51
|
Hatano H, Kudo Y, Ogawa I, Shimasue H, Shigeishi H, Ohta K, Higashikawa K, Takechi M, Takata T, Kamata N. Establishment of mesenchymal cell line derived from human developing odontoma. Oral Dis 2012; 18:756-62. [DOI: 10.1111/j.1601-0825.2012.01942.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
52
|
Cobourne MT, Sharpe PT. Diseases of the tooth: the genetic and molecular basis of inherited anomalies affecting the dentition. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2012; 2:183-212. [DOI: 10.1002/wdev.66] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
53
|
Jiang L, Peng WW, Li LF, Yang Y, Zhu YQ. Proliferation and Multilineage Potential of CXCR4-positive Human Dental Pulp Cells In Vitro. J Endod 2012; 38:642-7. [DOI: 10.1016/j.joen.2011.12.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2011] [Revised: 12/16/2011] [Accepted: 12/19/2011] [Indexed: 12/27/2022]
|
54
|
Yang X, Zhang S, Pang X, Fan M. Pro-inflammatory cytokines induce odontogenic differentiation of dental pulp-derived stem cells. J Cell Biochem 2012; 113:669-77. [PMID: 21976040 DOI: 10.1002/jcb.23396] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Postnatal dental pulp stem cells (DPSCs) represent a unique precursor population in the dental pulp, which have multipotential and harbor great potential for tissue engineering purposes. However, for therapy applications, transplanted cells are often exposed to unfavorable conditions such as cytokines released from necrotic or inflammatory cells in injured tissues. It is not clear how stem cells exposed to these conditions changes in their characteristics. In this study, the effects of pro-inflammatory cytokines, such as IL-1 and TNF, on DPSCs were investigated. Cells were treated with IL-1, TNF, or both for 3, 7, and 12 days. The cultures were evaluated for cell proliferation, ALP activity, and real-time PCR. We found that a short treatment (3 days) of pro-inflammatory cytokines induced the odontogenic differentiation of DPSCs. Furthermore, post 3 days treatment with pro-inflammatory cytokines, the cell-scaffold complexes were implanted subcutaneously in mice for 8 weeks. Histological analysis demonstrated that the cultures gave obviously mineralized tissue formation, especially for both IL-1 and TNF applied. These data suggest that IL-1 and TNF produced in the early inflammatory reaction may induce the mineralization of DPSCs.
Collapse
Affiliation(s)
- Xuechao Yang
- Key Laboratory of Oral Biomedicine of Ministry of Education and Department of Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei Province, PR China
| | | | | | | |
Collapse
|
55
|
Duverger O, Zah A, Isaac J, Sun HW, Bartels AK, Lian JB, Berdal A, Hwang J, Morasso MI. Neural crest deletion of Dlx3 leads to major dentin defects through down-regulation of Dspp. J Biol Chem 2012; 287:12230-40. [PMID: 22351765 DOI: 10.1074/jbc.m111.326900] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During development, Dlx3 is expressed in ectodermal appendages such as hair and teeth. Thus far, the evidence that Dlx3 plays a crucial role in tooth development comes from reports showing that autosomal dominant mutations in DLX3 result in severe enamel and dentin defects leading to abscesses and infections. However, the normal function of DLX3 in odontogenesis remains unknown. Here, we use a mouse model to demonstrate that the absence of Dlx3 in the neural crest results in major impairment of odontoblast differentiation and dentin production. Mutant mice develop brittle teeth with hypoplastic dentin and molars with an enlarged pulp chamber and underdeveloped roots. Using this mouse model, we found that dentin sialophosphoprotein (Dspp), a major component of the dentin matrix, is strongly down-regulated in odontoblasts lacking Dlx3. Using ChIP-seq, we further demonstrate the direct binding of Dlx3 to the Dspp promoter in vivo. Luciferase reporter assays determined that Dlx3 positively regulates Dspp expression. This establishes a regulatory pathway where the transcription factor Dlx3 is essential in dentin formation by directly regulating a crucial matrix protein.
Collapse
Affiliation(s)
- Olivier Duverger
- Developmental Skin Biology Section, NIAMS, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
56
|
Hayano S, Kurosaka H, Yanagita T, Kalus I, Milz F, Ishihara Y, Islam MN, Kawanabe N, Saito M, Kamioka H, Adachi T, Dierks T, Yamashiro T. Roles of heparan sulfate sulfation in dentinogenesis. J Biol Chem 2012; 287:12217-29. [PMID: 22351753 DOI: 10.1074/jbc.m111.332924] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Cell surface heparan sulfate (HS) is an essential regulator of cell signaling and development. HS traps signaling molecules, like Wnt in the glycosaminoglycan side chains of HS proteoglycans (HSPGs), and regulates their functions. Endosulfatases Sulf1 and Sulf2 are secreted at the cell surface to selectively remove 6-O-sulfate groups from HSPGs, thereby modifying the affinity of cell surface HSPGs for its ligands. This study provides molecular evidence for the functional roles of HSPG sulfation and desulfation in dentinogenesis. We show that odontogenic cells are highly sulfated on the cell surface and become desulfated during their differentiation to odontoblasts, which produce tooth dentin. Sulf1/Sulf2 double null mutant mice exhibit a thin dentin matrix and short roots combined with reduced expression of dentin sialophosphoprotein (Dspp) mRNA, encoding a dentin-specific extracellular matrix precursor protein, whereas single Sulf mutants do not show such defective phenotypes. In odontoblast cell lines, Dspp mRNA expression is potentiated by the activation of the Wnt canonical signaling pathway. In addition, pharmacological interference with HS sulfation promotes Dspp mRNA expression through activation of Wnt signaling. On the contrary, the silencing of Sulf suppresses the Wnt signaling pathway and subsequently Dspp mRNA expression. We also show that Wnt10a protein binds to cell surface HSPGs in odontoblasts, and interference with HS sulfation decreases the binding affinity of Wnt10a for HSPGs, which facilitates the binding of Wnt10a to its receptor and potentiates the Wnt signaling pathway, thereby up-regulating Dspp mRNA expression. These results demonstrate that Sulf-mediated desulfation of cellular HSPGs is an important modification that is critical for the activation of the Wnt signaling in odontoblasts and for production of the dentin matrix.
Collapse
Affiliation(s)
- Satoru Hayano
- Department of Orthodontics, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
57
|
Yang X, Lu Y, Pang X, Zhang S, Fan M. WITHDRAWN: The mesenchymal stem cell potential of human dental pulp derived cells transfected with embryonic transcription factor Oct-4. Biomaterials 2012:S0142-9612(12)00100-7. [PMID: 22353335 DOI: 10.1016/j.biomaterials.2012.01.053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2012] [Accepted: 01/29/2012] [Indexed: 01/09/2023]
Abstract
This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at http://www.elsevier.com/locate/withdrawalpolicy.
Collapse
Affiliation(s)
- Xuechao Yang
- Key Laboratory for Oral Biomedicine of Ministry of Education & Department of Endodontics, School and Hospital of Stomatology, Wuhan University, 237 Luoyu Road, 430079 Wuhan, PR China
| | | | | | | | | |
Collapse
|
58
|
Yang X, Zhang S, Pang X, Fan M. RETRACTED: Mineralized Tissue Formation by Bone Morphogenetic Protein-7–transfected Pulp Stem Cells. J Endod 2012; 38:170-6. [DOI: 10.1016/j.joen.2011.10.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Revised: 10/16/2011] [Accepted: 10/16/2011] [Indexed: 01/09/2023]
|
59
|
Zhu Q, Prasad M, Kong H, Lu Y, Sun Y, Wang X, Yamoah A, Feng JQ, Qin C. Partial blocking of mouse DSPP processing by substitution of Gly(451)-Asp(452) bond suggests the presence of secondary cleavage site(s). Connect Tissue Res 2012; 53:307-12. [PMID: 22175728 PMCID: PMC3676176 DOI: 10.3109/03008207.2011.650301] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Dentin sialophosphoprotein (DSPP) in the extracellular matrix of dentin is cleaved into dentin sialoprotein and dentin phosphoprotein, which originate from the NH(2)-terminal and COOH-terminal regions of DSPP, respectively. In the proteolytic processing of mouse DSPP, the peptide bond at Gly(451)-Asp(452) has been shown to be cleaved by bone morphogenetic protein 1 (BMP1)/Tolloid-like metalloproteinases. In this study, we generated transgenic mice expressing a mutant DSPP in which Asp(452) was substituted by Ala(452). Protein chemistry analyses of extracts from the long bone of these transgenic mice showed that the D452A substitution partially blocked DSPP processing in vivo. When the full-length form of mutant DSPP (designated "D452A-DSPP") isolated from the transgenic mice was treated with BMP1 in vitro, a portion of the D452A-DSPP was cleaved, suggesting the presence of secondary peptide bond(s) that can be broken by BMP1. To identify the potential secondary DSPP cleavage site(s), site-directed mutagenesis was performed to generate nine DNA constructs expressing DSPP-bearing substitutions at potential scission sites. These different types of mutant DSPP made in eukaryotic cell lines were treated with BMP1 and the digestion products were assessed by Western immunoblotting. All of the mutant DSPP molecular species were partially cleaved by BMP1, giving rise to a protein band on sodium dodecyl sulfate-polyacrylamide gel electrophoresis similar to that of normal dentin sialoprotein. Taken together, we concluded that in addition to the peptide bond Gly(451)-Asp(452), there must be a cryptic cleavage site or sites close to Asp(452) in the mouse DSPP that can be cleaved by BMP1.
