: 10.1016/s0022-2836(02)00938-5] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
NHP6A is a non-sequence-specific DNA-binding protein from Saccharomyces cerevisiae which belongs to the HMGB protein family. Previously, we have solved the structure of NHP6A in the absence of DNA and modeled its interaction with DNA. Here, we present the refined solution structures of the NHP6A-DNA complex as well as the free 15bp DNA. Both the free and bound forms of the protein adopt the typical L-shaped HMGB domain fold. The DNA in the complex undergoes significant structural rearrangement from its free form while the protein shows smaller but significant conformational changes in the complex. Structural and mutational analysis as well as comparison of the complex with the free DNA provides insight into the factors that contribute to binding site selection and DNA deformations in the complex. Further insight into the amino acid determinants of DNA binding by HMGB domain proteins is given by a correlation study of NHP6A and 32 other HMGB domains belonging to both the DNA-sequence-specific and non-sequence-specific families of HMGB proteins. The resulting correlations can be rationalized by comparison of solved structures of HMGB proteins.
Collapse
Affiliation(s)
- James E Masse
- Department of Chemistry and Biochemistry, University of California at Los Angeles, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | |
Collapse
|
52
|
Abstract
The role of HU in Escherichia coli as both a protein involved in DNA compaction and as a protein with regulatory function seems to be firmly established. However, a critical look at the available data reveals that this is not true for each of the proposed roles of this protein. The role of HU as a regulatory or accessory protein in a number of systems has been thoroughly investigated and in many cases has been largely elucidated. However, almost 30 years after its discovery, convincing evidence for the proposed role of HU in DNA compaction is still lacking. Here we present an extensive literature survey of the available data which, in combination with novel microscopic insights, suggests that the role of HU could be the opposite as well. The protein is likely to play an architectural role, but instead of being responsible for DNA compaction it could be involved in antagonising compaction by other proteins such as H-NS.
Collapse
Affiliation(s)
- Remus Thei Dame
- Laboratory of Molecular Genetics, Gorlaeus Laboratories, Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | | |
Collapse
|
53
|
Mitsouras K, Wong B, Arayata C, Johnson RC, Carey M. The DNA architectural protein HMGB1 displays two distinct modes of action that promote enhanceosome assembly. Mol Cell Biol 2002; 22:4390-401. [PMID: 12024049 PMCID: PMC133865 DOI: 10.1128/mcb.22.12.4390-4401.2002] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
HMGB1 (also called HMG-1) is a DNA-bending protein that augments the affinity of diverse regulatory proteins for their DNA sites. Previous studies have argued for a specific interaction between HMGB1 and target proteins, which leads to cooperative binding of the complex to DNA. Here we propose a different model that emerged from studying how HMGB1 stimulates enhanceosome formation by the Epstein-Barr viral activator Rta on a target gene, BHLF-1. HMGB1 stimulates binding of individual Rta dimers to multiple sites in the enhancer. DNase I and hydroxyl radical footprinting, electrophoretic mobility shift assays, and immobilized template assays failed to reveal stable binding of HMGB1 within the complex. Furthermore, mutational analysis failed to identify a specific HMGB1 target sequence. The effect of HMGB1 on Rta could be reproduced by individual HMG domains, yeast HMO1, or bacterial HU. These results, combined with the effects of single-amino-acid substitutions within the DNA-binding surface of HMGB1 domain A, argue for a mechanism whereby DNA-binding and bending by HMGB1 stimulate Rta-DNA complex formation in the absence of direct interaction with Rta or a specific HMGB1 target sequence. The data contrast with our analysis of HMGB1 action on another BHLF-1 regulatory protein called ZEBRA. We discuss the two distinct modes of HMGB1 action on a single regulatory region and propose how HMGB1 can function in diverse contexts.
Collapse
Affiliation(s)
- Katherine Mitsouras
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | |
Collapse
|
54
|
Wong B, Masse JE, Yen YM, Giannikopoulos P, Feigon J, Johnson RC, Giannikoupolous P. Binding to cisplatin-modified DNA by the Saccharomyces cerevisiae HMGB protein Nhp6A. Biochemistry 2002; 41:5404-14. [PMID: 11969400 DOI: 10.1021/bi012077l] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Nhp6A is an abundant non-histone chromatin-associated protein in Saccharomyces cerevisiae that contains a minor groove DNA binding motif called the HMG box. In this report, we show that Nhp6Ap binds to cisplatin intrastrand cross-links on duplex DNA with a 40-fold greater affinity than to unmodified DNA with the same sequence. Nevertheless, Nhp6Ap bound to cisplatinated DNA readily exchanges onto unmodified DNA. Phenanthroline-copper footprinting and two-dimensional NMR on complexes of wild-type and mutant Nhp6Ap with DNA were employed to probe the mode of binding to the cisplatin lesion. Recognition of the cisplatin adduct requires a surface-exposed phenylalanine on Nhp6Ap that promotes bending of DNA by inserting into the helix from the minor groove. We propose that Nhp6Ap targets the cisplatin adduct by means of intercalation by the phenylalanine and that it can bind in either orientation with respect to the DNA lesion. A methionine, which also inserts between base pairs and functions in target selection on unmodified DNA, plays no apparent role in recognition of the cisplatin lesion. Basic amino acids within the N-terminal arm of Nhp6Ap are required for high-affinity binding to the cisplatin adduct as well as to unmodified DNA. Cisplatin mediates its cytotoxicity by forming covalent adducts on DNA, and we find that Deltanhp6a/b mutants are hypersensitive to cisplatin in comparison with the wild-type strain. In contrast, Deltanhp6a/b mutants are slightly more resistant to hydrogen peroxide and ultraviolet irradiation. Therefore, Nhp6A/Bp appears to directly or indirectly function in yeast to enhance cellular resistance to cisplatin.
