51
|
Jia J, Bissa B, Brecht L, Allers L, Choi SW, Gu Y, Zbinden M, Burge MR, Timmins G, Hallows K, Behrends C, Deretic V. AMPK, a Regulator of Metabolism and Autophagy, Is Activated by Lysosomal Damage via a Novel Galectin-Directed Ubiquitin Signal Transduction System. Mol Cell 2020; 77:951-969.e9. [PMID: 31995728 DOI: 10.1016/j.molcel.2019.12.028] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/27/2019] [Accepted: 12/24/2019] [Indexed: 12/29/2022]
Abstract
AMPK is a central regulator of metabolism and autophagy. Here we show how lysosomal damage activates AMPK. This occurs via a hitherto unrecognized signal transduction system whereby cytoplasmic sentinel lectins detect membrane damage leading to ubiquitination responses. Absence of Galectin 9 (Gal9) or loss of its capacity to recognize lumenal glycans exposed during lysosomal membrane damage abrogate such ubiquitination responses. Proteomic analyses with APEX2-Gal9 have revealed global changes within the Gal9 interactome during lysosomal damage. Gal9 association with lysosomal glycoproteins increases whereas interactions with a newly identified Gal9 partner, deubiquitinase USP9X, diminishes upon lysosomal injury. In response to damage, Gal9 displaces USP9X from complexes with TAK1 and promotes K63 ubiquitination of TAK1 thus activating AMPK on damaged lysosomes. This triggers autophagy and contributes to autophagic control of membrane-damaging microbe Mycobacterium tuberculosis. Thus, galectin and ubiquitin systems converge to activate AMPK and autophagy during endomembrane homeostasis.
Collapse
Affiliation(s)
- Jingyue Jia
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Bhawana Bissa
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Lukas Brecht
- Munich Cluster of Systems Neurology, Munich, Germany
| | - Lee Allers
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Seong Won Choi
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Yuexi Gu
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Mark Zbinden
- Human Metabolome Technologies America, Boston, MA, USA
| | - Mark R Burge
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Graham Timmins
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; School pf Pharmacy, University of New Mexico Health Sciences Center, Albuquerque, NM, USA
| | - Kenneth Hallows
- Division of Nephrology and Hypertension, Department of Medicine and USC/UKRO Kidney Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | - Vojo Deretic
- Autophagy, Inflammation and Metabolism AIM Center of Biochemical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, Albuquerque, NM, USA.
| |
Collapse
|
52
|
Ravi S, Sayed CJ. Fibrotic Signaling Pathways of Skin Fibroblasts in Nephrogenic Systemic Fibrosis. CURRENT GERIATRICS REPORTS 2019. [DOI: 10.1007/s13670-019-00306-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
53
|
Patel BM, Goyal RK. Liver and insulin resistance: New wine in old bottle!!! Eur J Pharmacol 2019; 862:172657. [DOI: 10.1016/j.ejphar.2019.172657] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 09/02/2019] [Accepted: 09/05/2019] [Indexed: 12/20/2022]
|
54
|
Del Re DP, Amgalan D, Linkermann A, Liu Q, Kitsis RN. Fundamental Mechanisms of Regulated Cell Death and Implications for Heart Disease. Physiol Rev 2019; 99:1765-1817. [PMID: 31364924 DOI: 10.1152/physrev.00022.2018] [Citation(s) in RCA: 658] [Impact Index Per Article: 109.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Twelve regulated cell death programs have been described. We review in detail the basic biology of nine including death receptor-mediated apoptosis, death receptor-mediated necrosis (necroptosis), mitochondrial-mediated apoptosis, mitochondrial-mediated necrosis, autophagy-dependent cell death, ferroptosis, pyroptosis, parthanatos, and immunogenic cell death. This is followed by a dissection of the roles of these cell death programs in the major cardiac syndromes: myocardial infarction and heart failure. The most important conclusion relevant to heart disease is that regulated forms of cardiomyocyte death play important roles in both myocardial infarction with reperfusion (ischemia/reperfusion) and heart failure. While a role for apoptosis in ischemia/reperfusion cannot be excluded, regulated forms of necrosis, through both death receptor and mitochondrial pathways, are critical. Ferroptosis and parthanatos are also likely important in ischemia/reperfusion, although it is unclear if these entities are functioning as independent death programs or as amplification mechanisms for necrotic cell death. Pyroptosis may also contribute to ischemia/reperfusion injury, but potentially through effects in non-cardiomyocytes. Cardiomyocyte loss through apoptosis and necrosis is also an important component in the pathogenesis of heart failure and is mediated by both death receptor and mitochondrial signaling. Roles for immunogenic cell death in cardiac disease remain to be defined but merit study in this era of immune checkpoint cancer therapy. Biology-based approaches to inhibit cell death in the various cardiac syndromes are also discussed.
Collapse
Affiliation(s)
- Dominic P Del Re
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Dulguun Amgalan
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Andreas Linkermann
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Qinghang Liu
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| | - Richard N Kitsis
- Departments of Medicine and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein Cancer Center, and Einstein-Mount Sinai Diabetes Research Center, Albert Einstein College of Medicine, Bronx, New York; Department of Cell Biology and Molecular Medicine, Cardiovascular Research Institute, Rutgers New Jersey Medical School, Newark, New Jersey; Department of Internal Medicine 3, Division of Nephrology, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany; and Department of Physiology and Biophysics, University of Washington, Seattle, Washington
| |
Collapse
|
55
|
LRRC62 attenuates Toll-like receptor signaling by deubiquitinating TAK1 via CYLD. Exp Cell Res 2019; 383:111497. [DOI: 10.1016/j.yexcr.2019.111497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/08/2019] [Accepted: 07/10/2019] [Indexed: 11/21/2022]
|
56
|
Deng Y, Chen D, Wang L, Gao F, Jin B, Lv H, Zhang G, Sun X, Liu L, Mo D, Ma N, Song L, Huo X, Yan T, Miao Z. Silencing of Long Noncoding RNA Nespas Aggravates Microglial Cell Death and Neuroinflammation in Ischemic Stroke. Stroke 2019; 50:1850-1858. [PMID: 31167620 PMCID: PMC6594728 DOI: 10.1161/strokeaha.118.023376] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background and Purpose- Ischemic stroke is one of the leading causes of morbidity and mortality worldwide and a major cause of long-term disability. Recently, long noncoding RNAs have been revealed, which are tightly associated with several human diseases. However, the functions of long noncoding RNAs in ischemic stroke still remain largely unknown. In the current study, for the first time, we investigated the role of long noncoding RNA Nespas in ischemic stroke. Methods- We used in vivo models of middle cerebral artery occlusion and in vitro models of oxygen-glucose deprivation to illustrate the effect of long noncoding RNA Nespas on ischemic stroke. Results- We found expression of Nespas was significantly increased in ischemic cerebral tissues and oxygen-glucose deprivation-treated BV2 cells in a time-dependent manner. Silencing of Nespas aggravated middle cerebral artery occlusion operation-induced IR injury and cell death. In addition, proinflammatory cytokine production and NF-κB (nuclear factor-κB) signaling activation were inhibited by Nespas overexpression. TAK1 (transforming growth factor-β-activated kinase 1) was found to directly interact with Nespas, and TAK1 activation was significantly suppressed by Nespas. At last, we found Nespas-inhibited TRIM8 (tripartite motif 8)-induced K63-linked polyubiquitination of TAK1. Conclusions- We showed that Nespas played anti-inflammatory and antiapoptotic roles in cultured microglial cells after oxygen-glucose deprivation stimulation and in mice after ischemic stroke by inhibiting TRIM8-related K63-linked polyubiquitination of TAK1.
Collapse
Affiliation(s)
- Yiming Deng
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Duanduan Chen
- From the School of Life Science (D.C., T.Y.), Beijing Institute of Technology, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology (D.C., T.Y.), Beijing Institute of Technology, China
| | - Luyao Wang
- Intelligent Robotics Institute, School of Mechatronical Engineering (L.W.), Beijing Institute of Technology, China
| | - Feng Gao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Bo Jin
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Hong Lv
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Guojun Zhang
- Department of Clinical Laboratory, Peking University First Hospital, Beijing, China (B.J., H.L., G.Z.)
| | - Xuan Sun
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Lian Liu
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Dapeng Mo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Ning Ma
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Ligang Song
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Xiaochuan Huo
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| | - Tianyi Yan
- From the School of Life Science (D.C., T.Y.), Beijing Institute of Technology, China.,Key Laboratory of Convergence Medical Engineering System and Healthcare Technology, Ministry of Industry and Information Technology (D.C., T.Y.), Beijing Institute of Technology, China
| | - Zhongrong Miao
- Department of Interventional Neuroradiology, Beijing Tiantan Hospital, Capital Medical University, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,China National Clinical Research Center for Neurological Diseases (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.).,Center of Stroke, Beijing Institute for Brain Disorders, China (Y.D., F.G., X.S., L.L., D.M., N.M., L.S., X.H., Z.M.)
| |
Collapse
|
57
|
Lei CQ, Wu X, Zhong X, Jiang L, Zhong B, Shu HB. USP19 Inhibits TNF-α- and IL-1β-Triggered NF-κB Activation by Deubiquitinating TAK1. THE JOURNAL OF IMMUNOLOGY 2019; 203:259-268. [PMID: 31127032 DOI: 10.4049/jimmunol.1900083] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/30/2019] [Indexed: 01/08/2023]
Abstract
The dynamic regulations of ubiquitination and deubiquitination play important roles in TGF-β-activated kinase 1 (TAK1)-mediated NF-κB activation, which regulates various physiological and pathological events. We identified ubiquitin-specific protease (USP)19 as a negative regulator of TNF-α- and IL-1β-triggered NF-κB activation by deubiquitinating TAK1. Overexpression of USP19 but not its enzymatic inactive mutant inhibited TNF-α- and IL-1β-triggered NF-κB activation and transcription of downstream genes, whereas USP19 deficiency had the opposite effects. Usp19-/- mice produced higher levels of inflammatory cytokines and were more susceptible to TNF-α- and IL-1β-triggered septicemia death compared with their wild-type littermates. Mechanistically, USP19 interacted with TAK1 in a TNF-α- or IL-1β-dependent manner and specifically deconjugated K63- and K27-linked polyubiquitin chains from TAK1, leading to the impairment of TAK1 activity and the disruption of the TAK1-TAB2/3 complex. Our findings provide new insights to the complicated molecular mechanisms of the attenuation of the inflammatory response.
