51
|
Santos-Cortez RLP, Lee K, Azeem Z, Antonellis PJ, Pollock LM, Khan S, Andrade-Elizondo PB, Chiu I, Adams MD, Basit S, Smith JD, Nickerson DA, McDermott BM, Ahmad W, Leal SM. Mutations in KARS, encoding lysyl-tRNA synthetase, cause autosomal-recessive nonsyndromic hearing impairment DFNB89. Am J Hum Genet 2013; 93:132-40. [PMID: 23768514 DOI: 10.1016/j.ajhg.2013.05.018] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/02/2013] [Accepted: 05/20/2013] [Indexed: 01/27/2023] Open
Abstract
Previously, DFNB89, a locus associated with autosomal-recessive nonsyndromic hearing impairment (ARNSHI), was mapped to chromosomal region 16q21-q23.2 in three unrelated, consanguineous Pakistani families. Through whole-exome sequencing of a hearing-impaired individual from each family, missense mutations were identified at highly conserved residues of lysyl-tRNA synthetase (KARS): the c.1129G>A (p.Asp377Asn) variant was found in one family, and the c.517T>C (p.Tyr173His) variant was found in the other two families. Both variants were predicted to be damaging by multiple bioinformatics tools. The two variants both segregated with the nonsyndromic-hearing-impairment phenotype within the three families, and neither mutation was identified in ethnically matched controls or within variant databases. Individuals homozygous for KARS mutations had symmetric, severe hearing impairment across all frequencies but did not show evidence of auditory or limb neuropathy. It has been demonstrated that KARS is expressed in hair cells of zebrafish, chickens, and mice. Moreover, KARS has strong localization to the spiral ligament region of the cochlea, as well as to Deiters' cells, the sulcus epithelium, the basilar membrane, and the surface of the spiral limbus. It is hypothesized that KARS variants affect aminoacylation in inner-ear cells by interfering with binding activity to tRNA or p38 and with tetramer formation. The identification of rare KARS variants in ARNSHI-affected families defines a gene that is associated with ARNSHI.
Collapse
Affiliation(s)
- Regie Lyn P Santos-Cortez
- Center for Statistical Genetics, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Dadehbeigi N, Dickson AJ. Application of a nonradioactive method of measuring protein synthesis in industrially relevant Chinese hamster ovary cells. Biotechnol Prog 2013; 29:1043-9. [PMID: 23749410 DOI: 10.1002/btpr.1750] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 04/11/2013] [Indexed: 01/08/2023]
Abstract
Due to the high medical and commercial value of recombinant proteins for clinical and diagnostic purposes, the protein synthesis machinery of mammalian host cells is the subject of extensive research by the biopharmaceutical industry. RNA translation and protein synthesis are steps that may determine the extent of growth and productivity of host cells. To address the problems of utilization of current radioisotope methods with proprietary media, we have focused on the application of an alternative method of measuring protein synthesis in recombinant Chinese hamster ovary (CHO) cells. This method employs puromycin as a nonradioactive label which incorporates into nascent polypeptide chains and is detectable by western blotting. This method, which is referred to as SUnSET, successfully demonstrated the expected changes in protein synthesis in conditions that inhibit and restore translation activity and was reproducibly quantifiable. The study of the effects of feed and sodium butyrate addition on protein synthesis by SUnSET revealed an increase following 1 h feed supplementation while a high concentration of sodium butyrate was able to decrease translation during the same treatment period. Finally, SUnSET was used to compare protein synthesis activity during batch culture of the CHO cell line in relation to growth. The results indicate that as the cells approached the end of batch culture, the global rate of protein synthesis declined in parallel with the decreasing growth rate. In conclusion, this method can be used as a "snapshot" to directly monitor the effects of different culture conditions and treatments on translation in recombinant host cells.
Collapse
Affiliation(s)
- Nazanin Dadehbeigi
- Faculty of Life Sciences, University of Manchester, Michael Smith Building, Manchester, UK, M13 9PT.
| | | |
Collapse
|
53
|
David A, Bennink JR, Yewdell JW. Emetine optimally facilitates nascent chain puromycylation and potentiates the ribopuromycylation method (RPM) applied to inert cells. Histochem Cell Biol 2013; 139:501-4. [PMID: 23229864 PMCID: PMC3574230 DOI: 10.1007/s00418-012-1063-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/22/2012] [Indexed: 10/27/2022]
Abstract
We previously described the ribopuromyclation method (RPM) to visualize and quantitate translating ribosomes in fixed and permeabilized cells by standard immunofluorescence. RPM is based on puromycylation of nascent chains bound to translating ribosomes followed by detection of puromycylated nascent chains with a puromycin-specific mAb. We now demonstrate that emetine optimally enhances nascent chain puromycylation, and describe a modified RPM protocol for identifying ribosome-bound nascent chains in metabolically inert permeabilized cells.