Collapse
Affiliation(s)
- Ben Wong
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Kanaya E, Nakajima N, Okada K. Non-sequence-specific DNA binding by the FILAMENTOUS FLOWER protein from Arabidopsis thaliana is reduced by EDTA. J Biol Chem 2002; 277:11957-64. [PMID: 11812777 DOI: 10.1074/jbc.m108889200] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The FILAMENTOUS FLOWER protein has a zinc finger domain, hydrophobic region, proline-rich region, and a HMG box-like domain. We have reported that zinc release at the zinc finger is probably facilitated by the non-canonical cysteine residue at position 56, and that EDTA causes the structural change and enhances the self-assembly of the protein (Kanaya, E., Watanabe, K., Nakajima, N., Okada, K., and Shimura, Y. (2001) J. Biol. Chem. 276, 7383-7390). To investigate this aspect further we examined the DNA binding function of the FILAMENTOUS FLOWER protein. Gel retardation experiments showed that the FILAMENTOUS FLOWER protein binds to DNA without sequence specificity. Deletion analyses suggested that the zinc finger domain and the hydrophobic region are not required but the proline-rich region and the HMG box-like domain are indispensable for the DNA binding by the FILAMENTOUS FLOWER protein. The DNA binding by the protein consisting of the zinc finger domain and the rest of the regions was reduced with the addition of EDTA. This result probably suggests that the zinc release, the structural change probably occurring in the zinc finger domain, the intermolecular interaction, and the self-assembly of the protein are related to the dissociation of the FILAMENTOUS FLOWER protein from DNA.
Collapse
Affiliation(s)
- Eiko Kanaya
- Biomolecular Engineering Research Institute, 6-2-3, Furuedai, Suita, Osaka 565-0874, Japan.
| | | | | |
Collapse
|
56
|
Mundy CL, Patenge N, Matthews AGW, Oettinger MA. Assembly of the RAG1/RAG2 synaptic complex. Mol Cell Biol 2002; 22:69-77. [PMID: 11739723 PMCID: PMC134220 DOI: 10.1128/mcb.22.1.69-77.2002] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2001] [Revised: 08/03/2001] [Accepted: 09/21/2001] [Indexed: 11/20/2022] Open
Abstract
Assembly of antigen receptor genes by V(D)J recombination requires the site-specific recognition of two distinct DNA elements differing in the length of the spacer DNA that separates two conserved recognition motifs. Under appropriate conditions, V(D)J cleavage by the purified RAG1/RAG2 recombinase is similarly restricted. Double-strand breakage occurs only when these proteins are bound to a pair of complementary signals in a synaptic complex. We examine here the binding of the RAG proteins to signal sequences and find that the full complement of proteins required for synapsis of two signals and coupled cleavage can assemble on a single signal. This complex, composed of a dimer of RAG2 and at least a trimer of RAG1, remains inactive for double-strand break formation until a second complementary signal is provided. Thus, binding of the second signal activates the complex, possibly by inducing a conformational change. If synaptic complexes are formed similarly in vivo, one signal of a recombining pair may be the preferred site for RAG1/RAG2 assembly.
Collapse
Affiliation(s)
- Cynthia L Mundy
- Department of Molecular Biology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | | | |
Collapse
|
57
|
Kolodrubetz D, Kruppa M, Burgum A. Gene dosage affects the expression of the duplicated NHP6 genes of Saccharomyces cerevisiae. Gene 2001; 272:93-101. [PMID: 11470514 DOI: 10.1016/s0378-1119(01)00568-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Nhp6Ap and Nhp6Bp, which are 87% identical in sequence, are moderately abundant, chromosome-associated proteins from Saccharomyces cerevisiae. In wild type cells Nhp6Ap is present at three times the level of Nhp6Bp. The effects of altering NHP6A or NHP6B gene number on the expression of its partner has been examined using Northern blots and reporter genes. Deletion of NHP6A led to a three-fold increase in NHP6B synthesis while an extra copy of NHP6A reduced NHP6B expression two-fold. Changes in the NHP6B gene copy number caused more moderate changes in NHP6A synthesis. The regulation of one NHP6 gene by the other uses a mechanism that detects the level of Nhp6 protein (or RNA) rather than gene number, since overexpression of Nhp6B protein from a single gene led to a dramatic decrease in NHP6A synthesis. Deletion analysis showed that the regulatory element involved in gene dosage compensation maps to a 190 bp segment in the NHP6B promoter. The simplest model, that each Nhp6 protein can act as a transcriptional repressor at the other NHP6 gene, is not true since purified Nhp6A protein does not bind specifically to the NHP6B promoter region. Instead, Nhp6p appears to interact with or through another protein in regulating transcription from the NHP6 genes.
Collapse
Affiliation(s)
- D Kolodrubetz
- Department of Microbiology, Mail Code 7758, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA.
| | | | | |
Collapse
|
58
|
Formosa T, Eriksson P, Wittmeyer J, Ginn J, Yu Y, Stillman DJ. Spt16-Pob3 and the HMG protein Nhp6 combine to form the nucleosome-binding factor SPN. EMBO J 2001; 20:3506-17. [PMID: 11432837 PMCID: PMC125512 DOI: 10.1093/emboj/20.13.3506] [Citation(s) in RCA: 215] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2001] [Revised: 05/11/2001] [Accepted: 05/11/2001] [Indexed: 11/14/2022] Open
Abstract
Yeast Spt16/Cdc68 and Pob3 form a heterodimer that acts in both DNA replication and transcription. This is supported by studies of new alleles of SPT16 described here. We show that Spt16-Pob3 enhances HO transcription through a mechanism that is affected by chromatin modification, since some of the defects caused by mutations can be suppressed by deleting the histone deacetylase Rpd3. While otherwise conserved among many eukaryotes, Pob3 lacks the HMG1 DNA-binding motif found in similar proteins such as the SSRP1 subunit of human FACT. SPT16 and POB3 display strong genetic interactions with NHP6A/B, which encodes an HMG1 motif, suggesting that these gene products function coordinately in vivo. While Spt16-Pob3 and Nhp6 do not appear to form stable heterotrimers, Nhp6 binds to nucleosomes and these Nhp6-nucleosomes can recruit Spt16-Pob3 to form SPN-nucleosomes. These complexes have altered electrophoretic mobility and a distinct pattern of enhanced sensitivity to DNase I. These results suggest that Spt16-Pob3 and Nhp6 cooperate to function as a novel nucleosome reorganizing factor.