Collapse
Affiliation(s)
- Cao-Qi Lei
- College of Life Sciences, Wuhan University, Wuhan 430072, China; .,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; and.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xin Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; and.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Xuan Zhong
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; and.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Lu Jiang
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; and.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Bo Zhong
- College of Life Sciences, Wuhan University, Wuhan 430072, China.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Hong-Bing Shu
- College of Life Sciences, Wuhan University, Wuhan 430072, China; .,Department of Infectious Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; and.,Medical Research Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
58
|
Zhou Q, Xiao Z, Zhou R, Zhou Y, Fu P, Li X, Wu Y, Wu H, Qian Q. Ubiquitin-specific protease 3 targets TRAF6 for deubiquitination and suppresses IL-1β induced chondrocyte apoptosis. Biochem Biophys Res Commun 2019; 514:482-489. [PMID: 31056254 DOI: 10.1016/j.bbrc.2019.04.163] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 04/24/2019] [Indexed: 11/18/2022]
Abstract
Traditionally, the development of osteoarthritis (OA) is associated with factors such as aging and injure, but more and more epidemiological and biological evidence suggests that the disease is closely related to metabolic syndrome and metabolic components. Ubiquitin-specific protease 3(USP3), a member of the USPs family, is a specific protease capable of cleavage of ubiquitin chains linked by proline residues. In our presented study, we firstly found that USP3 expression level was decreased in OA. USP3 overexpression inhibited IL-1β induced chondrocytes apoptosis and nuclear factor κB (NF-κB) activation. USP3 knockdown induced chondrocytes apoptosis and activated NF-κB pathway. USP3 interacts with TRAF6 (tumor necrosis factor-receptor-associated factor 6), which is an essential adaptor protein for the NF-κB (nuclear factor κB) signaling pathway and plays important roles in inflammation and immune response. IL-1β treatment up-regulated the polyubiquitination of TRAF6 in chondrocytes, which was attenuated when USP3 was forced expression. Our study mechanistically links USP3 to TRAF6 in osteoarthritis development. Moreover, these data support the pursuit of USP3 and TRAF6 as potential targets for osteoarthritis therapies.
Collapse
Affiliation(s)
- Qi Zhou
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China
| | - Zhonghua Xiao
- Department of Orthopedics, Wanzai County People's Hospital, China
| | - Rong Zhou
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China
| | - Yiqin Zhou
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China
| | - Peiliang Fu
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China
| | - Xiang Li
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China
| | - Yuli Wu
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China
| | - Haishan Wu
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China
| | - Qirong Qian
- Center of Joint Surgery and Sports Medicine, Department of Orthopedics, Changzheng Hospital, Second Military Medical University, China.
| |
Collapse
|
59
|
Guo M, Härtlova A, Gierliński M, Prescott A, Castellvi J, Losa JH, Petersen SK, Wenzel UA, Dill BD, Emmerich CH, Ramon Y Cajal S, Russell DG, Trost M. Triggering MSR1 promotes JNK-mediated inflammation in IL-4-activated macrophages. EMBO J 2019; 38:embj.2018100299. [PMID: 31028084 PMCID: PMC6545745 DOI: 10.15252/embj.2018100299] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/14/2022] Open
Abstract
Alternatively activated M2 macrophages play an important role in maintenance of tissue homeostasis by scavenging dead cells, cell debris and lipoprotein aggregates via phagocytosis. Using proteomics, we investigated how alternative activation, driven by IL‐4, modulated the phagosomal proteome to control macrophage function. Our data indicate that alternative activation enhances homeostatic functions such as proteolysis, lipolysis and nutrient transport. Intriguingly, we identified the enhanced recruitment of the TAK1/MKK7/JNK signalling complex to phagosomes of IL‐4‐activated macrophages. The recruitment of this signalling complex was mediated through K63 polyubiquitylation of the macrophage scavenger receptor 1 (MSR1). Triggering of MSR1 in IL‐4‐activated macrophages leads to enhanced JNK activation, thereby promoting a phenotypic switch from an anti‐inflammatory to a pro‐inflammatory state, which was abolished upon MSR1 deletion or JNK inhibition. Moreover, MSR1 K63 polyubiquitylation correlated with the activation of JNK signalling in ovarian cancer tissue from human patients, suggesting that it may be relevant for macrophage phenotypic shift in vivo. Altogether, we identified that MSR1 signals through JNK via K63 polyubiquitylation and provides evidence for the receptor's involvement in macrophage polarization.
Collapse
Affiliation(s)
- Manman Guo
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Anetta Härtlova
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK .,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK.,Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marek Gierliński
- Data Analysis Group, School of Life Sciences, University of Dundee, Dundee, UK
| | - Alan Prescott
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, UK
| | - Josep Castellvi
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Spain
| | - Javier Hernandez Losa
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - Sine K Petersen
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf A Wenzel
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden.,Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Brian D Dill
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Christoph H Emmerich
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK
| | - Santiago Ramon Y Cajal
- Department of Pathology, Hospital Universitario Vall d'Hebron, Barcelona, Spain.,Spanish Biomedical Research Network Centre in Oncology (CIBERONC), Barcelona, Spain
| | - David G Russell
- Department of Microbiology and Immunology, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matthias Trost
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, UK .,Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
60
|
Rodríguez-Jorge O, Kempis-Calanis LA, Abou-Jaoudé W, Gutiérrez-Reyna DY, Hernandez C, Ramirez-Pliego O, Thomas-Chollier M, Spicuglia S, Santana MA, Thieffry D. Cooperation between T cell receptor and Toll-like receptor 5 signaling for CD4 + T cell activation. Sci Signal 2019; 12:12/577/eaar3641. [PMID: 30992399 DOI: 10.1126/scisignal.aar3641] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
CD4+ T cells recognize antigens through their T cell receptors (TCRs); however, additional signals involving costimulatory receptors, for example, CD28, are required for proper T cell activation. Alternative costimulatory receptors have been proposed, including members of the Toll-like receptor (TLR) family, such as TLR5 and TLR2. To understand the molecular mechanism underlying a potential costimulatory role for TLR5, we generated detailed molecular maps and logical models for the TCR and TLR5 signaling pathways and a merged model for cross-interactions between the two pathways. Furthermore, we validated the resulting model by analyzing how T cells responded to the activation of these pathways alone or in combination, in terms of the activation of the transcriptional regulators CREB, AP-1 (c-Jun), and NF-κB (p65). Our merged model accurately predicted the experimental results, showing that the activation of TLR5 can play a similar role to that of CD28 activation with respect to AP-1, CREB, and NF-κB activation, thereby providing insights regarding the cross-regulation of these pathways in CD4+ T cells.
Collapse
Affiliation(s)
- Otoniel Rodríguez-Jorge
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.,Escuela de Estudios Superiores de Axochiapan, Universidad Autónoma del Estado de Morelos, 62951 Axochiapan, México
| | - Linda A Kempis-Calanis
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Wassim Abou-Jaoudé
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Darely Y Gutiérrez-Reyna
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Céline Hernandez
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | - Oscar Ramirez-Pliego
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México
| | - Morgane Thomas-Chollier
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France
| | | | - Maria A Santana
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, 62210 Cuernavaca, México.
| | - Denis Thieffry
- Computational System Biology Team, Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR8197, INSERM U1024, École Normale Supérieure, Université PSL, 75005 Paris, France.
| |
Collapse
|
61
|
Wu Y, Yang R, Ming Y, Xu Y, Chen H, Yao M, Chen X, Mao R, Fan Y. TAK1 is a druggable kinase for diffuse large B-cell lymphoma. Cell Biochem Funct 2019; 37:153-160. [PMID: 30907011 DOI: 10.1002/cbf.3381] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 12/05/2018] [Accepted: 01/27/2019] [Indexed: 02/01/2023]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common form of lymphoma, and up to 30% DLBCL patients eventually died by using first-line chemotherapy regimens. Currently, Bruton tyrosine kinase (BTK) inhibitor (ibrutinib) is one of the most promising medicine in clinical trials for DLBCL, to which about 25% of patients with relapsed or refractory DLBCL are responsive. Thus, it is urgent to discover new druggable targets for DLBCL, especially for patients who are unresponsive to first-line chemotherapy and ibrutinib. Here, we found that MAP 3K7 (TAK1) is required for DLBCL survival. Inhibition of TAK1 by small molecule 5Z7 or genetic silence could massively induce deaths of DLBCL cells. Mechanistically, TAK1 inhibition could dramatically reduce the nuclear factor kappa B (NF-κB) activity. Notably, ibrutinib-resistant DLBCL cells also respond to TAK1 inhibition. Database analysis showed that high expression of TAK1 in patients with DLBCL shows poor survival. A subtype of DLBCL patients showed that high expression of both TAK1 and BTK1 is poorly responsive to the current chemotherapy. Moreover, DLBCL cell line with high expression of both TAK1 and BTK1 is resistant to Dox. Simultaneously targeting TAK1 and BTK not only increases cellular toxicity of individual drug but also enhances the sensitivity to Dox. Taken together, we provide convincing evidence to show that kinase TAK1 is a druggable target in DLBCL. SIGNIFICANCE OF THE STUDY: Currently, there is still a significant portion of patients with DLBCL who are unresponsive to first-line chemotherapy. Thus, identification of novel druggable targets such as kinase is critical important. Here, we found that TAK1 inhibition promotes death of DLBCL cells through inhibition of chronic NF-κB signalling. Importantly, TAK1 inhibition overcomes ibrutinib resistance in DLBCL cells. Finally, DLBCL patients with high expression of both TAK1 and BTK showed extremely poor survival. In summary, we provide convincing results to demonstrate a potential important druggable kinase in DLBCL.
Collapse
Affiliation(s)
- Yuanyuan Wu
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Riyun Yang
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Yue Ming
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Yuanpei Xu
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Hao Chen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, China
| | - Min Yao
- Department of Immunology, School of Medicine, Nantong University, Nantong, China
| | - Xia Chen
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China
| | - Renfang Mao
- Department of Pathophysiology, School of Medicine, Nantong University, Nantong, China
| | - Yihui Fan
- Basic Medical Research Center, School of Medicine, Nantong University, Nantong, China.,Department of Immunology, School of Medicine, Nantong University, Nantong, China
| |
Collapse
|
62
|
Affiliation(s)
- Dulguun Amgalan
- From Departments of Medicine (Cardiology) and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Yun Chen
- From Departments of Medicine (Cardiology) and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY
| | - Richard N Kitsis
- From Departments of Medicine (Cardiology) and Cell Biology, Wilf Family Cardiovascular Research Institute, Albert Einstein College of Medicine, Bronx, NY.
| |
Collapse
|
63
|
Zapata JM, Perez-Chacon G, Carr-Baena P, Martinez-Forero I, Azpilikueta A, Otano I, Melero I. CD137 (4-1BB) Signalosome: Complexity Is a Matter of TRAFs. Front Immunol 2018; 9:2618. [PMID: 30524423 PMCID: PMC6262405 DOI: 10.3389/fimmu.2018.02618] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 10/24/2018] [Indexed: 12/11/2022] Open
Abstract
CD137 (4-1BB, Tnsfr9) is a member of the TNF-receptor (TNFR) superfamily without known intrinsic enzymatic activity in its cytoplasmic domain. Hence, akin to other members of the TNFR family, it relies on the TNFR-Associated-Factor (TRAF) family of adaptor proteins to build the CD137 signalosome for transducing signals into the cell. Thus, upon CD137 activation by binding of CD137L trimers or by crosslinking with agonist monoclonal antibodies, TRAF1, TRAF2, and TRAF3 are readily recruited to the cytoplasmic domain of CD137, likely as homo- and/or heterotrimers with different configurations, initiating the construction of the CD137 signalosome. The formation of TRAF2-RING dimers between TRAF2 molecules from contiguous trimers would help to establish a multimeric structure of TRAF-trimers that is probably essential for CD137 signaling. In addition, available studies have identified a large number of proteins that are recruited to CD137:TRAF complexes including ubiquitin ligases and proteases, kinases, and modulatory proteins. Working in a coordinated fashion, these CD137-signalosomes will ultimately promote CD137-mediated T cell proliferation and survival and will endow T cells with stronger effector functions. Current evidence allows to envision the molecular events that might take place in the early stages of CD137-signalosome formation, underscoring the key roles of TRAFs and of K63 and K48-ubiquitination of target proteins in the signaling process. Understanding the composition and fine regulation of CD137-signalosomes assembly and disassembly will be key to improve the therapeutic activities of chimeric antigen receptors (CARs) encompassing the CD137 cytoplasmic domain and a new generation of CD137 agonists for the treatment of cancer.