Collapse
Affiliation(s)
- Alexandre David
- Laboratory of Viral Diseases, NIAID, NIH, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
54
|
Reineke LC, Lloyd RE. Diversion of stress granules and P-bodies during viral infection. Virology 2013; 436:255-67. [PMID: 23290869 PMCID: PMC3611887 DOI: 10.1016/j.virol.2012.11.017] [Citation(s) in RCA: 168] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 11/05/2012] [Accepted: 11/28/2012] [Indexed: 02/02/2023]
Abstract
RNA granules are structures within cells that impart key regulatory measures on gene expression. Two general types of RNA granules are conserved from yeast to mammals: stress granules (SGs), which contain many translation initiation factors, and processing bodies (P-bodies, PBs), which are enriched for proteins involved in RNA turnover. Because of the inverse relationship between appearance of RNA granules and persistence of translation, many viruses must subvert RNA granule function for replicative purposes. Here we discuss the viruses and mechanisms that manipulate stress granules and P-bodies to promote synthesis of viral proteins. Several themes have emerged for manipulation of RNA granules by viruses: (1) disruption of RNA granules at the mid-phase of infection, (2) prevention of RNA granule assembly throughout infection and (3) co-opting of RNA granule proteins for new or parallel roles in viral reproduction. Viruses must employ one or multiple of these routes for a robust and productive infection to occur. The possible role for RNA granules in promoting innate immune responses poses an additional reason why viruses must counteract the effects of RNA granules for efficient replication.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77035, USA
| | | |
Collapse
|
55
|
Pavon-Eternod M, David A, Dittmar K, Berglund P, Pan T, Bennink JR, Yewdell JW. Vaccinia and influenza A viruses select rather than adjust tRNAs to optimize translation. Nucleic Acids Res 2012; 41:1914-21. [PMID: 23254333 PMCID: PMC3561966 DOI: 10.1093/nar/gks986] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Transfer RNAs (tRNAs) are central to protein synthesis and impact translational speed and
fidelity by their abundance. Here we examine the extent to which viruses manipulate tRNA
populations to favor translation of their own genes. We study two very different viruses:
influenza A virus (IAV), a medium-sized (13 kB genome) RNA virus; and vaccinia virus (VV),
a large (200 kB genome) DNA virus. We show that the total cellular tRNA population remains
unchanged following viral infection, whereas the polysome-associated tRNA population
changes dramatically in a virus-specific manner. The changes in polysome-associated tRNA
levels reflect the codon usage of viral genes, suggesting the existence of local tRNA
pools optimized for viral translation.
Collapse
Affiliation(s)
- Mariana Pavon-Eternod
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
56
|
Cenci S, Oliva L, Cerruti F, Milan E, Bianchi G, Raule M, Mezghrani A, Pasqualetto E, Sitia R, Cascio P. Pivotal Advance: Protein synthesis modulates responsiveness of differentiating and malignant plasma cells to proteasome inhibitors. J Leukoc Biol 2012; 92:921-31. [DOI: 10.1189/jlb.1011497] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
57
|
Hodges EN, Connor JH. Translational control by negative-strand RNA viruses: methods for the study of a crucial virus/host interaction. Methods 2012; 59:180-7. [PMID: 23009810 DOI: 10.1016/j.ymeth.2012.09.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Revised: 07/02/2012] [Accepted: 09/13/2012] [Indexed: 01/06/2023] Open
Abstract
Protein synthesis is a vital step in the successful replication of negative-strand RNA viruses. Protein synthesis is also a critical step in the development of a successful antiviral response from the host. This makes understanding the interplay between host and viral translation an important aspect of defining the virus/host interaction. For the negative-strand RNA viruses there are disparate mechanism of how viruses interact with the host protein synthesis apparatus, ranging from the complete takeover of all protein synthesis to the subtle insertion of viral mRNAs into an otherwise unchanged protein synthesis pattern. In this article, we discuss different ways to investigate protein synthesis in virus-infected cells, ranging from the use of metabolic labeling for the study of general translation changes to using fluorescence-coupled labeling techniques that allow the pinpointing of any subcellular localization of protein synthesis during virus replication. We also discuss methods for analyzing the translation initiation factors that are frequently modified in virus-infected cells.