Collapse
Affiliation(s)
- Tim Formosa
- Departments of
Biochemistry, Pathology, and Oncological Sciences, University of Utah School of Medicine, 50 N. Medical Drive Rm 211, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| | - Peter Eriksson
- Departments of
Biochemistry, Pathology, and Oncological Sciences, University of Utah School of Medicine, 50 N. Medical Drive Rm 211, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| | - Jacqui Wittmeyer
- Departments of
Biochemistry, Pathology, and Oncological Sciences, University of Utah School of Medicine, 50 N. Medical Drive Rm 211, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| | - Jennifer Ginn
- Departments of
Biochemistry, Pathology, and Oncological Sciences, University of Utah School of Medicine, 50 N. Medical Drive Rm 211, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| | - Yaxin Yu
- Departments of
Biochemistry, Pathology, and Oncological Sciences, University of Utah School of Medicine, 50 N. Medical Drive Rm 211, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| | - David J. Stillman
- Departments of
Biochemistry, Pathology, and Oncological Sciences, University of Utah School of Medicine, 50 N. Medical Drive Rm 211, Salt Lake City, UT 84132, USA Corresponding author e-mail:
| |
Collapse
|
59
|
Yen YM, Roberts PM, Johnson RC. Nuclear localization of the Saccharomyces cerevisiae HMG protein NHP6A occurs by a Ran-independent nonclassical pathway. Traffic 2001; 2:449-64. [PMID: 11422939 DOI: 10.1034/j.1600-0854.2001.20703.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The Saccharomyces cerevisiae non-histone protein 6-A (NHP6A) is a member of the high-mobility group 1/2 protein family that bind and bend DNA of mixed sequence. NHP6A has only one high-mobility group 1/2 DNA binding domain and also requires a 16-amino-acid basic tail at its N-terminus for DNA binding. We show in this report that nuclear accumulation of NHP6A is strictly correlated with its DNA binding properties since only nonhistone protein 6 A-green fluorescent protein chimeras that were competent for DNA binding were localized to the nucleus. Despite the requirement for basic residues within the N-terminal segment for DNA binding and nuclear accumulation, this region does not appear to contain a nuclear localization signal. Moreover, NHP6A does not bind to the yeast nuclear localization signal receptor SRP1 and nuclear targeting of NHP6A does not require the function of the 14 different importins. Unlike histone H2B1 which contains a classical nuclear localization signal, entry of NHP6A into the nucleus was found to be independent of Ran as judged by coexpression of Ran GTPase mutants and was shown to occur at 0 degrees C after a 15-min induction. These unusual properties lead us to suggest that NHP6A entry into the nucleus proceeds by a nonclassical Ran-independent pathway.
Collapse
Affiliation(s)
- Y M Yen
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, CA 90095-1737, USA
| | | | | |
Collapse
|
60
|
Sassoon J, Lilie H, Baumann U, Kohli J. Biochemical characterization of the structure-specific DNA-binding protein Cmb1 from Schizosaccharomyces pombe. J Mol Biol 2001; 309:1101-15. [PMID: 11399082 DOI: 10.1006/jmbi.2001.4723] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cmb1, a novel HMG box protein from Schizosaccharomyces pombe, has been characterized biochemically using glutaraldehyde cross-linking, gel-filtration and analytical ultracentrifugation. It was identified as a monomeric, non-spherical protein, with a tendency to aggregate in solution. Limited proteolysis with trypsin and chymotrypsin showed that the C-terminal HMG box was a compact, proteolytically stable domain and the N-terminal region of Cmb1 was relatively unstructured and more easily digested. As Cmb1 was previously identified as a potential mismatch-binding protein, the binding constants and stoichiometry for both homoduplex and heteroduplex DNA were determined using an IASys resonant mirror biosensor. Cmb1 indeed demonstrated a tighter association with mismatched DNA, especially with the C/Delta-mismatch. Expression constructs of Cmb1 were made to study the sections of the protein involved in DNA binding. Constructs with the N-terminal region absent revealed that the C-terminal HMG box was the primary DNA-binding region. The presence of the N-terminal region did, however, facilitate tighter binding to both homoduplex and heteroduplex DNA. The amino acid residues isoleucine 14 and leucine 39 were located as putative intercalating residues using structure guided homology modelling. The model templates were derived from two distinct HMG:DNA complexes: HMG-D bound to homoduplex DNA and HMG 1 bound to cisplatin DNA. Binding studies using the Cmb1 HMG box with point mutations in these residues showed that isoleucine 14 was important for the binding of Cmb1 to homoduplex DNA, but affected binding to mismatches to a lesser extent. In contrast, leucine 39 appeared to have a more significant function in binding to mismatched DNA.
Collapse
Affiliation(s)
- J Sassoon
- Department of Chemistry and Biochemistry, University of Berne, Freiestrasse 3, Berne, 3012, Switzerland.
| | | | | | | |
Collapse
|
61
|
Brewster NK, Johnston GC, Singer RA. A bipartite yeast SSRP1 analog comprised of Pob3 and Nhp6 proteins modulates transcription. Mol Cell Biol 2001; 21:3491-502. [PMID: 11313475 PMCID: PMC100271 DOI: 10.1128/mcb.21.10.3491-3502.2001] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The FACT complex of vertebrate cells, comprising the Cdc68 (Spt16) and SSRP1 proteins, facilitates transcription elongation on a nucleosomal template and modulates the elongation-inhibitory effects of the DSIF complex in vitro. Genetic findings show that the related yeast (Saccharomyces cerevisiae) complex, termed CP, also mediates transcription. The CP components Cdc68 and Pob3 closely resemble the FACT components, except that the C-terminal high-mobility group (HMG) box domain of SSRP1 is not found in the yeast homolog Pob3. We show here that Nhp6a and Nhp6b, small HMG box proteins with overlapping functions in yeast, associate with the CP complex and mediate CP-related genetic effects on transcription. Absence of the Nhp6 proteins causes severe impairment in combination with mutations impairing the Swi-Snf chromatin-remodeling complex and the DSIF (Spt4 plus Spt5) elongation regulator, and sensitizes cells to 6-azauracil, characteristic of elongation effects. An artificial SSRP1-like protein, created by fusing the Pob3 and Nhp6a proteins, provides both Pob3 and Nhp6a functions for transcription, and competition experiments indicate that these functions are exerted in association with Cdc68. This particular Pob3-Nhp6a fusion protein was limited for certain Nhp6 activities, indicating that its Nhp6a function is compromised. These findings suggest that in yeast cells the Cdc68 partners may be both Pob3 and Nhp6, functioning as a bipartite analog of the vertebrate SSRP1 protein.