Collapse
Affiliation(s)
- Juan M Zapata
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Gema Perez-Chacon
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain.,Instituto de Investigación Hospital Universitario La Paz, Madrid, Spain
| | - Pablo Carr-Baena
- Instituto de Investigaciones Biomédicas "Alberto Sols" (CSIC-UAM), Madrid, Spain
| | - Ivan Martinez-Forero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Arantza Azpilikueta
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Itziar Otano
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain
| | - Ignacio Melero
- Departamento de Inmunologia and Inmunoterapia, Centro de Investigación Medica Aplicada, Universidad de Navarra, Pamplona, Spain.,MSD, London, United Kingdom.,Departamento de Inmunologia e Inmunoterapia, Clinica Universitaria, Universidad de Navarra, Pamplona, Spain.,Instituto de Investigacion Sanitaria de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
64
|
Meyer AN, Gallo LH, Ko J, Cardenas G, Nelson KN, Siari A, Campos AR, Whisenant TC, Donoghue DJ. Oncogenic mutations in IKKβ function through global changes induced by K63-linked ubiquitination and result in autocrine stimulation. PLoS One 2018; 13:e0206014. [PMID: 30335863 PMCID: PMC6193727 DOI: 10.1371/journal.pone.0206014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 10/04/2018] [Indexed: 02/05/2023] Open
Abstract
Mutations at position K171 in the kinase activation loop of Inhibitor of κB kinase beta (IKKβ) occur in multiple myeloma, spleen marginal zone lymphoma and mantle cell lymphoma. Previously, we demonstrated that these result in constitutive kinase activation and stimulate Signal Transducer and Activator of Transcription 3 (STAT3). This work also identified K147 as a site of K63-linked regulatory ubiquitination required for activation of signaling pathways. We now present a more detailed analysis of ubiquitination sites together with a comprehensive examination of the signaling pathways activated by IKKβ K171E mutants. Downstream activation of STAT3 is dependent upon the activity of: UBE2N, the E2 ubiquitin ligase involved in K63-linked ubiquitination; TAK1 (MAP3K7), or TGFβ Activated Kinase, which forms a complex required for NFκB activation; JAK kinases, involved proximally in the phosphorylation of STAT transcription factors in response to inflammatory cytokines; and gp130, or IL-6 Receptor Subunit Beta which, upon binding IL-6 or other specific cytokines, undergoes homodimerization leading to activation of associated JAKs, resulting in STAT activation. We further demonstrate, using an IL-6-responsive cell line, that IKKβ K171E mutants stimulate the release of IL-6 activity into conditioned media. These results show that IKKβ K171E mutants trigger an autocrine loop in which IL-6 is secreted and binds to the IL-6 receptor complex gp130, resulting in JAK activation. Lastly, by examining the differential abundance of proteins associated with K63-only-ubiquitinated IKKβ K171E, proteomic analysis demonstrates the global activation of proliferative responses. As cancers harboring K171-mutated IKKβ are likely to also exhibit activated STAT3 and p44/42 MAPK (Erk1/2), this suggests the possibility of using MAPK (Erk1/2) and JAK inhibitors, or specific ubiquitination inhibitors. K63-linked ubiquitination occurs in other kinases at sites homologous to K147 in IKKβ, including K578 in BRAF V600E, which serves as an oncogenic driver in melanoma and other cancers.
Collapse
Affiliation(s)
- April N. Meyer
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Leandro H. Gallo
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Juyeon Ko
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Guillermo Cardenas
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Katelyn N. Nelson
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Asma Siari
- Université Joseph Fourier Grenoble, Grenoble, France
| | - Alexandre R. Campos
- Proteomics Facility, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, California, United States of America
| | - Thomas C. Whisenant
- Center for Computational Biology and Bioinformatics, University of California San Diego, La Jolla, California, United States of America
| | - Daniel J. Donoghue
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- Moores Cancer Center, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
65
|
Liu X, Zhang N, Liu Y, Liu L, Zeng Q, Yin M, Wang Y, Song D, Deng H. MPB, a novel berberine derivative, enhances lysosomal and bactericidal properties via TGF-β-activated kinase 1-dependent activation of the transcription factor EB. FASEB J 2018; 33:1468-1481. [PMID: 30161000 DOI: 10.1096/fj.201801198r] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lysosome has a crucial role in clearance of endocytosed pathogens from the cell. Small molecules that can boost lysosome function and bactericidal ability to cope with subsequent infection are urgently needed. Here, we report that MPB, a novel berberine derivative, induced lysosome-based degradation and clearance of methicillin-resistant Staphylococcus aureus and enteroinvasive Escherichia coli in macrophages. MPB caused nuclear translocation of transcription factor EB (TFEB), which boosted expression of lysosome genes. TFEB silencing repressed the MPB-mediated enhancements in degradation and bacterial eradication. MPB switched on TFEB nuclear translocation by coupling 2 parallel signaling pathways. MPB-triggered JNK activation led to 14-3-3δ being released from TFEB, which, in turn, caused TFEB nuclear translocation. In addition, MPB induced AMPK activation and subsequent inhibition of mechanistic target of rapamycin activity, which also contributed to TFEB nuclear translocation. Importantly, genetical or pharmaceutical inhibition of TGF-β-activated kinase 1 (TAK1) reduced MPB action remarkably. MPB acted through TAK1 at lysine 158 to activate JNK and AMPK and, thus, induced TFEB-dependent bactericidal activity in macrophages. Therefore, our study reveals a novel mechanism by which MPB controls JNK and AMPK phosphorylation cascades to activate lysosomal function and bactericidal activity via TAK1 K158-dependent manner, which may offer insight into novel therapeutic strategies to control bacterial infection.-Liu, X., Zhang, N., Liu, Y., Liu, L., Zeng, Q., Yin, M., Wang, Y., Song, D., Deng, H. MPB, a novel berberine derivative, enhances lysosomal and bactericidal properties via TGF-β-activated kinase 1-dependent activation of the transcription factor EB.
Collapse
Affiliation(s)
- Xiaojia Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Na Zhang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yang Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lu Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingxuan Zeng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mingxiao Yin
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanxiang Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Danqing Song
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hongbin Deng
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
66
|
Wang C, Ke Y, Liu S, Pan S, Liu Z, Zhang H, Fan Z, Zhou C, Liu J, Wang F. Ectopic fibroblast growth factor receptor 1 promotes inflammation by promoting nuclear factor-κB signaling in prostate cancer cells. J Biol Chem 2018; 293:14839-14849. [PMID: 30093411 DOI: 10.1074/jbc.ra118.002907] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 07/25/2018] [Indexed: 01/30/2023] Open
Abstract
Initiation of expression of fibroblast growth factor receptor 1 (FGFR1) concurrent with loss of FGFR2 expression is a well-documented event in the progression of prostate cancer (PCa). Although it is known that some FGFR isoforms confer advantages in cell proliferation and survival, the mechanism by which the subversion of different FGFR isoforms contributes to PCa progression is incompletely understood. Here, we report that fibroblast growth factor (FGF) promotes NF-κB signaling in PCa cells and that this increase is associated with FGFR1 expression. Disruption of FGFR1 kinase activity abrogated both FGF activity and NF-κB signaling in PCa cells. Of note, the three common signaling pathways downstream of FGFR1 kinase, extracellular signal-regulated kinase 1/2 (ERK1/2), phosphoinositide 3-kinase (PI3K/AKT), and phosphoinositide phospholipase Cγ (PLCγ), were not required for FGF-mediated NF-κB signaling. Instead, transforming growth factor β-activating kinase 1 (TAK1), a central regulator of the NF-κB pathway, was required for FGFR1 to stimulate NF-κB signaling. Moreover, we found that FGFR1 promotes NF-κB signaling in PCa cells by reducing TAK1 degradation and thereby supporting sustained NF-κB activation. Consistently, Fgfr1 ablation in the transgenic adenocarcinoma of the mouse prostate (TRAMP) model reduced inflammation in the tumor microenvironment. In contrast, activation of the FGFR1 kinase in the juxtaposition of chemical-induced dimerization (CID) and kinase 1 (JOCK1) mouse model increased inflammation. As inflammation plays an important role in PCa initiation and progression, these findings suggest that ectopically expressed FGFR1 promotes PCa progression, at least in part, by increasing inflammation in the tumor microenvironment.
