51
|
Yoshida S, Pacitto R, Inoki K, Swanson J. Macropinocytosis, mTORC1 and cellular growth control. Cell Mol Life Sci 2018; 75:1227-1239. [PMID: 29119228 PMCID: PMC5843684 DOI: 10.1007/s00018-017-2710-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/31/2017] [Accepted: 11/03/2017] [Indexed: 12/15/2022]
Abstract
The growth and proliferation of metazoan cells are driven by cellular nutrient status and by extracellular growth factors. Growth factor receptors on cell surfaces initiate biochemical signals that increase anabolic metabolism and macropinocytosis, an actin-dependent endocytic process in which relatively large volumes of extracellular solutes and nutrients are internalized and delivered efficiently into lysosomes. Macropinocytosis is prominent in many kinds of cancer cells, and supports the growth of cells transformed by oncogenic K-Ras. Growth factor receptor signaling and the overall metabolic status of the cell are coordinated in the cytoplasm by the mechanistic target-of-rapamycin complex-1 (mTORC1), which positively regulates protein synthesis and negatively regulates molecular salvage pathways such as autophagy. mTORC1 is activated by two distinct Ras-related small GTPases, Rag and Rheb, which associate with lysosomal membranes inside the cell. Rag recruits mTORC1 to the lysosomal surface where Rheb directly binds to and activates mTORC1. Rag is activated by both lysosomal luminal and cytosolic amino acids; Rheb activation requires phosphoinositide 3-kinase, Akt, and the tuberous sclerosis complex-1/2. Signals for activation of Rag and Rheb converge at the lysosomal membrane, and several lines of evidence support the idea that growth factor-dependent endocytosis facilitates amino acid transfer into the lysosome leading to the activation of Rag. This review summarizes evidence that growth factor-stimulated macropinocytosis is essential for amino acid-dependent activation of mTORC1, and that increased solute accumulation by macropinocytosis in transformed cells supports unchecked cell growth.
Collapse
Affiliation(s)
- Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-5620, USA
| | - Regina Pacitto
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-5620, USA
| | - Ken Inoki
- Department of Integrative and Molecular Physiology and Internal Medicine, Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Joel Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, 48109-5620, USA.
| |
Collapse
|
52
|
TUFT1 interacts with RABGAP1 and regulates mTORC1 signaling. Cell Discov 2018; 4:1. [PMID: 29423269 PMCID: PMC5798889 DOI: 10.1038/s41421-017-0001-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/30/2017] [Accepted: 11/07/2017] [Indexed: 12/14/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) pathway is commonly activated in human cancers. The activity of mTOR complex 1 (mTORC1) signaling is supported by the intracellular positioning of cellular compartments and vesicle trafficking, regulated by Rab GTPases. Here we showed that tuftelin 1 (TUFT1) was involved in the activation of mTORC1 through modulating the Rab GTPase-regulated process. TUFT1 promoted tumor growth and metastasis. Consistently, the expression of TUFT1 correlated with poor prognosis in lung, breast and gastric cancers. Mechanistically, TUFT1 physically interacted with RABGAP1, thereby modulating intracellular lysosomal positioning and vesicular trafficking, and promoted mTORC1 signaling. In addition, expression of TUFT1 predicted sensitivity to perifosine, an alkylphospholipid that alters the composition of lipid rafts. Perifosine treatment altered the positioning and trafficking of cellular compartments to inhibit mTORC1. Our observations indicate that TUFT1 is a key regulator of the mTORC1 pathway and suggest that it is a promising therapeutic target or a biomarker for tumor progression.
Collapse
|
53
|
Nguyen TP, Frank AR, Jewell JL. Amino acid and small GTPase regulation of mTORC1. CELLULAR LOGISTICS 2017; 7:e1378794. [PMID: 29296509 PMCID: PMC5739091 DOI: 10.1080/21592799.2017.1378794] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/03/2022]
Abstract
The mammalian target of rapamycin (mTOR) is an evolutionarily conserved serine/threonine kinase that belongs to the phosphatidylinositol 3-kinase-related kinase (PIKK) family. mTOR is the catalytic subunit of mTOR complex 1 (mTORC1), which integrates multiple environmental signals to control cell growth and metabolism. Nutrients, specifically amino acids, are the most potent stimuli for mTORC1 activation. Multiple studies have focused on how leucine and arginine activate mTORC1 through the Rag GTPases, with mechanistic details slowly emerging. Recently, a Rag GTPase-independent glutamine signaling pathway to mTORC1 has been identified, suggesting that mTORC1 is differentially regulated through distinct pathways by specific amino acids. In this review, we summarize our current understanding of how amino acids modulate mTORC1, and the role of other small GTPases in the regulation of mTORC1 activity.
Collapse
Affiliation(s)
- Thu P Nguyen
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Anderson R Frank
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX USA.,Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
54
|
Shibutani S, Okazaki H, Iwata H. Dynamin-dependent amino acid endocytosis activates mechanistic target of rapamycin complex 1 (mTORC1). J Biol Chem 2017; 292:18052-18061. [PMID: 28808055 DOI: 10.1074/jbc.m117.776443] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 08/03/2017] [Indexed: 11/06/2022] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of protein synthesis and potential target for modifying cellular metabolism in various conditions, including cancer and aging. mTORC1 activity is tightly regulated by the availability of extracellular amino acids, and previous studies have revealed that amino acids in the extracellular fluid are transported to the lysosomal lumen. There, amino acids induce recruitment of cytoplasmic mTORC1 to the lysosome by the Rag GTPases, followed by mTORC1 activation by the small GTPase Ras homolog enriched in brain (Rheb). However, how the extracellular amino acids reach the lysosomal lumen and activate mTORC1 remains unclear. Here, we show that amino acid uptake by dynamin-dependent endocytosis plays a critical role in mTORC1 activation. We found that mTORC1 is inactivated when endocytosis is inhibited by overexpression of a dominant-negative form of dynamin 2 or by pharmacological inhibition of dynamin or clathrin. Consistently, the recruitment of mTORC1 to the lysosome was suppressed by the dynamin inhibition. The activity and lysosomal recruitment of mTORC1 were rescued by increasing intracellular amino acids via cycloheximide exposure or by Rag overexpression, indicating that amino acid deprivation is the main cause of mTORC1 inactivation via the dynamin inhibition. We further show that endocytosis inhibition does not induce autophagy even though mTORC1 inactivation is known to strongly induce autophagy. These findings open new perspectives for the use of endocytosis inhibitors as potential agents that can effectively inhibit nutrient utilization and shut down the upstream signals that activate mTORC1.
Collapse
Affiliation(s)
- Shusaku Shibutani
- From the Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hana Okazaki
- From the Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| | - Hiroyuki Iwata
- From the Laboratory of Veterinary Hygiene, Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1 Yoshida, Yamaguchi 753-8515, Japan
| |
Collapse
|
55
|
Chichger H, Braza J, Duong H, Boni G, Harrington EO. Select Rab GTPases Regulate the Pulmonary Endothelium via Endosomal Trafficking of Vascular Endothelial-Cadherin. Am J Respir Cell Mol Biol 2017; 54:769-81. [PMID: 26551054 DOI: 10.1165/rcmb.2015-0286oc] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Pulmonary edema occurs in settings of acute lung injury, in diseases, such as pneumonia, and in acute respiratory distress syndrome. The lung interendothelial junctions are maintained in part by vascular endothelial (VE)-cadherin, an adherens junction protein, and its surface expression is regulated by endocytic trafficking. The Rab family of small GTPases are regulators of endocytic trafficking. The key trafficking pathways are regulated by Rab4, -7, and -9. Rab4 regulates the recycling of endosomes to the cell surface through a rapid-shuttle process, whereas Rab7 and -9 regulate trafficking to the late endosome/lysosome for degradation or from the trans-Golgi network to the late endosome, respectively. We recently demonstrated a role for the endosomal adaptor protein, p18, in regulation of the pulmonary endothelium through enhanced recycling of VE-cadherin to adherens junction. Thus, we hypothesized that Rab4, -7, and -9 regulate pulmonary endothelial barrier function through modulating trafficking of VE-cadherin-positive endosomes. We used Rab mutants with varying activities and associations to the endosome to study endothelial barrier function in vitro and in vivo. Our study demonstrates a key role for Rab4 activation and Rab9 inhibition in regulation of vascular permeability through enhanced VE-cadherin expression at the interendothelial junction. We further showed that endothelial barrier function mediated through Rab4 is dependent on extracellular signal-regulated kinase phosphorylation and activity. Thus, we demonstrate that Rab4 and -9 regulate VE-cadherin levels at the cell surface to modulate the pulmonary endothelium through extracellular signal-regulated kinase-dependent and -independent pathways, respectively. We propose that regulating select Rab GTPases represents novel therapeutic strategies for patients suffering with acute respiratory distress syndrome.
