51
|
Chetverina D, Aoki T, Erokhin M, Georgiev P, Schedl P. Making connections: insulators organize eukaryotic chromosomes into independent cis-regulatory networks. Bioessays 2013; 36:163-72. [PMID: 24277632 DOI: 10.1002/bies.201300125] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Insulators play a central role in subdividing the chromosome into a series of discrete topologically independent domains and in ensuring that enhancers and silencers contact their appropriate target genes. In this review we first discuss the general characteristics of insulator elements and their associated protein factors. A growing collection of insulator proteins have been identified including a family of proteins whose expression is developmentally regulated. We next consider several unexpected discoveries that require us to completely rethink how insulators function (and how they can best be assayed). These discoveries also require a reevaluation of how insulators might restrict or orchestrate (by preventing or promoting) interactions between regulatory elements and their target genes. We conclude by connecting these new insights into the mechanisms of insulator action to dynamic changes in the three-dimensional topology of the chromatin fiber and the generation of specific patterns of gene activity during development and differentiation.
Collapse
Affiliation(s)
- Darya Chetverina
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | | | | | | | | |
Collapse
|
52
|
Nolen LD, Boyle S, Ansari M, Pritchard E, Bickmore WA. Regional chromatin decompaction in Cornelia de Lange syndrome associated with NIPBL disruption can be uncoupled from cohesin and CTCF. Hum Mol Genet 2013; 22:4180-93. [PMID: 23760082 PMCID: PMC3781641 DOI: 10.1093/hmg/ddt265] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Accepted: 06/03/2013] [Indexed: 01/09/2023] Open
Abstract
Cornelia de Lange syndrome (CdLS) is a developmental disorder caused by mutations in NIPBL, a protein which has functionally been associated with the cohesin complex. Mutations in core cohesin complex components have also been reported in individuals with CdLS-like phenotypes. In addition to its role in sister chromatid cohesion, cohesin is thought to play a role in regulating gene expression during development. The mechanism of this gene regulation remains unclear, but NIPBL and cohesin have been reported to affect long-range chromosomal interactions, both independently and through interactions with CTCF. We used fluorescence in situ hybridization to investigate whether the disruption of NIPBL affects chromosome architecture. We show that cells from CdLS patients exhibit visible chromatin decompaction, that is most pronounced across gene-rich regions of the genome. Cells carrying mutations predicted to have a more severe effect on NIPBL function show more extensive chromatin decompaction than those carrying milder mutations. This cellular phenotype was reproduced in normal cells depleted for NIPBL with siRNA, but was not seen following the knockdown of either the cohesin component SMC3, or CTCF. We conclude that NIPBL has a function in modulating chromatin architecture, particularly for gene-rich areas of the chromosome, that is not dependent on SMC3/cohesin or CTCF, raising the possibility that the aetiology of disorders associated with the mutation of core cohesin components is distinct from that associated with the disruption of NIPBL itself in classical CdLS.
Collapse
Affiliation(s)
| | | | | | | | - Wendy A. Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| |
Collapse
|
53
|
The Drosophila enhancer of split gene complex: architecture and coordinate regulation by notch, cohesin, and polycomb group proteins. G3-GENES GENOMES GENETICS 2013; 3:1785-94. [PMID: 23979932 PMCID: PMC3789803 DOI: 10.1534/g3.113.007534] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The cohesin protein complex functionally interacts with Polycomb group (PcG) silencing proteins to control expression of several key developmental genes, such as the Drosophila Enhancer of split gene complex [E(spl)-C]. The E(spl)-C contains 12 genes that inhibit neural development. In a cell line derived from the central nervous system, cohesin and the PRC1 PcG protein complex bind and repress E (spl)-C transcription, but the repression mechanisms are unknown. The genes in the E(spl)-C are directly activated by the Notch receptor. Here we show that depletion of cohesin or PRC1 increases binding of the Notch intracellular fragment to genes in the E(spl)-C, correlating with increased transcription. The increased transcription likely reflects both direct effects of cohesin and PRC1 on RNA polymerase activity at the E(spl)-C, and increased expression of Notch ligands. By chromosome conformation capture we find that the E(spl)-C is organized into a self-interactive architectural domain that is co-extensive with the region that binds cohesin and PcG complexes. The self-interactive architecture is formed independently of cohesin or PcG proteins. We posit that the E(spl)-C architecture dictates where cohesin and PcG complexes bind and act when they are recruited by as yet unidentified factors, thereby controlling the E(spl)-C as a coordinated domain.
Collapse
|
54
|
Abstract
Cohesin is a ring-shaped complex, conserved from yeast to human, that was named for its ability to mediate sister chromatid cohesion. This function is essential for chromosome segregation in both mitosis and meiosis, and also for DNA repair. In addition, more recent studies have shown that cohesin influences gene expression during development through mechanisms that likely involve DNA looping and interactions with several transcriptional regulators. Here, we provide an overview of how cohesin functions, highlighting its role both in development and in disease.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | | | |
Collapse
|
55
|
Mehta GD, Kumar R, Srivastava S, Ghosh SK. Cohesin: functions beyond sister chromatid cohesion. FEBS Lett 2013; 587:2299-312. [PMID: 23831059 DOI: 10.1016/j.febslet.2013.06.035] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Revised: 06/23/2013] [Accepted: 06/24/2013] [Indexed: 11/22/2022]
Abstract
Faithful segregation of chromosomes during mitosis and meiosis is the cornerstone process of life. Cohesin, a multi-protein complex conserved from yeast to human, plays a crucial role in this process by keeping the sister chromatids together from S-phase to anaphase onset during mitosis and meiosis. Technological advancements have discovered myriad functions of cohesin beyond its role in sister chromatid cohesion (SCC), such as transcription regulation, DNA repair, chromosome condensation, homolog pairing, monoorientation of sister kinetochore, etc. Here, we have focused on such functions of cohesin that are either independent of or dependent on its canonical role of sister chromatid cohesion. At the end, human diseases associated with malfunctioning of cohesin, albeit with mostly unperturbed sister chromatid cohesion, have been discussed.