Collapse
Affiliation(s)
- Cong Wang
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China, .,the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Yuepeng Ke
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Shaoyou Liu
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,the Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou 510000, China
| | - Sharon Pan
- the Gastroenterology and Hepatology Division, Seattle Children's Hospital, Seattle, Washington 98105
| | - Ziying Liu
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.,the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Hui Zhang
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,the Second Affiliated Hospital of South China University of Technology, Guangzhou 510641, China, and
| | - Zhichao Fan
- From School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325000, China
| | - Changyi Zhou
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843.,College of Food and Bioengineering, Jimei University, Xiamen 361021, China
| | - Junchen Liu
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843
| | - Fen Wang
- the Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, Texas 77843,
| |
Collapse
|
67
|
Global analysis of ubiquitome in PRRSV-infected pulmonary alveolar macrophages. J Proteomics 2018; 184:16-24. [DOI: 10.1016/j.jprot.2018.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/08/2018] [Accepted: 06/15/2018] [Indexed: 11/18/2022]
|
68
|
Sun T, Wang F, Pan W, Wu Q, Wang J, Dai J. An Immunosuppressive Tick Salivary Gland Protein DsCystatin Interferes With Toll-Like Receptor Signaling by Downregulating TRAF6. Front Immunol 2018; 9:1245. [PMID: 29922290 PMCID: PMC5996936 DOI: 10.3389/fimmu.2018.01245] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Abstract
Ticks, blood-feeding arthropods, and secrete immunosuppressive molecules that inhibit host immune responses and provide survival advantages to pathogens. In this study, we characterized the immunosuppressive function of a novel tick salivary protein, DsCystatin, from Dermacentor silvarum of China. DsCystatin directly interacted with human Cathepsins L and B and inhibited their enzymatic activities. DsCystatin impaired the expression of inflammatory cytokines such as IL1β, IFNγ, TNFα, and IL6 from mouse bone marrow-derived macrophages (BMDMs) that had been stimulated with LPS or Borrelia burgdorferi. Consistently, DsCystatin inhibited the activation of mouse BMDMs and bone marrow-derived dendritic cells by downregulating the surface expression of CD80 and CD86. Mechanically, DsCystatin inhibited LPS- or B. burgdorferi-induced NFκB activation. For the first time, we identified that DsCystatin-attenuated TLR4 signaling by targeting TRAF6. DsCystatin enhanced LPS-induced autophagy, mediated TRAF6 degradation via an autophagy dependent manner, thereby impeded the downstream phosphorylation of IκBα and the nuclear transport of NFκB. Finally, DsCystatin relieved the joint inflammation in B. burgdorferi or complete Freund's adjuvant induced mouse arthritis models. These data suggested that DsCystatin is a novel immunosuppressive protein and can potentially be used in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Ta Sun
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Fanqi Wang
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Wen Pan
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| | - Qihan Wu
- Key Laboratory of Reproduction Regulation of NPFPC, SIPPR, RID, Fudan Unversity, Shanghai, China
| | - Jingwen Wang
- School of Life Science, Fudan University, Shanghai, China
| | - Jianfeng Dai
- Institutes of Biology and Medical Sciences, Jiangsu Key Laboratory of Infection and Immunity, Soochow University, Suzhou, China
| |
Collapse
|
69
|
Courtois G, Fauvarque MO. The Many Roles of Ubiquitin in NF-κB Signaling. Biomedicines 2018; 6:E43. [PMID: 29642643 PMCID: PMC6027159 DOI: 10.3390/biomedicines6020043] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Revised: 03/31/2018] [Accepted: 04/02/2018] [Indexed: 12/24/2022] Open
Abstract
The nuclear factor κB (NF-κB) signaling pathway ubiquitously controls cell growth and survival in basic conditions as well as rapid resetting of cellular functions following environment changes or pathogenic insults. Moreover, its deregulation is frequently observed during cell transformation, chronic inflammation or autoimmunity. Understanding how it is properly regulated therefore is a prerequisite to managing these adverse situations. Over the last years evidence has accumulated showing that ubiquitination is a key process in NF-κB activation and its resolution. Here, we examine the various functions of ubiquitin in NF-κB signaling and more specifically, how it controls signal transduction at the molecular level and impacts in vivo on NF-κB regulated cellular processes.
Collapse
|
70
|
Cooperative Immune Suppression by Escherichia coli and Shigella Effector Proteins. Infect Immun 2018; 86:IAI.00560-17. [PMID: 29339461 DOI: 10.1128/iai.00560-17] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The enteric attaching and effacing (A/E) pathogens enterohemorrhagic Escherichia coli (EHEC) and enteropathogenic E. coli (EPEC) and the invasive pathogens enteroinvasive E. coli (EIEC) and Shigella encode type III secretion systems (T3SS) used to inject effector proteins into human host cells during infection. Among these are a group of effectors required for NF-κB-mediated host immune evasion. Recent studies have identified several effector proteins from A/E pathogens and EIEC/Shigella that are involved in suppression of NF-κB and have uncovered their cellular and molecular functions. A novel mechanism among these effectors from both groups of pathogens is to coordinate effector function during infection. This cooperativity among effector proteins explains how bacterial pathogens are able to effectively suppress innate immune defense mechanisms in response to diverse classes of immune receptor signaling complexes (RSCs) stimulated during infection.
Collapse
|
71
|
Wu J, Ding J, Yang J, Guo X, Zheng Y. MicroRNA Roles in the Nuclear Factor Kappa B Signaling Pathway in Cancer. Front Immunol 2018; 9:546. [PMID: 29616037 PMCID: PMC5868594 DOI: 10.3389/fimmu.2018.00546] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Accepted: 03/02/2018] [Indexed: 12/19/2022] Open
Abstract
Nuclear factor kappa B (NF-κB) is a pluripotent and crucial dimer transcription factor that orchestrates various physiological and pathological processes, especially cell proliferation, inflammation, and cancer development and progression. NF-κB expression is transient and tightly regulated in normal cells, but it is activated in cancer cells. Recently, numerous studies have demonstrated microRNAs (miRNAs) play a vital role in the NF-κB signaling pathway and NF-κB-associated immune responses, radioresistance and drug resistance of cancer, some acting as inhibitors and the others as activators. Although it is still in infancy, targeting NF-κB or the NF-κB signaling pathway by miRNAs is becoming a promising strategy of cancer treatment.
Collapse
Affiliation(s)
- Jin’en Wu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
| | - Juntao Ding
- College of Life Science and Technology, Xinjiang University, Urumqi, China
| | - Jing Yang
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
| | - Xiaola Guo
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
| | - Yadong Zheng
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute (CAAS), Lanzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| |
Collapse
|
72
|
Meng MB, Wang HH, Cui YL, Wu ZQ, Shi YY, Zaorsky NG, Deng L, Yuan ZY, Lu Y, Wang P. Necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy. Oncotarget 2018; 7:57391-57413. [PMID: 27429198 PMCID: PMC5302997 DOI: 10.18632/oncotarget.10548] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Accepted: 06/20/2016] [Indexed: 02/05/2023] Open
Abstract
While the mechanisms underlying apoptosis and autophagy have been well characterized over recent decades, another regulated cell death event, necroptosis, remains poorly understood. Elucidating the signaling networks involved in the regulation of necroptosis may allow this form of regulated cell death to be exploited for diagnosis and treatment of cancer, and will contribute to the understanding of the complex tumor microenvironment. In this review, we have summarized the mechanisms and regulation of necroptosis, the converging and diverging features of necroptosis in tumorigenesis, activation of anti-tumor immunity, and cancer therapy, as well as attempts to exploit this newly gained knowledge to provide therapeutics for cancer.
Collapse
Affiliation(s)
- Mao-Bin Meng
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Huan-Huan Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yao-Li Cui
- Department of Lymphoma, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Zhi-Qiang Wu
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yang-Yang Shi
- Stanford University School of Medicine, Stanford, CA, United States of America
| | - Nicholas G Zaorsky
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, United States of America
| | - Lei Deng
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Zhi-Yong Yuan
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - You Lu
- Department of Thoracic Cancer and Huaxi Student Society of Oncology Research, West China Hospital, West China School of Medicine, Sichuan University, Sichuan Province, China
| | - Ping Wang
- Department of Radiation Oncology, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
73
|
Hua Y, Shen M, McDonald C, Yao Q. Autophagy dysfunction in autoinflammatory diseases. J Autoimmun 2017; 88:11-20. [PMID: 29108670 DOI: 10.1016/j.jaut.2017.10.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 01/27/2023]
Abstract
Autoinflammatory diseases (AUIDs) are a genetically heterogeneous group of rheumatic diseases characterized by episodic inflammation linked with dysregulated innate immune responses. In this review, we summarize the molecular mechanisms altered by disease-associated variants in several AUIDs, including NOD2-associated diseases, TNF receptor-associated periodic syndrome (TRAPS), familial Mediterranean fever (FMF) and hyperimmunoglobulinemia D and periodic fever syndrome (HIDS), and highlight the roles dysregulated autophagy plays in disease pathogenesis. Autophagy is a conserved eukaryotic pathway for the elimination of cellular stressors, such as misfolded proteins, damaged organelles, or intracellular microorganisms. It is now recognized that autophagy also functions to control inflammation through regulatory interactions with innate immune signaling pathways. AUID-associated genetic variants are known to directly activate inflammatory signaling pathways. Recent evidence also indicates that these variants may also cause impairment of autophagy, thus augmenting inflammatory responses indirectly. Intriguingly, these variants can impair autophagy by different mechanisms, further implicating the autophagic response pathway in AUIDs. These discoveries provide evidence that autophagy could be investigated as a new therapeutic target for AUIDs.
Collapse
Affiliation(s)
- Yichao Hua
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Min Shen
- Department of Rheumatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China.
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Qingping Yao
- Division of Rheumatology, Allergy, and Immunology, Stony Brook University School of Medicine, Stony Brook, NY, USA.
| |
Collapse
|
74
|
Koga R, Radwan MO, Ejima T, Kanemaru Y, Tateishi H, Ali TFS, Ciftci HI, Shibata Y, Taguchi Y, Inoue JI, Otsuka M, Fujita M. A Dithiol Compound Binds to the Zinc Finger Protein TRAF6 and Suppresses Its Ubiquitination. ChemMedChem 2017; 12:1935-1941. [DOI: 10.1002/cmdc.201700399] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/08/2017] [Indexed: 11/05/2022]
Affiliation(s)
- Ryoko Koga
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| | - Mohamed O. Radwan
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
- Department of Chemistry of Natural Compounds; National Research Center; 12622 Dokki Cairo Egypt
| | - Tomohiko Ejima
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| | - Yosuke Kanemaru
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| | - Hiroshi Tateishi
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| | - Taha F. S. Ali
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| | - Halil Ibrahim Ciftci
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| | - Yuri Shibata
- Division of Cellular and Molecular Biology; Institute of Medical Science; The University of Tokyo; Minato-ku 108-8639 Tokyo Japan
| | - Yuu Taguchi
- Division of Cellular and Molecular Biology; Institute of Medical Science; The University of Tokyo; Minato-ku 108-8639 Tokyo Japan
| | - Jun-ichiro Inoue
- Division of Cellular and Molecular Biology; Institute of Medical Science; The University of Tokyo; Minato-ku 108-8639 Tokyo Japan
| | - Masami Otsuka
- Department of Bioorganic Medicinal Chemistry; Faculty of Life Sciences; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| | - Mikako Fujita
- Research Institute for Drug Discovery; School of Pharmacy; Kumamoto University; Chuo-ku 862-0973 Kumamoto Japan
| |
Collapse
|
75
|
Toll-like receptor-4 signaling mediates inflammation and tissue injury in diabetic nephropathy. J Nephrol 2017; 30:719-727. [PMID: 28933050 DOI: 10.1007/s40620-017-0432-8] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 08/14/2017] [Indexed: 12/15/2022]
|
76
|
The Us2 Gene Product of Herpes Simplex Virus 2 modulates NF-κB activation by targeting TAK1. Sci Rep 2017; 7:8396. [PMID: 28827540 PMCID: PMC5566419 DOI: 10.1038/s41598-017-08856-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 07/14/2017] [Indexed: 11/08/2022] Open
Abstract
HSV-2 is one of the most common sexually transmitted pathogens worldwide and HSV-2 infection triggers cytokine and chemokine production. However, little is known about which HSV-2 genes engage in the regulation of NF-κB signaling and what mechanisms are involved. In a screen of the unique short (Us) regions of HSV-2, we observed that HSV-2 Us2 activates NF-κB signaling. We additionally indicated that deficiencies of Us2 decrease HSV-2 WT mediated NF-κB activation and cytokine and chemokine production, and overexpression of Us2 showed opposite effects. Co-immunoprecipitations indicated that Us2 interacted with TGF-β activated kinase 1 (TAK1), a serine/threonine kinase essential for NF-κB activation, and Us2 has the ability to regulate the TAK1-mediated pathway and induces TAK1 downstream signaling. Further studies verified that Us2 induced the phosphorylation of TAK1, resulting in the activation of TAK1 mediated downstream signaling. The role of Us2 in HSV-2 induced NF-κB pathways was also confirmed in the Us2-deficient mutant and HSV-2 WT infected mice. Our results indicate that HSV-2 Us2 gene product binds to TAK1 to positively regulate NF-κB signaling and, for the first time, provide insights into the molecular mechanism.