Collapse
Affiliation(s)
- Qinglin Zhu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246,Department of Operative Dentistry and Endodontics, The Fourth Military Medical University, School of Stomatology, Xi’an, Shaanxi 710032, China
| | - Monica Prasad
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Hui Kong
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Yongbo Lu
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Yao Sun
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Xiaofang Wang
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Albert Yamoah
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Jian Q. Feng
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| | - Chunlin Qin
- Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center, Dallas, Texas 75246
| |
Collapse
|
60
|
Eapen A, Ramachandran A, George A. Dentin phosphoprotein (DPP) activates integrin-mediated anchorage-dependent signals in undifferentiated mesenchymal cells. J Biol Chem 2011; 287:5211-24. [PMID: 22134916 DOI: 10.1074/jbc.m111.290080] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dentin phosphoprotein (DPP), a major noncollagenous protein of the dentin matrix, is a highly acidic protein that binds Ca(2+) avidly and is thus linked to matrix mineralization. Here, we demonstrate that the RGD domain in DPP can bind to integrins on the cell surface of undifferentiated mesenchymal stem cells and pulp cells. This coupling generates intracellular signals that are channeled along cytoskeletal filaments and activate the non-receptor tyrosine kinase focal adhesion kinase, which plays a key role in signaling at sites of cellular adhesion. The putative focal adhesion kinase autophosphorylation site Tyr(397) is phosphorylated during focal adhesion assembly induced by DPP on the substrate. We further demonstrate that these intracellular signals propagate through the cytoplasm and activate anchorage-dependent ERK signaling. Activated ERK translocates to the nucleus and phosphorylates the transcription factor ELK-1, which in turn coordinates the expression of downstream target genes such as DMP1 and dentin sialoprotein (DSP). These studies suggest a novel paradigm demonstrating that extracellular DPP can induce intracellular signaling that can be propagated to the nucleus and thus alter gene activities.
Collapse
Affiliation(s)
- Asha Eapen
- Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, Department of Oral Biology, University of Illinois, Chicago, Illinois 60612, USA
| | | | | |
Collapse
|
61
|
Zhang H, Liu S, Zhou Y, Tan J, Che H, Ning F, Zhang X, Xun W, Huo N, Tang L, Deng Z, Jin Y. Natural mineralized scaffolds promote the dentinogenic potential of dental pulp stem cells via the mitogen-activated protein kinase signaling pathway. Tissue Eng Part A 2011; 18:677-91. [PMID: 21988658 DOI: 10.1089/ten.tea.2011.0269] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The selection of a suitable scaffold material is important for dentin tissue regeneration, as the characteristics of biomaterials can potentially influence cell proliferation and differentiation. We compared the effects of different scaffolds on dentin regeneration based on dental pulp stem cells (DPSCs) and investigated the regulatory mechanisms of odontogenic differentiation of DPSCs by these scaffolds. Five different scaffolds were tested: demineralized dentin matrix (DDM), ceramic bovine bone (CBB), small intestinal submucosa (SIS), poly-L-lactate-co-glycolate, and collagen-chondroitin sulfate-hyaluronic acid. DPSCs cultured on DDM and CBB exhibited higher levels of alkaline phosphatase (ALP) activity and mRNA expression of bone sialoprotein, osteocalcin, dentin sialophosphoprotein (DSPP), and dentin matrix protein-1 (DMP-1) than those cultured on the other three scaffolds. Further, the phosphorylation levels of mitogen-activated protein kinase (MAPK) ERK1/2 and p38 in DPSCs cultured on DDM and CBB were also significantly enhanced compared with the other three scaffolds, and their inhibitors significantly inhibited odontogenic differentiation as assessed by ALP activity and mRNA expression of DSPP and DMP-1. The implantation experiment confirmed these results and showed a large amount of regular-shaped dentin-pulp complex tissues, including dentin, predentin, and odontoblasts only in the DDM and CBB groups. The results indicated that natural mineralized scaffolds (DDM and CBB) have potential as attractive scaffolds for dentin tissue-engineering-promoted odontogenic differentiation of DPSCs through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Hongmei Zhang
- Research and Development Center for Tissue Engineering, Fourth Military Medical University, Xi'an, China.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Expression of dentine sialophosphoprotein in mouse nasal cartilage. Arch Oral Biol 2011; 57:607-13. [PMID: 22088564 DOI: 10.1016/j.archoralbio.2011.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/13/2011] [Accepted: 10/13/2011] [Indexed: 11/20/2022]
Abstract
OBJECTIVE Dentine sialophosphoprotein (DSPP) was initially thought to be unique for dentine formation during tooth development, whilst recent reports have shown a much broader expression pattern such as in bone, periodontium and inner ear. Our goal was to explore its expression and potential impact during early nasal cartilage formation in comparison with tooth development. STUDY DESIGN We investigated DSPP expression in the nasal cartilage by immunohistochemistry and in situ hybridisation. We also cloned a 719bp partial DSPP cDNA from nasal cartilage and analysed its homology to the published mouse DSPP cDNA sequence. In addition, quantitative RT-PCR was undertaken to compare the expression pattern of DSPP in nasal cartilage and tooth germs during embryonic development. RESULTS The expression of DSPP in mouse nasal chondrocytes was detected using in situ hybridisation and immunohistochemical staining. The quantitative RT-PCR data showed that expression levels of DSPP in nasal cartilage are similar to that of tooth: low at E18, and increased during development with the peak level at P3. Furthermore, DSPP levels in nasal cartilage are lower than tooth but higher than bone. CONCLUSION DSPP is expressed in nasal cartilage, and a similar temporal expression pattern in cartilage and tooth indicates the potential importance of DSPP during development.
Collapse
|
63
|
Dissanayaka WL, Zhu X, Zhang C, Jin L. Characterization of Dental Pulp Stem Cells Isolated from Canine Premolars. J Endod 2011; 37:1074-80. [DOI: 10.1016/j.joen.2011.04.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2011] [Revised: 04/06/2011] [Accepted: 04/10/2011] [Indexed: 01/09/2023]
|
64
|
Retracted: Effects of pro-inflammatory cytokines on mineralization potential of rat dental pulp stem cells. J Tissue Eng Regen Med 2011; 5:759. [PMID: 21748857 DOI: 10.1002/term.444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 05/12/2011] [Indexed: 11/07/2022]
Abstract
The following article from the Journal of Tissue Engineering and Regenerative Medicine, 'Effects of Pro-inflammatory Cytokines on Mineralization Potential of Rat Dental Pulp Stem Cells' by Yang X, Walboomers XF, Bian Z, Jansen JA, Fan M, published online on 11 July 2011 in Wiley Online Library (onlinelibrary.wiley.com), has been retracted by agreement between the authors, the journal Editor-in-Chief, and John Wiley & Sons, Ltd. The retraction has been agreed due to two authors (Walboomers XF, and Jansen JA) not having been involved in the research described, nor made aware of their names being listed on the manuscript, nor told of its submission to the journal.
Collapse
|
65
|
The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells. Biomaterials 2011; 32:7822-30. [PMID: 21663962 DOI: 10.1016/j.biomaterials.2011.04.034] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Accepted: 04/13/2011] [Indexed: 12/28/2022]
Abstract
Previous studies have shown the superiority of nanofibrous (NF) poly(l-lactic acid) (PLLA) scaffolds in supporting the osteogenic differentiation of a few cell types and bone regeneration. The aim of the current study was to investigate whether NF-PLLA scaffolds are advantageous for the odontogenic differentiation and mineralization of human dental pulp stem cells (DPSCs) over solid-walled (SW) PLLA scaffolds. The in vitro studies demonstrated that, compared with SW scaffolds, NF scaffolds enhanced attachment and proliferation as well as odontogenic differentiation of human DPSCs. The alkaline phosphatase (ALP) activity and the expression of odontogenic genes of human DPSCs were increased on NF scaffolds compared with that on SW scaffolds. In addition, more mineral deposition was observed on the NF scaffolds, as demonstrated by von Kossa staining, calcium content measurement and scanning electron microscopy. Consistent with the in vitro studies, NF scaffolds promoted odontogenic differentiation and hard tissue formation compared with SW scaffolds after 8 weeks of ectopic transplantation in nude mice, as confirmed by von Kossa staining, Masson's trichrome staining and immunohistochemical staining for dentin sialoprotein. In conclusion, NF-PLLA scaffolds enhanced the odontogenic differentiation of human DPSCs and mineralization both in vitro and in vivo, and are promising scaffolds for dentin regeneration.