Collapse
Affiliation(s)
- Gunjan D Mehta
- Department of Biosciences and Bioengineering, Wadhwani Research Centre for Biosciences and Bioengineering, Indian Institute of Technology-Bombay, Mumbai 400076, India
| | | | | | | |
Collapse
|
56
|
Shih HY, Krangel MS. Chromatin architecture, CCCTC-binding factor, and V(D)J recombination: managing long-distance relationships at antigen receptor loci. THE JOURNAL OF IMMUNOLOGY 2013; 190:4915-21. [PMID: 23645930 DOI: 10.4049/jimmunol.1300218] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The rearrangement of T and B lymphocyte Ag receptor loci occurs within a highly complex chromosomal environment and is orchestrated through complex mechanisms. During the past decade, a large body of literature has highlighted the significance of chromatin architecture at Ag receptor loci in supporting the genomic assembly process: in preparation for recombination, these loci tend to contract and form multiple loops that shorten the distances between gene segments and facilitate recombination events. CCCTC-binding factor, CTCF, has received much attention in this regard since it has emerged as an important regulator of chromatin organization and transcription. In this review, we summarize recent work outlining conformational dynamics at Ag receptor loci during lymphocyte development and we discuss the role of CTCF in Ag receptor locus conformation and repertoire development.
Collapse
Affiliation(s)
- Han-Yu Shih
- Department of Immunology, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
57
|
Smallwood A, Ren B. Genome organization and long-range regulation of gene expression by enhancers. Curr Opin Cell Biol 2013; 25:387-94. [PMID: 23465541 PMCID: PMC4180870 DOI: 10.1016/j.ceb.2013.02.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 02/05/2013] [Indexed: 12/26/2022]
Abstract
It is now well accepted that cell-type specific gene regulation is under the purview of enhancers. Great strides have been made recently to characterize and identify enhancers both genetically and epigenetically for multiple cell types and species, but efforts have just begun to link enhancers to their target promoters. Mapping these interactions and understanding how the 3D landscape of the genome constrains such interactions is fundamental to our understanding of mammalian gene regulation. Here, we review recent progress in mapping long-range regulatory interactions in mammalian genomes, focusing on transcriptional enhancers and chromatin organization principles.
Collapse
|
58
|
Dorsett D, Merkenschlager M. Cohesin at active genes: a unifying theme for cohesin and gene expression from model organisms to humans. Curr Opin Cell Biol 2013; 25:327-33. [PMID: 23465542 PMCID: PMC3691354 DOI: 10.1016/j.ceb.2013.02.003] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Accepted: 02/06/2013] [Indexed: 01/28/2023]
Abstract
Cohesin is an evolutionarily ancient multisubunit protein complex with a deeply conserved function: it provides cohesion between sister chromatids from the time of DNA replication in S-phase until mitosis. This cohesion facilitates repair of damage that occurs during DNA replication, and, crucially, enforces faithful segregation of chromosomes upon cell division. Cohesin also influences gene expression, and relative to sister chromatid cohesion, gene expression is exquisitely sensitive to moderate changes in cohesin activity. Early studies revealed differences in cohesin's roles in gene expression between various organisms. In all organisms examined, however, cohesin marks a subset of active genes. This review focuses on the roles of cohesin at active genes, and to what extent these roles are conserved between organisms.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, 63104, USA
| | - Matthias Merkenschlager
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Faculty of Medicine, Imperial College London, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
59
|
Holwerda SJB, de Laat W. CTCF: the protein, the binding partners, the binding sites and their chromatin loops. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120369. [PMID: 23650640 PMCID: PMC3682731 DOI: 10.1098/rstb.2012.0369] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
CTCF has it all. The transcription factor binds to tens of thousands of genomic sites, some tissue-specific, others ultra-conserved. It can act as a transcriptional activator, repressor and insulator, and it can pause transcription. CTCF binds at chromatin domain boundaries, at enhancers and gene promoters, and inside gene bodies. It can attract many other transcription factors to chromatin, including tissue-specific transcriptional activators, repressors, cohesin and RNA polymerase II, and it forms chromatin loops. Yet, or perhaps therefore, CTCF's exact function at a given genomic site is unpredictable. It appears to be determined by the associated transcription factors, by the location of the binding site relative to the transcriptional start site of a gene, and by the site's engagement in chromatin loops with other CTCF-binding sites, enhancers or gene promoters. Here, we will discuss genome-wide features of CTCF binding events, as well as locus-specific functions of this remarkable transcription factor.