Collapse
|
77
|
Ismail HM, Didangelos A, Vincent TL, Saklatvala J. Rapid Activation of Transforming Growth Factor β-Activated Kinase 1 in Chondrocytes by Phosphorylation and K 63 -Linked Polyubiquitination Upon Injury to Animal Articular Cartilage. Arthritis Rheumatol 2017; 69:565-575. [PMID: 27768832 PMCID: PMC5347887 DOI: 10.1002/art.39965] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2016] [Accepted: 10/18/2016] [Indexed: 12/11/2022]
Abstract
Objective Mechanical injury to cartilage predisposes to osteoarthritis (OA). Wounding of the articular cartilage surface causes rapid activation of MAP kinases and NF‐κB, mimicking the response to inflammatory cytokines. This study was undertaken to identify the upstream signaling mechanisms involved. Methods Cartilage was injured by dissecting it from the articular surface of porcine metacarpophalangeal (MCP) joints or by avulsing murine proximal femoral epiphyses. Protein phosphorylation was assayed by Western blotting of cartilage lysates. Immunolocalization of phosphorylated activating transcription factor 2 (ATF‐2) and NF‐κB/p65 was detected by confocal microscopy. Messenger RNA (mRNA) was measured by quantitative reverse transcriptase–polymerase chain reaction (qRT‐PCR). Receptor associated protein 80 (RAP‐80) ubiquitin interacting motif agarose was used in a pull‐down assay to obtain K63‐polyubiquitinated proteins. Ubiquitin linkages on immunoprecipitated transforming growth factor β–activated kinase 1 (TAK‐1) were analyzed with deubiquitinases. Results Sharp injury to porcine cartilage caused rapid activation of JNK and NF‐κB pathways and the upstream kinases MKK‐4, IKK, and TAK‐1. Pharmacologic inhibition of TAK‐1 in porcine cartilage abolished JNK and NF‐κB activation and reduced the injury‐dependent inflammatory gene response. High molecular weight species of phosphorylated TAK‐1 were induced by injury, indicating its ubiquitination. An overall increase in K63‐linked polyubiquitination was detected upon injury, and TAK‐1 was specifically linked to K63‐ but not K48‐polyubiquitin chains. In mice, avulsion of wild‐type femoral epiphyses caused similar intracellular signaling that was reduced in cartilage‐specific TAK‐1–null mice. Epiphyseal cartilage of MyD88‐null and TRAF‐6–null mice responded to injury, suggesting the involvement of a ubiquitin E3 ligase other than TRAF‐6. Conclusion Activation of TAK‐1 by phosphorylation and K63‐linked polyubiquitination by injury indicates its role in driving cell activation. Further studies are needed to identify the upstream ubiquitination mechanisms, including the E3 ligase involved.
Collapse
|
78
|
Guo X, Yin H, Li L, Chen Y, Li J, Doan J, Steinmetz R, Liu Q. Cardioprotective Role of Tumor Necrosis Factor Receptor-Associated Factor 2 by Suppressing Apoptosis and Necroptosis. Circulation 2017; 136:729-742. [PMID: 28572508 DOI: 10.1161/circulationaha.116.026240] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 05/01/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Programmed cell death, including apoptosis, mitochondria-mediated necrosis, and necroptosis, is critically involved in ischemic cardiac injury, pathological cardiac remodeling, and heart failure progression. Whereas apoptosis and mitochondria-mediated necrosis signaling is well established, the regulatory mechanisms of necroptosis and its significance in the pathogenesis of heart failure remain elusive. METHODS We examined the role of tumor necrosis factor receptor-associated factor 2 (Traf2) in regulating myocardial necroptosis and remodeling using genetic mouse models. We also performed molecular and cellular biology studies to elucidate the mechanisms by which Traf2 regulates necroptosis signaling. RESULTS We identified a critical role for Traf2 in myocardial survival and homeostasis by suppressing necroptosis. Cardiac-specific deletion of Traf2 in mice triggered necroptotic cardiac cell death, pathological remodeling, and heart failure. Plasma tumor necrosis factor α level was significantly elevated in Traf2-deficient mice, and genetic ablation of TNFR1 largely abrogated pathological cardiac remodeling and dysfunction associated with Traf2 deletion. Mechanistically, Traf2 critically regulates receptor-interacting proteins 1 and 3 and mixed lineage kinase domain-like protein necroptotic signaling with the adaptor protein tumor necrosis factor receptor-associated protein with death domain as an upstream regulator and transforming growth factor β-activated kinase 1 as a downstream effector. It is important to note that genetic deletion of RIP3 largely rescued the cardiac phenotype triggered by Traf2 deletion, validating a critical role of necroptosis in regulating pathological remodeling and heart failure propensity. CONCLUSIONS These results identify an important Traf2-mediated, NFκB-independent, prosurvival pathway in the heart by suppressing necroptotic signaling, which may serve as a new therapeutic target for pathological remodeling and heart failure.
Collapse
Affiliation(s)
- Xiaoyun Guo
- From Department of Physiology and Biophysics, University of Washington, Seattle
| | - Haifeng Yin
- From Department of Physiology and Biophysics, University of Washington, Seattle
| | - Lei Li
- From Department of Physiology and Biophysics, University of Washington, Seattle
| | - Yi Chen
- From Department of Physiology and Biophysics, University of Washington, Seattle
| | - Jing Li
- From Department of Physiology and Biophysics, University of Washington, Seattle
| | - Jessica Doan
- From Department of Physiology and Biophysics, University of Washington, Seattle
| | - Rachel Steinmetz
- From Department of Physiology and Biophysics, University of Washington, Seattle
| | - Qinghang Liu
- From Department of Physiology and Biophysics, University of Washington, Seattle.
| |
Collapse
|
79
|
Han KA, Yoo L, Sung JY, Chung SA, Um JW, Kim H, Seol W, Chung KC. Leucine-Rich Repeat Kinase 2 (LRRK2) Stimulates IL-1β-Mediated Inflammatory Signaling through Phosphorylation of RCAN1. Front Cell Neurosci 2017; 11:125. [PMID: 28553204 PMCID: PMC5425608 DOI: 10.3389/fncel.2017.00125] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 04/18/2017] [Indexed: 12/17/2022] Open
Abstract
Leucine-rich repeat kinase 2 (LRRK2) is a Ser/Thr kinase having mixed lineage kinase-like and GTPase domains, controlling neurite outgrowth and neuronal cell death. Evidence suggests that LRRK2 is involved in innate immune response signaling, but the underlying mechanism is yet unknown. A novel protein inhibitor of phosphatase 3B, RCAN1, is known to positively regulate inflammatory signaling through modulation of several intracellular targets of interleukins in immune cells. In the present study, we report that LRRK2 phosphorylates RCAN1 (RCAN1-1S) and is markedly up-regulated during interleukin-1β (IL-1β) treatment. During IL-1β treatment, LRRK2-mediated phosphorylation of RCAN1 promoted the formation of protein complexes, including that between Tollip and RCAN1. LRRK2 decreased binding between Tollip and IRAK1, which was accompanied by increased formation of the IRAK1-TRAF6 complex. TAK1 activity was significantly enhanced by LRRK2. Furthermore, LRRK2 enhanced transcriptional activity of NF-κB and cytokine IL-8 production. These findings suggest that LRRK2 might be important in positively modulating IL-1β-mediated signaling through selective phosphorylation of RCAN1.
Collapse
Affiliation(s)
- Kyung A Han
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Lang Yoo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| | - Jee Y Sung
- Center for Pediatric Oncology, National Cancer CenterGoyang-si, South Korea
| | - Sun A Chung
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Ji W Um
- Department of Brain and Cognitive Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST)Daegu, South Korea
| | - Hyeyoung Kim
- Department of Food and Nutrition, College of Human Ecology, Yonsei UniversitySeoul, South Korea
| | - Wongi Seol
- InAm Neuroscience Research Center, Sanbon Medical Center, College of Medicine, Wonkwang UniversityGunpo-si, South Korea
| | - Kwang C Chung
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei UniversitySeoul, South Korea
| |
Collapse
|
80
|
Schimmack G, Schorpp K, Kutzner K, Gehring T, Brenke JK, Hadian K, Krappmann D. YOD1/TRAF6 association balances p62-dependent IL-1 signaling to NF-κB. eLife 2017; 6. [PMID: 28244869 PMCID: PMC5340530 DOI: 10.7554/elife.22416] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 02/26/2017] [Indexed: 12/25/2022] Open
Abstract
The ubiquitin ligase TRAF6 is a key regulator of canonical IκB kinase (IKK)/NF-κB signaling in response to interleukin-1 (IL-1) stimulation. Here, we identified the deubiquitinating enzyme YOD1 (OTUD2) as a novel interactor of TRAF6 in human cells. YOD1 binds to the C-terminal TRAF homology domain of TRAF6 that also serves as the interaction surface for the adaptor p62/Sequestosome-1, which is required for IL-1 signaling to NF-κB. We show that YOD1 competes with p62 for TRAF6 association and abolishes the sequestration of TRAF6 to cytosolic p62 aggregates by a non-catalytic mechanism. YOD1 associates with TRAF6 in unstimulated cells but is released upon IL-1β stimulation, thereby facilitating TRAF6 auto-ubiquitination as well as NEMO/IKKγ substrate ubiquitination. Further, IL-1 triggered IKK/NF-κB signaling and induction of target genes is decreased by YOD1 overexpression and augmented after YOD1 depletion. Hence, our data define that YOD1 antagonizes TRAF6/p62-dependent IL-1 signaling to NF-κB. DOI:http://dx.doi.org/10.7554/eLife.22416.001
Collapse
Affiliation(s)
- Gisela Schimmack
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kenji Schorpp
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kerstin Kutzner
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Torben Gehring
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Jara Kerstin Brenke
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Kamyar Hadian
- Assay Development and Screening Platform, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| | - Daniel Krappmann
- Research Unit Cellular Signal Integration, Institute of Molecular Toxicology and Pharmacology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg, Germany
| |
Collapse
|
81
|
Suppression of LPS-induced NF-κB activity in macrophages by the synthetic aurone, (Z)-2-((5-(hydroxymethyl) furan-2-yl) methylene) benzofuran-3(2H)-one. Int Immunopharmacol 2017; 43:116-128. [DOI: 10.1016/j.intimp.2016.12.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/23/2016] [Accepted: 12/03/2016] [Indexed: 11/21/2022]
|
82
|
Hirata Y, Takahashi M, Morishita T, Noguchi T, Matsuzawa A. Post-Translational Modifications of the TAK1-TAB Complex. Int J Mol Sci 2017; 18:ijms18010205. [PMID: 28106845 PMCID: PMC5297835 DOI: 10.3390/ijms18010205] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/12/2017] [Accepted: 01/13/2017] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a member of the mitogen-activated protein kinase kinase kinase (MAPKKK) family that is activated by growth factors and cytokines such as TGF-β, IL-1β, and TNF-α, and mediates a wide range of biological processes through activation of the nuclear factor-κB (NF-κB) and the mitogen-activated protein (MAP) kinase signaling pathways. It is well established that activation status of TAK1 is tightly regulated by forming a complex with its binding partners, TAK1-binding proteins (TAB1, TAB2, and TAB3). Interestingly, recent evidence indicates the importance of post-translational modifications (PTMs) of TAK1 and TABs in the regulation of TAK1 activation. To date, a number of PTMs of TAK1 and TABs have been revealed, and these PTMs appear to fine-tune and coordinate TAK1 activities depending on the cellular context. This review therefore focuses on recent advances in the understanding of the PTMs of the TAK1-TAB complex.