Collapse
Affiliation(s)
- Havovi Chichger
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Julie Braza
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Huetran Duong
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Geraldine Boni
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| | - Elizabeth O Harrington
- Vascular Research Laboratory, Providence Veterans Affairs Medical Center, Providence, Rhode Island; and Department of Medicine, Alpert Medical School of Brown University, Providence, Rhode Island
| |
Collapse
|
56
|
Kamalesh K, Trivedi D, Toscano S, Sharma S, Kolay S, Raghu P. Phosphatidylinositol 5-phosphate 4-kinase regulates early endosomal dynamics during clathrin-mediated endocytosis. J Cell Sci 2017; 130:2119-2133. [PMID: 28507272 PMCID: PMC5536888 DOI: 10.1242/jcs.202259] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 05/09/2017] [Indexed: 12/19/2022] Open
Abstract
Endocytic turnover is essential for the regulation of the protein composition and function of the plasma membrane, and thus affects the plasma membrane levels of many receptors. In Drosophila melanogaster photoreceptors, photon absorption by the G-protein-coupled receptor (GPCR) rhodopsin 1 (Rh1; also known as NinaE) triggers its endocytosis through clathrin-mediated endocytosis (CME). We find that CME of Rh1 is regulated by phosphatidylinositol 5 phosphate 4-kinase (PIP4K). Flies lacking PIP4K show mislocalization of Rh1 on expanded endomembranes within the cell body. This mislocalization of Rh1 was dependent on the formation of an expanded Rab5-positive compartment. The Rh1-trafficking defect in PIP4K-depleted cells could be suppressed by downregulating Rab5 function or by selectively reconstituting PIP4K in the PI3P-enriched early endosomal compartment of photoreceptors. We also found that loss of PIP4K was associated with increased CME and an enlarged Rab5-positive compartment in cultured Drosophila cells. Collectively, our findings define PIP4K as a novel regulator of early endosomal homeostasis during CME.
Collapse
Affiliation(s)
- Kumari Kamalesh
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India.,Department of Biological Sciences, Tata Institute of Fundamental Research, Dr. Homi Bhabha Road, Colaba, Mumbai 400005, India
| | - Deepti Trivedi
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sarah Toscano
- Inositide Laboratory, Babraham Institute, Cambridge CB22 3AT, UK
| | - Sanjeev Sharma
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| | - Sourav Kolay
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India.,Manipal University, Madhav Nagar, Manipal, Karnataka 576104, India
| | - Padinjat Raghu
- National Centre for Biological Sciences-TIFR, GKVK Campus, Bellary Road, Bangalore 560065, India
| |
Collapse
|
57
|
Up-regulation of the active form of small GTPase Rab13 promotes macroautophagy in vascular endothelial cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:613-624. [DOI: 10.1016/j.bbamcr.2017.01.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/21/2016] [Accepted: 01/06/2017] [Indexed: 12/25/2022]
|
58
|
Yoo SM, Latifkar A, Cerione RA, Antonyak MA. Cool-associated Tyrosine-phosphorylated Protein 1 Is Required for the Anchorage-independent Growth of Cervical Carcinoma Cells by Binding Paxillin and Promoting AKT Activation. J Biol Chem 2017; 292:3947-3957. [PMID: 28100775 DOI: 10.1074/jbc.m116.769190] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/18/2017] [Indexed: 12/12/2022] Open
Abstract
Cool-associated tyrosine-phosphorylated protein 1 (Cat-1) is a signaling scaffold as well as an ADP-ribosylation factor-GTPase-activating protein. Although best known for its role in cell migration, we recently showed that the ability of Cat-1 to bind paxillin, a major constituent of focal complexes, is also essential for the anchorage-independent growth of HeLa cervical carcinoma cells. Here we set out to learn more about the underlying mechanism by which Cat-paxillin interactions mediate this effect. We show that knocking down paxillin expression in HeLa cells promotes their ability to form colonies in soft agar, whereas ectopically expressing paxillin in these cells inhibits this transformed growth phenotype. Although knocking down Cat-1 prevents HeLa cells from forming colonies in soft agar, when paxillin is knocked down together with Cat-1, the cells are again able to undergo anchorage-independent growth. These results suggest that the requirement of Cat-1 for this hallmark of cellular transformation is coupled to its ability to bind paxillin and abrogate its actions as a negative regulator of anchorage-independent growth. We further show that knocking down Cat-1 expression in HeLa cells leads to a reduction in Akt activation, which can be reversed by knocking down paxillin. Moreover, expression of constitutively active forms of Akt1 and Akt2 restores the anchorage-independent growth capability of HeLa cells depleted of Cat-1 expression. Together, these findings highlight a novel mechanism whereby interactions between Cat-1 and its binding partner paxillin are necessary to ensure sufficient Akt activation so that cancer cells are able to grow under anchorage-independent conditions.
Collapse
Affiliation(s)
- Sungsoo M Yoo
- From the Departments of Molecular Medicine, College of Veterinary Medicine and.,the Department of Biochemistry and Molecular Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Arash Latifkar
- From the Departments of Molecular Medicine, College of Veterinary Medicine and.,Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 and
| | - Richard A Cerione
- From the Departments of Molecular Medicine, College of Veterinary Medicine and .,Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853 and
| | - Marc A Antonyak
- From the Departments of Molecular Medicine, College of Veterinary Medicine and
| |
Collapse
|
59
|
Medvedev R, Hildt E, Ploen D. Look who's talking-the crosstalk between oxidative stress and autophagy supports exosomal-dependent release of HCV particles. Cell Biol Toxicol 2016; 33:211-231. [PMID: 27987184 DOI: 10.1007/s10565-016-9376-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 12/04/2016] [Indexed: 12/12/2022]
Abstract
Autophagy is a highly conserved and regulated intracellular lysosomal degradation pathway that is essential for cell survival. Dysregulation has been linked to the development of various human diseases, including neurodegeneration and tumorigenesis, infection, and aging. Besides, many viruses hijack the autophagosomal pathway to support their life cycle. The hepatitis C virus (HCV), a major cause of chronic liver diseases worldwide, has been described to induce autophagy. The autophagosomal pathway can be further activated in response to elevated levels of reactive oxygen species (ROS). HCV impairs the Nrf2/ARE-dependent induction of ROS-detoxifying enzymes by a so far unprecedented mechanism. In line with this, this review aims to discuss the relevance of HCV-dependent elevated ROS levels for the induction of autophagy as a result of the impaired Nrf2 signaling and the described crosstalk between p62 and the Nrf2/Keap1 signaling pathway. Moreover, autophagy is functionally connected to the endocytic pathway as components of the endosomal trafficking are involved in the maturation of autophagosomes. The release of HCV particles is still not fully understood. Recent studies suggest an involvement of exosomes that originate from the endosomal pathway in viral release. In line with this, it is tempting to speculate whether HCV-dependent elevated ROS levels induce autophagy to support exosome-mediated release of viral particles. Based on recent findings, in this review, we will further highlight the impact of HCV-induced autophagy and its interplay with the endosomal pathway as a novel mechanism for the release of HCV particles.
Collapse
Affiliation(s)
- Regina Medvedev
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany
| | - Eberhard Hildt
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.,Deutsches Zentrum für Infektionsforschung (DZIF), Gießen, Marburg, Langen, Germany
| | - Daniela Ploen
- Department of Virology, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Germany.
| |
Collapse
|
60
|
Otero-Moreno D, Peña-Rangel MT, Riesgo-Escovar JR. CRECIMIENTO Y METABOLISMO: LA REGULACIÓN Y LA VÍA DE LA INSULINA DESDE LA MOSCA DE LA FRUTA, Drosophila melanogaster. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2016. [DOI: 10.1016/j.recqb.2016.06.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
61
|
Fan SJ, Snell C, Turley H, Li JL, McCormick R, Perera SMW, Heublein S, Kazi S, Azad A, Wilson C, Harris AL, Goberdhan DCI. PAT4 levels control amino-acid sensitivity of rapamycin-resistant mTORC1 from the Golgi and affect clinical outcome in colorectal cancer. Oncogene 2016; 35:3004-15. [PMID: 26434594 PMCID: PMC4705441 DOI: 10.1038/onc.2015.363] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 08/14/2015] [Accepted: 08/28/2015] [Indexed: 12/26/2022]
Abstract
Tumour cells can use strategies that make them resistant to nutrient deprivation to outcompete their neighbours. A key integrator of the cell's responses to starvation and other stresses is amino-acid-dependent mechanistic target of rapamycin complex 1 (mTORC1). Activation of mTORC1 on late endosomes and lysosomes is facilitated by amino-acid transporters within the solute-linked carrier 36 (SLC36) and SLC38 families. Here, we analyse the functions of SLC36 family member, SLC36A4, otherwise known as proton-assisted amino-acid transporter 4 (PAT4), in colorectal cancer. We show that independent of other major pathological factors, high PAT4 expression is associated with reduced relapse-free survival after colorectal cancer surgery. Consistent with this, PAT4 promotes HCT116 human colorectal cancer cell proliferation in culture and tumour growth in xenograft models. Inducible knockdown in HCT116 cells reveals that PAT4 regulates a form of mTORC1 with two distinct properties: first, it preferentially targets eukaryotic translation initiation factor 4E-binding protein 1 (4E-BP1), and second, it is resistant to rapamycin treatment. Furthermore, in HCT116 cells two non-essential amino acids, glutamine and serine, which are often rapidly metabolised by tumour cells, regulate rapamycin-resistant mTORC1 in a PAT4-dependent manner. Overexpressed PAT4 is also able to promote rapamycin resistance in human embryonic kidney-293 cells. PAT4 is predominantly associated with the Golgi apparatus in a range of cell types, and in situ proximity ligation analysis shows that PAT4 interacts with both mTORC1 and its regulator Rab1A on the Golgi. These findings, together with other studies, suggest that differentially localised intracellular amino-acid transporters contribute to the activation of alternate forms of mTORC1. Furthermore, our data predict that colorectal cancer cells with high PAT4 expression will be more resistant to depletion of serine and glutamine, allowing them to survive and outgrow neighbouring normal and tumorigenic cells, and potentially providing a new route for pharmacological intervention.