Collapse
Affiliation(s)
- N K Brewster
- Departments of Biochemistry & Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada B3H 4H7
| | | | | |
Collapse
|
62
|
Lopez S, Livingstone-Zatchej M, Jourdain S, Thoma F, Sentenac A, Marsolier MC. High-mobility-group proteins NHP6A and NHP6B participate in activation of the RNA polymerase III SNR6 gene. Mol Cell Biol 2001; 21:3096-104. [PMID: 11287614 PMCID: PMC86937 DOI: 10.1128/mcb.21.9.3096-3104.2001] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of yeast class III genes involves the formation of a transcription initiation complex that comprises RNA polymerase III (Pol III) and the general transcription factors TFIIIB and TFIIIC. Using a genetic screen for positive regulators able to compensate for a deficiency in a promoter element of the SNR6 gene, we isolated the NHP6A and NHP6B genes. Here we show that the high-mobility-group proteins NHP6A and NHP6B are required for the efficient transcription of the SNR6 gene both in vivo and in vitro. The transcripts of wild-type and promoter-defective SNR6 genes decreased or became undetectable in an nhp6ADelta nhp6BDelta double-mutant strain, and the protection over the TATA box of the wild-type SNR6 gene was lost in nhp6ADelta nhp6BDelta cells at 37 degrees C. In vitro, NHP6B specifically stimulated the transcription of SNR6 templates up to fivefold in transcription assays using either cell nuclear extracts from nhp6ADelta nhp6BDelta cells or reconstituted transcription systems. Finally, NHP6B activated SNR6 transcription in a TFIIIC-independent assay. These results indicate that besides the general transcription factors TFIIIB and TFIIIC, additional auxillary factors are required for the optimal transcription of at least some specific Pol III genes.
Collapse
Affiliation(s)
- S Lopez
- Service de Biochimie et de Génétique Moléculaire, CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France
| | | | | | | | | | | |
Collapse
|
63
|
Kruppa M, Kolodrubetz D. Mutations in the yeast Nhp6 protein can differentially affect its in vivo functions. Biochem Biophys Res Commun 2001; 280:1292-9. [PMID: 11162669 DOI: 10.1006/bbrc.2001.4273] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nhp6A and Nhp6B from S. cerevisiae are required for viability at 38 degrees C because they are involved in transcription of SNR6 by RNA polymerase III. Nhp6A also represses transcription of NHP6B by RNA polymerase II. Nhp6 belongs to the HMG1 family, defined by an 80 amino acid DNA binding domain, which includes six highly conserved residues. These amino acids were mutated in Nhp6A and their affects on Nhp6 function were assessed in vivo. Surprisingly, most of the changes allowed Nhp6A to function normally in supporting growth at 38 degrees C. However, six mutants had differential effects on in vivo function. Finally, two of the mutant proteins that did not restore Nhp6A function in vivo were shown to bind and bend DNA in vitro as well as wild type. Together, these results suggest that Nhp6 interacts with another protein(s) to carry out some of its biological functions and that this interaction might differ at promoters transcribed by RNA polymerase II versus RNA polymerase III.
Collapse
Affiliation(s)
- M Kruppa
- Department of Microbiology, University of Texas Health Science Center, 7703 Floyd Curl Drive, San Antonio, Texas 78229-3900, USA
| | | |
Collapse
|
64
|
Bash RC, Vargason JM, Cornejo S, Ho PS, Lohr D. Intrinsically bent DNA in the promoter regions of the yeast GAAL1-10 and GAL80 genes. J Biol Chem 2001; 276:861-6. [PMID: 11013248 DOI: 10.1074/jbc.m007070200] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Circular permutation analysis has detected fairly strong sites of intrinsic DNA bending on the promoter regions of the yeast GAL1-10 and GAL80 genes. These bends lie in functionally suggestive locations. On the promoter of the GAL1-10 structural genes, strong bends bracket nucleosome B, which lies between the UAS(G) and the GAL1 TATA. These intrinsic bends could help position nucleosome B. Nucleosome B plus two other promoter nucleosomes protect the TATA and start site elements in the inactive state of expression but are completely disrupted (removed) when GAL1-10 expression is induced. The strongest intrinsic bend ( approximately 70 degrees ) lies at the downstream edge of nucleosome B; this places it approximately 30 base pairs upstream of the GAL1 TATA, a position that could allow it to be involved in GAL1 activation in several ways, including the recruitment of a yeast HMG protein that is required for the normally robust level of GAL1 expression in the induced state (Paull, T., Carey, M., and Johnson, R. (1996) Genes Dev. 10, 2769-2781). On the regulatory gene GAL80, the single bend lies in the non-nucleosomal hypersensitive region, between a GAL80-specific far upstream promoter element and the more gene-proximal promoter elements. GAL80 promoter region nucleosomes contain no intrinsically bent DNA.
Collapse
Affiliation(s)
- R C Bash
- Department of Chemistry and Biochemistry, Arizona State University, Tempe, Arizona 85287-1604, USA
| | | | | | | | | |
Collapse
|
65
|
Moreira JM, Holmberg S. Chromatin-mediated transcriptional regulation by the yeast architectural factors NHP6A and NHP6B. EMBO J 2000; 19:6804-13. [PMID: 11118215 PMCID: PMC305882 DOI: 10.1093/emboj/19.24.6804] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The Saccharomyces cerevisiae NHP6A and NHP6B proteins are chromatin architectural factors, functionally and structurally related to the mammalian high mobility group (HMG)-1 and -2 proteins, a family of non-sequence-specific DNA binding proteins. nhp6a nhp6b mutants have various morphological defects and are defective in the induced expression of several RNA polymerase II-transcribed genes. We found that NHP6A/B proteins are also required for full induction of the yeast CHA1 gene. Importantly, CHA1 basal level expression is increased 10-fold in an nhp6a nhp6b double deletion mutant. Micrococcal nuclease and DNase I analysis of the CHA1 gene in this strain showed an open promoter structure, characteristic of the activated state of this promoter, even under non-inducing conditions. To address the possible function of the NHP6A/B proteins in chromatin-mediated gene regulation, we performed whole-genome transcriptional profiling of a Deltanhp6a Deltanhp6b yeast strain. Our results suggest that NHP6A/B proteins play an important regulatory role, repressing as well as potentiating expression of genes involved in several cellular processes, and that NHP6A/B control is exerted at the level of the individual gene.