Collapse
|
66
|
Fisher LW. DMP1 and DSPP: evidence for duplication and convergent evolution of two SIBLING proteins. Cells Tissues Organs 2011; 194:113-8. [PMID: 21555860 DOI: 10.1159/000324254] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Since first being proposed as a tandem gene family in 2001, the relatedness of the 5 SIBLING proteins (BSP, DMP1, DSPP, MEPE, and SPP1/OPN) has predominantly depended on arguments involving shared intron/exon properties as well as conserved protein biochemical properties (e.g. unstructured and acidic) and specific peptide motifs (e.g. phosphorylation and integrin-binding RGD). This report discusses the evidence that an ancient DMP1 gene underwent a simple duplication in the common ancestor of mammals and reptiles and then separately evolved into DSPP-like paralogs in the 2 classes. Genomic sequence analyses show that different copies of the original DMP1 duplication process were selected by mammalian and reptilian (anole lizard) classes to acquire genetically different but biochemically similar phosphoserine-rich repeat domains by convergent evolution. Mammals, for example, expanded phosphoserine motifs encoded exclusively using motifs containing AGC/T serine codons while the reptile line's repeats also used TCN-encoding serine codons. A similar analysis of the origins of the other 4 SIBLINGs will require even more detailed analysis as genome sequences of various fish and amphibia become available.
Collapse
Affiliation(s)
- Larry W Fisher
- Matrix Biochemistry Section, Craniofacial and Skeletal Diseases Branch, NIDCR, NIH, DHHS, Bethesda, Md, USA.
| |
Collapse
|
67
|
Feng J, Mantesso A, De Bari C, Nishiyama A, Sharpe PT. Dual origin of mesenchymal stem cells contributing to organ growth and repair. Proc Natl Acad Sci U S A 2011; 108:6503-8. [PMID: 21464310 PMCID: PMC3081015 DOI: 10.1073/pnas.1015449108] [Citation(s) in RCA: 301] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In many adult tissues, mesenchymal stem cells (MSCs) are closely associated with perivascular niches and coexpress many markers in common with pericytes. The ability of pericytes to act as MSCs, however, remains controversial. By using genetic lineage tracing, we show that some pericytes differentiate into specialized tooth mesenchyme-derived cells--odontoblasts--during tooth growth and in response to damage in vivo. As the pericyte-derived mesenchymal cell contribution to odontoblast differentiation does not account for all cell differentiation, we identify an additional source of cells with MSC-like properties that are stimulated to migrate toward areas of tissue damage and differentiate into odontoblasts. Thus, although pericytes are capable of acting as a source of MSCs and differentiating into cells of mesenchymal origin, they do so alongside other MSCs of a nonpericyte origin. This study identifies a dual origin of MSCs in a single tissue and suggests that the pericyte contribution to MSC-derived mesenchymal cells in any given tissue is variable and possibly dependent on the extent of the vascularity.
Collapse
Affiliation(s)
- Jifan Feng
- Department of Craniofacial Development and Comprehensive Biomedical Research Centre, Dental Institute, Kings College London, London SE1 9RT, United Kingdom
| | - Andrea Mantesso
- Department of Craniofacial Development and Comprehensive Biomedical Research Centre, Dental Institute, Kings College London, London SE1 9RT, United Kingdom
- Department of Oral Pathology, Dental Institute, University of Sao Paulo, CEP 05508-900, Sao Paulo, Brazil
| | - Cosimo De Bari
- Division of Applied Medicine, University of Aberdeen, Aberdeen AB25 22D, United Kingdom; and
| | - Akiko Nishiyama
- Department of Physiology and Neurobiology, University of Connecticut, Storrs, CT 06269-4243
| | - Paul T. Sharpe
- Department of Craniofacial Development and Comprehensive Biomedical Research Centre, Dental Institute, Kings College London, London SE1 9RT, United Kingdom
| |
Collapse
|
68
|
Li L, Zhu YQ, Jiang L, Peng W, Ritchie HH. Hypoxia promotes mineralization of human dental pulp cells. J Endod 2011; 37:799-802. [PMID: 21787492 DOI: 10.1016/j.joen.2011.02.028] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 02/10/2011] [Accepted: 02/23/2011] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Dental pulp can be exposed to hypoxic conditions in case of trauma or inflammation. Dental pulp cells (DPCs) have mineralization potential, which plays a key role in pulp repair and reparative dentinogenesis process. Little information is available about DPC mineralization in hypoxic condition. The purpose of this study was to assess the influence of hypoxia on DPC mineralization to pave the way for a better understanding of dental pulp regeneration and reparative dentin formation. METHODS Human DPCs were obtained by using tissue explant technique in vitro and cultured in normoxia (20% O(2)) or hypoxia (5% O(2)). Cell viability was investigated by methyl-thiazol-tetrazolium assay. Cell mineralization was assessed by von Kossa staining and alizarin red S staining. Important mineral genes such as osteocalcin (OCN), dentin matrix acidic phosphoprotein-1 (DMP-1), bone sialoprotein (BSP), and dentin sialophosphoprotein (DSPP) were determined by real-time polymerase chain reaction. RESULTS Cell viability of DPCs increased more in hypoxia than in normoxia from day 3 to day 5. Von Kossa staining and alizarin red S staining showed DPCs in hypoxia had higher mineralization activity than in normoxia. Expression of mRNAs for OCN, DMP-1, BSP, and DSPP was greater in hypoxia than in normoxia. CONCLUSIONS These results imply that hypoxia promotes DPC mineralization.
Collapse
Affiliation(s)
- Lifen Li
- Department of General Dentistry, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | | | | | | | | |
Collapse
|
69
|
Balic A, Mina M. Identification of secretory odontoblasts using DMP1-GFP transgenic mice. Bone 2011; 48:927-37. [PMID: 21172466 PMCID: PMC3062740 DOI: 10.1016/j.bone.2010.12.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/02/2010] [Accepted: 12/12/2010] [Indexed: 10/18/2022]
Abstract
Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue- and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT 06030, USA
| | | |
Collapse
|
70
|
Wang X, He F, Tan Y, Tian W, Qiu S. Inhibition of Delta1 promotes differentiation of odontoblasts and inhibits proliferation of human dental pulp stem cell in vitro. Arch Oral Biol 2011; 56:837-45. [PMID: 21392732 DOI: 10.1016/j.archoralbio.2011.02.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/05/2011] [Accepted: 02/10/2011] [Indexed: 01/09/2023]
Abstract
OBJECTIVE Dental pulp stem cells (DPSCs) have been receiving more attentions recently as an important biomaterial for tissue engineering. Notch signalling plays a key role in regulating self-renewal and differentiation of a variety of cells. The objective of this study is to investigate the effects of Notch-Delta1 RNA interference (RNAi) on the proliferation and differentiation of human dental pulp stem cells in vitro. DESIGN In the present study, we performed gene knockdown of Notch ligand Delta1 in DPSCs using lentivirus-mediated Delta1-RNAi. Changes of proliferation in DPSCs/Delta1-RNAi were examined by cell cycle analysis, Cell viability assay (CCK-8) and Western blot analysis of proliferating cell nuclear antigen (PCNA). Cells were cultured in odontoblast differentiation-inducing medium, and the differentiation of cells was detected with Alkaline phosphatase ALP activity assay, Alizarin red S staining, calcium concentration measurement, and Western blot analysis of Dentine sialophosphoprotein (DSPP). RESULTS Lentivirus-mediated Delta1-RNAi stably knocked-down the expression of Delta1 and Notch signalling, and some of DPSCs/Delta1-RNAi displayed changes in morphology or DSPP expression. The growth rate of Delta1-deficient DPSCs was significantly suppressed as compared with wild type DPSCs and control lentivirus vector transfected DPSCs. Furthermore, the differentiating capability of DPSCs/Delta1-RNAi into odontoblasts is much higher than the two control groups. CONCLUSIONS Notch signalling plays a crucial role in regulating self-renewal and differentiation in DPSCs. The deficient Notch signalling inhibits the self-renewal capacity of DPSCs and tends to induce DPSCs differentiation under odontoblast differentiation-inducing conditions. These findings suggested that DPSCs/Delta1-RNAi might be applicable to stem cell therapies and tooth tissue engineering.
Collapse
Affiliation(s)
- Xuefei Wang
- Department of Stomatology, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, PR China
| | | | | | | | | |
Collapse
|
71
|
Cho A, Suzuki S, Hatakeyama J, Haruyama N, Kulkarni AB. A method for rapid demineralization of teeth and bones. Open Dent J 2010; 4:223-9. [PMID: 21339898 PMCID: PMC3040998 DOI: 10.2174/1874210601004010223] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 09/08/2010] [Accepted: 09/09/2010] [Indexed: 11/22/2022] Open
Abstract
Tooth and bone specimen require extensive demineralization for careful analysis of cell morphology, as well as gene and protein expression levels. The LacZ gene, which encodes the ß-galactosidase enzyme, is often used as a reporter gene to study gene-structure function, tissue-specific expression by a promoter, cell lineage and fate. This reporter gene is particularly useful for analyzing the spatial and temporal gene expression pattern, by expressing the LacZ gene under the control of a promoter of interest. To analyze LacZ activity, and the expression of other genes and their protein products in teeth and bones, it is necessary to carry out a complete demineralization of the specimen before cutting sections. However, strong acids, such as formic acid used for tooth demineralization, destroy the activities of enzymes including those of ß-galactosidase. Therefore, most protocols currently use mild acids such as 0.1 M ethylene diamine tetra-acetic acid (EDTA) for demineralization of tooth and bone specimen, which require a longer period of treatment for complete demineralization. A method by which hard tissue specimens such as teeth and bones can be rapidly, but gently, decalcified is necessary to save time and effort. Here, we report a suitable method for rapid demineralization of mouse teeth in 0.1M EDTA at 42˚C without any loss of ß-galactosidase activity.