Collapse
Affiliation(s)
- S-J Fan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C Snell
- Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - H Turley
- Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - J-L Li
- Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - R McCormick
- Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - S M W Perera
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - S Heublein
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - S Kazi
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - A Azad
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - C Wilson
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| | - A L Harris
- Molecular Oncology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - D C I Goberdhan
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, UK
| |
Collapse
|
62
|
Roustan V, Jain A, Teige M, Ebersberger I, Weckwerth W. An evolutionary perspective of AMPK-TOR signaling in the three domains of life. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3897-907. [PMID: 27270999 DOI: 10.1093/jxb/erw211] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
AMPK and TOR protein kinases are the major control points of energy signaling in eukaryotic cells and organisms. They form the core of a complex regulatory network to co-ordinate metabolic activities in the cytosol with those in the mitochondria and plastids. Despite its relevance, it is still unclear when and how this regulatory pathway was formed during evolution, and to what extent its representations in the major eukaryotic lineages resemble each other. Here we have traced 153 essential proteins forming the human AMPK-TOR pathways across 412 species representing all three domains of life-prokaryotes (bacteria, archaea) and eukaryotes-and reconstructed their evolutionary history. The resulting phylogenetic profiles indicate the presence of primordial core pathways including seven proto-kinases in the last eukaryotic common ancestor. The evolutionary origins of the oldest components of the AMPK pathway, however, extend into the pre-eukaryotic era, and descendants of these ancient proteins can still be found in contemporary prokaryotes. The TOR complex in turn appears as a eukaryotic invention, possibly to aid in retrograde signaling between the mitochondria and the remainder of the cell. Within the eukaryotes, AMPK/TOR showed both a highly conserved core structure and a considerable plasticity. Most notably, KING1, a protein originally assigned as the γ subunit of AMPK in plants, is more closely related to the yeast SDS23 gene family than to the γ subunits in animals or fungi. This suggests its functional difference from a canonical AMPK γ subunit.
Collapse
Affiliation(s)
- Valentin Roustan
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Arpit Jain
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Ingo Ebersberger
- Department of Applied Bioinformatics, Institute for Cell Biology and Neuroscience, Goethe University, Max-von-Laue Str. 13, D-60438 Frankfurt, Germany Senckenberg Biodiversity and Climate Research Centre (BiK-F), Senckenberg Anlage 25, D-60325 Frankfurt, Germany
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria
| |
Collapse
|
63
|
Kowalczyk KM, Petersen J. Fission Yeast SCYL1/2 Homologue Ppk32: A Novel Regulator of TOR Signalling That Governs Survival during Brefeldin A Induced Stress to Protein Trafficking. PLoS Genet 2016; 12:e1006041. [PMID: 27191590 PMCID: PMC4871519 DOI: 10.1371/journal.pgen.1006041] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/19/2016] [Indexed: 12/02/2022] Open
Abstract
Target of Rapamycin (TOR) signalling allows eukaryotic cells to adjust cell growth in response to changes in their nutritional and environmental context. The two distinct TOR complexes (TORC1/2) localise to the cell’s internal membrane compartments; the endoplasmic reticulum (ER), Golgi apparatus and lysosomes/vacuoles. Here, we show that Ppk32, a SCYL family pseudo-kinase, is a novel regulator of TOR signalling. The absence of ppk32 expression confers resistance to TOR inhibition. Ppk32 inhibition of TORC1 is critical for cell survival following Brefeldin A (BFA) induced stress. Treatment of wild type cells with either the TORC1 specific inhibitor rapamycin or the general TOR inhibitor Torin1 confirmed that a reduction in TORC1 activity promoted recovery from BFA induced stress. Phosphorylation of Ppk32 on two residues that are conserved within the SCYL pseudo-kinase family are required for this TOR inhibition. Phosphorylation on these sites controls Ppk32 protein levels and sensitivity to BFA. BFA induced ER stress does not account for the response to BFA that we report here, however BFA is also known to induce Golgi stress and impair traffic to lysosomes. In summary, Ppk32 reduce TOR signalling in response to BFA induced stress to support cell survival. The Target of Rapamycin (TOR) pathway plays a central role coordinating cell growth and cell division in response to the different cellular environments. This is achieved by TOR controlling various metabolic processes, cell growth and cell division, and in part by the localisation of TOR protein complexes to specific internal endomembranes and compartments. Here, we report a novel role for the SCYL family pseudo-kinase, Ppk32 in restraining TOR signalling when cells experience stresses, which specifically affect endomembranes and compartments where TOR complexes are localised. Cells exposed to endomembrane stress (induced by Brefeldin A), displayed increased cell survival when simultaneously treated with the TOR complex 1 (TORC1) inhibitor, rapamycin, presumably because the reduction in TORC1 signalling slows cellular processes to allow cells sufficient time to recover and adapt to this stress. Importantly cancer, neuro-degeneration and neurological diseases are all associated with stress to the endomembrane protein trafficking system. Our findings suggest that therapeutic rapamycin treatment to reduce TOR signalling and block proliferation of cancer cells, which are inherently experiencing such stress, may have the unintended consequence of enhancing cell survival. It is notable, therefore, that our reported mechanisms to reduce Ppk32 protein levels, likely to be conserved in humans, may represent a way to increase TOR signalling and thus increase cell death of cancer types with inherent stress to these internal membrane systems.
Collapse
Affiliation(s)
| | - Janni Petersen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
- Flinders Centre for Innovation in Cancer, School of Medicine, Flinders University, Adelaide, Australia
- South Australia Health and Medical Research Institute, Adelaide, Australia
- * E-mail:
| |
Collapse
|
64
|
Abstract
Dietary restriction (DR), a moderate reduction in food intake, improves health during aging and extends life span across multiple species. Specific nutrients, rather than overall calories, mediate the effects of DR, with protein and specific amino acids (AAs) playing a key role. Modulations of single dietary AAs affect traits including growth, reproduction, physiology, health, and longevity in animals. Epidemiological data in humans also link the quality and quantity of dietary proteins to long-term health. Intricate nutrient-sensing pathways fine tune the metabolic responses to dietary AAs in a highly conserved manner. In turn, these metabolic responses can affect the onset of insulin resistance, obesity, neurodegenerative disease, and other age-related diseases. In this review we discuss how AA requirements are shaped and how ingested AAs regulate a spectrum of homeostatic processes. Finally, we highlight the resulting opportunity to develop nutritional strategies to improve human health during aging.
Collapse
Affiliation(s)
- George A Soultoukis
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; ,
| | - Linda Partridge
- Max Planck Institute for Biology of Ageing, Department of Biological Mechanisms of Ageing, Cologne 50931, Germany; , .,Institute of Healthy Ageing and Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
65
|
Yang XZ, Li XX, Zhang YJ, Rodriguez-Rodriguez L, Xiang MQ, Wang HY, Zheng XFS. Rab1 in cell signaling, cancer and other diseases. Oncogene 2016; 35:5699-5704. [PMID: 27041585 PMCID: PMC5396462 DOI: 10.1038/onc.2016.81] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/23/2016] [Accepted: 02/26/2016] [Indexed: 12/17/2022]
Abstract
The endoplasmic reticulum (ER) and Golgi membrane system have major roles in cell signaling and regulation of the biosynthesis/transport of proteins and lipids in response to environmental cues such as amino acid and cholesterol levels. Rab1 is the founding member of the Rab small GTPase family, which is known to mediate dynamic membrane trafficking between ER and Golgi. Growing evidence indicate that Rab1 proteins have important functions beyond their classical vesicular transport functions, including nutrient sensing and signaling, cell migration and presentation of cell-surface receptors. Moreover, deregulation of RAB1 expression has been linked to a myriad of human diseases such as cancer, cardiomyopathy and Parkinson's disease. Further investigating these new physiological and pathological functions of Rab1 should provide new opportunities for better understanding of the disease processes and may lead to more effective therapeutic interventions.
Collapse
Affiliation(s)
- X-Z Yang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - X-X Li
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Y-J Zhang
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Oncology Department, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - L Rodriguez-Rodriguez
- Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - M-Q Xiang
- Center for Advanced Biotechnology and Medicine, and Department of Pediatrics, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, China
| | - H-Y Wang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - X F S Zheng
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.,Rutgers Cancer Institute of New Jersey, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA.,Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| |
Collapse
|
66
|
Hansen CG, Ng YLD, Lam WLM, Plouffe SW, Guan KL. The Hippo pathway effectors YAP and TAZ promote cell growth by modulating amino acid signaling to mTORC1. Cell Res 2015; 25:1299-313. [PMID: 26611634 DOI: 10.1038/cr.2015.140] [Citation(s) in RCA: 166] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2015] [Revised: 11/09/2015] [Accepted: 11/10/2015] [Indexed: 02/08/2023] Open
Abstract
YAP and TAZ are transcriptional co-activators and function as the major effectors of the Hippo tumor suppressor pathway, which controls cell growth, tissue homeostasis, and organ size. Here we show that YAP/TAZ play an essential role in amino acid-induced mTORC1 activation, particularly under nutrient-limiting conditions. Mechanistically, YAP/TAZ act via the TEAD transcription factors to induce expression of the high-affinity leucine transporter LAT1, which is a heterodimeric complex of SLC7A5 and SLC3A2. Deletion of YAP/TAZ abolishes expression of LAT1 and reduces leucine uptake. Re-expression of SLC7A5 in YAP/TAZ knockout cells restores leucine uptake and mTORC1 activation. Moreover, SLC7A5 knockout cells phenocopies YAP/TAZ knockout cells which exhibit defective mTORC1 activation in response to amino acids. We further demonstrate that YAP/TAZ act through SLC7A5 to provide cells with a competitive growth advantage. Our study provides molecular insight into the mechanism of YAP/TAZ target genes in cell growth regulation.