Collapse
Affiliation(s)
| | - Wouter de Laat
- Hubrecht Institute-KNAW and University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| |
Collapse
|
60
|
Hughes JR, Lower KM, Dunham I, Taylor S, De Gobbi M, Sloane-Stanley JA, McGowan S, Ragoussis J, Vernimmen D, Gibbons RJ, Higgs DR. High-resolution analysis of cis-acting regulatory networks at the α-globin locus. Philos Trans R Soc Lond B Biol Sci 2013; 368:20120361. [PMID: 23650635 DOI: 10.1098/rstb.2012.0361] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
We have combined the circular chromosome conformation capture protocol with high-throughput, genome-wide sequence analysis to characterize the cis-acting regulatory network at a single locus. In contrast to methods which identify large interacting regions (10-1000 kb), the 4C approach provides a comprehensive, high-resolution analysis of a specific locus with the aim of defining, in detail, the cis-regulatory elements controlling a single gene or gene cluster. Using the human α-globin locus as a model, we detected all known local and long-range interactions with this gene cluster. In addition, we identified two interactions with genes located 300 kb (NME4) and 625 kb (FAM173a) from the α-globin cluster.
Collapse
Affiliation(s)
- Jim R Hughes
- MRC Molecular Haematology Unit, Weatherall Institute of Molecular Medicine, Oxford University, Oxford OX3 9DS, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Schaaf CA, Kwak H, Koenig A, Misulovin Z, Gohara DW, Watson A, Zhou Y, Lis JT, Dorsett D. Genome-wide control of RNA polymerase II activity by cohesin. PLoS Genet 2013; 9:e1003382. [PMID: 23555293 PMCID: PMC3605059 DOI: 10.1371/journal.pgen.1003382] [Citation(s) in RCA: 89] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Accepted: 01/30/2013] [Indexed: 11/22/2022] Open
Abstract
Cohesin is a well-known mediator of sister chromatid cohesion, but it also influences gene expression and development. These non-canonical roles of cohesin are not well understood, but are vital: gene expression and development are altered by modest changes in cohesin function that do not disrupt chromatid cohesion. To clarify cohesin's roles in transcription, we measured how cohesin controls RNA polymerase II (Pol II) activity by genome-wide chromatin immunoprecipitation and precision global run-on sequencing. On average, cohesin-binding genes have more transcriptionally active Pol II and promoter-proximal Pol II pausing than non-binding genes, and are more efficient, producing higher steady state levels of mRNA per transcribing Pol II complex. Cohesin depletion frequently decreases gene body transcription but increases pausing at cohesin-binding genes, indicating that cohesin often facilitates transition of paused Pol II to elongation. In many cases, this likely reflects a role for cohesin in transcriptional enhancer function. Strikingly, more than 95% of predicted extragenic enhancers bind cohesin, and cohesin depletion can reduce their association with Pol II, indicating that cohesin facilitates enhancer-promoter contact. Cohesin depletion decreases the levels of transcriptionally engaged Pol II at the promoters of most genes that don't bind cohesin, suggesting that cohesin controls expression of one or more broadly acting general transcription factors. The multiple transcriptional roles of cohesin revealed by these studies likely underlie the growth and developmental deficits caused by minor changes in cohesin activity.
Collapse
Affiliation(s)
- Cheri A. Schaaf
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Hojoong Kwak
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Amanda Koenig
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - David W. Gohara
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Audrey Watson
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| | - Yanjiao Zhou
- The Genome Center, Department of Genetics, Washington University in St. Louis School of Medicine, Saint Louis, Missouri, United States of America
| | - John T. Lis
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, United States of America
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, United States of America
| |
Collapse
|
62
|
Remeseiro S, Losada A. Cohesin, a chromatin engagement ring. Curr Opin Cell Biol 2013; 25:63-71. [PMID: 23219370 DOI: 10.1016/j.ceb.2012.10.013] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/18/2012] [Indexed: 12/15/2022]
Abstract
Cohesin is a four subunit complex, conserved from yeast to man, with the ability to hold together two DNA segments within its ring-shaped structure. When the two segments belong to sister chromatids, cohesin is mediating cohesion, which is essential for chromosome segregation in mitosis and meiosis and for homologous DNA repair. When the two DNA segments are in the same chromatid, a loop is formed. These chromatin loops are emerging as a mechanism for controlling the communication between enhancers and promoters and thereby regulate gene expression. They also facilitate DNA replication and recombination. Given all its essential functions, it is not surprising that mutations in cohesin and its interacting factors have been associated to cancer and developmental syndromes known as cohesinopathies.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | | |
Collapse
|
63
|
McEwan MV, Eccles MR, Horsfield JA. Cohesin is required for activation of MYC by estradiol. PLoS One 2012; 7:e49160. [PMID: 23145106 PMCID: PMC3493498 DOI: 10.1371/journal.pone.0049160] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/09/2012] [Indexed: 12/13/2022] Open
Abstract
Cohesin is best known as a multi-subunit protein complex that holds together replicated sister chromatids from S phase until G2. Cohesin also has an important role in the regulation of gene expression. We previously demonstrated that the cohesin complex positively regulates expression of the oncogene MYC. Cell proliferation driven by MYC contributes to many cancers, including breast cancer. The MYC oncogene is estrogen-responsive and a transcriptional target of estrogen receptor alpha (ERα). Estrogen-induced cohesin binding sites coincide with ERα binding at the MYC locus, raising the possibility that cohesin and ERα combine actions to regulate MYC transcription. The objective of this study was to investigate a putative role for cohesin in estrogen induction of MYC expression. We found that siRNA-targeted depletion of a cohesin subunit, RAD21, decreased MYC expression in ER-positive (MCF7 and T47D) and ER-negative (MDA-MB-231) breast cancer cell lines. In addition, RAD21 depletion blocked estradiol-mediated activation of MYC in ER-positive cell lines, and decreased ERα binding to estrogen response elements (EREs) upstream of MYC, without affecting total ERα levels. Treatment of MCF7 cells with estradiol caused enrichment of RAD21 binding at upstream enhancers and at the P2 promoter of MYC. Enriched binding at all sites, except the P2 promoter, was dependent on ERα. Since RAD21 depletion did not affect transcription driven by an exogenous reporter construct containing a naked ERE, chromatin-based mechanisms are likely to be involved in cohesin-dependent MYC transcription. This study demonstrates that ERα activation of MYC can be modulated by cohesin. Together, these results demonstrate a novel role for cohesin in estrogen-mediated regulation of MYC and the first evidence that cohesin plays a role in ERα binding.