Collapse
Affiliation(s)
- Yusuke Hirata
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Miki Takahashi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Tohru Morishita
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Takuya Noguchi
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Atsushi Matsuzawa
- Laboratory of Health Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, 6-3, Aoba, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
83
|
Ubiquitination of hnRNPA1 by TRAF6 links chronic innate immune signaling with myelodysplasia. Nat Immunol 2016; 18:236-245. [PMID: 28024152 PMCID: PMC5423405 DOI: 10.1038/ni.3654] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/30/2016] [Indexed: 12/24/2022]
Abstract
Toll-like receptor (TLR) activation contributes to premalignant hematologic conditions, such as myelodysplastic syndromes (MDS). TRAF6, a TLR-effector with ubiquitin (Ub) ligase activity, is overexpressed in MDS hematopoietic stem/progenitor cells (HSPC). Here we show that TRAF6 overexpression in mouse HSPC resulted in impaired hematopoiesis and bone marrow failure. Through the use of a global Ub screen, we identified hnRNPA1, an RNA-binding protein and auxiliary splicing factor, as a substrate of TRAF6. TRAF6 ubiquitination of hnRNPA1 regulated alternative splicing of Arhgap1, which resulted in Cdc42 activation and accounted for hematopoietic defects in TRAF6-expressing HSPC. These results implicate Ub signaling in coordinating RNA processing by TLR pathways during an immune response and in premalignant hematologic diseases, such as MDS.
Collapse
|
84
|
Guo L, Dong W, Fu X, Lin J, Dong Z, Tan X, Zhang T. Tripartite Motif 8 (TRIM8) Positively Regulates Pro-inflammatory Responses in Pseudomonas aeruginosa-Induced Keratitis Through Promoting K63-Linked Polyubiquitination of TAK1 Protein. Inflammation 2016; 40:454-463. [DOI: 10.1007/s10753-016-0491-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
85
|
Li K, Wang M, Hu Y, Xu N, Yu Q, Wang Q. TAK1 knockdown enhances lipopolysaccharide-induced secretion of proinflammatory cytokines in myeloid cells via unleashing MEKK3 activity. Cell Immunol 2016; 310:193-198. [DOI: 10.1016/j.cellimm.2016.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 09/20/2016] [Accepted: 09/20/2016] [Indexed: 02/06/2023]
|
86
|
Anti-Inflammatory Effects of TRAF-Interacting Protein in Rheumatoid Arthritis Fibroblast-Like Synoviocytes. Mediators Inflamm 2016; 2016:3906108. [PMID: 27847407 PMCID: PMC5101391 DOI: 10.1155/2016/3906108] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/04/2016] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease characterized by inflammatory cell infiltration, synovial inflammation, and cartilage destruction. Proliferative fibroblast-like synoviocytes (FLS) play crucial roles in both propagation of inflammation and joint damage because of their production of great amount of proinflammatory cytokines and proteolytic enzymes. In this study, we investigate the role of TRAF-interacting protein (TRIP) in regulating inflammatory process in RA-FLS. TRIP expression was attenuated in RA-FLS compared with osteoarthritis- (OA-) FLS. Overexpression of TRIP significantly inhibited the activation of NF-κB signaling and decreased the production of proinflammatory cytokines and matrix metalloproteinases (MMPs) in TNFα-stimulated RA-FLS. Furthermore, TRIP was found to interact with transforming growth factor β-activated kinase 1 (TAK1) and promoting K48-linked polyubiquitination of TAK1 in RA-FLS. Our results demonstrate that TRIP has anti-inflammatory effects on RA-FLS and suggest TRIP as a potential therapeutic target for human RA.
Collapse
|
87
|
Kang K, Won M, Yuk JM, Park CY, Byun HS, Park KA, Lee SR, Kang YG, Shen HM, Lee IY, Hur GM. IinQ attenuates systemic inflammatory responses via selectively impairing the Myddosome complex formation upon TLR4 ligation. Biochem Pharmacol 2016; 121:52-66. [PMID: 27664853 DOI: 10.1016/j.bcp.2016.09.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 09/19/2016] [Indexed: 01/21/2023]
Abstract
A specific small-molecule inhibitor of the TLR4 signaling complex upstream of the IKK would likely provide therapeutic benefit for NF-κB-mediated inflammatory disease. We previously identified brazilin as a selective upstream IKK inhibitor targeting the Myddosome complex. In this study, using a cell-based ubiquitination assay for IRAK1 and a chemical library comprising a series of structural analogues of brazilin, a novel small molecule, 2-hydroxy-5,6-dihydroisoindolo[1,2-a]isoquinoline-3,8-dione (IinQ), was identified as a selective and potent inhibitor of IRAK1-dependent NF-κB activation upon TLR4 ligation. In RAW264.7 macrophages, IinQ drastically suppressed activation of upstream IKK signaling events including membrane-bound IRAK1 ubiquitination and IKK phosphorylation by the TLR4 ligand, resulting in reduced expression of proinflammatory mediators including IL-6, TNF-α, and nitric oxide. Interestingly, IinQ did not suppress NF-κB activation via the TLR3 ligand, DNA damaging agents, or a protein kinase C activator, indicating IinQ is specific for TLR4 signaling. Analysis of upstream signaling events further confirmed that IinQ disrupts the MyD88-IRAK1-TRAF6 complex formation induced by LPS treatment, without affecting TLR4 oligomerization. Moreover, intravenous administration of IinQ significantly reduced lethality and attenuated systemic inflammatory responses in an in vivo mouse model of endotoxin shock following LPS challenge. Thus, IinQ represents a novel class of brazilin analogues with improved potency and specificity toward disruption of Myddosome complex formation in TLR4 signaling, indicating that IinQ may be a promising therapeutic candidate for the treatment of systemic inflammatory diseases.
Collapse
Affiliation(s)
- Kidong Kang
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Minho Won
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Jae-Min Yuk
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea; Department of Infection Biology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Chan-Yong Park
- Eco-Friendly New Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yusung-gu, Daejeon 34114, Republic of Korea
| | - Hee Sun Byun
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Kyeong Ah Park
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - So-Ra Lee
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea
| | - Young-Goo Kang
- Eco-Friendly New Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yusung-gu, Daejeon 34114, Republic of Korea
| | - Han-Ming Shen
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ill Young Lee
- Eco-Friendly New Materials Research Center, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yusung-gu, Daejeon 34114, Republic of Korea.
| | - Gang Min Hur
- Department of Pharmacology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea; Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Daejeon 35015, Republic of Korea.
| |
Collapse
|
88
|
Drube S, Weber F, Göpfert C, Loschinski R, Rothe M, Boelke F, Diamanti MA, Löhn T, Ruth J, Schütz D, Häfner N, Greten FR, Stumm R, Hartmann K, Krämer OH, Dudeck A, Kamradt T. TAK1 and IKK2, novel mediators of SCF-induced signaling and potential targets for c-Kit-driven diseases. Oncotarget 2016; 6:28833-50. [PMID: 26353931 PMCID: PMC4745695 DOI: 10.18632/oncotarget.5008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 08/20/2015] [Indexed: 12/25/2022] Open
Abstract
NF-κB activation depends on the IKK complex consisting of the catalytically active IKK1 and 2 subunits and the scaffold protein NEMO. Hitherto, IKK2 activation has always been associated with IκBα degradation, NF-κB activation, and cytokine production. In contrast, we found that in SCF-stimulated primary bone marrow-derived mast cells (BMMCs), IKK2 is alternatively activated. Mechanistically, activated TAK1 mediates the association between c-Kit and IKK2 and therefore facilitates the Lyn-dependent IKK2 activation which suffices to mediate mitogenic signaling but, surprisingly, does not result in NF-κB activation. Moreover, the c-Kit-mediated and Lyn-dependent IKK2 activation is targeted by MyD88-dependent pathways leading to enhanced IKK2 activation and therefore to potentiated effector functions. In neoplastic cells, expressing constitutively active c-Kit mutants, activated TAK1 and IKKs do also not induce NF-κB activation but mediate uncontrolled proliferation, resistance to apoptosis and enables IL-33 to mediate c-Kit-dependent signaling. Together, we identified the formation of the c-Kit-Lyn-TAK1 signalosome which mediates IKK2 activation. Unexpectedly, this IKK activation is uncoupled from the NF-κB-machinery but is critical to modulate functional cell responses in primary-, and mediates uncontrolled proliferation and survival of tumor-mast cells. Therefore, targeting TAK1 and IKKs might be a novel approach to treat c-Kit-driven diseases.
Collapse
Affiliation(s)
- Sebastian Drube
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Weber
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | | | - Romy Loschinski
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Mandy Rothe
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Franziska Boelke
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Michaela A Diamanti
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Tobias Löhn
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Julia Ruth
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| | - Dagmar Schütz
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Norman Häfner
- Gynäkologische Molekularbiologie, Klinik für Frauenheilkunde und Geburtshilfe, Jena, Germany
| | - Florian R Greten
- Georg-Speyer-Haus, Institute for Tumorbiology and Experimental Therapy, Frankfurt, Germany
| | - Ralf Stumm
- Institut für Pharmakologie, Universitätsklinikum Jena, Jena, Germany
| | - Karin Hartmann
- Klinik und Poliklinik für Dermatologie und Venerologie, Universität zu Köln, Köln, Germany
| | - Oliver H Krämer
- Institut für Toxikologie, Universitätsmedizin Mainz, Mainz, Germany
| | - Anne Dudeck
- Institute for Immunology, Technische Universität Dresden, Medical Faculty Carl Gustav Carus, Dresden, Germany
| | - Thomas Kamradt
- Institut für Immunologie, Universitätsklinikum Jena, Jena, Germany
| |
Collapse
|
89
|
JNK Signaling: Regulation and Functions Based on Complex Protein-Protein Partnerships. Microbiol Mol Biol Rev 2016; 80:793-835. [PMID: 27466283 DOI: 10.1128/mmbr.00043-14] [Citation(s) in RCA: 378] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The c-Jun N-terminal kinases (JNKs), as members of the mitogen-activated protein kinase (MAPK) family, mediate eukaryotic cell responses to a wide range of abiotic and biotic stress insults. JNKs also regulate important physiological processes, including neuronal functions, immunological actions, and embryonic development, via their impact on gene expression, cytoskeletal protein dynamics, and cell death/survival pathways. Although the JNK pathway has been under study for >20 years, its complexity is still perplexing, with multiple protein partners of JNKs underlying the diversity of actions. Here we review the current knowledge of JNK structure and isoforms as well as the partnerships of JNKs with a range of intracellular proteins. Many of these proteins are direct substrates of the JNKs. We analyzed almost 100 of these target proteins in detail within a framework of their classification based on their regulation by JNKs. Examples of these JNK substrates include a diverse assortment of nuclear transcription factors (Jun, ATF2, Myc, Elk1), cytoplasmic proteins involved in cytoskeleton regulation (DCX, Tau, WDR62) or vesicular transport (JIP1, JIP3), cell membrane receptors (BMPR2), and mitochondrial proteins (Mcl1, Bim). In addition, because upstream signaling components impact JNK activity, we critically assessed the involvement of signaling scaffolds and the roles of feedback mechanisms in the JNK pathway. Despite a clarification of many regulatory events in JNK-dependent signaling during the past decade, many other structural and mechanistic insights are just beginning to be revealed. These advances open new opportunities to understand the role of JNK signaling in diverse physiological and pathophysiological states.