Collapse
Affiliation(s)
- Erin N Hodges
- Department of Microbiology, Boston University School of Medicine, Boston, MA 02118, USA
| | | |
Collapse
|
58
|
Wiltrout E, Goodenbour JM, Fréchin M, Pan T. Misacylation of tRNA with methionine in Saccharomyces cerevisiae. Nucleic Acids Res 2012; 40:10494-506. [PMID: 22941646 PMCID: PMC3488245 DOI: 10.1093/nar/gks805] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Accurate transfer RNA (tRNA) aminoacylation by aminoacyl-tRNA synthetases controls translational fidelity. Although tRNA synthetases are generally highly accurate, recent results show that the methionyl-tRNA synthetase (MetRS) is an exception. MetRS readily misacylates non-methionyl tRNAs at frequencies of up to 10% in mammalian cells; such mismethionylation may serve a beneficial role for cells to protect their own proteins against oxidative damage. The Escherichia coli MetRS mismethionylates two E. coli tRNA species in vitro, and these two tRNAs contain identity elements for mismethionylation. Here we investigate tRNA mismethionylation in Saccharomyces cerevisiae. tRNA mismethionylation occurs at a similar extent in vivo as in mammalian cells. Both cognate and mismethionylated tRNAs have similar turnover kinetics upon cycloheximide treatment. We identify specific arginine/lysine to methionine-substituted peptides in proteomic mass spectrometry, indicating that mismethionylated tRNAs are used in translation. The yeast MetRS is part of a complex containing the anchoring protein Arc1p and the glutamyl-tRNA synthetase (GluRS). The recombinant Arc1p–MetRS–GluRS complex binds and mismethionylates many tRNA species in vitro. Our results indicate that the yeast MetRS is responsible for extensive misacylation of non-methionyl tRNAs, and mismethionylation also occurs in this evolutionary branch.
Collapse
Affiliation(s)
- Elizabeth Wiltrout
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | |
Collapse
|
59
|
The MUC1 extracellular domain subunit is found in nuclear speckles and associates with spliceosomes. PLoS One 2012; 7:e42712. [PMID: 22905162 PMCID: PMC3414450 DOI: 10.1371/journal.pone.0042712] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2012] [Accepted: 07/11/2012] [Indexed: 02/04/2023] Open
Abstract
MUC1 is a large transmembrane glycoprotein and oncogene expressed by epithelial cells and overexpressed and underglycosylated in cancer cells. The MUC1 cytoplasmic subunit (MUC1-C) can translocate to the nucleus and regulate gene expression. It is frequently assumed that the MUC1 extracellular subunit (MUC1-N) does not enter the nucleus. Based on an unexpected observation that MUC1 extracellular domain antibody produced an apparently nucleus-associated staining pattern in trophoblasts, we have tested the hypothesis that MUC1-N is expressed inside the nucleus. Three different antibodies were used to identify MUC1-N in normal epithelial cells and tissues as well as in several cancer cell lines. The results of immunofluorescence and confocal microscopy analyses as well as subcellular fractionation, Western blotting, and siRNA/shRNA studies, confirm that MUC1-N is found within nuclei of all cell types examined. More detailed examination of its intranuclear distribution using a proximity ligation assay, subcellular fractionation, and immunoprecipitation suggests that MUC1-N is located in nuclear speckles (interchromatin granule clusters) and closely associates with the spliceosome protein U2AF65. Nuclear localization of MUC1-N was abolished when cells were treated with RNase A and nuclear localization was altered when cells were incubated with the transcription inhibitor 5,6-dichloro-1-b-d-ribofuranosylbenzimidazole (DRB). While MUC1-N predominantly associated with speckles, MUC1-C was present in the nuclear matrix, nucleoli, and the nuclear periphery. In some nuclei, confocal microscopic analysis suggest that MUC1-C staining is located close to, but only partially overlaps, MUC1-N in speckles. However, only MUC1-N was found in isolated speckles by Western blotting. Also, MUC1-C and MUC1-N distributed differently during mitosis. These results suggest that MUC1-N translocates to the nucleus where it is expressed in nuclear speckles and that MUC1-N and MUC1-C have dissimilar intranuclear distribution patterns.