Collapse
Affiliation(s)
- Miranda V. McEwan
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Michael R. Eccles
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | - Julia A. Horsfield
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| |
Collapse
|
64
|
Marsman J, Horsfield JA. Long distance relationships: enhancer-promoter communication and dynamic gene transcription. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2012; 1819:1217-27. [PMID: 23124110 DOI: 10.1016/j.bbagrm.2012.10.008] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 10/18/2012] [Accepted: 10/22/2012] [Indexed: 11/27/2022]
Abstract
The three-dimensional regulation of gene transcription involves loop formation between enhancer and promoter elements, controlling spatiotemporal gene expression in multicellular organisms. Enhancers are usually located in non-coding DNA and can activate gene transcription by recruiting transcription factors, chromatin remodeling factors and RNA Polymerase II. Research over the last few years has revealed that enhancers have tell-tale characteristics that facilitate their detection by several approaches, although the hallmarks of enhancers are not always uniform. Enhancers likely play an important role in the activation of genes by functioning as a primary point of contact for transcriptional activators, and by making physical contact with gene promoters often by means of a chromatin loop. Although numerous transcriptional regulators participate in the formation of chromatin loops that bring enhancers into proximity with promoters, the mechanism(s) of enhancer-promoter connectivity remain enigmatic. Here we discuss enhancer function, review some of the many proteins shown to be involved in establishing enhancer-promoter loops, and describe the dynamics of enhancer-promoter contacts during development, differentiation and in specific cell types.
Collapse
Affiliation(s)
- Judith Marsman
- Department of Pathology, The University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
65
|
Holwerda S, de Laat W. Chromatin loops, gene positioning, and gene expression. Front Genet 2012; 3:217. [PMID: 23087710 PMCID: PMC3473233 DOI: 10.3389/fgene.2012.00217] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/01/2012] [Indexed: 01/09/2023] Open
Abstract
Technological developments and intense research over the last years have led to a better understanding of the 3D structure of the genome and its influence on genome function inside the cell nucleus. We will summarize topological studies performed on four model gene loci: the α- and β-globin gene loci, the antigen receptor loci, the imprinted H19-Igf2 locus and the Hox gene clusters. Collectively, these studies show that regulatory DNA sequences physically contact genes to control their transcription. Proteins set up the 3D configuration of the genome and we will discuss the roles of the key structural organizers CTCF and cohesin, the nuclear lamina and the transcription machinery. Finally, genes adopt non-random positions in the nuclear interior. We will review studies on gene positioning and propose that cell-specific genome conformations can juxtapose a regulatory sequence on one chromosome to a responsive gene on another chromosome to cause altered gene expression in subpopulations of cells.
Collapse
Affiliation(s)
- Sjoerd Holwerda
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, University Medical Center Utrecht Utrecht, Netherlands
| | | |
Collapse
|
66
|
Palstra RJ, Grosveld F. Transcription factor binding at enhancers: shaping a genomic regulatory landscape in flux. Front Genet 2012; 3:195. [PMID: 23060900 PMCID: PMC3460357 DOI: 10.3389/fgene.2012.00195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Accepted: 09/12/2012] [Indexed: 12/26/2022] Open
Abstract
The mammalian genome is packed tightly in the nucleus of the cell. This packing is primarily facilitated by histone proteins and results in an ordered organization of the genome in chromosome territories that can be roughly divided in heterochromatic and euchromatic domains. On top of this organization several distinct gene regulatory elements on the same chromosome or other chromosomes are thought to dynamically communicate via chromatin looping. Advances in genome-wide technologies have revealed the existence of a plethora of these regulatory elements in various eukaryotic genomes. These regulatory elements are defined by particular in vitro assays as promoters, enhancers, insulators, and boundary elements. However, recent studies indicate that the in vivo distinction between these elements is often less strict. Regulatory elements are bound by a mixture of common and lineage-specific transcription factors which mediate the long-range interactions between these elements. Inappropriate modulation of the binding of these transcription factors can alter the interactions between regulatory elements, which in turn leads to aberrant gene expression with disease as an ultimate consequence. Here we discuss the bi-modal behavior of regulatory elements that act in cis (with a focus on enhancers), how their activity is modulated by transcription factor binding and the effect this has on gene regulation.