Collapse
Affiliation(s)
- Andrew Cho
- Gene Targeting Facility, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
72
|
Wang J, Liu X, Jin X, Ma H, Hu J, Ni L, Ma PX. The odontogenic differentiation of human dental pulp stem cells on nanofibrous poly(L-lactic acid) scaffolds in vitro and in vivo. Acta Biomater 2010; 6:3856-63. [PMID: 20406702 DOI: 10.1016/j.actbio.2010.04.009] [Citation(s) in RCA: 116] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2010] [Revised: 04/10/2010] [Accepted: 04/15/2010] [Indexed: 01/09/2023]
Abstract
The aim of this study was to investigate the odontogenic differentiation of human dental pulp stem cells (DPSCs) on nanofibrous (NF)-poly(l-lactic acid) (PLLA) scaffolds in vitro and in vivo. Highly porous NF-PLLA scaffolds which mimic the architecture of collagen type I fibers were fabricated by the combination of a phase-separation technique and a porogen-leaching method. The human DPSCs were then seeded onto the scaffolds and cultured in different media for odontogenic differentiation: "Control" medium without supplements; "DXM" medium containing 10(-8)M dexamethasone (DXM), 50 microgml(-1) ascorbic acid and 5mM beta-glycerophosphate; "BMP-7+DXM" medium containing 10(-8)M DXM, 50 microgml(-1) ascorbic acid, 5mM beta-glycerophosphate plus 50 ngml(-1) bone morphogenetic protein 7 (BMP-7). For odontogenic differentiation study in vitro, alkaline phosphatase activity quantification, reverse transcription polymerase chain reaction, scanning electron microscopy, von Kossa staining and calcium content quantification were carried out. While both "DXM" medium and "BMP-7+DXM" medium induced the DPSCs to odontoblast-like cells, the "BMP-7+DXM" medium had greater inducing capacity than the "DXM" medium. Consistent with the in vitro studies, the "BMP-7+DXM" group presented more extracellular matrix and hard tissue formation than the "DXM" group after 8 weeks of ectopic implantation in nude mice. Differentiation of DPSCs into odontoblast-like cells was identified by the positive immunohistochemical staining for dentin sialoprotein. In conclusion, odontogenic differentiation of DPSCs can be achieved on NF-PLLA scaffolds both in vitro and in vivo; the combination of BMP-7 and DXM induced the odontogenic differentiation more effectively than DXM alone. The NF-PLLA scaffold and the combined odontogenic inductive factors provide excellent environment for DPSCs to regenerate dental pulp and dentin.
Collapse
|
73
|
Abstract
Two of the proteins found in significant quantity in the extracellular matrix (ECM) of dentin are dentin phosphoprotein (DPP) and dentin sialoprotein (DSP). DPP, the most abundant of the noncollagenous proteins (NCPs) in dentin is an unusually polyanionic protein, containing a large number of aspartic acids (Asp) and phosphoserines (Pse) in the repeating sequences of (Asp-Pse)(n). and (Asp-Pse-Pse)(n). The many negatively charged regions of DPP are thought to promote mineralization by binding calcium and presenting it to collagen fibers at the mineralization front during the formation of dentin. This purported role of DPP is supported by a sizeable pool of in vitro mineralization data showing that DPP is an important initiator and modulator for the formation and growth of hydroxyapatite (HA) crystals. Quite differently, DSP is a glycoprotein, with little or no phosphate. DPP and DSP are the cleavage products of dentin sialophosphoprotein (DSPP). Human and mouse genetic studies have demonstrated that mutations in, or knockout of, the Dspp gene result in mineralization defects in dentin and/or bone. The discoveries in the past 40 years with regard to DPP, DSP, and DSPP have greatly enhanced our understanding of biomineralization and set a new stage for future studies. In this review, we summarize the important and new developments made in the past four decades regarding the structure and regulation of the Dspp gene, the biochemical characteristics of DSPP, DPP, and DSP as well as the cell/tissue localizations and functions of these molecules.
Collapse
Affiliation(s)
| | | | - Chunlin Qin
- CORRESPONDING AUTHOR: Chunlin Qin, D.D.S., Ph.D. Department of Biomedical Sciences, Baylor College of Dentistry, Texas A&M Health Science Center; 3302 Gaston Ave. Room 400, Dallas, TX 75246, USA ; Phone: +1-214-828-8292; Fax: +1-214-874-4538.
| |
Collapse
|
74
|
Jittapiromsak N, Sahawat D, Banlunara W, Sangvanich P, Thunyakitpisal P. Acemannan, an extracted product from Aloe vera, stimulates dental pulp cell proliferation, differentiation, mineralization, and dentin formation. Tissue Eng Part A 2010; 16:1997-2006. [PMID: 20088703 DOI: 10.1089/ten.tea.2009.0593] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
This study investigated the effect of acemannan (Aloe vera gel polysaccharide) on dentin formation. Primary human dental pulp cells were treated with acemannan. New DNA synthesis, bone morphogenetic protein-2, alkaline phosphatase activity, dentin sialoprotein expression, and mineralization were determined by [(3)H]-thymidine incorporation, enzyme-linked immunosorbent assay, biochemical assay, western blotting, and Alizarin Red staining, respectively. Then the upper first molars of 24 male Sprague Dawley rats were intentionally exposed and capped with either acemannan or calcium hydroxide. At day 28, the teeth were histopathologically examined and evaluated for the degree of inflammation, dentin bridge formation, and pulp tissue organization. The results revealed that acemannan significantly increased pulp cell proliferation, bone morphogenetic protein-2, alkaline phosphatase activity, dentin sialoprotein expression, and mineralization, compared with the untreated group. The acemannan-treated group also exhibited a complete homogeneous calcified dentin bridge and good pulp tissue organization, whereas neither was detected in the calcium hydroxide-treated and sham groups. In the acemannan-treated group, either mild or no inflammation was found, whereas the other groups had various degrees of inflammation. The data suggest that acemannan promotes dentin formation by stimulating primary human dental pulp cell proliferation, differentiation, extracellular matrix formation, and mineralization. Acemannan also has pulpal biocompatibility and promotes soft tissue organization.
Collapse
Affiliation(s)
- Nawaporn Jittapiromsak
- Dental Biomaterials Science Program, Graduate School, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | | | | | | | | |
Collapse
|
75
|
Balic A, Aguila HL, Caimano MJ, Francone VP, Mina M. Characterization of stem and progenitor cells in the dental pulp of erupted and unerupted murine molars. Bone 2010; 46:1639-51. [PMID: 20193787 PMCID: PMC2881695 DOI: 10.1016/j.bone.2010.02.019] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/15/2022]
Abstract
In the past few years there have been significant advances in the identification of putative stem cells also referred to as "mesenchymal stem cells" (MSC) in dental tissues including the dental pulp. It is thought that MSC in dental pulp share certain similarities with MSC isolated from other tissues. However, cells in dental pulp are still poorly characterized. This study focused on the characterization of progenitor and stem cells in dental pulps of erupted and unerupted mice molars. Our study showed that dental pulps from unerupted molars contain a significant number of cells expressing CD90+/CD45-, CD117+/CD45-, Sca-1+/CD45- and little if any CD45+ cells. Our in vitro functional studies showed that dental pulp cells from unerupted molars displayed extensive osteo-dentinogenic potential but were unable to differentiate into chondrocytes and adipocytes. Dental pulps from erupted molars displayed a reduced number of cells, contained a higher percentage of CD45+ and a lower percentage of cells expressing CD90+/CD45-, CD117+/CD45- as compared to unerupted molars. In vitro functional assays demonstrated the ability of a small fraction of cells to differentiate into odontoblasts, osteoblasts, adipocytes and chondrocytes. There was a significant reduction in the osteo-dentinogenic potential of the pulp cells derived from erupted molars compared to unerupted molars. Furthermore, the adipogenic and chondrogenic differentiation of pulp cells from erupted molars was dependent on a long induction period and were infrequent. Based on these findings we propose that the dental pulp of the erupted molars contain a small population of multipotent cells, whereas the dental pulp of the unerupted molars does not contain multipotent cells but is enriched in osteo-dentinogenic progenitors engaged in the formation of coronal and radicular odontoblasts.
Collapse
Affiliation(s)
- Anamaria Balic
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| | - H. Leonardo Aguila
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Melissa J. Caimano
- Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Victor P. Francone
- Department of Neuroscience, School of Medicine, University of Connecticut Health Center, Farmington, CT
| | - Mina Mina
- Department of Craniofacial Sciences, School of Dental Medicine, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
76
|
Yang X, Yang F, Walboomers XF, Bian Z, Fan M, Jansen JA. The performance of dental pulp stem cells on nanofibrous PCL/gelatin/nHA scaffolds. J Biomed Mater Res A 2010; 93:247-57. [PMID: 19557787 DOI: 10.1002/jbm.a.32535] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The aim of current study is to investigate the in vitro and in vivo behavior of dental pulp stem cells (DPSCs) seeded on electrospun poly(epsilon-caprolactone) (PCL)/gelatin scaffolds with or without the addition of nano-hydroxyapatite (nHA). For the in vitro evaluation, DNA content, alkaline phosphatase (ALP) activity and osteocalcin (OC) measurement showed that the scaffolds supported DPSC adhesion, proliferation, and odontoblastic differentiation. Moreover, the presence of nHA upregulated ALP activity and promoted OC expression. Real-time PCR data confirmed these results. SEM micrographs qualitatively confirmed the proliferation and mineralization characteristics of DPSCs on both scaffolds. Subsequently, both scaffolds seeded with DPSCs were subcutaneously implanted into immunocompromised nude mice. Scaffolds with nHA but without cells were implanted as control. Histological evaluation revealed that all implants were surrounded by a thin fibrous tissue capsule without any adverse effects. The cell/scaffold composites showed obvious in vivo hard tissue formation, but there was no sign of tissue ingrowth. Further, the combination of nHA in scaffolds did upregulate the expression of specific odontogenic genes. In conclusion, the incorporation of nHA in nanofibers indeed enhanced DPSCs differentiation towards an odontoblast-like phenotype in vitro and in vivo.