Collapse
Affiliation(s)
- Carsten Gram Hansen
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yuen Lam Dora Ng
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Wai-Ling Macrina Lam
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
67
|
Yoshida S, Pacitto R, Yao Y, Inoki K, Swanson JA. Growth factor signaling to mTORC1 by amino acid-laden macropinosomes. J Biophys Biochem Cytol 2015; 211:159-72. [PMID: 26438830 PMCID: PMC4602043 DOI: 10.1083/jcb.201504097] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
The rapid activation of the mechanistic target of rapamycin complex-1 (mTORC1) by growth factors is increased by extracellular amino acids through yet-undefined mechanisms of amino acid transfer into endolysosomes. Because the endocytic process of macropinocytosis concentrates extracellular solutes into endolysosomes and is increased in cells stimulated by growth factors or tumor-promoting phorbol esters, we analyzed its role in amino acid-dependent activation of mTORC1. Here, we show that growth factor-dependent activation of mTORC1 by amino acids, but not glucose, requires macropinocytosis. In murine bone marrow-derived macrophages and murine embryonic fibroblasts stimulated with their cognate growth factors or with phorbol myristate acetate, activation of mTORC1 required an Akt-independent vesicular pathway of amino acid delivery into endolysosomes, mediated by the actin cytoskeleton. Macropinocytosis delivered small, fluorescent fluid-phase solutes into endolysosomes sufficiently fast to explain growth factor-mediated signaling by amino acids. Therefore, the amino acid-laden macropinosome is an essential and discrete unit of growth factor receptor signaling to mTORC1.
Collapse
Affiliation(s)
- Sei Yoshida
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Regina Pacitto
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Yao Yao
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Ken Inoki
- Department of Molecular and Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI 48109,Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109
| | - Joel A. Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| |
Collapse
|
68
|
Abstract
Mutant genes that underlie Mendelian forms of amyotrophic lateral sclerosis (ALS) and biochemical investigations of genetic disease models point to potential driver pathophysiological events involving endoplasmic reticulum (ER) stress and autophagy. Several steps in these cell biological processes are known to be controlled physiologically by small ADP-ribosylation factor (ARF) signaling. Here, we investigated the role of ARF guanine nucleotide exchange factors (GEFs), cytohesins, in models of ALS. Genetic or pharmacological inhibition of cytohesins protects motor neurons in vitro from proteotoxic insults and rescues locomotor defects in a Caenorhabditis elegans model of disease. Cytohesins form a complex with mutant superoxide dismutase 1 (SOD1), a known cause of familial ALS, but this is not associated with a change in GEF activity or ARF activation. ER stress evoked by mutant SOD1 expression is alleviated by antagonism of cytohesin activity. In the setting of mutant SOD1 toxicity, inhibition of cytohesin activity enhances autophagic flux and reduces the burden of misfolded SOD1. These observations suggest that targeting cytohesins may have potential benefits for the treatment of ALS.
Collapse
|
69
|
Ploen D, Hildt E. Hepatitis C virus comes for dinner: How the hepatitis C virus interferes with autophagy. World J Gastroenterol 2015; 21:8492-8507. [PMID: 26229393 PMCID: PMC4515832 DOI: 10.3748/wjg.v21.i28.8492] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 05/10/2015] [Accepted: 06/16/2015] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a highly-regulated, conserved cellular process for the degradation of intracellular components in lysosomes to maintain the energetic balance of the cell. It is a pro-survival mechanism that plays an important role during development, differentiation, apoptosis, ageing and innate and adaptive immune response. Besides, autophagy has been described to be involved in the development of various human diseases, e.g., chronic liver diseases and the development of hepatocellular carcinoma. The hepatitis C virus (HCV) is a major cause of chronic liver diseases. It has recently been described that HCV, like other RNA viruses, hijacks the autophagic machinery to improve its replication. However, the mechanisms underlying its activation are conflicting. HCV replication and assembly occurs at the so-called membranous web that consists of lipid droplets and rearranged endoplasmic reticulum-derived membranes including single-, double- and multi-membrane vesicles. The double-membrane vesicles have been identified to contain NS3, NS5A, viral RNA and the autophagosomal marker microtubule-associated protein 1 light chain 3, corroborating the involvement of the autophagic pathway in the HCV life-cycle. In this review, we will highlight the crosstalk of the autophagosomal compartment with different steps of the HCV life-cycle and address its implications on favoring the survival of infected hepatocytes.
Collapse
|
70
|
Chua CEL, Tang BL. Role of Rab GTPases and their interacting proteins in mediating metabolic signalling and regulation. Cell Mol Life Sci 2015; 72:2289-304. [PMID: 25690707 PMCID: PMC11113524 DOI: 10.1007/s00018-015-1862-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 10/24/2022]
Abstract
The vesicular transport pathways, which shuttle materials to and from the cell surface and within the cell, and the metabolic (growth factor and nutrient) signalling pathways, which integrate a variety of extracellular and intracellular signals to mediate growth, proliferation or survival, are both important for cellular physiology. There is evidence to suggest that the transport and metabolic signalling pathways intersect-vesicular transport can affect the regulation of metabolic signals and vice versa. The Rab family GTPases regulate the specificity of vesicular transport steps in the cell. Together with their interacting proteins, Rabs would likely constitute the points of intersection between vesicular transport and metabolic signalling pathways. Examples of these points would include growth factor signalling, glucose and lipid metabolism, as well as autophagy. Many of these processes involve mechanistic/mammalian target of rapamycin (mTOR) complex 1 (mTORC1) in downstream cascades, or are regulated by TORC signalling. A general functionality of the vesicular transport processes controlled by the Rabs is also important for spatial and temporal regulation of the transmission of metabolic signals between the cell surface and the nucleus. In other cases, specific Rabs and their interacting proteins are known to function in recruiting metabolism-related proteins to target membranes, or may compete with other factors in the TORC signalling pathway as a means of metabolic regulation. We review and discuss herein examples of how Rabs and their interacting proteins can mediate metabolic signalling and regulation in cells.
Collapse
Affiliation(s)
- Christelle En Lin Chua
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, 8 Medical Drive, Singapore, 117597, Singapore,
| | | |
Collapse
|
71
|
Jewell JL, Kim YC, Russell RC, Yu FX, Park HW, Plouffe SW, Tagliabracci VS, Guan KL. Metabolism. Differential regulation of mTORC1 by leucine and glutamine. Science 2015; 347:194-8. [PMID: 25567907 PMCID: PMC4384888 DOI: 10.1126/science.1259472] [Citation(s) in RCA: 576] [Impact Index Per Article: 57.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The mechanistic target of rapamycin (mTOR) complex 1 (mTORC1) integrates environmental and intracellular signals to regulate cell growth. Amino acids stimulate mTORC1 activation at the lysosome in a manner thought to be dependent on the Rag small guanosine triphosphatases (GTPases), the Ragulator complex, and the vacuolar H+-adenosine triphosphatase (v-ATPase). We report that leucine and glutamine stimulate mTORC1 by Rag GTPase-dependent and -independent mechanisms, respectively. Glutamine promoted mTORC1 translocation to the lysosome in RagA and RagB knockout cells and required the v-ATPase but not the Ragulator. Furthermore, we identified the adenosine diphosphate ribosylation factor-1 GTPase to be required for mTORC1 activation and lysosomal localization by glutamine. Our results uncover a signaling cascade to mTORC1 activation independent of the Rag GTPases and suggest that mTORC1 is differentially regulated by specific amino acids.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Young Chul Kim
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Ryan C Russell
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Fa-Xing Yu
- Children's Hospital and Institute of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hyun Woo Park
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Steven W Plouffe
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Vincent S Tagliabracci
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kun-Liang Guan
- Department of Pharmacology and Moores Cancer Center, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
72
|
Thomas JD, Zhang YJ, Wei YH, Cho JH, Morris LE, Wang HY, Zheng XFS. Rab1A is an mTORC1 activator and a colorectal oncogene. Cancer Cell 2014; 26:754-69. [PMID: 25446900 PMCID: PMC4288827 DOI: 10.1016/j.ccell.2014.09.008] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 07/16/2014] [Accepted: 09/19/2014] [Indexed: 01/05/2023]
Abstract
Amino acid (AA) is a potent mitogen that controls growth and metabolism. Here we describe the identification of Rab1 as a conserved regulator of AA signaling to mTORC1. AA stimulates Rab1A GTP binding and interaction with mTORC1 and Rheb-mTORC1 interaction in the Golgi. Rab1A overexpression promotes mTORC1 signaling and oncogenic growth in an AA- and mTORC1-dependent manner. Conversely, Rab1A knockdown selectively attenuates oncogenic growth of Rab1-overexpressing cancer cells. Moreover, Rab1A is overexpressed in colorectal cancer (CRC), which is correlated with elevated mTORC1 signaling, tumor invasion, progression, and poor prognosis. Our results demonstrate that Rab1 is an mTORC1 activator and an oncogene and that hyperactive AA signaling through Rab1A overexpression drives oncogenesis and renders cancer cells prone to mTORC1-targeted therapy.
Collapse
Affiliation(s)
- Janice D Thomas
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Yan-Jie Zhang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Department of Gastroenterology, No. 3 People's Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 201900, China
| | - Yue-Hua Wei
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Jun-Hung Cho
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Laura E Morris
- Cellular and Molecular Pharmacology Graduate Program, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA
| | - Hui-Yun Wang
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Sun Yat-Sen University Cancer Center, National Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - X F Steven Zheng
- Rutgers Cancer Institute of New Jersey, Rutgers, The State University of New Jersey, 195 Little Albany Street, New Brunswick, NJ 08903, USA; Department of Pharmacology, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, 675 Hoes Lane, Piscataway, NJ 08854, USA; Sun Yat-Sen University Cancer Center, National Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China.
| |
Collapse
|
73
|
Abstract
A lysosome-based mechanism of amino acid sensing by mTORC1 regulated by Rag GTPases has emerged. In this issue of Cancer Cell, Thomas and colleagues propose a Golgi-based and Rag-independent mechanism mediated by the Rab1A GTPase. Furthermore, Rab1A overexpression in colorectal cancers correlates with mTORC1 activity and sensitivity to mTOR inhibitors.