Collapse
|
60
|
Reineke LC, Dougherty JD, Pierre P, Lloyd RE. Large G3BP-induced granules trigger eIF2α phosphorylation. Mol Biol Cell 2012; 23:3499-510. [PMID: 22833567 PMCID: PMC3442399 DOI: 10.1091/mbc.e12-05-0385] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Stress granules are large messenger ribonucleoprotein (mRNP) aggregates composed of translation initiation factors and mRNAs that appear when the cell encounters various stressors. Current dogma indicates that stress granules function as inert storage depots for translationally silenced mRNPs until the cell signals for renewed translation and stress granule disassembly. We used RasGAP SH3-binding protein (G3BP) overexpression to induce stress granules and study their assembly process and signaling to the translation apparatus. We found that assembly of large G3BP-induced stress granules, but not small granules, precedes phosphorylation of eIF2α. Using mouse embryonic fibroblasts depleted for individual eukaryotic initiation factor 2α (eIF2α) kinases, we identified protein kinase R as the principal kinase that mediates eIF2α phosphorylation by large G3BP-induced granules. These data indicate that increasing stress granule size is associated with a threshold or switch that must be triggered in order for eIF2α phosphorylation and subsequent translational repression to occur. Furthermore, these data suggest that stress granules are active in signaling to the translational machinery and may be important regulators of the innate immune response.
Collapse
Affiliation(s)
- Lucas C Reineke
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77584, USA
| | | | | | | |
Collapse
|
61
|
Cui XA, Zhang H, Palazzo AF. p180 promotes the ribosome-independent localization of a subset of mRNA to the endoplasmic reticulum. PLoS Biol 2012; 10:e1001336. [PMID: 22679391 PMCID: PMC3362647 DOI: 10.1371/journal.pbio.1001336] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 04/12/2012] [Indexed: 12/21/2022] Open
Abstract
The localization of many secretory mRNAs to the endoplasmic reticulum does not require ribosomes or translation, but is instead promoted by p180, an abundant, membrane-bound protein that likely binds directly to mRNA. In metazoans, the majority of mRNAs coding for secreted and membrane-bound proteins are translated on the surface of the endoplasmic reticulum (ER). Although the targeting of these transcripts to the surface of the ER can be mediated by the translation of a signal sequence and their maintenance is mediated by interactions between the ribosome and the translocon, it is becoming increasingly clear that additional ER-localization pathways exist. Here we demonstrate that many of these mRNAs can be targeted to, and remain associated with, the ER independently of ribosomes and translation. Using a mass spectrometry analysis of proteins that associate with ER-bound polysomes, we identified putative mRNA receptors that may mediate this alternative mechanism, including p180, an abundant, positively charged membrane-bound protein. We demonstrate that p180 over-expression can enhance the association of generic mRNAs with the ER. We then show that p180 contains a lysine-rich region that can directly interact with RNA in vitro. Finally, we demonstrate that p180 is required for the efficient ER-anchoring of bulk poly(A) and of certain transcripts, such as placental alkaline phosphatase and calreticulin, to the ER. In summary, we provide, to our knowledge, the first mechanistic details for an alternative pathway to target and maintain mRNA at the ER. It is likely that this alternative pathway not only enhances the fidelity of protein sorting, but also localizes mRNAs to various subdomains of the ER and thus contributes to cellular organization. Messenger RNAs (mRNAs) that encode secreted or membrane-bound proteins must be delivered to, and then maintained on, the surface of the endoplasmic reticulum (ER). These mRNAs encode a short polypeptide that targets the mRNA/ribosome/nascent protein complexes to the ER surface during translation; however, recent studies support the existence of additional ER-localization signals that might be present within the mRNA molecules themselves. Here, we demonstrate that a fraction of these mRNAs, whose encoded proteins are destined for secretion, contain information that targets and anchors them to the ER independently of their encoded polypeptide or their association to ribosomes. We identify proteins on the ER that may serve as receptors for these mRNAs. We then show that one of these candidate membrane-bound receptors, p180, is required for the maintenance of certain mRNAs on the surface of the ER even after their translation into protein is disrupted. We also demonstrate that p180 contains a region that binds directly to RNA and likely mediates the anchoring of mRNA to the ER. Our study thus provides the first mechanistic details of an alternative pathway used to ensure that secretory mRNAs, and their encoded proteins, reach their proper destination in the ER.