Collapse
|
90
|
Ogura Y, Hindi SM, Sato S, Xiong G, Akira S, Kumar A. TAK1 modulates satellite stem cell homeostasis and skeletal muscle repair. Nat Commun 2015; 6:10123. [PMID: 26648529 PMCID: PMC4682113 DOI: 10.1038/ncomms10123] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Accepted: 11/04/2015] [Indexed: 01/07/2023] Open
Abstract
Satellite cells are resident adult stem cells that are required for regeneration of skeletal muscle. However, signalling mechanisms that regulate satellite cell function are less understood. Here we demonstrate that transforming growth factor-β-activated kinase 1 (TAK1) is important in satellite stem cell homeostasis and function. Inactivation of TAK1 in satellite cells inhibits muscle regeneration in adult mice. TAK1 is essential for satellite cell proliferation and its inactivation causes precocious differentiation. Moreover, TAK1-deficient satellite cells exhibit increased oxidative stress and undergo spontaneous cell death, primarily through necroptosis. TAK1 is required for the activation of NF-κB and JNK in satellite cells. Forced activation of NF-κB improves survival and proliferation of TAK1-deficient satellite cells. Furthermore, TAK1-mediated activation of JNK is essential to prevent oxidative stress and precocious differentiation of satellite cells. Collectively, our study suggests that TAK1 is required for maintaining the pool of satellite stem cells and for regenerative myogenesis.
Collapse
Affiliation(s)
- Yuji Ogura
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Sajedah M Hindi
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shuichi Sato
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Guangyan Xiong
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| | - Shizuo Akira
- Laboratory of Host Defense, WPI Immunology Frontier Research Center, Osaka University, Osaka 565-0871, Japan
| | - Ashok Kumar
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky 40202, USA
| |
Collapse
|
91
|
Liu KL, Yang YC, Yao HT, Chia TW, Lu CY, Li CC, Tsai HJ, Lii CK, Chen HW. Docosahexaenoic acid inhibits inflammation via free fatty acid receptor FFA4, disruption of TAB2 interaction with TAK1/TAB1 and downregulation of ERK-dependent Egr-1 expression in EA.hy926 cells. Mol Nutr Food Res 2015; 60:430-43. [PMID: 26577385 DOI: 10.1002/mnfr.201500178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 10/23/2015] [Accepted: 11/03/2015] [Indexed: 12/18/2022]
Abstract
SCOPE Inflammation is intimately associated with many cardiovascular events and docosahexaenoic acid (DHA) has been shown to protect against CVD. Egr-1 has emerged as a key regulator in the development of atherosclerosis. Free fatty acid receptor 4 (FFA4) is an n-3 FA membrane receptor. Tumor necrosis factor alpha (TNF-α) is an inflammatory mediator and transforming growth factor-β-activated kinase 1 (TAK1) is essential in the TNF-α-mediated activation of NF-κB. We examined the mechanisms underlying DHA inhibition of inflammation in human EA.hy926 cells. METHODS AND RESULTS TNF-α markedly induced the interaction between TAK1 binding protein (TAB) 2 and TAK1/TAB1, the phosphorylation of ERK, p38 MAPK and Akt, the expression of Egr-1 and ICAM-1, and HL-60 (monocyte-like) cell adhesion. Pretreatment with DHA attenuated TNF-α-induced phosphorylation of ERK, expression of Egr-1 and ICAM-1 and HL-60 cell adhesion. Transfection with siFFA4 reversed the DHA-mediated inhibition of TNF-α-induced Egr-1 and ICAM-1 expression, HL-60 cell adhesion and NF-κB and DNA-binding activity. CONCLUSION Our results suggest that the anti-inflammatory effect of DHA on the endothelium is at least partially linked to FFA4, disruption of TAB2 interaction with TAK1/TAB1 and downregulation of ERK-dependent Egr-1 and ICAM-1 expression, which leads to less HL-60 cell adhesion to TNF-α-stimulated EA.hy926 cells.
Collapse
Affiliation(s)
- Kai-Li Liu
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Ya-Chen Yang
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Hsien-Tsung Yao
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Ting-Wen Chia
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chia-Yang Lu
- Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Chien-Chun Li
- School of Nutrition, Chung Shan Medical University, Taichung, Taiwan.,Department of Nutrition, Chung Shan Medical University Hospital, Taichung, Taiwan
| | - Henry J Tsai
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| | - Chong-Kuei Lii
- Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan.,Department of Nutrition, China Medical University, Taichung, Taiwan
| | - Haw-Wen Chen
- Department of Nutrition, China Medical University, Taichung, Taiwan
| |
Collapse
|
92
|
Zheng C, Zheng Z, Zhang Z, Meng J, Liu Y, Ke X, Hu Q, Wang H. IFIT5 positively regulates NF-κB signaling through synergizing the recruitment of IκB kinase (IKK) to TGF-β-activated kinase 1 (TAK1). Cell Signal 2015; 27:2343-54. [DOI: 10.1016/j.cellsig.2015.08.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 08/26/2015] [Accepted: 08/28/2015] [Indexed: 01/01/2023]
|
93
|
TAK1 Regulates Myocardial Response to Pathological Stress via NFAT, NFκB, and Bnip3 Pathways. Sci Rep 2015; 5:16626. [PMID: 26564789 PMCID: PMC4643217 DOI: 10.1038/srep16626] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Accepted: 10/16/2015] [Indexed: 01/19/2023] Open
Abstract
TAK1 (TGFβ-activated kinase-1) signaling is essential in regulating a number of important biological functions, including innate immunity, inflammatory response, cell growth and differentiation, and myocardial homeostasis. The precise role of TAK1 in the adult heart under pathological conditions remains largely unknown. Importantly, we observed that TAK1 is upregulated during compensatory hypertrophy but downregulated in end-stage heart failure. Here we generated transgenic mice with inducible expression of an active TAK1 mutant (TAK1ΔN) in the adult heart. TAK1ΔN transgenic mice developed greater cardiac hypertrophy compared with control mice after transverse aortic constriction (TAC), which was largely blocked by ablation of calcineurin Aβ. Expression of TAK1ΔN also promoted NFAT (nuclear factor of activated T-cells) transcriptional activity in luciferase reporter mice at baseline, which was further enhanced after TAC. Our results revealed that activation of TAK1 promoted adaptive cardiac hypertrophy through a cross-talk between calcineurin-NFAT and IKK-NFκB pathways. More significantly, adult-onset inducible expression of TAK1ΔN protected the myocardium from adverse remodeling and heart failure after myocardial infarction or long-term pressure overload, by preventing cardiac cell death and fibrosis. Mechanistically, TAK1 exerts its cardioprotective effect through activation of NFAT/NFκB, downregulation of Bnip3, and inhibition of cardiac cell death.
Collapse
|
94
|
Chen IT, Hsu PH, Hsu WC, Chen NJ, Tseng PH. Polyubiquitination of Transforming Growth Factor β-activated Kinase 1 (TAK1) at Lysine 562 Residue Regulates TLR4-mediated JNK and p38 MAPK Activation. Sci Rep 2015; 5:12300. [PMID: 26189595 PMCID: PMC4507259 DOI: 10.1038/srep12300] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Accepted: 06/22/2015] [Indexed: 12/31/2022] Open
Abstract
Toll-like receptor 4 (TLR4) plays an important role in innate immunity by eliciting inflammation. Upon receptor engagement, transforming growth factor β-activated kinase 1 (TAK1) is an essential mediator that transmits a signal from the receptor to downstream effectors, IκB kinase (IKK) and the mitogen-activated protein kinases (MAPKs), which control the production of inflammatory cytokines. However, the association between phosphorylation and ubiquitination of TAK1 is not yet clear. Here, we examined the crosstalk between phosphorylation and polyubiquitination of TAK1 and further investigated the mechanism of distinct activation of MAPKs and IKK. Inhibition of TAK1 phosphorylation enhanced Lys63-linked polyubiquitination of TAK1. Conversely, ubiquitin modification was counteracted by phospho-mimic TAK1 mutant, T(184,187)D. Moreover, using LC-MS analysis, Lys562 of TAK1 was identified as a novel Lys63-linked ubiquitination site and as the key residue in the feedback regulation. Mutation of Lys562 of TAK1 leads to a decrease in TAK1 phosphorylation and specific inhibition of the MAPK pathway, but has no effect on formation of the TAK1-containing complex. Our findings demonstrate a feedback loop for phosphorylation and ubiquitination of TAK1, indicating a dynamic regulation between TAK1 polyubiquitiantion and phosphorylated activation, and the molecular mechanism by which IKK and MAPKs are differentially activated in the TLR4 pathway.
Collapse
Affiliation(s)
- I-Ting Chen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| | - Pang-Hung Hsu
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC) [2] Institute of Bioscience and Biotechnology, College of Life Sciences, National Taiwan Ocean University, Keelung20224, Taiwan (ROC)
| | - Wan-Ching Hsu
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| | - Nien-Jung Chen
- 1] Institute of Microbiology and Immunology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC) [2] Infection and Immunity Research Center, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| | - Ping-Hui Tseng
- 1] Institute of Biochemistry and Molecular Biology, School of Life Sciences, National Yang-Ming University, Taipei 11221, Taiwan (ROC) [2] Infection and Immunity Research Center, National Yang-Ming University, Taipei 11221, Taiwan (ROC)
| |
Collapse
|
95
|
Zhou H, Gao S, Duan X, Liang S, Scott DA, Lamont RJ, Wang H. Inhibition of serum- and glucocorticoid-inducible kinase 1 enhances TLR-mediated inflammation and promotes endotoxin-driven organ failure. FASEB J 2015; 29:3737-49. [PMID: 25993992 DOI: 10.1096/fj.15-270462] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 05/11/2015] [Indexed: 12/12/2022]
Abstract
Serum- and glucocorticoid-regulated kinase (SGK)1 is associated with several important pathologic conditions and plays a modulatory role in adaptive immune responses. However, the involvement and functional role of SGK1 in innate immune responses remain entirely unknown. In this study, we establish that SGK1 is a novel and potent negative regulator of TLR-induced inflammation. Pharmacologic inhibition of SGK1 or suppression by small interfering RNA enhances proinflammatory cytokine (TNF, IL-12, and IL-6) production in TLR-engaged monocytes, a result confirmed in Cre-loxP-mediated SGK1-deficient cells. SGK1 inhibition or gene deficiency results in increased phosphorylation of IKK, IκBα, and NF-κB p65 in LPS-stimulated cells. Enhanced NF-κB p65 DNA binding also occurs upon SGK1 inhibition. The subsequent enhancement of proinflammatory cytokines is dependent on the phosphorylation of TGF-β-activated kinase 1 (TAK1), as confirmed by TAK1 gene silencing. In vivo relevance was established in a murine endotoxin model, in which we found that SGK1 inhibition aggravates the severity of multiple organ damage and enhances the inflammatory response by heightening both proinflammatory cytokine levels and neutrophil infiltration. These findings have identified an anti-inflammatory function of SGK1, elucidated the underlying intracellular mechanisms, and establish, for the first time, that SGK1 holds potential as a novel target for intervention in the control of inflammatory diseases.