Collapse
Affiliation(s)
- Xuechao Yang
- School and Hospital of Stomatology, Wuhan University, Wuhan 430079, Hubei Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
77
|
Tziafas D, Kodonas K. Differentiation potential of dental papilla, dental pulp, and apical papilla progenitor cells. J Endod 2010; 36:781-789. [PMID: 20416419 DOI: 10.1016/j.joen.2010.02.006] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2009] [Revised: 01/27/2010] [Accepted: 02/08/2010] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Regenerative endodontic procedures use the differentiation potential of embryonic and adult pulp progenitor cell populations to reconstitute dental structures. METHODS An in-depth search of the literature was accomplished to review biologic knowledge from basic research on tooth morphogenesis and differentiation, root development, dentin-pulp regeneration, pulp revascularization and apexification, experimental and clinical studies on the dentinogenic differentiation potential of progenitor cells in the embryonic dental papilla, dental pulp, and associated mesenchymal tissues of the developing root. RESULTS Odontogenic potential is determined during early tooth morphogenesis in the odontogenic mesenchyme. Progenitor cells from the odontogenic mesenchyme give rise to primary dentin-forming cells (odontoblasts) in the presence of stage-specific enamel epithelium and/or basement membrane and tertiary dentin-forming cells (odontoblast-like cells) in experimental conditions. The specificity of odontogenic mesenchymal cells to form tertiary dentin might be related to the repertoire of signaling pathways operated by the temporospatial pattern of epithelial-mesenchymal interactions during tooth formation. Dental papilla cells isolated from tooth germs before the onset of odontoblast differentiation have not shown any competence to become odontoblasts in the absence of enamel epithelium. On the other hand, the specificity of progenitor cells in the mesenchymal cell populations of the developing root apex remains to be determined. CONCLUSIONS It seems evident that the dental pulp might be only used as a source of progenitor cells with dentinogenic competence for the regeneration of the dentin-pulp complex. The nature of dental or apical papilla progenitor cells in terms of their specificity for dentin regeneration has to be first characterized.
Collapse
Affiliation(s)
- Dimitrios Tziafas
- Department of Endodontology, School of Dentistry, Aristotle University of Thessaloniki, Thessaloniki, Greece.
| | | |
Collapse
|
78
|
Yang X, Walboomers XF, van den Beucken JJJP, Bian Z, Fan M, Jansen JA. Hard tissue formation of STRO-1-selected rat dental pulp stem cells in vivo. Tissue Eng Part A 2009; 15:367-75. [PMID: 18652538 DOI: 10.1089/ten.tea.2008.0133] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The objective of this study was to examine hard tissue formation of STRO-1-selected rat dental pulp-derived stem cells, seeded into a calcium phosphate ceramic scaffold, and implanted subcutaneously in mice. Previously, STRO-1 selection was used to obtain a mesenchymal stem cell progenitor subpopulation from primary dental pulp-derived stem cells. In the current study, these cells were cultured with three different media: "BMP-plus" medium containing dexamethasone and 100 ng/mL of rhBMP-2, "odontogenic" medium containing dexamethasone, and "control" medium without supplements. The cell-scaffold complexes were cultured in these media for 1, 4, or 8 days before implantation. Histological analysis demonstrated that the cultures with BMP-plus and 4 days of culture gave the highest percentage of hard tissue formation per implant (36 +/- 9% of pore area). Real-time PCR confirmed these results. In conclusion, STRO-1-selected dental pulp stem cells show effective hard tissue formation in vivo, and a short in vitro culture period and addition of BMP-2 can enhance this effect.
Collapse
Affiliation(s)
- Xuechao Yang
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
79
|
Yang X, van der Kraan P, Bian Z, Fan M, Walboomers X, Jansen J. Mineralized Tissue Formation by BMP2-transfected Pulp Stem Cells. J Dent Res 2009; 88:1020-5. [DOI: 10.1177/0022034509346258] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Previously, in vitro differentiation of odontoblasts was shown for dental pulp stem cells (DPSCs) transfected with bone morphogenetic protein-2 ( Bmp2). For this study, we hypothesized that such cells also show potential for mineralized tissue formation in vivo. DPSCs were transfected with Bmp2 and seeded onto a ceramic scaffold. These complexes were cultured in medium without dexamethasone, and thereafter placed subcutaneously in nude mice for 1, 4, and 12 weeks. Samples were evaluated by histology and real-time PCR for osteocalcin, bone sialoprotein, dentin sialophosphoprotein, and dentin matrix protein 1. Results indicated that only the transfected DPSCs showed obvious mineralized tissue generation, and 12 weeks of implantation gave the highest percentage of mineralized tissue formation (33 ± 7.3% of implant pore area). Real-time PCR confirmed these results. In conclusion, Bmp2-transfected DPSCs effectively show mineralized tissue formation upon ectopic implantation.
Collapse
Affiliation(s)
- X. Yang
- Key Lab for Oral Biomedical Engineering of Ministry of Education and
Department of Endodontics, School and Hospital of Stomatology, Wuhan University,
Wuhan, Hubei Province, P.R. China
- Department of Periodontology and Biomaterials, Radboud University
Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; and
- Experimental Rheumatology and Advanced Therapeutics, Radboud
University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - P.M. van der Kraan
- Key Lab for Oral Biomedical Engineering of Ministry of Education and
Department of Endodontics, School and Hospital of Stomatology, Wuhan University,
Wuhan, Hubei Province, P.R. China
- Department of Periodontology and Biomaterials, Radboud University
Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; and
- Experimental Rheumatology and Advanced Therapeutics, Radboud
University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Z. Bian
- Key Lab for Oral Biomedical Engineering of Ministry of Education and
Department of Endodontics, School and Hospital of Stomatology, Wuhan University,
Wuhan, Hubei Province, P.R. China
- Department of Periodontology and Biomaterials, Radboud University
Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; and
- Experimental Rheumatology and Advanced Therapeutics, Radboud
University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - M. Fan
- Key Lab for Oral Biomedical Engineering of Ministry of Education and
Department of Endodontics, School and Hospital of Stomatology, Wuhan University,
Wuhan, Hubei Province, P.R. China
- Department of Periodontology and Biomaterials, Radboud University
Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; and
- Experimental Rheumatology and Advanced Therapeutics, Radboud
University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - X.F. Walboomers
- Key Lab for Oral Biomedical Engineering of Ministry of Education and
Department of Endodontics, School and Hospital of Stomatology, Wuhan University,
Wuhan, Hubei Province, P.R. China
- Department of Periodontology and Biomaterials, Radboud University
Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; and
- Experimental Rheumatology and Advanced Therapeutics, Radboud
University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - J.A. Jansen
- Key Lab for Oral Biomedical Engineering of Ministry of Education and
Department of Endodontics, School and Hospital of Stomatology, Wuhan University,
Wuhan, Hubei Province, P.R. China
- Department of Periodontology and Biomaterials, Radboud University
Nijmegen Medical Centre, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands; and
- Experimental Rheumatology and Advanced Therapeutics, Radboud
University Nijmegen Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
80
|
Tranasi M, Sberna MT, Zizzari V, D'Apolito G, Mastrangelo F, Salini L, Stuppia L, Tetè S. Microarray Evaluation of Age-related Changes in Human Dental Pulp. J Endod 2009; 35:1211-7. [DOI: 10.1016/j.joen.2009.05.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2009] [Revised: 05/20/2009] [Accepted: 05/24/2009] [Indexed: 10/20/2022]
|
81
|
The Combined Effect of Mineral Trioxide Aggregate and Enamel Matrix Derivative on Odontoblastic Differentiation in Human Dental Pulp Cells. J Endod 2009; 35:847-51. [DOI: 10.1016/j.joen.2009.03.014] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/13/2009] [Accepted: 03/15/2009] [Indexed: 11/18/2022]
|
82
|
Yuan G, Wang Y, Gluhak-Heinrich J, Yang G, Chen L, Li T, Wu LA, Chen Z, MacDougall M, Chen S. Tissue-specific expression of dentin sialophosphoprotein (DSPP) and its polymorphisms in mouse tissues. Cell Biol Int 2009; 33:816-29. [PMID: 19450697 DOI: 10.1016/j.cellbi.2009.05.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2008] [Revised: 03/11/2009] [Accepted: 05/07/2009] [Indexed: 11/19/2022]
Abstract
Dentin sialophosphoprotein (DSPP) consists of dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). DSPP is highly expressed in mineralized tissues. However, recent studies have shown that DSPP is also expressed in several active metabolic ductal epithelial tissues and exists in a variety of sequences. We have investigated DSPP expression in various mouse tissues using RT-PCR, in situ hybridization and immunohistochemical analyses. To identify DSPP gene polymorphisms, we screened a mouse tooth cDNA library as well as isolated and characterized DSPP variations. Our results show that DSPP is predominantly expressed in teeth and moderately in bone tissues. We also have characterized a full-length DSPP cDNA clone with an open-reading frame of 940 codons and this polyadenylation signal. Compared to previously reported mouse DSPP cDNAs, 13 sequence variations were identified, including 8 non-synonymous single nucleotide polymorphisms and an in-frame indel (8 amino acids) at DPP domain of the mouse DSPP. These 8 amino acids are rich in aspartic acid and serine residues. Northern blot assay showed a prominent band at 4.4kb. RT-PCR demonstrated that this mouse DSPP gene was dominantly expressed in teeth. The predicted secondary structure of DPP domain of this DSPP showed differences from the previously published mouse DPPs, implying that they play different roles during tooth development and formation.