Collapse
Affiliation(s)
- Robert-Jan Palstra
- Department of Cell Biology, Erasmus MC University Medical Center Rotterdam, Netherlands
| | | |
Collapse
|
67
|
Horsfield JA, Print CG, Mönnich M. Diverse developmental disorders from the one ring: distinct molecular pathways underlie the cohesinopathies. Front Genet 2012; 3:171. [PMID: 22988450 PMCID: PMC3439829 DOI: 10.3389/fgene.2012.00171] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2012] [Accepted: 08/17/2012] [Indexed: 11/13/2022] Open
Abstract
The multi-subunit protein complex, cohesin, is responsible for sister chromatid cohesion during cell division. The interaction of cohesin with DNA is controlled by a number of additional regulatory proteins. Mutations in cohesin, or its regulators, cause a spectrum of human developmental syndromes known as the “cohesinopathies.” Cohesinopathy disorders include Cornelia de Lange Syndrome and Roberts Syndrome. The discovery of novel roles for chromatid cohesion proteins in regulating gene expression led to the idea that cohesinopathies are caused by dysregulation of multiple genes downstream of mutations in cohesion proteins. Consistent with this idea, Drosophila, mouse, and zebrafish cohesinopathy models all show altered expression of developmental genes. However, there appears to be incomplete overlap among dysregulated genes downstream of mutations in different components of the cohesion apparatus. This is surprising because mutations in all cohesion proteins would be predicted to affect cohesin’s roles in cell division and gene expression in similar ways. Here we review the differences and similarities between genetic pathways downstream of components of the cohesion apparatus, and discuss how such differences might arise, and contribute to the spectrum of cohesinopathy disorders. We propose that mutations in different elements of the cohesion apparatus have distinct developmental outcomes that can be explained by sometimes subtly different molecular effects.
Collapse
Affiliation(s)
- Julia A Horsfield
- Department of Pathology, Dunedin School of Medicine, The University of Otago Dunedin, New Zealand
| | | | | |
Collapse
|
68
|
Chen HS, Wikramasinghe P, Showe L, Lieberman PM. Cohesins repress Kaposi's sarcoma-associated herpesvirus immediate early gene transcription during latency. J Virol 2012; 86:9454-64. [PMID: 22740398 PMCID: PMC3416178 DOI: 10.1128/jvi.00787-12] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/14/2012] [Indexed: 12/14/2022] Open
Abstract
Chromatin-organizing factors such as CTCF and cohesins have been implicated in the control of complex viral regulatory programs. We investigated the role of CTCF and cohesins in the control of the switch from latency to the lytic cycle for Kaposi's sarcoma-associated herpesvirus (KSHV). We found that cohesin subunits but not CTCF are required for the repression of KSHV immediate early gene transcription. Depletion of the cohesin subunits Rad21, SMC1, and SMC3 resulted in lytic cycle gene transcription and viral DNA replication. In contrast, depletion of CTCF failed to induce lytic transcription or DNA replication. Chromatin immunoprecipitation with high-throughput sequencing (ChIP-Seq) revealed that cohesins and CTCF bound to several sites within the immediate early control region for ORF50 and to more distal 5' sites that also regulate the divergently transcribed ORF45-ORF46-ORF47 gene cluster. Rad21 depletion led to a robust increase in ORF45, ORF46, ORF47, and ORF50 transcripts, with similar kinetics to that observed with chemical induction by sodium butyrate. During latency, the chromatin between the ORF45 and ORF50 transcription start sites was enriched in histone H3K4me3, with elevated H3K9ac at the ORF45 promoter and elevated H3K27me3 at the ORF50 promoter. A paused form of RNA polymerase II (Pol II) was loosely associated with the ORF45 promoter region during latency but was converted to an active elongating form upon reactivation induced by Rad21 depletion. Butyrate treatment caused a rapid dissociation of cohesins and loss of CTCF binding at the immediate early gene locus, suggesting that cohesins may be a direct target of butyrate-mediated lytic induction. Our findings implicate cohesins as a major repressor of KSHV lytic gene activation and show that they function coordinately with CTCF to regulate the switch between latent and lytic gene activity.
Collapse
|
69
|
Abstract
Long-range interactions between transcription regulatory elements play an important role in gene activation, epigenetic silencing, and chromatin organization. Transcriptional activation or repression of developmentally regulated genes is often accomplished through tissue-specific chromatin architecture and dynamic localization between active transcription factories and repressive Polycomb bodies. However, the mechanisms underlying the structural organization of chromatin and the coordination of physical interactions are not fully understood. Insulators and Polycomb group proteins form highly conserved multiprotein complexes that mediate functional long-range interactions and have proposed roles in nuclear organization. In this review, we explore recent findings that have broadened our understanding of the function of these proteins and provide an integrative model for the roles of insulators in nuclear organization.
Collapse
Affiliation(s)
- Kevin Van Bortle
- Department of Biology, Emory University, Atlanta, Georgia 30322, USA
| | | |
Collapse
|
70
|
Haering CH, Jessberger R. Cohesin in determining chromosome architecture. Exp Cell Res 2012; 318:1386-93. [PMID: 22472347 DOI: 10.1016/j.yexcr.2012.03.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2012] [Revised: 03/16/2012] [Accepted: 03/16/2012] [Indexed: 12/27/2022]
Abstract
Cells use ring-like structured protein complexes for various tasks in DNA dynamics. The tripartite cohesin ring is particularly suited to determine chromosome architecture, for it is large and dynamic, may acquire different forms, and is involved in several distinct nuclear processes. This review focuses on cohesin's role in structuring chromosomes during mitotic and meiotic cell divisions and during interphase.