Collapse
Affiliation(s)
- Joan Sanchez-Gurmaches
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA
| | - David A Guertin
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
74
|
Tan YS, Kim M, Kingsbury TJ, Civin CI, Cheng WC. Regulation of RAB5C is important for the growth inhibitory effects of MiR-509 in human precursor-B acute lymphoblastic leukemia. PLoS One 2014; 9:e111777. [PMID: 25368993 PMCID: PMC4219775 DOI: 10.1371/journal.pone.0111777] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 10/03/2014] [Indexed: 11/25/2022] Open
Abstract
MicroRNAs (miRs) regulate essentially all cellular processes, but few miRs are known to inhibit growth of precursor-B acute lymphoblastic leukemias (B-ALLs). We identified miR-509 via a human genome-wide gain-of-function screen for miRs that inhibit growth of the NALM6 human B-ALL cell line. MiR-509-mediated inhibition of NALM6 growth was confirmed by 3 independent assays. Enforced miR-509 expression inhibited 2 of 2 additional B-ALL cell lines tested, but not 3 non-B-ALL leukemia cell lines. MiR-509-transduced NALM6 cells had reduced numbers of actively proliferating cells and increased numbers of cells undergoing apoptosis. Using miR target prediction algorithms and a filtering strategy, RAB5C was predicted as a potentially relevant target of miR-509. Enforced miR-509 expression in NALM6 cells reduced RAB5C mRNA and protein levels, and RAB5C was demonstrated to be a direct target of miR-509. Knockdown of RAB5C in NALM6 cells recapitulated the growth inhibitory effects of miR-509. Co-expression of the RAB5C open reading frame without its 3' untranslated region (3'UTR) blocked the growth-inhibitory effect mediated by miR-509. These findings establish RAB5C as a target of miR-509 and an important regulator of B-ALL cell growth with potential as a therapeutic target.
Collapse
Affiliation(s)
- Yee Sun Tan
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - MinJung Kim
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Tami J. Kingsbury
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Curt I. Civin
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Wen-Chih Cheng
- Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Pediatrics, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| |
Collapse
|
75
|
Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang WC, Page DT, MacDonald ME, Subramaniam S. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington's disease. Sci Signal 2014; 7:ra103. [DOI: 10.1126/scisignal.2005633] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
76
|
Szatmári Z, Sass M. The autophagic roles of Rab small GTPases and their upstream regulators: a review. Autophagy 2014; 10:1154-66. [PMID: 24915298 DOI: 10.4161/auto.29395] [Citation(s) in RCA: 121] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Macroautophagy is an evolutionarily conserved degradative process of eukaryotic cells. Double-membrane vesicles called autophagosomes sequester portions of cytoplasm and undergo fusion with the endolysosomal pathway in order to degrade their content. There is growing evidence that members of the small GTPase RAB protein family-the well-known regulators of membrane trafficking and fusion events-play key roles in the regulation of the autophagic process. Despite numerous studies focusing on the functions of RAB proteins in autophagy, the importance of their upstream regulators in this process emerged only in the past few years. In this review, we summarize recent advances on the effects of RABs and their upstream modulators in the regulation of autophagy. Moreover, we discuss how impairment of these proteins alters the autophagic process leading to several generally known human diseases.
Collapse
Affiliation(s)
- Zsuzsanna Szatmári
- Department of Anatomy, Cell and Developmental Biology; Eötvös Loránd University; Budapest, Hungary
| | - Miklós Sass
- Department of Anatomy, Cell and Developmental Biology; Eötvös Loránd University; Budapest, Hungary
| |
Collapse
|
77
|
Qin Y, Deng Y, Ricketts C, Srikantan S, Wang E, Maher E, Dahia PL. The tumor susceptibility gene TMEM127 is mutated in renal cell carcinomas and modulates endolysosomal function. Hum Mol Genet 2014; 23:2428-39. [PMID: 24334765 PMCID: PMC3976335 DOI: 10.1093/hmg/ddt638] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Revised: 12/10/2013] [Accepted: 12/10/2013] [Indexed: 11/13/2022] Open
Abstract
TMEM127 is an endosome-associated tumor suppressor gene in pheochromocytomas, neuroendocrine tumors that can co-occur with renal cell carcinomas (RCCs). TMEM127 loss leads to increased mTOR signaling. However, the spectrum of tumors with TMEM127 mutation and how TMEM127 and mTOR interact in tumorigenesis remains unknown. Here, we report that germline TMEM127 mutations occur in RCCs and that some mutant proteins, unlike wild-type (WT) TMEM127, fail to cooperate with activated early endosomal GTPase, Rab5, to inhibit mTOR signaling. Tmem127-null mouse embryonic fibroblasts (MEFs) are deficient in generating early-to-late hybrid endosomes upon constitutive Rab5 activation, a defect rescued by WT, but not mutant, TMEM127. This endosomal dysfunction results in diminished mTOR colocalization with Rab5-positive vesicles. Conversely, active, lysosomal-bound mTOR is increased in Tmem127-null MEFs, which also display enhanced lysosomal biogenesis. Our data map the tumor-suppressive properties of TMEM127 to modulation of mTOR function in the endolysosome, a feature that may contribute to both pheochromocytoma and RCC pathogenesis.
Collapse
Affiliation(s)
| | - Y. Deng
- Department of Medicine
- Department of Cellular & Structural Biology and
| | - C.J. Ricketts
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences and Centre for Rare Diseases and Personalized Medicine, University of Birmingham, Birmingham, UK
| | | | - E. Wang
- Department of Cellular & Structural Biology and
| | - E.R. Maher
- Medical and Molecular Genetics, School of Clinical and Experimental Medicine, College of Medical and Dental Sciences and Centre for Rare Diseases and Personalized Medicine, University of Birmingham, Birmingham, UK
| | - P. L.M. Dahia
- Department of Medicine
- Cancer Therapy and Research Center (CTRC)
- Greehey Children's Cancer Research Institute (GCCRI), University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
78
|
Rahman H, Qasim M, Oellerich M, Asif AR. Identification of the novel interacting partners of the mammalian target of rapamycin complex 1 in human CCRF-CEM and HEK293 cells. Int J Mol Sci 2014; 15:4823-36. [PMID: 24646917 PMCID: PMC3975426 DOI: 10.3390/ijms15034823] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2014] [Revised: 03/05/2014] [Accepted: 03/06/2014] [Indexed: 01/21/2023] Open
Abstract
The present study was undertaken to identify proteins that interact with the mammalian target of rapamycin complex 1 (mTORC1) to enable it to carry out its crucial cell signaling functions. Endogenous and myc-tag mTORC1 was purified, in-gel tryptic digested and then identified by nano-LC ESI Q-TOF MS/MS analysis. A total of nine novel interacting proteins were identified in both endogenous and myc-tag mTORC1 purifications. These new mTORC1 interacting partners include heterogeneous nuclear ribonucleoproteins A2/B1, enhancer of mRNA decapping protein 4, 60S acidic ribosomal protein, P0, nucleolin, dynamin 2, glyceraldehyde 3 phosphate dehydrogenase, 2-oxoglutarate dehydrogenase, glycosyl transferase 25 family member 1 and prohibitin 2. Furthermore hnRNP A2/B1 and dynamin 2 interaction with mTORC1 was confirmed on immunoblotting. The present study has for the first time identified novel interacting partners of mTORC1 in human T lymphoblasts (CCRF-CEM) and human embryonic kidney (HEK293) cells. These new interacting proteins may offer new targets for therapeutic interventions in human diseases caused by perturbed mTORC1 signaling.
Collapse
Affiliation(s)
- Hazir Rahman
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Muhammad Qasim
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Michael Oellerich
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| | - Abdul R Asif
- Institute for Clinical Chemistry/UMG-Laboratories, University Medical Centre, Robert-Koch-Str. 40, Goettingen 37075, Germany.
| |
Collapse
|
79
|
El Osta M, Liu M, Adada M, Senkal CE, Idkowiak-Baldys J, Obeid LM, Clarke CJ, Hannun YA. Sustained PKCβII activity confers oncogenic properties in a phospholipase D- and mTOR-dependent manner. FASEB J 2013; 28:495-505. [PMID: 24121461 DOI: 10.1096/fj.13-230557] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Protein kinase C (PKC) is a family of serine/threonine kinases implicated in a variety of physiological processes. We have shown previously that sustained activation of the classical PKCα and PKCβII induces their phospholipase D (PLD)-dependent internalization and translocation to a subset of the recycling endosomes defined by the presence of PKC and PLD (the pericentrion), which results in significant differences in phosphorylation of PKC substrates. Here, we have investigated the biological consequences of sustained PKC activity and the involvement of PLD in this process. We find that sustained activation of PKC results in activation of the mammalian target of rapamycin (mTOR)/S6 kinase pathway in a PLD- and endocytosis-dependent manner, with both pharmacologic inhibitors and siRNA implicating the PLD2 isoform. Notably, dysregulated overexpression of PKCβII in A549 lung cancer cells was necessary for the enhanced proliferation and migration of these cancer cells. Inhibition of PKCβII with enzastaurin reduced A549 cell proliferation by >60% (48 h) and migration by >50%. These biological effects also required both PLD activity and mTOR function, with both the PLD inhibitor FIPI and rapamycin reducing cell growth by >50%. Reciprocally, forced overexpression of wild-type PKCβII, but not an F666D mutant that cannot interact with PLD, was sufficient to enhance cell growth and increase migration of noncancerous HEK cells; indeed, both properties were almost doubled when compared to vector control and PKC-F666D-overexpressing cells. Notably, this condition was also dependent on both PLD and mTOR activity. In summary, these data define a PKC-driven oncogenic signaling pathway that requires both PLD and mTOR, and suggest that inhibitors of PLD or mTOR would be beneficial in cancers where PKC overexpression is a contributing or driving factor.