Collapse
Affiliation(s)
- J M Moreira
- Department of Genetics, Institute of Molecular Biology, University of Copenhagen, Oster Farimagsgade 2A, DK-1353 Copenhagen K, Denmark
| | | |
Collapse
|
66
|
Veilleux S, Caron N, Boissonneault G. Comparative study of the coupling between topoisomerase I activity and high-mobility group proteins in E. coli and mammalian cells. DNA Cell Biol 2000; 19:421-9. [PMID: 10945232 DOI: 10.1089/10445490050085915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
It is now well established that the HMG box DNA-binding motif can alter the topology of double-stranded DNA in several ways. Using the spermatid-specific tsHMG as a model protein of the HMG-1/-2 family, we have demonstrated that its expression in E. coli produces an increase in plasmid supercoiling density that is likely a consequence of its ability to constrain free supercoils in vivo. As demonstrated in vitro, stabilization of free DNA supercoils by tsHMG prevents topoisomerase I from gaining access to the template and could represent a mechanism for the apparent inhibition of topoisomerase I in bacteria. A similar modulation of eukaryotic topoisomerase I activity was not detected after expression of the tsHMG in mammalian cells. This differential response is discussed in terms of the marked difference in DNA packaging and accessibility of free supercoils in prokaryotic vs. eukaryotic cells.
Collapse
Affiliation(s)
- S Veilleux
- Département de Biochimie, Faculté de Médicine, Université de Sherbrooke, Québec, Canada
| | | | | |
Collapse
|
67
|
Yu Y, Eriksson P, Stillman DJ. Architectural transcription factors and the SAGA complex function in parallel pathways to activate transcription. Mol Cell Biol 2000; 20:2350-7. [PMID: 10713159 PMCID: PMC85404 DOI: 10.1128/mcb.20.7.2350-2357.2000] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Recent work has shown that transcription of the yeast HO gene involves the sequential recruitment of a series of transcription factors. We have performed a functional analysis of HO regulation by determining the ability of mutations in SIN1, SIN3, RPD3, and SIN4 negative regulators to permit HO expression in the absence of certain activators. Mutations in the SIN1 (=SPT2) gene do not affect HO regulation, in contrast to results of other studies using an HO:lacZ reporter, and our data show that the regulatory properties of an HO:lacZ reporter differ from that of the native HO gene. Mutations in SIN3 and RPD3, which encode components of a histone deacetylase complex, show the same pattern of genetic suppression, and this suppression pattern differs from that seen in a sin4 mutant. The Sin4 protein is present in two transcriptional regulatory complexes, the RNA polymerase II holoenzyme/mediator and the SAGA histone acetylase complex. Our genetic analysis allows us to conclude that Swi/Snf chromatin remodeling complex has multiple roles in HO activation, and the data suggest that the ability of the SBF transcription factor to bind to the HO promoter may be affected by the acetylation state of the HO promoter. We also demonstrate that the Nhp6 architectural transcription factor, encoded by the redundant NHP6A and NHP6B genes, is required for HO expression. Suppression analysis with sin3, rpd3, and sin4 mutations suggests that Nhp6 and Gcn5 have similar functions. A gcn5 nhp6a nhp6b triple mutant is extremely sick, suggesting that the SAGA complex and the Nhp6 architectural transcription factors function in parallel pathways to activate transcription. We find that disruption of SIN4 allows this strain to grow at a reasonable rate, indicating a critical role for Sin4 in detecting structural changes in chromatin mediated by Gcn5 and Nhp6. These studies underscore the critical role of chromatin structure in regulating HO gene expression.
Collapse
Affiliation(s)
- Y Yu
- Division of Molecular Biology and Genetics, Department of Oncological Sciences, University of Utah Health Sciences Center, Salt Lake City, Utah 84132, USA
| | | | | |
Collapse
|
68
|
Tang L, Li J, Katz DS, Feng JA. Determining the DNA bending angle induced by non-specific high mobility group-1 (HMG-1) proteins: a novel method. Biochemistry 2000; 39:3052-60. [PMID: 10715126 DOI: 10.1021/bi991819w] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To study the DNA bending induced by non-sequence-specific HMG-1 domain proteins, we have engineered a fusion protein linking the yeast NHP6A with a sequence-specific DNA binding domain, the DNA binding domain of the Hin recombinase, Hin-DBD. A series of biochemical experiments were carried out to characterize the DNA binding property of this fusion protein. Our data showed that the fusion protein not only specifically recognizes a DNA fragment containing the Hin-DBD binding site, but also binds DNA with a higher affinity in comparison with either domain alone. Both domains of the fusion protein are bound to the DNA in juxtaposition. Permutation assays showed that the fusion protein induced a DNA bending at the site of NHP6A binding by an estimated value of 63 degrees. We believe that this experimental design provides an effective vehicle to determine the DNA bending induced by nonspecific HMG-1 proteins.
Collapse
Affiliation(s)
- L Tang
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | | | | | | |
Collapse
|
69
|
Lorenz M, Hillisch A, Payet D, Buttinelli M, Travers A, Diekmann S. DNA bending induced by high mobility group proteins studied by fluorescence resonance energy transfer. Biochemistry 1999; 38:12150-8. [PMID: 10508419 DOI: 10.1021/bi990459+] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The HMG domains of the chromosomal high mobility group proteins homologous to the vertebrate HMG1 and HMG2 proteins preferentially recognize distorted DNA structures. DNA binding also induces a substantial bend. Using fluorescence resonance energy transfer (FRET), we have determined the changes in the end-to-end distance consequent on the binding of selected insect counterparts of HMG1 to two DNA fragments, one of 18 bp containing a single dA(2) bulge and a second of 27 bp with two dA(2) bulges. The observed changes are consistent with overall bend angles for the complex of the single HMG domain with one bulge and of two domains with two bulges of approximately 90-100 degrees and approximately 180-200 degrees, respectively. The former value contrasts with an inferred value of 150 degrees reported by Heyduk et al. (1) for the bend induced by a single domain. We also observe that the induced bend angle is unaffected by the presence of the C-terminal acidic region. The DNA bend of approximately 95 degrees observed in the HMG domain complexes is similar in magnitude to that induced by the TATA-binding protein (80 degrees), each monomeric unit of the integration host factor (80 degrees), and the LEF-1 HMG domain (107 degrees). We suggest this value may represent a steric limitation on the extent of DNA bending induced by a single DNA-binding motif.