Collapse
Affiliation(s)
- Christian H Haering
- Cell Biology & Biophysics Unit, European Molecular Biology Laboratory, Heidelberg, Germany.
| | | |
Collapse
|
71
|
Kim A, Dean A. Chromatin loop formation in the β-globin locus and its role in globin gene transcription. Mol Cells 2012; 34:1-5. [PMID: 22610406 PMCID: PMC3887778 DOI: 10.1007/s10059-012-0048-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 04/16/2012] [Accepted: 04/18/2012] [Indexed: 01/13/2023] Open
Abstract
Although linearly distant along mouse chromosome 7 and human chromosome 11, the mammalian β-globin gene is located in close proximity to the upstream locus control region enhancer when it is actively transcribed in the nuclear chromatin environment of erythroid cells. This organization is thought to generate a chromatin loop between the LCR, a powerful enhancer, and active globin genes by extruding intervening regions containing inactive genes. Loop formation in the β-globin locus requires erythroid specific transcriptional activators, co-factors and insulator-related factors. Chromatin structural features such as histone modifications and DNase I hypersensitive site formation as well as nuclear localization are all involved in loop formation in the locus through diverse mechanisms. Current models envision the formation of the loop as a necessary step in globin gene transcription activation, but this has not been definitively established and many questions remain about what is necessary to achieve globin gene transcription activation.
Collapse
Affiliation(s)
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, NIDDK, NIH, Bethesda, MD 20892,
USA
| |
Collapse
|
72
|
Remeseiro S, Cuadrado A, Gómez-López G, Pisano DG, Losada A. A unique role of cohesin-SA1 in gene regulation and development. EMBO J 2012; 31:2090-102. [PMID: 22415368 PMCID: PMC3343463 DOI: 10.1038/emboj.2012.60] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2011] [Accepted: 02/20/2012] [Indexed: 01/21/2023] Open
Abstract
Vertebrates have two cohesin complexes that consist of Smc1, Smc3, Rad21/Scc1 and either SA1 or SA2, but their functional specificity is unclear. Mouse embryos lacking SA1 show developmental delay and die before birth. Comparison of the genome-wide distribution of cohesin in wild-type and SA1-null cells reveals that SA1 is largely responsible for cohesin accumulation at promoters and at sites bound by the insulator protein CTCF. As a consequence, ablation of SA1 alters transcription of genes involved in biological processes related to Cornelia de Lange syndrome (CdLS), a genetic disorder linked to dysfunction of cohesin. We show that the presence of cohesin-SA1 at the promoter of myc and of protocadherin genes positively regulates their expression, a task that cannot be assumed by cohesin-SA2. Lack of SA1 also alters cohesin-binding pattern along some gene clusters and leads to dysregulation of genes within. We hypothesize that impaired cohesin-SA1 function in gene expression underlies the molecular aetiology of CdLS.
Collapse
Affiliation(s)
- Silvia Remeseiro
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Cuadrado
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Gonzalo Gómez-López
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - David G Pisano
- Bioinformatics Unit, Structural Biology and Biocomputing Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| | - Ana Losada
- Chromosome Dynamics Group, Molecular Oncology Programme, Spanish National Cancer Research Centre (CNIO), Madrid, Spain
| |
Collapse
|
73
|
Sofueva S, Hadjur S. Cohesin-mediated chromatin interactions--into the third dimension of gene regulation. Brief Funct Genomics 2012; 11:205-16. [PMID: 22278832 DOI: 10.1093/bfgp/elr048] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A comprehensive description of the complex three-dimensional organization of our genome and of the protein complexes mediating this organization is required in order to fully appreciate the regulation of gene activity contained within it. This review will focus on the emerging role of cohesin proteins in the regulation of gene expression and specifically their role in mediating chromatin interactions. Cohesin complexes are essential for cell division, and it is becoming increasingly clear that these adaptable structures perform a wide variety of chromosomal functions during all parts of the cell cycle. We will review recent literature which provides evidence that cohesin complexes function during interphase to facilitate interactions between long-distance DNA elements important for appropriate gene activity. It seems probable that the role for cohesins in mediating chromatin loops at particular loci is of general importance in defining global genome organization.
Collapse
|
74
|
Abstract
The cohesin complex, named for its key role in sister chromatid cohesion, also plays critical roles in gene regulation and DNA repair. It performs all three functions in single cell eukaryotes such as yeasts, and in higher organisms such as man. Minor disruption of cohesin function has significant consequences for human development, even in the absence of measurable effects on chromatid cohesion or chromosome segregation. Here we survey the roles of cohesin in gene regulation and DNA repair, and how these functions vary from yeast to man.
Collapse
Affiliation(s)
- Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA.
| | | |
Collapse
|
75
|
Seitan VC, Merkenschlager M. Cohesin and chromatin organisation. Curr Opin Genet Dev 2012; 22:93-100. [PMID: 22155130 DOI: 10.1016/j.gde.2011.11.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2011] [Accepted: 11/10/2011] [Indexed: 01/20/2023]
Abstract
Cohesin defines the topology of chromosomes in mitosis and meiosis by holding sister chromatids together; more recently a role for cohesin in chromatin organisation and gene expression in interphase has emerged.