Collapse
Affiliation(s)
- Guohua Yuan
- Department of Pediatric Dentistry, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Drive, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Suzuki S, Sreenath T, Haruyama N, Honeycutt C, Terse A, Cho A, Kohler T, Müller R, Goldberg M, Kulkarni AB. Dentin sialoprotein and dentin phosphoprotein have distinct roles in dentin mineralization. Matrix Biol 2009; 28:221-9. [PMID: 19348940 DOI: 10.1016/j.matbio.2009.03.006] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 03/17/2009] [Accepted: 03/25/2009] [Indexed: 10/20/2022]
Abstract
Dentin sialophosphoprotein (DSPP), a major non-collagenous matrix protein of odontoblasts, is proteolytically cleaved into dentin sialoprotein (DSP) and dentin phosphoprotein (DPP). Our previous studies revealed that DSPP null mice display a phenotype similar to human autosomal dominant dentinogenesis imperfecta, in which teeth have widened predentin and irregular dentin mineralization resulting in sporadic unmineralized areas in dentin and frequent pulp exposure. Earlier in vitro studies suggested that DPP, but not DSP, plays a significant role in initiation and maturation of dentin mineralization. However, the precise in vivo roles of DSP and DPP are far from clear. Here we report the generation of DPPcKO mice, in which only DSP is expressed in a DSPP null background, resulting in a conditional DPP knockout. DPPcKO teeth show a partial rescue of the DSPP null phenotype with the restored predentin width, an absence of irregular unmineralized areas in dentin, and less frequent pulp exposure. Micro-computed tomography (micro-CT) analysis of DPPcKO molars further confirmed this partial rescue with a significant recovery in the dentin volume, but not in the dentin mineral density. These results indicate distinct roles of DSP and DPP in dentin mineralization, with DSP regulating initiation of dentin mineralization, and DPP being involved in the maturation of mineralized dentin.
Collapse
Affiliation(s)
- Shigeki Suzuki
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health/DHHS, 30 Convent Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Yagihashi K, Miyazawa K, Togari K, Goto S. Demineralized dentin matrix acts as a scaffold for repair of articular cartilage defects. Calcif Tissue Int 2009; 84:210-20. [PMID: 19183824 DOI: 10.1007/s00223-008-9205-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 11/07/2008] [Indexed: 11/26/2022]
Abstract
Articular cartilage repair remains a major obstacle in tissue engineering. In the present study, we investigated the potential for demineralized dentin matrix (DDM; organic material derived from dentin) obtained from extracted teeth to be used as bone graft material. To evaluate the extent to which DDM induces osteochondral regeneration, we implanted DDM from bovine teeth in rabbit knees with full-thickness articular cartilage defects. Thirty-three 13-week-old male rabbits weighing 2.5-3.0 kg were randomly assigned to a control group (n = 11) and two experimental groups (n = 11 for each group). The knees were divided into three groups according to the subsequent treatment: in group I (n = 22), the control group, the defect was left untreated; and in groups II (n = 22) and III (n = 22), 50 and 100 mg of DDM, respectively, was implanted. The rabbits were killed 1, 3, 6, or 9 weeks after the surgical procedure, and the knees were collected. The harvested tissues were examined radiographically and histologically. The 100-mg DDM group (group III) had significantly more new bone forming inside the defect (as measured using the BV/TV value) compared with the other two groups as early as at week 3 postoperatively, but thereafter, the difference gradually decreased. Cartilage repair in the surface region remained significantly better in group III because hyaline-like cartilage appeared in the peripheral area of the defect at week 6 and the surface was covered with hyaline-like cartilage with a thickness similar to that of normal cartilage at week 9. In conclusion, the results of this study suggest that DDM acts as a scaffold for osteochondral regeneration, yielding active new bone formation early in the postoperative period. Thus, DDM may represent an effective bone implant material.
Collapse
Affiliation(s)
- K Yagihashi
- Department of Orthodontics, School of Dentistry, Aichi-Gakuin University, Nagoya, Japan.
| | | | | | | |
Collapse
|
85
|
Haruyama N, Sreenath TL, Suzuki S, Yao X, Wang Z, Wang Y, Honeycutt C, Iozzo RV, Young MF, Kulkarni AB. Genetic evidence for key roles of decorin and biglycan in dentin mineralization. Matrix Biol 2009; 28:129-36. [PMID: 19379665 DOI: 10.1016/j.matbio.2009.01.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2008] [Revised: 12/25/2008] [Accepted: 01/23/2009] [Indexed: 10/21/2022]
Abstract
Targeted disruption of the dentin sialophosphoprotein (DSPP) gene in the mice (Dspp(-/-)) results in dentin mineralization defects with enlarged predentin phenotype similar to human dentinogenesis imperfecta type III. Using DSPP/biglycan (Dspp(-/-)Bgn(-/0)) and DSPP/decorin (Dspp(-/-)Dcn(-/-)) double knockout mice, here we determined that the enlarged predentin layer in Dspp(-/-) teeth is rescued in the absence of decorin, but not in the absence of biglycan. However, Fourier transform infrared (FTIR) spectroscopy analysis reveals similar hypomineralization of dentin in both Dspp(-/-)Bgn(-/0) and Dspp(-/-)Dcn(-/-) teeth. Atomic force microscopy (AFM) analysis of collagen fibrils in dentin shows subtle differences in the collagen fibril morphology in these genotypes. The reduction of enlarged predentin in Dspp(-/-)Dcn(-/-) mice suggests that the elevated level of decorin in Dspp(-/-) predentin interferes with the mineralization process at the dentin mineralization front. On the other hand, the lack of DSPP and biglycan leads to the increased number of calcospherites in Dspp(-/-)Bgn(-/0) predentin, suggesting that a failure in coalescence of calcospherites was augmented in Dspp(-/-)Bgn(-/0) teeth as compared to Dspp(-/-) teeth. These findings indicate that normal expression of small leucine rich proteoglycans, such as biglycan and decorin, plays an important role in the highly orchestrated process of dentin mineralization.
Collapse
Affiliation(s)
- Naoto Haruyama
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abukawa H, Zhang W, Young CS, Asrican R, Vacanti JP, Kaban LB, Troulis MJ, Yelick PC. Reconstructing mandibular defects using autologous tissue-engineered tooth and bone constructs. J Oral Maxillofac Surg 2009; 67:335-47. [PMID: 19138608 DOI: 10.1016/j.joms.2008.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2008] [Accepted: 09/05/2008] [Indexed: 11/29/2022]
Abstract
PURPOSE Current strategies for jaw reconstruction require multiple operations to replace bone and teeth. To improve on these methods, we investigated simultaneous mandibular and tooth reconstruction, using a Yucatan minipig model. MATERIALS AND METHODS Tooth and bone constructs were prepared from third molar tooth tissue and iliac-crest bone marrow-derived osteoblasts isolated from, and implanted back into, the same pig as an autologous reconstruction. Implants were harvested after 12 and 20 weeks and evaluated by x-ray, ultrahigh-resolution volume computed tomographic (VCT), histological, and immunohistochemical analyses. RESULTS Small tooth structures were identified, and consisted of organized dentin, enamel, pulp, and periodontal ligament tissues, surrounded by new bone. No dental tissues formed in implants without tooth-bud cells, and bone regeneration was observed to a limited extent. Immunohistochemical analyses using tooth-specific and bone-specific antibodies confirmed the identity of regenerated tissues. CONCLUSIONS This pilot study supports the feasibility of tissue-engineering approaches for coordinated autologous tooth and mandible reconstruction, and provides a basis for future improvement of this technique for eventual clinical use in humans.