Collapse
Affiliation(s)
- M Lorenz
- Institute for Molecular Biotechnology, Jena, Germany
| | | | | | | | | | | |
Collapse
|
70
|
Abstract
A central problem in eukaryotic transcription is how proteins gain access to DNA packaged in nucleosomes. Research on the interplay between chromatin and transcription has progressed with the use of yeast genetics as a useful tool to characterize factors involved in this process. These factors have both positive and negative effects on the stability of nucleosomes, thereby controlling the role of chromatin in transcription in vivo. The negative effectors include the structural components of chromatin, the histones and non-histone chromatin associated proteins, as well as regulatory components like chromatin assembly factors and histone deacetylase complexes. The positive factors are involved in remodeling chromatin and several multiprotein complexes have been described: Swi/Snf, Srb/mediator and SAGA. The components of each of these complexes, as well as the functional relationships between them are covered by this review.
Collapse
Affiliation(s)
- J Pérez-Martín
- Department of Microbial Biotechnology, Centro Nacional de Biotecnología, CSIC, Madrid, Spain.
| |
Collapse
|
71
|
Allain FH, Yen YM, Masse JE, Schultze P, Dieckmann T, Johnson RC, Feigon J. Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. EMBO J 1999; 18:2563-79. [PMID: 10228169 PMCID: PMC1171337 DOI: 10.1093/emboj/18.9.2563] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
NHP6A is a chromatin-associated protein from Saccharomyces cerevisiae belonging to the HMG1/2 family of non-specific DNA binding proteins. NHP6A has only one HMG DNA binding domain and forms relatively stable complexes with DNA. We have determined the solution structure of NHP6A and constructed an NMR-based model structure of the DNA complex. The free NHP6A folds into an L-shaped three alpha-helix structure, and contains an unstructured 17 amino acid basic tail N-terminal to the HMG box. Intermolecular NOEs assigned between NHP6A and a 15 bp 13C,15N-labeled DNA duplex containing the SRY recognition sequence have positioned the NHP6A HMG domain onto the minor groove of the DNA at a site that is shifted by 1 bp and in reverse orientation from that found in the SRY-DNA complex. In the model structure of the NHP6A-DNA complex, the N-terminal basic tail is wrapped around the major groove in a manner mimicking the C-terminal tail of LEF1. The DNA in the complex is severely distorted and contains two adjacent kinks where side chains of methionine and phenylalanine that are important for bending are inserted. The NHP6A-DNA model structure provides insight into how this class of architectural DNA binding proteins may select preferential binding sites.
Collapse
Affiliation(s)
- F H Allain
- Department of Chemistry and Biochemistry, UCLA, Los Angeles, CA 90095-1569, USA
| | | | | | | | | | | | | |
Collapse
|
72
|
Abstract
Ankyrin (ANK) repeats were first found in the Swi6 transcription factor of Saccharomyces cerevisiae and since then were identified in many proteins of eukaryotes and prokaryotes. These repeats are thought to serve as protein association domains. In Swi6, ANK repeats affect DNA binding of both the Swi4/Swi6 and Mbp1/Swi6 complexes. We have previously described generation of random mutations within the ANK repeats of Swi6 that render the protein temperature sensitive in its ability to activate HO transcription. Two of these SWI6 mutants were used in a screen for high copy suppressors of this phenotype. We found that MSN1, which encodes a transcriptional activator, and NHP6A, which encodes an HMG-like protein, are able to suppress defective Swi6 function. Both of these gene products are involved in HO transcription, and Nhp6A may also be involved in CLN1 transcription. Moreover, because overexpression of NHP6A can suppress caffeine sensitivity of one of the SWI6 ANK mutants, swi6-405, other SWI6-dependent genes may also be affected by Nhp6A. We hypothesize that Nhp6A and Msn1 modulate Swi6-dependent gene transcription indirectly, through effects on chromatin structure or other transcription factors, because we have not been able to demonstrate that either Msn1 or Nhp6A interact with the Swi4/Swi6 complex.
Collapse
Affiliation(s)
- J Sidorova
- Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, USA
| | | |
Collapse
|
73
|
MacAlpine DM, Perlman PS, Butow RA. The high mobility group protein Abf2p influences the level of yeast mitochondrial DNA recombination intermediates in vivo. Proc Natl Acad Sci U S A 1998; 95:6739-43. [PMID: 9618482 PMCID: PMC22617 DOI: 10.1073/pnas.95.12.6739] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Abf2p is a high mobility group (HMG) protein found in yeast mitochondria that is required for the maintenance of wild-type (rho+) mtDNA in cells grown on fermentable carbon sources, and for efficient recombination of mtDNA markers in crosses. Here, we show by two-dimensional gel electrophoresis that Abf2p promotes or stabilizes Holliday recombination junction intermediates in rho+ mtDNA in vivo but does not influence the high levels of recombination intermediates readily detected in the mtDNA of petite mutants (rho-). mtDNA recombination junctions are not observed in rho+ mtDNA of wild-type cells but are elevated to detectable levels in cells with a null allele of the MGT1 gene (Deltamgt1), which codes for a mitochondrial cruciform-cutting endonuclease. The level of recombination intermediates in rho+ mtDNA of Deltamgt1 cells is decreased about 10-fold if those cells contain a null allele of the ABF2 gene. Overproduction of Abf2p by >/= 10-fold in wild-type rho+ cells, which leads to mtDNA instability, results in a dramatic increase in mtDNA recombination intermediates. Specific mutations in the two Abf2p HMG boxes required for DNA binding diminishes these responses. We conclude that Abf2p functions in the recombination of rho+ mtDNA.
Collapse
Affiliation(s)
- D M MacAlpine
- Department of Molecular Biology and Oncology, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75235-9148, USA
| | | | | |
Collapse
|
74
|
Abstract
An efficient method for sampling equilibrium configurations of DNA chains binding one or more DNA-bending proteins is presented. The technique is applied to obtain the tertiary structures of minimal bending energy for a selection of dinucleosomal minichromosomes that differ in degree of protein-DNA interaction, protein spacing along the DNA chain contour, and ring size. The protein-bound portions of the DNA chains are represented by tight, left-handed supercoils of fixed geometry. The protein-free regions are modeled individually as elastic rods. For each random spatial arrangement of the two nucleosomes assumed during a stochastic search for the global minimum, the paths of the flexible connecting DNA segments are determined through a numerical solution of the equations of equilibrium for torsionally relaxed elastic rods. The minimal energy forms reveal how protein binding and spacing and plasmid size differentially affect folding and offer new insights into experimental minichromosome systems.