Collapse
Affiliation(s)
- Mohamad El Osta
- 2Stony Brook Cancer Center and Department of Medicine, Stony Brook University, 100 Nicolls Rd., Stony Brook, NY 11794, USA.
| | | | | | | | | | | | | | | |
Collapse
|
80
|
Panchaud N, Péli-Gulli MP, De Virgilio C. SEACing the GAP that nEGOCiates TORC1 activation: evolutionary conservation of Rag GTPase regulation. Cell Cycle 2013; 12:2948-52. [PMID: 23974112 PMCID: PMC3875668 DOI: 10.4161/cc.26000] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The target of rapamycin complex 1 (TORC1) regulates eukaryotic cell growth in response to a variety of input signals. In S. cerevisiae, amino acids activate TORC1 through the Rag guanosine triphosphatase (GTPase) heterodimer composed of Gtr1 and Gtr2 found together with Ego1 and Ego3 in the EGO complex (EGOC). The GTPase activity of Gtr1 is regulated by the SEA complex (SEAC). Specifically, SEACIT, a SEAC subcomplex containing Iml1, Npr2, and Npr3 functions as a GTPase activator (GAP) for Gtr1 to decrease the activity of TORC1 and, consequently, growth, after amino acid deprivation. Here, we present genetic epistasis data, which show that SEACAT, the other SEAC subcomplex, containing Seh1, Sea2–4, and Sec13, antagonizes the GAP function of SEACIT. Orthologs of EGOC (Ragulator), SEACIT (GATOR1), and SEACAT (GATOR2) are present in higher eukaryotes, highlighting the remarkable conservation, from yeast to man, of Rag GTPase and TORC1 regulation.
Collapse
Affiliation(s)
- Nicolas Panchaud
- Department of Biology; Division of Biochemistry; University of Fribourg; Fribourg, Switzerland
| | | | | |
Collapse
|
81
|
Jochmanová I, Yang C, Zhuang Z, Pacak K. Hypoxia-inducible factor signaling in pheochromocytoma: turning the rudder in the right direction. J Natl Cancer Inst 2013; 105:1270-83. [PMID: 23940289 DOI: 10.1093/jnci/djt201] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Many solid tumors, including pheochromocytoma (PHEO) and paraganglioma (PGL), are characterized by a (pseudo)hypoxic signature. (Pseudo)hypoxia has been shown to promote both tumor progression and resistance to therapy. The major mediators of the transcriptional hypoxic response are hypoxia-inducible factors (HIFs). High levels of HIFs lead to transcription of hypoxia-responsive genes, which are involved in tumorigenesis. PHEOs and PGLs are catecholamine-producing tumors arising from sympathetic- or parasympathetic-derived chromaffin tissue. In recent years, substantial progress has been made in understanding the metabolic disturbances present in PHEO and PGL, especially because of the identification of some disease-susceptibility genes. To date, fifteen PHEO and PGL susceptibility genes have been identified. Based on the main transcription signatures of the mutated genes, PHEOs and PGLs have been divided into two clusters, pseudohypoxic cluster 1 and cluster 2, rich in kinase receptor signaling and protein translation pathways. Although these two clusters seem to show distinct signaling pathways, recent data suggest that both clusters are interconnected by HIF signaling as the important driver in their tumorigenesis, and mutations in most PHEO and PGL susceptibility genes seem to affect HIF-α regulation and its downstream signaling pathways. HIF signaling appears to play an important role in the development and growth of PHEOs and PGLs, which could suggest new therapeutic approaches for the treatment of these tumors.
Collapse
Affiliation(s)
- Ivana Jochmanová
- Program in Reproductive and Adult Endocrinology, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892-1109, USA
| | | | | | | |
Collapse
|
82
|
Levine TP, Daniels RD, Wong LH, Gatta AT, Gerondopoulos A, Barr FA. Discovery of new Longin and Roadblock domains that form platforms for small GTPases in Ragulator and TRAPP-II. Small GTPases 2013; 4:62-9. [PMID: 23511850 PMCID: PMC3747258 DOI: 10.4161/sgtp.24262] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Guanine nucleotide exchange factors (GEFs) control the site and extent of GTPase activity. Longin domains (LDs) are found in many Rab-GEFs, including DENNs, MON1/CCZ1, BLOC-3 and the TRAPP complex. Other GEFs, including Ragulator, contain roadblock domains (RDs), the structure of which is closely related to LDs. Other GTPase regulators, including mglB, SRX and Rags, use LDs or RDs as platforms for GTPases. Here, we review the conserved relationship between GTPases and LD/RDs, showing how LD/RD dimers act as adaptable platforms for GTPases. To extend our knowledge of GEFs, we used a highly sensitive sequence alignment tool to predict the existence of new LD/RDs. We discovered two yeast Ragulator subunits, and also a new LD in TRAPPC10 that may explain the Rab11-GEF activity ascribed to TRAPP-II.
Collapse
|
83
|
Matsui T, Fukuda M. Rab12 regulates mTORC1 activity and autophagy through controlling the degradation of amino-acid transporter PAT4. EMBO Rep 2013; 14:450-7. [PMID: 23478338 DOI: 10.1038/embor.2013.32] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Revised: 02/16/2013] [Accepted: 02/19/2013] [Indexed: 12/22/2022] Open
Abstract
Autophagy is an evolutionarily conserved catabolic mechanism that targets intracellular molecules and damaged organelles to lysosomes. Autophagy is achieved by a series of membrane trafficking events, but their regulatory mechanisms are poorly understood. Here, we report small GTPase Rab12 as a new type of autophagic regulator that controls the degradation of an amino-acid transporter. Knockdown of Rab12 results in inhibition of autophagy and in increased activity of mTORC1 (mammalian/mechanistic target of rapamycin complex 1), an upstream regulator of autophagy. We also found that Rab12 promotes constitutive degradation of PAT4 (proton-coupled amino-acid transporter 4), whose accumulation in Rab12-knockdown cells modulates mTORC1 activity and autophagy. Our findings reveal a new mechanism of regulation of mTORC1 signalling and autophagy, that is, quality control of PAT4 by Rab12.
Collapse
Affiliation(s)
- Takahide Matsui
- Laboratory of Membrane Trafficking Mechanisms, Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aobayama, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | | |
Collapse
|
84
|
Jewell JL, Guan KL. Nutrient signaling to mTOR and cell growth. Trends Biochem Sci 2013; 38:233-42. [PMID: 23465396 DOI: 10.1016/j.tibs.2013.01.004] [Citation(s) in RCA: 292] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 01/03/2013] [Accepted: 01/08/2013] [Indexed: 12/25/2022]
Abstract
The mammalian target of rapamycin (mTOR) is a conserved protein kinase involved in a multitude of cellular processes including cell growth. Increased mTOR activation is observed in multiple human cancers and inhibition of mTOR has proven efficacious in numerous clinical trials. mTOR comprises two complexes, termed mTORC1 and mTORC2. Both complexes respond to growth factors, whereas only mTORC1 is controlled by nutrients, such as glucose and amino acids. Since the discovery of mTOR, extensive studies have intricately detailed the molecular mechanisms by which mTORC1 is regulated. Somewhat paradoxically, amino acid (AA)-induced mTORC1 activation -arguably the most essential stimulus leading to mTORC1 activation - is the least understood. Here we review the current knowledge of nutrient-dependent regulation of mTORC1.
Collapse
Affiliation(s)
- Jenna L Jewell
- Department of Pharmacology and Moores Cancer Center, University of California at San Diego, La Jolla, CA 92093, USA
| | | |
Collapse
|
85
|
Bento CF, Puri C, Moreau K, Rubinsztein DC. The role of membrane-trafficking small GTPases in the regulation of autophagy. J Cell Sci 2013; 126:1059-69. [DOI: 10.1242/jcs.123075] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Summary
Macroautophagy is a bulk degradation process characterised by the formation of double-membrane vesicles, called autophagosomes, which deliver cytoplasmic substrates for degradation in the lysosome. It has become increasingly clear that autophagy intersects with multiple steps of the endocytic and exocytic pathways, sharing many molecular players. A number of Rab and Arf GTPases that are involved in the regulation of the secretory and the endocytic membrane trafficking pathways, have been shown to play key roles in autophagy, adding a new level of complexity to its regulation. Studying the regulation of autophagy by small GTPases that are known to be involved in membrane trafficking is becoming a scientific hotspot and may provide answers to various crucial questions currently debated in the autophagy field, such as the origins of the autophagosomal membrane. Thus, this Commentary highlights the recent advances on the regulation of autophagy by membrane-trafficking small GTPases (Rab, Arf and RalB GTPases) and discusses their putative roles in the regulation of autophagosome formation, autophagosome-dependent exocytosis and autophagosome-lysosome fusion.
Collapse
Affiliation(s)
- Carla F. Bento
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Claudia Puri
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - Kevin Moreau
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| | - David C. Rubinsztein
- Department of Medical Genetics, Cambridge Institute for Medical Research, University of Cambridge, Hills Road, Cambridge CB2 0XY, UK
| |
Collapse
|
86
|
Abstract
Mammalian target of rapamycin (mTOR) is a conserved Ser/Thr kinase that is part of mTOR complex 1 (mTORC1), a master regulator that couples amino acid availability to cell growth and autophagy. Multiple cues modulate mTORC1 activity, such as growth factors, stress, energy status and amino acids. Although amino acids are key environmental stimuli, exactly how they are sensed and how they activate mTORC1 is not fully understood. Recently, a model has emerged whereby mTORC1 activation occurs at the lysosome and is mediated through an amino acid sensing cascade involving RAG GTPases, Ragulator and vacuolar H(+)-ATPase (v-ATPase).