Collapse
Affiliation(s)
- Harutsugi Abukawa
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard School of Dental Medicine, Boston, MA, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
|
88
|
Verdelis K, Ling Y, Sreenath T, Haruyama N, MacDougall M, van der Meulen MCH, Lukashova L, Spevak L, Kulkarni AB, Boskey AL. DSPP effects on in vivo bone mineralization. Bone 2008; 43:983-90. [PMID: 18789408 PMCID: PMC2621360 DOI: 10.1016/j.bone.2008.08.110] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2007] [Revised: 07/11/2008] [Accepted: 08/04/2008] [Indexed: 11/27/2022]
Abstract
Dentin sialophosphoprotein has been implicated in the mineralization process based on the defective dentin formation in Dspp null mice (Dspp-/-). Dspp is expressed at low levels in bone and Dspp-/- femurs assessed by quantitative micro-computed tomography (micro-CT) and Fourier transform infrared spectroscopic imaging (FTIRI) exhibit some mineral and matrix property differences from wildtype femurs in both developing and mature mice. Compared to wildtype, Dspp-/- mice initially (5 weeks) and at 7 months had significantly higher trabecular bone volume fractions and lower trabecular separation, while at 9 months, bone volume fraction and trabecular number were lower. Cortical bone mineral density, area, and moments of inertia in Dspp-/- were reduced at 9 months. By FTIRI, Dspp-/- animals initially (5 months) contained more stoichiometric bone apatite with higher crystallinity (crystal size/perfection) and lower carbonate substitution. This difference progressively reversed with age (significantly decreased crystallinity and increased acid phosphate content in Dspp-/- cortical bone by 9 months of age). Mineral density as determined in 3D micro-CT and mineral-to-matrix ratios as determined by 2D FTIRI in individual cortical and trabecular bones were correlated (r(2)=0.6, p<0.04). From the matrix analysis, the collagen maturity of both cortical and trabecular bones was greater in Dspp-/- than controls at 5 weeks; by 9 months this difference in cross-linking pattern did not exist. Variations in mineral and matrix properties observed at different ages are attributable, in part, to the ability of the Dspp gene products to regulate both initial mineralization and remodeling, implying an effect of Dspp on bone turnover.
Collapse
Affiliation(s)
- Kostas Verdelis
- Mineralized Tissue Laboratory, Musculoskeletal Integrity Program, Hospital for Special Surgery, New York, NY 10021, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
George A, Veis A. Phosphorylated proteins and control over apatite nucleation, crystal growth, and inhibition. Chem Rev 2008; 108:4670-93. [PMID: 18831570 PMCID: PMC2748976 DOI: 10.1021/cr0782729] [Citation(s) in RCA: 502] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Anne George
- Department of Oral Biology, Brodie Tooth Development Genetics and Regenerative Medicine Research Laboratory, University of Illinois at Chicago, Chicago, Illinois 60612, USA.
| | | |
Collapse
|
90
|
Suzuki H, Amizuka N, Oda K, Noda M, Ohshima H, Maeda T. Involvement of the klotho protein in dentin formation and mineralization. Anat Rec (Hoboken) 2008; 291:183-90. [PMID: 18085632 DOI: 10.1002/ar.20630] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Klotho-deficient mice exhibit multiple pathological conditions resembling human aging. Our previous study showed alterations in the distribution of osteocytes and in the bone matrix synthesis in klotho-deficient mice. Although the bone and tooth share morphological features such as mineralization processes and components of the extracellular matrix, little information is available on how klotho deletion influences tooth formation. The present study aimed to elucidate the altered histology of incisors of klotho-deficient mice-comparing the findings with those from their wild-type littermates, by using immunohistochemistry for alkaline phosphatase (ALP), osteopontin, and dentin matrix protein-1 (DMP-1), terminal deoxynucleotidyl transferase-mediated deoxyuridinetriphosphate nick end-labeling (TUNEL) detection for apoptosis, and electron probe microanalyzer (EPMA) analysis on calcium (Ca), phosphate (P), and magnesium (Mg). Klotho-deficient incisors exhibited disturbed layers of odontoblasts, predentin, and dentin, resulting in an obscure dentin-predentinal border at the labial region. Several odontoblast-like cells without ALP activity were embedded in the labial dentin matrix, and immunopositivity for DMP-1 and osteopontin was discernible in the matrix surrounding these embedded odontoblast-like cells. TUNEL detection demonstrated an apoptotic reaction in the embedded odontoblast-like cells and pulpal cells in the klotho-deficient mice. EPMA revealed lower concentrations of Ca, P, and Mg in the klotho-deficient dentin, except for the dentin around abnormal odontoblast-like cells. These findings suggest the involvement of the klotho gene in dentinogenesis and its mineralization.
Collapse
Affiliation(s)
- Hironobu Suzuki
- Divisions of Anatomy and Cell Biology of the Hard Tissue, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan.
| | | | | | | | | | | |
Collapse
|
91
|
Bellahcène A, Castronovo V, Ogbureke KUE, Fisher LW, Fedarko NS. Small integrin-binding ligand N-linked glycoproteins (SIBLINGs): multifunctional proteins in cancer. Nat Rev Cancer 2008; 8:212-26. [PMID: 18292776 PMCID: PMC2484121 DOI: 10.1038/nrc2345] [Citation(s) in RCA: 333] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Numerous components and pathways are involved in the complex interplay between cancer cells and their environment. The family of glycophosphoproteins comprising osteopontin, bone sialoprotein, dentin matrix protein 1, dentin sialophosphoprotein and matrix extracellular phosphoglycoprotein - small integrin-binding ligand N-linked glycoproteins (SIBLINGs) - are emerging as important players in many stages of cancer progression. From their detection in various human cancers to the demonstration of their key functional roles during malignant transformation, invasion and metastasis, the SIBLINGs are proteins with potential as diagnostic and prognostic tools, as well as new therapeutic targets.
Collapse
Affiliation(s)
- Akeila Bellahcène
- Metastasis Research Laboratory, University of Liege, Tour de Pathologie, -1, Bât. B23, Sart Tilman via 4000 Liège, Belgium
| | | | | | | | | |
Collapse
|
92
|
Butler WT. Macromolecules of extracellular matrix: determination of selective structures and their functional significance. Connect Tissue Res 2008; 49:383-90. [PMID: 19085238 DOI: 10.1080/03008200802471864] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this brief review, I recount events and scientific endeavors in which I have been privileged to participate. The descriptive information includes discovery and characterization of hydroxylysine glycosides from collagen, isolation of dentin sialoprotein (DSP), investigations on dentin phosphoprotein (DPP), and the discovery of a single gene for both DSP and DPP that requires posttranslational proteolytic cleavage of the parent DSPP molecule to generate the two fragments. Finally, I address our unexpected finding of fragments of DMP1 in bone extracts. These fragments are from the NH2-terminal (37 kDa) and COOH-terminal (57 kDa) regions of DMP1. Our studies showed that, similar to DSPP, DMP1 is proteolytically processed by cleavages at X-Asp bonds.
Collapse
Affiliation(s)
- William T Butler
- Dental Branch, University of Texas Health Science Center, Houston, Texas, USA.
| |
Collapse
|
93
|
Yang X, Walboomers XF, van den Dolder J, Yang F, Bian Z, Fan M, Jansen JA. Non-Viral Bone Morphogenetic Protein 2 Transfection of Rat Dental Pulp Stem Cells Using Calcium Phosphate Nanoparticles as Carriers. Tissue Eng Part A 2008; 14:71-81. [DOI: 10.1089/ten.a.2007.0102] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Xuechao Yang
- Radboud University Nijmegen Medical Centre, Department of Periodontology and Biomaterials, Nijmegen, The Netherlands
- Key Lab for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei Province, People's Republic of China
| | - X. Frank Walboomers
- Radboud University Nijmegen Medical Centre, Department of Periodontology and Biomaterials, Nijmegen, The Netherlands
| | - Juliette van den Dolder
- Radboud University Nijmegen Medical Centre, Department of Periodontology and Biomaterials, Nijmegen, The Netherlands
| | - Fang Yang
- Radboud University Nijmegen Medical Centre, Department of Periodontology and Biomaterials, Nijmegen, The Netherlands
| | - Zhuan Bian
- Key Lab for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei Province, People's Republic of China
| | - Mingwen Fan
- Key Lab for Oral Biomedical Engineering of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Hubei Province, People's Republic of China
| | - John A. Jansen
- Radboud University Nijmegen Medical Centre, Department of Periodontology and Biomaterials, Nijmegen, The Netherlands
| |
Collapse
|
94
|
Yang X, van der Kraan PM, van den Dolder J, Walboomers XF, Bian Z, Fan M, Jansen JA. STRO-1 Selected Rat Dental Pulp Stem Cells Transfected with Adenoviral-Mediated Human Bone Morphogenetic Protein 2 Gene Show Enhanced Odontogenic Differentiation. ACTA ACUST UNITED AC 2007; 13:2803-12. [PMID: 17824831 DOI: 10.1089/ten.2006.0439] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Dental pulp stem cells harbor great potential for tissue-engineering purposes. However, previous studies have shown variable results, and some have reported only limited osteogenic and odontogenic potential.Because bone morphogenetic proteins (BMPs) are well-established agents to induce bone and dentin formation,in this study STRO-1-selected rat dental pulp-derived stem cells were transfected with the adenoviral mediated human BMP-2 gene. Subsequently, the cells were evaluated for their odontogenic differentiation ability in medium not containing dexamethasone or other stimuli. Cultures were investigated using light microscopy and scanning electron microscopy (SEM) and evaluated for cell proliferation, alkaline phosphatase(ALP) activity, and calcium content. Real-time polymerase chain reaction (PCR) was performed for gene expression of Alp, osteocalcin, collagen type I, bone sialoprotein, dentin sialophosphoprotein, and dentin matrix acidic phosphoprotein 1. Finally, an oligo-microarray was used to profile the expression of odontogenesis-related genes. Results of ALP activity, calcium content, and real-time PCR showed that only BMP2-transfected cells had the ability to differentiate into the odontoblast phenotype and to produce a calcified extracellular matrix. SEM and oligo-microarray confirmed these results. In contrast, the non-transfected cells represented a less differentiated cell phenotype. Based on our results, we concluded that the adenovirus can transfect STRO-1 selected cells with high efficacy. After BMP2 gene transfection, these cells had the ability to differentiate into odontoblast phenotype, even without the addition of odontogenic supplements to the medium.