Collapse
Affiliation(s)
- J A Martino
- Department of Chemistry, Rutgers, The State University of New Jersey, Wright-Rieman Laboratories, Piscataway 08854, USA
| | | |
Collapse
|
75
|
Ritt C, Grimm R, Fernandez S, Alonso JC, Grasser KD. Basic and acidic regions flanking the HMG domain of maize HMGa modulate the interactions with DNA and the self-association of the protein. Biochemistry 1998; 37:2673-81. [PMID: 9485418 DOI: 10.1021/bi972620r] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The maize HMGa protein is a typical member of the family of plant chromosomal HMG1-like proteins. The HMG domain of HMGa is flanked by a basic N-terminal domain characteristic for plant HMG1-like proteins, and is linked to the acidic C-terminal domain by a short basic region. Various derivatives of the HMGa protein were expressed in Escherichia coli and purified. The individual HMG domain can functionally complement the defect of the HU-like chromatin-associated Hbsu protein in Bacillus subtilis. The basic N-terminal domain which contacts DNA enhances the affinity of the protein for linear DNA, whereas it has little effect on the structure-specific binding to DNA minicircles. The acidic C-terminal domain reduces the affinity of HMGa for linear DNA, but does not affect to the same extent the recognition of DNA structure which is an intrinsic property of the HMG domain. The efficiency of the HMGa constructs to facilitate circularization of short DNA fragments in the presence of DNA ligase is like the binding to linear DNA altered by the basic and acidic domains flanking the HMG domain, while the supercoiling activity of HMGa is only slightly influenced by the same regions. Both the basic N-terminal and the acidic C-terminal domains contribute directly to the self-association of HMGa in the presence of DNA. Collectively, these findings suggest that the intrinsic properties of the HMG domain can be modulated within the HMGa protein by the basic and acidic domains.
Collapse
Affiliation(s)
- C Ritt
- Institut fur Biologie III, Albert-Ludwigs-Universitat Freiburg, Schanzlestrasse 1, D-79104 Freiburg, FRG
| | | | | | | | | |
Collapse
|
76
|
Yen YM, Wong B, Johnson RC. Determinants of DNA binding and bending by the Saccharomyces cerevisiae high mobility group protein NHP6A that are important for its biological activities. Role of the unique N terminus and putative intercalating methionine. J Biol Chem 1998; 273:4424-35. [PMID: 9468494 DOI: 10.1074/jbc.273.8.4424] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The non-histone proteins 6A/B (NHP6A/B) of Saccharomyces cerevisiae are high mobility group proteins that bind and severely bend DNA of mixed sequence. They exhibit high affinity for linear DNA and even higher affinity for microcircular DNA. The 16-amino acid basic segment located N-terminal to the high mobility group domain is required for stable complex formation on both linear and microcircular DNA. Although mutants lacking the N terminus are able to promote microcircle formation and Hin invertasome assembly at high protein concentrations, they are unable to form stable complexes with DNA, co-activate transcription, and complement the growth defect of Deltanhp6a/b mutants. A basic patch between amino acids 13 and 16 is critical for these activities, and a second basic patch between residues 8 and 10 is required for the formation of monomeric complexes with linear DNA. Mutational analysis suggests that proline 18 may direct the path of the N-terminal arm to facilitate DNA binding, whereas the conserved proline at position 21, tyrosine 28, and phenylalanine 31 function to maintain the tertiary structure of the high mobility group domain. Methionine 29, which may intercalate into DNA, is essential for NHP6A-induced microcircle formation of 75-bp but not 98-bp fragments in vitro, and for full growth complementation of Deltanhp6a/b mutants in vivo.
Collapse
Affiliation(s)
- Y M Yen
- Department of Biological Chemistry, UCLA School of Medicine, Los Angeles, California 90095-1737, USA
| | | | | |
Collapse
|
77
|
van Drunen CM, Oosterling RW, Keultjes GM, Weisbeek PJ, van Driel R, Smeekens SC. Analysis of the chromatin domain organisation around the plastocyanin gene reveals an MAR-specific sequence element in Arabidopsis thaliana. Nucleic Acids Res 1997; 25:3904-11. [PMID: 9380515 PMCID: PMC146963 DOI: 10.1093/nar/25.19.3904] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Arabidopsis thaliana genome is currently being sequenced, eventually leading towards the unravelling of all potential genes. We wanted to gain more insight into the way this genome might be organized at the ultrastructural level. To this extent we identified matrix attachment regions demarking potential chromatin domains, in a 16 kb region around the plastocyanin gene. The region was cloned and sequenced revealing six genes in addition to the plastocyanin gene. Using an heterologous in vitro nuclear matrix binding assay, to search for evolutionary conserved matrix attachment regions (MARs), we identified three such MARs. These three MARs divide the region into two small chromatin domains of 5 kb, each containing two genes. Comparison of the sequence of the three MARs revealed a degenerated 21 bp sequence that is shared between these MARs and that is not found elsewhere in the region. A similar sequence element is also present in four other MARs of Arabidopsis.Therefore, this sequence may constitute a landmark for the position of MARs in the genome of this plant. In a genomic sequence database of Arabidopsis the 21 bp element is found approximately once every 10 kb. The compactness of the Arabidopsis genome could account for the high incidence of MARs and MRSs we observed.
Collapse
Affiliation(s)
- C M van Drunen
- E. C. Slater Institute, University of Amsterdam, Plantage Muidergracht 12, 1018 TV Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
78
|
van Gent DC, Hiom K, Paull TT, Gellert M. Stimulation of V(D)J cleavage by high mobility group proteins. EMBO J 1997; 16:2665-70. [PMID: 9184213 PMCID: PMC1169877 DOI: 10.1093/emboj/16.10.2665] [Citation(s) in RCA: 212] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
V(D)J recombination requires a pair of signal sequences with spacer lengths of 12 and 23 bp between the conserved heptamer and nonamer elements. The RAG1 and RAG2 proteins initiate the reaction by making double-strand DNA breaks at both signals, and must thus be able to operate on these two different spatial arrangements. We show that the DNA-bending proteins HMG1 and HMG2 stimulate cleavage and RAG protein binding at the 23 bp spacer signal. These findings suggest that DNA bending is important for bridging the longer spacer, and explain how a similar array of RAG proteins could accommodate a signal with either a 12 or a 23 bp spacer. An additional effect of HMG proteins is to stimulate coupled cleavage greatly when both signal sequences are present, suggesting that these proteins also aid the formation of a synaptic complex.