Collapse
Affiliation(s)
- Vlad C Seitan
- Lymphocyte Development Group, MRC Clinical Sciences Centre, Imperial College London, London W12 0NN, UK.
| | | |
Collapse
|
76
|
Volpi SA, Verma-Gaur J, Hassan R, Ju Z, Roa S, Chatterjee S, Werling U, Hou H, Will B, Steidl U, Scharff M, Edelman W, Feeney AJ, Birshtein BK. Germline deletion of Igh 3' regulatory region elements hs 5, 6, 7 (hs5-7) affects B cell-specific regulation, rearrangement, and insulation of the Igh locus. THE JOURNAL OF IMMUNOLOGY 2012; 188:2556-66. [PMID: 22345664 DOI: 10.4049/jimmunol.1102763] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Regulatory elements located within an ∼28-kb region 3' of the Igh gene cluster (3' regulatory region) are required for class switch recombination and for high levels of IgH expression in plasma cells. We previously defined novel DNase I hypersensitive sites (hs) 5, 6, 7 immediately downstream of this region. The hs 5-7 region (hs5-7) contains a high density of binding sites for CCCTC-binding factor (CTCF), a zinc finger protein associated with mammalian insulator activity, and is an anchor for interactions with CTCF sites flanking the D(H) region. To test the function of hs5-7, we generated mice with an 8-kb deletion encompassing all three hs elements. B cells from hs5-7 knockout (KO) (hs5-7KO) mice showed a modest increase in expression of the nearest downstream gene. In addition, Igh alleles in hs5-7KO mice were in a less contracted configuration compared with wild-type Igh alleles and showed a 2-fold increase in the usage of proximal V(H)7183 gene families. Hs5-7KO mice were essentially indistinguishable from wild-type mice in B cell development, allelic regulation, class switch recombination, and chromosomal looping. We conclude that hs5-7, a high-density CTCF-binding region at the 3' end of the Igh locus, impacts usage of V(H) regions as far as 500 kb away.
Collapse
Affiliation(s)
- Sabrina A Volpi
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Barkess G, West AG. Chromatin insulator elements: establishing barriers to set heterochromatin boundaries. Epigenomics 2012; 4:67-80. [PMID: 22332659 DOI: 10.2217/epi.11.112] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Epigenomic profiling has revealed that substantial portions of genomes in higher eukaryotes are organized into extensive domains of transcriptionally repressive chromatin. The boundaries of repressive chromatin domains can be fixed by DNA elements known as barrier insulators, to both shield neighboring gene expression and to maintain the integrity of chromosomal silencing. Here, we examine the current progress in identifying vertebrate barrier elements and their binding factors. We overview the design of the reporter assays used to define enhancer-blocking and barrier insulators. We look at the mechanisms vertebrate barrier proteins, such as USF1 and VEZF1, employ to counteract Polycomb- and heterochromatin-associated repression. We also undertake a critical analysis of whether CTCF could also act as a barrier protein. There is good evidence that barrier elements in vertebrates can form repressive chromatin domain boundaries. Future studies will determine whether barriers are frequently used to define repressive domain boundaries in vertebrates.
Collapse
Affiliation(s)
- Gráinne Barkess
- Institute of Cancer Sciences, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, Scotland, UK
| | | |
Collapse
|
78
|
Rhodes JM, McEwan M, Horsfield JA. Gene regulation by cohesin in cancer: is the ring an unexpected party to proliferation? Mol Cancer Res 2011; 9:1587-607. [PMID: 21940756 DOI: 10.1158/1541-7786.mcr-11-0382] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Cohesin is a multisubunit protein complex that plays an integral role in sister chromatid cohesion, DNA repair, and meiosis. Of significance, both over- and underexpression of cohesin are associated with cancer. It is generally believed that cohesin dysregulation contributes to cancer by leading to aneuploidy or chromosome instability. For cancers with loss of cohesin function, this idea seems plausible. However, overexpression of cohesin in cancer appears to be more significant for prognosis than its loss. Increased levels of cohesin subunits correlate with poor prognosis and resistance to drug, hormone, and radiation therapies. However, if there is sufficient cohesin for sister chromatid cohesion, overexpression of cohesin subunits should not obligatorily lead to aneuploidy. This raises the possibility that excess cohesin promotes cancer by alternative mechanisms. Over the last decade, it has emerged that cohesin regulates gene transcription. Recent studies have shown that gene regulation by cohesin contributes to stem cell pluripotency and cell differentiation. Of importance, cohesin positively regulates the transcription of genes known to be dysregulated in cancer, such as Runx1, Runx3, and Myc. Furthermore, cohesin binds with estrogen receptor α throughout the genome in breast cancer cells, suggesting that it may be involved in the transcription of estrogen-responsive genes. Here, we will review evidence supporting the idea that the gene regulation function of cohesin represents a previously unrecognized mechanism for the development of cancer.