Collapse
|
87
|
Kim YM, Kim DH. dRAGging amino acid-mTORC1 signaling by SH3BP4. Mol Cells 2013; 35:1-6. [PMID: 23274731 PMCID: PMC3887856 DOI: 10.1007/s10059-013-2249-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Revised: 12/04/2012] [Accepted: 12/04/2012] [Indexed: 10/27/2022] Open
Abstract
Mammalian target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and autophagy. Its activity is regulated by the availability of amino acids and growth factors. The activation of mTORC1 by growth factors, such as insulin and insulin-like growth factor-1 (IGF-1), is mediated by tuberous sclerosis complex (TSC) 1 and 2 and Rheb GTPase. Relative to the growth factor-regulated mTORC1 pathway, the evolutionarily ancient amino acid-mTORC1 pathway remains not yet clearly defined. The amino acid-mTORC1 pathway is mediated by Rag GTPase heterodimers. Several binding proteins of Rag GTPases were discovered in recent studies. Here, we discuss the functions and mechanisms of the newly-identified binders of Rag GTPases. In particular, this review focuses on SH3 binding protein 4 (SH3BP4), the protein recently identifed as a negative regulator of Rag GTPases.
Collapse
Affiliation(s)
- Young-Mi Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455,
USA
| | - Do-Hyung Kim
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455,
USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455,
USA
| |
Collapse
|
88
|
Malik AR, Urbanska M, Macias M, Skalecka A, Jaworski J. Beyond control of protein translation: what we have learned about the non-canonical regulation and function of mammalian target of rapamycin (mTOR). BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:1434-48. [PMID: 23277194 DOI: 10.1016/j.bbapap.2012.12.010] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2012] [Accepted: 12/15/2012] [Indexed: 12/19/2022]
Abstract
Mammalian target of rapamycin (mTOR) is a serine-threonine kinase involved in almost every aspect of mammalian cell function. This kinase was initially believed to control protein translation in response to amino acids and trophic factors, and this function has become a canonical role for mTOR. However, mTOR can form two separate protein complexes (mTORCs). Recent advances clearly demonstrate that both mTORCs can respond to various stimuli and change myriad cellular processes. Therefore, our current view of the cellular roles of TORCs has rapidly expanded and cannot be fully explained without appreciating recent findings about the new modes of mTOR regulation and identification of non-canonical effectors of mTOR that contribute to transcription, cytoskeleton dynamics, and membrane trafficking. This review discusses the molecular details of these newly discovered non-canonical functions that allow mTORCs to control the cellular environment at multiple levels. This article is part of a Special Issue entitled: Inhibitors of Protein Kinases (2012).
Collapse
Affiliation(s)
- Anna R Malik
- Laboratory of Molecular and Cellular Neurobiology, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena St., 02-109 Warsaw, Poland
| | | | | | | | | |
Collapse
|
89
|
Takahashi Y, Young MM, Wang HG. SNAPping off Golgi membranes for autophagosome formation. Cell Cycle 2012; 12:15-6. [PMID: 23255097 PMCID: PMC3570505 DOI: 10.4161/cc.23174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yoshinori Takahashi
- Department of Pharmacology and Penn State Hershey Cancer Institute, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | | | | |
Collapse
|
90
|
Naydenov NG, Harris G, Morales V, Ivanov AI. Loss of a membrane trafficking protein αSNAP induces non-canonical autophagy in human epithelia. Cell Cycle 2012. [PMID: 23187805 DOI: 10.4161/cc.22885] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a catabolic process that sequesters intracellular proteins and organelles within membrane vesicles called autophagosomes with their subsequent delivery to lyzosomes for degradation. This process involves multiple fusions of autophagosomal membranes with different vesicular compartments; however, the role of vesicle fusion in autophagosomal biogenesis remains poorly understood. This study addresses the role of a key vesicle fusion regulator, soluble N-ethylmaleimide-sensitive factor attachment protein α (αSNAP), in autophagy. Small interfering RNA-mediated downregulation of αSNAP expression in cultured epithelial cells stimulated the autophagic flux, which was manifested by increased conjugation of microtubule-associated protein light chain 3 (LC3-II) and accumulation of LC3-positive autophagosomes. This enhanced autophagy developed via a non-canonical mechanism that did not require beclin1-p150-dependent nucleation, but involved Atg5 and Atg7-mediated elongation of autophagosomal membranes. Induction of autophagy in αSNAP-depleted cells was accompanied by decreased mTOR signaling but appeared to be independent of αSNAP-binding partners, N-ethylmaleimide-sensitive factor and BNIP1. Loss of αSNAP caused fragmentation of the Golgi and downregulation of the Golgi-specific GTP exchange factors, GBF1, BIG1 and BIG2. Pharmacological disruption of the Golgi and genetic inhibition of GBF1 recreated the effects of αSNAP depletion on the autophagic flux. Our study revealed a novel role for αSNAP as a negative regulator of autophagy that acts by enhancing mTOR signaling and regulating the integrity of the Golgi complex.
Collapse
Affiliation(s)
- Nayden G Naydenov
- Department of Human and Molecular Genetics, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | | | | | | |
Collapse
|
91
|
Li L, Guan KL. Microtubule-associated protein/microtubule affinity-regulating kinase 4 (MARK4) is a negative regulator of the mammalian target of rapamycin complex 1 (mTORC1). J Biol Chem 2012. [PMID: 23184942 DOI: 10.1074/jbc.c112.396903] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mammalian target of rapamycin (mTOR) is a central cell growth regulator. It resides in two protein complexes, which in mammals are referred to as mTORC1 and mTORC2. mTORC1, which is directly inhibited by rapamycin, promotes cell growth by stimulating protein synthesis and inhibiting autophagy. A wide range of extra and intracellular signals, including growth factors, nutrients, energy levels, and various stress conditions, regulates mTORC1. Dysregulation of mTORC1 contributes to many human diseases, including cancer, cardiovascular disease, autoimmunity, and metabolic disorder. In this study, we identified MARK4, an AMP-activated kinase-related kinase, as a negative regulator of mTORC1. In Drosophila S2 cells and mammalian cells, knockdown of MARK family member increased mTORC1 activity, whereas overexpression of MARK4 in mammalian cells significantly inhibited mTORC1 activity. Interestingly, MARK4 selectively inhibits mTORC1 activation by Rag GTPases, which are involved in amino acid signaling, but does not inhibit the effect of Rheb, which directly binds to and activates mTORC1. In addition, we found that MARK4 phosphorylates Raptor, a key component of mTORC1, and this phosphorylation may interfere with Raptor-Rag interaction. Our data demonstrate MARK4 as a new negative regulator of mTORC1.
Collapse
Affiliation(s)
- Li Li
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, California 92093, USA
| | | |
Collapse
|
92
|
Chong ZZ, Shang YC, Wang S, Maiese K. Shedding new light on neurodegenerative diseases through the mammalian target of rapamycin. Prog Neurobiol 2012; 99:128-48. [PMID: 22980037 PMCID: PMC3479314 DOI: 10.1016/j.pneurobio.2012.08.001] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Revised: 08/01/2012] [Accepted: 08/07/2012] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders affect a significant portion of the world's population leading to either disability or death for almost 30 million individuals worldwide. One novel therapeutic target that may offer promise for multiple disease entities that involve Alzheimer's disease, Parkinson's disease, epilepsy, trauma, stroke, and tumors of the nervous system is the mammalian target of rapamycin (mTOR). mTOR signaling is dependent upon the mTORC1 and mTORC2 complexes that are composed of mTOR and several regulatory proteins including the tuberous sclerosis complex (TSC1, hamartin/TSC2, tuberin). Through a number of integrated cell signaling pathways that involve those of mTORC1 and mTORC2 as well as more novel signaling tied to cytokines, Wnt, and forkhead, mTOR can foster stem cellular proliferation, tissue repair and longevity, and synaptic growth by modulating mechanisms that foster both apoptosis and autophagy. Yet, mTOR through its proliferative capacity may sometimes be detrimental to central nervous system recovery and even promote tumorigenesis. Further knowledge of mTOR and the critical pathways governed by this serine/threonine protein kinase can bring new light for neurodegeneration and other related diseases that currently require new and robust treatments.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Yan Chen Shang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Shaohui Wang
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| | - Kenneth Maiese
- Laboratory of Cellular and Molecular Signaling, New Jersey 07101
- Cancer Institute of New Jersey, New Jersey 07101
- New Jersey Health Sciences University Newark, New Jersey 07101
| |
Collapse
|
93
|
Bovine ephemeral fever virus uses a clathrin-mediated and dynamin 2-dependent endocytosis pathway that requires Rab5 and Rab7 as well as microtubules. J Virol 2012; 86:13653-61. [PMID: 23055561 DOI: 10.1128/jvi.01073-12] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The specific cell pathways involved in bovine ephemeral fever virus (BEFV) cell entry have not been determined. In this work, colocalization of the M protein of BEFV with clathrin or dynamin 2 was observed under a fluorescence microscope. To better understand BEFV entry, we carried out internalization studies with a fluorescently labeled BEFV by using a lipophilic dye, 3,30-dilinoleyloxacarbocyanine perchlorate (DiO), further suggesting that BEFV uses a clathrin-mediated endocytosis pathway. Our results suggest that clathrin-mediated and dynamin 2-dependent endocytosis is an important avenue of BEFV entry. Suppression of Rab5 or Rab7a through the use of a Rab5 dominant negative mutant and Rab7a short hairpin RNA (shRNA) demonstrated that BEFV requires both early and late endosomes for endocytosis and subsequent infection in MDBK and Vero cells. Treatment of BEFV-infected cells with nocodazole significantly decreased the M protein synthesis and viral yield, indicating that microtubules play an important role in BEFV productive infection, likely by mediating trafficking of BEFV-containing endosomes. Furthermore, BEFV infection was strongly blocked by different inhibitors of endosomal acidification, suggesting that virus enters host cells by clathrin-mediated and dynamin 2-dependent endocytosis in a pH-dependent manner.