Collapse
Affiliation(s)
- Xuechao Yang
- Department of Periodontology and Biomaterials, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
95
|
Cross KJ, Huq NL, O’Brien-Simpson NM, Perich JW, Attard TJ, Reynolds EC. The Role of Multiphosphorylated Peptides in Mineralized Tissue Regeneration. Int J Pept Res Ther 2007. [DOI: 10.1007/s10989-007-9105-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
96
|
Yamashiro T, Zheng L, Shitaku Y, Saito M, Tsubakimoto T, Takada K, Takano-Yamamoto T, Thesleff I. Wnt10a regulates dentin sialophosphoprotein mRNA expression and possibly links odontoblast differentiation and tooth morphogenesis. Differentiation 2007; 75:452-62. [PMID: 17286598 DOI: 10.1111/j.1432-0436.2006.00150.x] [Citation(s) in RCA: 118] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We have explored the role of Wnt signaling in dentinogenesis of mouse molar teeth. We found that Wnt10a was specifically associated with the differentiation of odontoblasts and that it showed striking colocalization with dentin sialophosphoprotein (Dspp) expression in secretory odontoblasts. Dspp is a tooth specific non-collagenous matrix protein and regulates dentin mineralization. Transient overexpression of Wnt10 in C3H10T1/2, a pluripotent fibroblast cell line induced Dspp mRNA. Interestingly, this induction occurred only when transfected cells were cultured on Matrigel basement membrane extracts. These findings indicated that Wnt10a is an upstream regulatory molecule for Dspp expression, and that cell-matrix interaction is essential for induction of Dspp expression. Furthermore, Wnt10a was specifically expressed in the epithelial signaling centers regulating tooth development, the primary and secondary enamel knots. The spatial and temporal distribution of Wnt10a mRNA demonstrated that the expression shifts from the secondary enamel knots, to the underlying preodontoblasts in the tips of future cusps. The expression patterns and overexpression studies together indicate that Wnt10a is a key molecule for dentinogenesis and that it is associated with the cell-matrix interactions regulating odontoblast differentiation. We conclude that Wnt10a may link the differentiation of odontoblasts and cusp morphogenesis.
Collapse
Affiliation(s)
- Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Osaka University, 1-8 Yamadaoka, Suita Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
97
|
Alvares K, Kanwar YS, Veis A. Expression and potential role of dentin phosphophoryn (DPP) in mouse embryonic tissues involved in epithelial-mesenchymal interactions and branching morphogenesis. Dev Dyn 2007; 235:2980-90. [PMID: 16937369 DOI: 10.1002/dvdy.20935] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Dentin sialophosphoprotein (DSPP) is synthesized in both mesenchyme and epithelium at varying stages of tooth development. At the tooth cap stage, corresponding to embryonic day (E) 13.5 of mouse embryonic life, the phosphophoryn (DPP) portion of DSPP was immunohistochemically localized to the enamel organ with intense staining of oral ectoderm but no expression in dental follicle mesenchyme. Surprisingly, DPP was also expressed in ureteric bud branches of embryonic metanephric kidney and alveolar epithelial buds of developing lung. Reverse transcriptase-polymerase chain reaction analysis verified the presence of DSPP mRNA with identical sequences in the tooth, lung, and kidney. The DSPP(-/-) mouse with ablated DPP expression in the teeth, also exhibited aberrant organogenesis in kidney and lung. In the kidney, malformed metanephric S-shaped bodies and increased mesenchymal apoptosis were observed. Inclusion of anti-DPP antibodies in organ culture of metanephroi, harvested from E13.5 wild-type mice, likewise resulted in altered ureteric bud morphogenesis, suggesting a role for DPP in epithelial-mesenchymal interactions in meristic tissues during embryonic development.
Collapse
Affiliation(s)
- Keith Alvares
- Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | | |
Collapse
|
98
|
Mei YF, Yamaza T, Atsuta I, Danjo A, Yamashita Y, Kido MA, Goto M, Akamine A, Tanaka T. Sequential expression of endothelial nitric oxide synthase, inducible nitric oxide synthase, and nitrotyrosine in odontoblasts and pulp cells during dentin repair after tooth preparation in rat molars. Cell Tissue Res 2007; 328:117-27. [PMID: 17216200 DOI: 10.1007/s00441-005-0003-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2005] [Accepted: 05/03/2005] [Indexed: 01/09/2023]
Abstract
Nitric oxide (NO) stimulates osteoblast differentiation, but whether NO contributes to odontoblast differentiation during dentin repair is unknown. By using reverse transcription/polymerase chain reaction and immunostaining, we investigated the gene expression and/or immunolocalization of endothelial NO synthase (eNOS), inducible NOS (iNOS), and nitrotyrosine (a biomarker for NO-derived peroxinitrite), and alkaline phosphatase (ALP) and osteocalcin (early and terminal differentiation markers of odontoblasts, respectively) in dental pulp tissue after rat tooth preparation. At the early stage (1-3 days) post-preparation, markedly increased expression of iNOS and nitrotyrosine was found in odontoblasts and pulp cells beneath the cavity, whereas eNOS expression was significantly decreased. ALP mRNA expression was significantly increased after 1 day but decreased after 3 days, whereas ALP activity was weak in the dentin-pulp interface under the cavity after 1 day but strong after 3 days. Osteocalcin mRNA expression was significantly increased at this stage. At 7 days post-preparation, tertiary dentin was formed under the cavity. All the molecules studied were expressed at control levels in odontoblasts/pulp cells beneath the cavity. These findings show that abundant NO is released from odontoblasts and pulp cells at an early stage after tooth preparation and indicate that, after tooth preparation, the up-regulation of iNOS and nitrotyrosine in odontoblasts is synchronized with increased cellular expression of ALP and osteocalcin. Therefore, the NO synthesized by iNOS after tooth preparation probably participates in regulating odontoblast differentiation during tertiary dentinogenesis.
Collapse
Affiliation(s)
- Yu Feng Mei
- Department of Oral Anatomy and Cell Biology, Kyushu University Graduate School of Dental Science, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Yang X, van den Dolder J, Walboomers XF, Zhang W, Bian Z, Fan M, Jansen JA. The odontogenic potential of STRO-1 sorted rat dental pulp stem cellsin vitro. J Tissue Eng Regen Med 2007; 1:66-73. [DOI: 10.1002/term.16] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
100
|
Lu Y, Ye L, Yu S, Zhang S, Xie Y, McKee MD, Li Y, Kong J, Eick D, Dallas SL, Feng JQ. Rescue of odontogenesis in Dmp1-deficient mice by targeted re-expression of DMP1 reveals roles for DMP1 in early odontogenesis and dentin apposition in vivo. Dev Biol 2006; 303:191-201. [PMID: 17196192 PMCID: PMC2059935 DOI: 10.1016/j.ydbio.2006.11.001] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 10/15/2006] [Accepted: 11/02/2006] [Indexed: 11/22/2022]
Abstract
Dentin matrix protein 1 (DMP1) is expressed in both pulp and odontoblast cells and deletion of the Dmp1 gene leads to defects in odontogenesis and mineralization. The goals of this study were to examine how DMP1 controls dentin mineralization and odontogenesis in vivo. Fluorochrome labeling of dentin in Dmp1-null mice showed a diffuse labeling pattern with a 3-fold reduction in dentin appositional rate compared to controls. Deletion of DMP1 was also associated with abnormalities in the dentinal tubule system and delayed formation of the third molar. Unlike the mineralization defect in Vitamin D receptor-null mice, the mineralization defect in Dmp1-null mice was not rescued by a high calcium and phosphate diet, suggesting a different effect of DMP1 on mineralization. Re-expression of Dmp1 in early and late odontoblasts under control of the Col1a1 promoter rescued the defects in mineralization as well as the defects in the dentinal tubules and third molar development. In contrast, re-expression of Dmp1 in mature odontoblasts, using the Dspp promoter, produced only a partial rescue of the mineralization defects. These data suggest that DMP1 is a key regulator of odontoblast differentiation, formation of the dentin tubular system and mineralization and its expression is required in both early and late odontoblasts for normal odontogenesis to proceed.
Collapse
Affiliation(s)
- Yongbo Lu
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ling Ye
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shibin Yu
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shubin Zhang
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Yixia Xie
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Marc D. McKee
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada
| | - Yanchun Li
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - Juan Kong
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA
| | - David Eick
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Sarah L. Dallas
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Jian Q. Feng
- Department of Oral Biology, School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
- *Correspondent, Jian Q. Feng M.D., Ph.D., Department of Oral Biology, University of Missouri-Kansas City, 650 E. 25 ST, Kansas City, MO 64108, Phone: 816-235-5824, Fax: 816-235-5524,
| |
Collapse
|