Collapse
Affiliation(s)
- Jenny M Rhodes
- Department of Pathology, Dunedin School of Medicine, University of Otago, Dunedin, New Zealand
| | | | | |
Collapse
|
79
|
Fay A, Misulovin Z, Li J, Schaaf CA, Gause M, Gilmour DS, Dorsett D. Cohesin selectively binds and regulates genes with paused RNA polymerase. Curr Biol 2011; 21:1624-34. [PMID: 21962715 PMCID: PMC3193539 DOI: 10.1016/j.cub.2011.08.036] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Revised: 07/07/2011] [Accepted: 08/16/2011] [Indexed: 11/24/2022]
Abstract
BACKGROUND The cohesin complex mediates sister chromatid cohesion and regulates gene transcription. Prior studies show that cohesin preferentially binds and regulates genes that control growth and differentiation and that even mild disruption of cohesin function alters development. Here we investigate how cohesin specifically recognizes and regulates genes that control development in Drosophila. RESULTS Genome-wide analyses show that cohesin selectively binds genes in which RNA polymerase II (Pol II) pauses just downstream of the transcription start site. These genes often have GAGA factor (GAF) binding sites 100 base pairs (bp) upstream of the start site, and GT dinucleotide repeats 50 to 800 bp downstream in the plus strand. They have low levels of histone H3 lysine 36 trimethylation (H3K36me3) associated with transcriptional elongation, even when highly transcribed. Cohesin depletion does not reduce polymerase pausing, in contrast to depletion of the NELF (negative elongation factor) pausing complex. Cohesin, NELF, and Spt5 pausing and elongation factor knockdown experiments indicate that cohesin does not inhibit binding of polymerase to promoters or physically block transcriptional elongation, but at genes that it strongly represses, it hinders transition of paused polymerase to elongation at a step distinct from those controlled by Spt5 and NELF. CONCLUSIONS Our findings argue that cohesin and pausing factors are recruited independently to the same genes, perhaps by GAF and the GT repeats, and that their combined action determines the level of actively elongating RNA polymerase.
Collapse
Affiliation(s)
- Avery Fay
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA 63108
| | - Ziva Misulovin
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA 63108
| | - Jian Li
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA 16802
| | - Cheri A. Schaaf
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA 63108
| | - Maria Gause
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA 63108
| | - David S. Gilmour
- Center for Eukaryotic Gene Regulation, Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA 16802
| | - Dale Dorsett
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA 63108
| |
Collapse
|
80
|
Chien R, Zeng W, Ball AR, Yokomori K. Cohesin: a critical chromatin organizer in mammalian gene regulation. Biochem Cell Biol 2011; 89:445-58. [PMID: 21851156 PMCID: PMC4056987 DOI: 10.1139/o11-039] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cohesins are evolutionarily conserved essential multi-protein complexes that are important for higher-order chromatin organization. They play pivotal roles in the maintenance of genome integrity through mitotic chromosome regulation, DNA repair and replication, as well as gene regulation critical for proper development and cellular differentiation. In this review, we will discuss the multifaceted functions of mammalian cohesins and their apparent functional hierarchy in the cell, with particular focus on their actions in gene regulation and their relevance to human developmental disorders.
Collapse
Affiliation(s)
- Richard Chien
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Weihua Zeng
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Alexander R. Ball
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
81
|
Ju Z, Chatterjee S, Birshtein BK. Interaction between the immunoglobulin heavy chain 3' regulatory region and the IgH transcription unit during B cell differentiation. Mol Immunol 2011; 49:297-303. [PMID: 21945019 DOI: 10.1016/j.molimm.2011.08.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 08/26/2011] [Accepted: 08/30/2011] [Indexed: 11/29/2022]
Abstract
The immunoglobulin heavy (Igh) chain locus is subject to precisely regulated processes, such as variable region gene formation through recombination of variable (V(H)), diversity (D(H)), and joining (J(H)) segments, class switching and somatic hypermutation. The 3' regulatory region (3' RR) is a key regulator of the Igh locus, and, as revealed by deletions in mouse plasma cell lines and mice, is required for IgH expression as well as class switching. One of the mechanisms by which the 3' RR regulates its targets is through long-range physical interactions. Such interactions between elements of the 3' RR and a target site in the IgH transcription unit have been detected in plasma cells, and in resting and switching B cells, where they have been associated with IgH expression and class switching, respectively. Here, we report that lentiviral shRNA knockdown of transcription factors, CTCF, Oct-2, or OBF-1/OCA-B, had no discernible defects in loop formation or H chain expression in plasma cells. J(H)-3' RR interactions in pre-B cell lines were specifically associated with IgH expression. J(H)-3' RR interactions were not detected in either Pax5-deficient or RAG-deficient pro-B cells, but were apparent in an Abelson-derived pro-B cell line. These observations imply that the 3' RR has different loop interactions with target Igh sequences at different stages of B cell development and Igh regulation.
Collapse
Affiliation(s)
- Zhongliang Ju
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | |
Collapse
|
82
|
Genome-wide ChIP-Seq reveals a dramatic shift in the binding of the transcription factor erythroid Kruppel-like factor during erythrocyte differentiation. Blood 2011; 118:e139-48. [PMID: 21900194 DOI: 10.1182/blood-2011-05-355107] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Erythropoiesis is dependent on the activity of transcription factors, including the erythroid-specific erythroid Kruppel-like factor (EKLF). ChIP followed by massively parallel sequencing (ChIP-Seq) is a powerful, unbiased method to map trans-factor occupancy. We used ChIP-Seq to study the interactome of EKLF in mouse erythroid progenitor cells and more differentiated erythroblasts. We correlated these results with the nuclear distribution of EKLF, RNA-Seq analysis of the transcriptome, and the occupancy of other erythroid transcription factors. In progenitor cells, EKLF is found predominantly at the periphery of the nucleus, where EKLF primarily occupies the promoter regions of genes and acts as a transcriptional activator. In erythroblasts, EKLF is distributed throughout the nucleus, and erythroblast-specific EKLF occupancy is predominantly in intragenic regions. In progenitor cells, EKLF modulates general cell growth and cell cycle regulatory pathways, whereas in erythroblasts EKLF is associated with repression of these pathways. The EKLF interactome shows very little overlap with the interactomes of GATA1, GATA2, or TAL1, leading to a model in which EKLF directs programs that are independent of those regulated by the GATA factors or TAL1.
Collapse
|