Collapse
Affiliation(s)
- D C van Gent
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0540, USA
| | | | | | | |
Collapse
|
79
|
Abstract
The crystal structure of Escherichia coli integration host factor complexed with DNA reveals how the sequence-specificity of DNA binding can be determined almost entirely by the structural features of the DNA itself and not by direct readout of the base sequence. There are lessons to be drawn for other DNA-binding motifs.
Collapse
Affiliation(s)
- A Travers
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| |
Collapse
|
80
|
Grasser KD, Grimm R, Ritt C. Maize chromosomal HMGc. Two closely related structure-specific DNA-binding proteins specify a second type of plant high mobility group box protein. J Biol Chem 1996; 271:32900-6. [PMID: 8955131 DOI: 10.1074/jbc.271.51.32900] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The chromosomal high mobility group (HMG) proteins are small and abundant non-histone proteins common to eukaryotes. We have purified the maize HMGc protein from immature kernels and characterized it by mass spectrometry and amino acid sequence analysis. HMGc could be resolved into two similar proteins by reversed phase chromatography. Cloning and characterization of the corresponding cDNAs revealed that they encode two closely related maize HMGc proteins, now termed HMGc1 and HMGc2. Their theoretical masses of 15,316 and 15,007 Da are >300 Da lower than the masses determined for the proteins purified from maize, indicating post-translational modifications of the proteins. Despite sequence similarity to maize HMGa (and previously described homologous proteins of other species) amino acid sequence alignments reveal that HMGc is in several conserved regions distinct from these proteins. Consequently, we have identified a novel type of plant protein containing an HMG box DNA binding domain and belonging to the HMG1 protein family. HMGc1 and HMGc2 were expressed in Escherichia coli, purified to homogeneity, and analyzed for their DNA binding properties. They proved to bind to DNA structure-specifically since they formed complexes with DNA minicircles at concentrations approximately 100-fold lower than the concentrations required to form complexes with linear fragments of identical sequence. Furthermore, HMGc1 and HMGc2 can constrain negative superhelical turns in plasmid DNA.
Collapse
Affiliation(s)
- K D Grasser
- Institut für Biologie III, Albert-Ludwigs-Universität Freiburg, Schänzlestrasse 1, D-79104 Freiburg, Federal Republic of Germany.
| | | | | |
Collapse
|
81
|
Paull TT, Carey M, Johnson RC. Yeast HMG proteins NHP6A/B potentiate promoter-specific transcriptional activation in vivo and assembly of preinitiation complexes in vitro. Genes Dev 1996; 10:2769-81. [PMID: 8946917 DOI: 10.1101/gad.10.21.2769] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Nonhistone proteins 6A and 6B (NHP6A/B) are nonsequence-specific DNA-binding proteins from Saccharomyces cerevisiae that are related structurally and functionally to the mammalian high mobility group proteins 1 and 2. These DNA architectural proteins distort DNA structure severely and have been shown to promote assembly of specialized recombination complexes. Here we show that the yeast NHP6A/B proteins are required for the induction of a subset of genes transcribed by RNA polymerase II (pol II). Activation of the CUP1, CYC1, GAL1, and DDR2 genes was decreased or abolished completely in the delta nhp6A/B strain. No significant change in basal expression was observed for any of the 10 genes examined. Analysis of chimeric gene constructs localized the regions dependent on NHP6A/B to be primarily at the core promoters, although the GAL1 UAS also requires NHP6A/B for activity. In vitro, NHP6A stimulated transcription by pol II at the GAL1 promoter three- to fivefold above the level of activation by GAL4-VP16 alone. Gel mobility shift assays showed that NHP6A promotes the formation of a complex with TBP and TFIIA at the TATA box that has enhanced affinity for TFIIB.
Collapse
Affiliation(s)
- T T Paull
- Molecular Biology Institute, School of Medicine, University of California, Los Angeles 90095-1737, USA
| | | | | |
Collapse
|
82
|
Teyssier C, Toulmé F, Touzel JP, Gervais A, Maurizot JC, Culard F. Preferential binding of the archaebacterial histone-like MC1 protein to negatively supercoiled DNA minicircles. Biochemistry 1996; 35:7954-8. [PMID: 8672498 DOI: 10.1021/bi952414o] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The interaction of the archaebacterial MC1 protein with 207 bp negatively supercoiled DNA minicircles has been examined by gel retardation assays and compared to that observed with the relaxed DNA minicircle. MC1 binding induces a drastic DNA conformational change of each minicircle, leading to an increase of the electrophoretic mobility of the DNA. A slight increase in salt concentration enhances the amount of bound MC1, and high NaCl concentrations are required to dissociate the complexes. Furthermore, the salt effect on binding depends on the supercoiling state of the DNA. The dissociation rates decrease with increasing linking difference of the minicircles relative to their relaxed configuration to reach a maximum at -2 turns. In addition, differences between the topoisomers are also observed in terms of stoichiometry of the strongest complexes. So with the -2 topoisomer the complex with two MC1 molecules is the most stable, while with the -1 and -3 topoisomers, the strongest ones are those with one MC1 molecule per DNA ring.
Collapse
Affiliation(s)
- C Teyssier
- Centre de Biophysique Moléculaire, Orléans, France
| | | | | | | | | | | |
Collapse
|
83
|
Bustin M, Reeves R. High-mobility-group chromosomal proteins: architectural components that facilitate chromatin function. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 1996; 54:35-100. [PMID: 8768072 DOI: 10.1016/s0079-6603(08)60360-8] [Citation(s) in RCA: 575] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- M Bustin
- Laboratory of Molecular Carcinogenesis, National Cancer Institute, National Institute of Health, Bethesda, Maryland 20892, USA
| | | |
Collapse
|
84
|
|