Collapse
|
94
|
Caza TN, Talaber G, Perl A. Metabolic regulation of organelle homeostasis in lupus T cells. Clin Immunol 2012; 144:200-13. [PMID: 22836085 PMCID: PMC3423541 DOI: 10.1016/j.clim.2012.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2012] [Accepted: 07/03/2012] [Indexed: 12/23/2022]
Abstract
Abnormal T-cell signaling and activation are characteristic features in systemic lupus erythematosus (SLE). Lupus T cells are shifted toward an over-activated state, important signaling pathways are rewired, and signaling molecules are replaced. Disturbances in metabolic and organelle homeostasis, importantly within the mitochondrial, endosomal, and autophagosomal compartments, underlie the changes in signal transduction. Mitochondrial hyperpolarization, enhanced endosomal recycling, and dysregulated autophagy are hallmarks of pathologic organelle homeostasis in SLE. This review is focused on the metabolic checkpoints of endosomal traffic that control immunological synapse formation and mitophagy and may thus serve as targets for treatment in SLE.
Collapse
Affiliation(s)
- Tiffany N Caza
- Department of Medicine, State University of New York Upstate Medical University, Syracuse, 13210, USA
| | | | | |
Collapse
|
95
|
Claerhout S, Dutta B, Bossuyt W, Zhang F, Nguyen-Charles C, Dennison JB, Yu Q, Yu S, Balázsi G, Lu Y, Mills GB. Abortive autophagy induces endoplasmic reticulum stress and cell death in cancer cells. PLoS One 2012; 7:e39400. [PMID: 22745748 PMCID: PMC3383753 DOI: 10.1371/journal.pone.0039400] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 05/21/2012] [Indexed: 11/19/2022] Open
Abstract
Autophagic cell death or abortive autophagy has been proposed to eliminate damaged as well as cancer cells, but there remains a critical gap in our knowledge in how this process is regulated. The goal of this study was to identify modulators of the autophagic cell death pathway and elucidate their effects on cellular signaling and function. The result of our siRNA library screenings show that an intact coatomer complex I (COPI) is obligatory for productive autophagy. Depletion of COPI complex members decreased cell survival and impaired productive autophagy which preceded endoplasmic reticulum stress. Further, abortive autophagy provoked by COPI depletion significantly altered growth factor signaling in multiple cancer cell lines. Finally, we show that COPI complex members are overexpressed in an array of cancer cell lines and several types of cancer tissues as compared to normal cell lines or tissues. In cancer tissues, overexpression of COPI members is associated with poor prognosis. Our results demonstrate that the coatomer complex is essential for productive autophagy and cellular survival, and thus inhibition of COPI members may promote cell death of cancer cells when apoptosis is compromised.
Collapse
Affiliation(s)
- Sofie Claerhout
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
96
|
Bridges D, Fisher K, Zolov SN, Xiong T, Inoki K, Weisman LS, Saltiel AR. Rab5 proteins regulate activation and localization of target of rapamycin complex 1. J Biol Chem 2012; 287:20913-21. [PMID: 22547071 PMCID: PMC3375515 DOI: 10.1074/jbc.m111.334060] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 1 is regulated by small GTPase activators and localization signals. We examine here the role of the small GTPase Rab5 in the localization and activation of TORC1 in yeast and mammalian cells. Rab5 mutants disrupt mTORC1 activation and localization in mammalian cells, whereas disruption of the Rab5 homolog in yeast, Vps21, leads to decreased TORC1 function. Additionally, regulation of PI(3)P synthesis by Rab5 and Vps21 is essential for TORC1 function in both contexts.
Collapse
Affiliation(s)
| | | | | | - Tingting Xiong
- From the Life Sciences Institute and ,Molecular and Integrative Physiology, and
| | - Ken Inoki
- From the Life Sciences Institute and ,Molecular and Integrative Physiology, and
| | - Lois S. Weisman
- From the Life Sciences Institute and ,Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109
| | - Alan R. Saltiel
- From the Life Sciences Institute and ,Departments of Internal Medicine, ,Cell and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, To whom correspondence should be addressed: Life Sciences Institute, University of Michigan, 210 Washtenaw Ave., Ann Arbor, MI 48109. Tel.: 734-615-9787; Fax: 734-763-6492; E-mail:
| |
Collapse
|
97
|
Neufeld TP. Autophagy and cell growth--the yin and yang of nutrient responses. J Cell Sci 2012; 125:2359-68. [PMID: 22649254 DOI: 10.1242/jcs.103333] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
As a response to nutrient deprivation and other cell stresses, autophagy is often induced in the context of reduced or arrested cell growth. A plethora of signaling molecules and pathways have been shown to have opposing effects on cell growth and autophagy, and results of recent functional screens on a genomic scale support the idea that these processes might represent mutually exclusive cell fates. Understanding the ways in which autophagy and cell growth relate to one another is becoming increasingly important, as new roles for autophagy in tumorigenesis and other growth-related phenomena are uncovered. This Commentary highlights recent findings that link autophagy and cell growth, and explores the mechanisms underlying these connections and their implications for cell physiology and survival. Autophagy and cell growth can inhibit one another through a variety of direct and indirect mechanisms, and can be independently regulated by common signaling pathways. The central role of the mammalian target of rapamycin (mTOR) pathway in regulating both autophagy and cell growth exemplifies one such mechanism. In addition, mTOR-independent signaling and other more direct connections between autophagy and cell growth will also be discussed.
Collapse
Affiliation(s)
- Thomas P Neufeld
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
98
|
How phosphoinositide 3-phosphate controls growth downstream of amino acids and autophagy downstream of amino acid withdrawal. Biochem Soc Trans 2012; 40:37-43. [PMID: 22260663 DOI: 10.1042/bst20110684] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The simple phosphoinositide PtdIns3P has been shown to control cell growth downstream of amino acid signalling and autophagy downstream of amino acid withdrawal. These opposing effects depend in part on the existence of distinct complexes of Vps34 (vacuolar protein sorting 34), the kinase responsible for the majority of PtdIns3P synthesis in cells: one complex is activated after amino acid withdrawal to induce autophagy and another regulates mTORC1 (mammalian target of rapamycin complex 1) activation when amino acids are present. However, lipid-dependent signalling almost always exhibits a spatial dimension, related to the site of formation of the lipid signal. In the case of PtdIns3P-regulated autophagy induction, recent data suggest that PtdIns3P accumulates in a membrane compartment dynamically connected to the endoplasmic reticulum that constitutes a platform for the formation of some autophagosomes. For PtdIns3P-regulated mTORC1 activity, a spatial context is not yet known: several possibilities can be envisaged based on the known effects of PtdIns3P on the endocytic system and on recent data suggesting that activation of mTORC1 depends on its localization on lysosomes.
Collapse
|
99
|
Melnik BC. Excessive Leucine-mTORC1-Signalling of Cow Milk-Based Infant Formula: The Missing Link to Understand Early Childhood Obesity. J Obes 2012; 2012:197653. [PMID: 22523661 PMCID: PMC3317169 DOI: 10.1155/2012/197653] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2011] [Accepted: 01/09/2012] [Indexed: 01/22/2023] Open
Abstract
Increased protein supply by feeding cow-milk-based infant formula in comparison to lower protein content of human milk is a well-recognized major risk factor of childhood obesity. However, there is yet no conclusive biochemical concept explaining the mechanisms of formula-induced childhood obesity. It is the intention of this article to provide the biochemical link between leucine-mediated signalling of mammalian milk proteins and adipogenesis as well as early adipogenic programming. Leucine has been identified as the predominant signal transducer of mammalian milk, which stimulates the nutrient-sensitive kinase mammalian target of rapamycin complex 1 (mTORC1). Leucine thus functions as a maternal-neonatal relay for mTORC1-dependent neonatal β-cell proliferation and insulin secretion. The mTORC1 target S6K1 plays a pivotal role in stimulation of mesenchymal stem cells to differentiate into adipocytes and to induce insulin resistance. It is of most critical concern that infant formulas provide higher amounts of leucine in comparison to human milk. Exaggerated leucine-mediated mTORC1-S6K1 signalling induced by infant formulas may thus explain increased adipogenesis and generation of lifelong elevated adipocyte numbers. Attenuation of mTORC1 signalling of infant formula by leucine restriction to physiologic lower levels of human milk offers a great chance for the prevention of childhood obesity and obesity-related metabolic diseases.
Collapse
Affiliation(s)
- Bodo C. Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, 49090 Osnabrück, Germany
| |
Collapse
|
100
|
p62: a versatile multitasker takes on cancer. Trends Biochem Sci 2012; 37:230-6. [PMID: 22424619 DOI: 10.1016/j.tibs.2012.02.008] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Revised: 02/15/2012] [Accepted: 02/21/2012] [Indexed: 11/24/2022]
Abstract
Since its initial discovery as an atypical protein kinase C (PKC)-interacting protein, p62 has emerged as a crucial molecule in a myriad of cellular functions. This multifunctional role of p62 is explained by its ability to interact with several key components of various signaling mechanisms. Not surprisingly, p62 is required for tumor transformation owing to its roles as a key molecule in nutrient sensing, as a regulator and substrate of autophagy, as an inducer of oxidative detoxifying proteins, and as a modulator of mitotic transit and genomic stability; all crucial events in the control of cell growth and cancer.
Collapse
|