Collapse
Affiliation(s)
- Huaxin Zhou
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shegan Gao
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Xiaoxian Duan
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Shuang Liang
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - David A Scott
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Richard J Lamont
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Huizhi Wang
- *Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA; Department of Oncology, Cancer Institute, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China; and Department of Microbiology and Immunology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| |
Collapse
|
96
|
Carrano AC. EcSTAT3ic about K63-Linked Ubiquitylation of IKKβ. Cell Cycle 2015; 14:1621-2. [PMID: 25928302 DOI: 10.1080/15384101.2015.1032651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- Andrea C Carrano
- a Department of Pediatrics; University of California , San Diego; La Jolla , CA , USA
| |
Collapse
|
97
|
Li YW, Li X, Wang Z, Mo ZQ, Dan XM, Luo XC, Li AX. Orange-spotted grouper Epinephelus coioides Tak1: molecular identification, expression analysis and functional study. JOURNAL OF FISH BIOLOGY 2015; 86:417-430. [PMID: 25677752 DOI: 10.1111/jfb.12550] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 09/18/2014] [Indexed: 06/04/2023]
Abstract
In this study, the complementary (c)DNA sequence encoding orange-spotted grouper Epinephelus coioides Tak1 (ectak1) was cloned, which has an open reading frame of 1728 bp that encodes 575 amino acids (aa). Sequence analysis indicated that Ectak1 contains two characteristic conserved domains, i.e. an N-terminal serine-threonine protein kinase catalytic domain (27-275 aa) and a C-terminal coiled-coil region (499-562 aa). Ectak1 shares high sequence identity with Tak1 from other fish species, especially those of Nile tilapia Oreochromis niloticus (96%) and zebra mbuna Maylandia zebra (96%). ectak1 transcripts were expressed broadly in all of the tissues tested, but ectak1 expression was reduced mainly in the local infection sites (skin and gill) after infection with Cryptocaryon irritans. Intracellular localization analysis showed that Ectak1 was distributed mainly in the cytoplasm. A luciferase reporter assay showed that Ectak1 significantly impaired the NF-κB activity induced by E. coioides Myd88 and Traf6. Overall, these results suggest that Ectak1 functions to reduce the activity of NF-κB induced by toll-like receptor (TLR) signal molecules in HEK-293T cells, and it might have an important role in host defences against parasitic infections.
Collapse
Affiliation(s)
- Y W Li
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| | - X Li
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| | - Z Wang
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| | - Z Q Mo
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - X M Dan
- College of Animal Science, South China Agricultural University, Guangzhou 510642, Guangdong Province, PR China
| | - X C Luo
- School of Bioscience and Biotechnology, South China University of Technology, Guangzhou 510006, Guangdong Province, PR China
| | - A X Li
- Key Laboratory of Aquatic Product Safety (Sun Yat-Sen University), Ministry of Education/State Key Laboratory of Biocontrol, The School of Life Sciences, Sun Yat-sen University, 135 Xingang West Street, Haizhu District, Guangzhou 510275, Guangdong Province, The People's Republic of China
| |
Collapse
|
98
|
Kathania M, Zeng M, Yadav VN, Moghaddam SJ, Yang B, Venuprasad K. Ndfip1 regulates itch ligase activity and airway inflammation via UbcH7. THE JOURNAL OF IMMUNOLOGY 2015; 194:2160-7. [PMID: 25632008 DOI: 10.4049/jimmunol.1402742] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ubiquitin-ligating enzyme (E3) Itch plays a crucial role in the regulation of inflammation, and Itch deficiency leads to severe airway inflammation. However, the molecular mechanisms by which Itch function is regulated remain elusive. In this study, we found that nontypeable Haemophilus influenzae induces the association of Itch with Ndfip1. Both Itch(-/-) and Ndfip1(-/-) mice exhibited severe airway inflammation in response to nontypeable Haemophilus influenza, which was associated with elevated expression of proinflammatory cytokines. Ndfip1 enhanced Itch ligase activity and facilitated Itch-mediated Tak1 ubiquitination. Mechanistically, Ndfip1 facilitated recruitment of ubiquitin-conjugating enzyme (E2) UbcH7 to Itch. The N-terminal region of Ndfip1 binds to UbcH7, whereas the PY motif binds to Itch. Hence, Ndfip1 acts as an adaptor for UbcH7 and Itch. Reconstitution of full-length Ndfip1 but not the mutants that fail to interact with either UbcH7 or Itch, restored the defect in Tak1 ubiquitination and inhibited elevated proinflammatory cytokine expression by Ndfip1(-/-) cells. These results provide new mechanistic insights into how Itch function is regulated during inflammatory signaling, which could be exploited therapeutically in inflammatory diseases.
Collapse
Affiliation(s)
- Mahesh Kathania
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204
| | - Minghui Zeng
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204
| | - Viveka Nand Yadav
- Department of Pathology, University of Michigan, Ann Arbor, MI 48109
| | - Seyed Javad Moghaddam
- Pulmonary Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030; and
| | - Baoli Yang
- Department of Obstetrics and Gynecology, Carver College of Medicine, University of Iowa, Iowa City, IA 52242
| | - K Venuprasad
- Baylor Institute for Immunology Research, Baylor Research Institute, Dallas, TX 75204;
| |
Collapse
|
99
|
Li L, Chen Y, Doan J, Murray J, Molkentin JD, Liu Q. Transforming growth factor β-activated kinase 1 signaling pathway critically regulates myocardial survival and remodeling. Circulation 2014; 130:2162-72. [PMID: 25278099 DOI: 10.1161/circulationaha.114.011195] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
BACKGROUND Programmed necrosis (necroptosis) plays an important role in development, tissue homeostasis, and disease pathogenesis. The molecular mechanisms that regulate necroptosis in the heart and its physiological relevance in myocardial remodeling and heart failure remain largely unknown. METHODS AND RESULTS Here, we identified an obligate function for TAK1 (transforming growth factor β-activated kinase 1, gene name Map3k7) in regulating necroptotic myocyte death, myocardial remodeling, and heart failure propensity. Cardiac-specific ablation of Map3k7 in mice induced spontaneous apoptosis and necroptosis that led to adverse remodeling and heart failure, and these effects were abolished by ablation of tumor necrosis factor receptor-1. Mechanistically, TAK1 functions as a molecular switch in tumor necrosis factor receptor-1 signaling by regulating the formation of 2 cell death complexes, RIP 1 (receptor-interacting protein 1)-FADD (Fas-associated protein with death domain)-caspase 8 and RIP1-RIP3, a process that is dependent on FADD and caspase 8 as scaffolding molecules. Importantly, inhibition of RIP1 or RIP3 largely blocked necroptotic cell death, adverse remodeling, and heart failure in TAK1-deficient mice. CONCLUSIONS These results indicate that TAK1 functions as a key survival factor in the heart by directly antagonizing necroptosis, which is critical for the maintenance of myocardial homeostasis and the prevention of adverse myocardial remodeling.
Collapse
Affiliation(s)
- Lei Li
- From the Department of Physiology and Biophysics, University of Washington, Seattle, WA (L.L., Y.C., J.D., J.M., Q.L.); and Howard Hughes Medical Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.)
| | - Yi Chen
- From the Department of Physiology and Biophysics, University of Washington, Seattle, WA (L.L., Y.C., J.D., J.M., Q.L.); and Howard Hughes Medical Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.)
| | - Jessica Doan
- From the Department of Physiology and Biophysics, University of Washington, Seattle, WA (L.L., Y.C., J.D., J.M., Q.L.); and Howard Hughes Medical Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.)
| | - Jason Murray
- From the Department of Physiology and Biophysics, University of Washington, Seattle, WA (L.L., Y.C., J.D., J.M., Q.L.); and Howard Hughes Medical Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.)
| | - Jeffery D Molkentin
- From the Department of Physiology and Biophysics, University of Washington, Seattle, WA (L.L., Y.C., J.D., J.M., Q.L.); and Howard Hughes Medical Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.)
| | - Qinghang Liu
- From the Department of Physiology and Biophysics, University of Washington, Seattle, WA (L.L., Y.C., J.D., J.M., Q.L.); and Howard Hughes Medical Institute, Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH (J.D.M.).
| |
Collapse
|
100
|
Liu R, Lin Y, Jia R, Geng Y, Liang C, Tan J, Qiao W. HIV-1 Vpr stimulates NF-κB and AP-1 signaling by activating TAK1. Retrovirology 2014; 11:45. [PMID: 24912525 PMCID: PMC4057933 DOI: 10.1186/1742-4690-11-45] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 05/20/2014] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND The Vpr protein of human immunodeficiency virus type 1 (HIV-1) plays an important role in viral replication. It has been reported that Vpr stimulates the nuclear factor-κB (NF-κB) and activator protein 1 (AP-1) signaling pathways, and thereby regulates viral and host cell gene expression. However, the molecular mechanism behind this function of Vpr is not fully understood. RESULTS Here, we have identified transforming growth factor-β-activated kinase 1 (TAK1) as the important upstream signaling molecule that Vpr associates with in order to activate NF-κB and AP-1 signaling. HIV-1 virion-associated Vpr is able to stimulate phosphorylation of TAK1. This activity of Vpr depends on its association with TAK1, since the S79A Vpr mutant lost interaction with TAK1 and was unable to activate TAK1. This association allows Vpr to promote the interaction of TAB3 with TAK1 and increase the polyubiquitination of TAK1, which renders TAK1 phosphorylation. In further support of the key role of TAK1 in this function of Vpr, knockdown of endogenous TAK1 significantly attenuated the ability of Vpr to activate NF-κB and AP-1 as well as the ability to stimulate HIV-1 LTR promoter. CONCLUSIONS HIV-1 Vpr enhances the phosphorylation and polyubiquitination of TAK1, and as a result, activates NF-κB and AP-1 signaling pathways and stimulates HIV-1 LTR promoter.
Collapse
Affiliation(s)
| | | | | | | | | | - Juan Tan
- Key Laboratory of Molecular Microbiology and Biotechnology (Ministry of Education) and Key Laboratory of Microbial Functional Genomics (Tianjin), College of Life Sciences, Nankai University, Tianjin 300071, China.
| | | |
Collapse
|