Collapse
Affiliation(s)
| | | | - Alexander F. Palazzo
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
62
|
MHC class I antigen processing distinguishes endogenous antigens based on their translation from cellular vs. viral mRNA. Proc Natl Acad Sci U S A 2012; 109:7025-30. [PMID: 22509014 DOI: 10.1073/pnas.1112387109] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
To better understand the generation of MHC class I-associated peptides, we used a model antigenic protein whose proteasome-mediated degradation is rapidly and reversibly controlled by Shield-1, a cell-permeant drug. When expressed from a stably transfected gene, the efficiency of antigen presentation is ~2%, that is, one cell-surface MHC class I-peptide complex is generated for every 50 folded source proteins degraded upon Shield-1 withdrawal. By contrast, when the same protein is expressed by vaccinia virus, its antigen presentation efficiency is reduced ~10-fold to values similar to those reported for other vaccinia virus-encoded model antigens. Virus infection per se does not modify the efficiency of antigen processing. Rather, the efficiency difference between cellular and virus-encoded antigens is based on whether the antigen is synthesized from transgene- vs. virus-encoded mRNA. Thus, class I antigen-processing machinery can distinguish folded proteins based on the precise details of their synthesis to modulate antigen presentation efficiency.
Collapse
|
63
|
|
64
|
Reply to Goodman et al.: Imaging protein synthesis with puromycin and the subcellular localization of puromycin-polypeptide conjugates. Proc Natl Acad Sci U S A 2012. [DOI: 10.1073/pnas.1202322109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
65
|
David A, Das SR, Gibbs JS, Bennink JR, Yewdell JW. Cysteinyl-tRNA deacylation can be uncoupled from protein synthesis. PLoS One 2012; 7:e33072. [PMID: 22427952 PMCID: PMC3302863 DOI: 10.1371/journal.pone.0033072] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2011] [Accepted: 02/09/2012] [Indexed: 11/18/2022] Open
Abstract
Aminoacyl-tRNA synthetases (ARSs) are critical components of protein translation, providing ribosomes with aminoacyl-tRNAs. In return, ribosomes release uncharged tRNAs as ARS substrates. Here, we show that tRNA deacylation can be uncoupled from protein synthesis in an amino acid specific manner. While tRNAs coupled to radiolabeled Met, Leu Lys, or Ser are stable in cells following translation inhibition with arsenite, radiolabeled Cys is released from tRNA at a high rate. We discuss possible translation independent functions for tRNACys.
Collapse
Affiliation(s)
- Alexandre David
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Suman R. Das
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - James S. Gibbs
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jack R. Bennink
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
| | - Jonathan W. Yewdell
- Laboratory of Viral Diseases, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
66
|
Yao P, Potdar AA, Arif A, Ray PS, Mukhopadhyay R, Willard B, Xu Y, Yan J, Saidel GM, Fox PL. Coding region polyadenylation generates a truncated tRNA synthetase that counters translation repression. Cell 2012; 149:88-100. [PMID: 22386318 DOI: 10.1016/j.cell.2012.02.018] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2011] [Revised: 10/29/2011] [Accepted: 02/09/2012] [Indexed: 12/21/2022]
Abstract
Posttranscriptional regulatory mechanisms superimpose "fine-tuning" control upon "on-off" switches characteristic of gene transcription. We have exploited computational modeling with experimental validation to resolve an anomalous relationship between mRNA expression and protein synthesis. The GAIT (gamma-interferon-activated inhibitor of translation) complex repressed VEGF-A synthesis to a low, constant rate independent of VEGF-A mRNA expression levels. Dynamic model simulations predicted an inhibitory GAIT-element-interacting factor to account for this relationship and led to the identification of a truncated form of glutamyl-prolyl tRNA synthetase (EPRS), a GAIT constituent that mediates binding to target transcripts. The truncated protein, EPRS(N1), shields GAIT-element-bearing transcripts from the inhibitory GAIT complex, thereby dictating a "translational trickle" of GAIT target proteins. EPRS(N1) mRNA is generated by polyadenylation-directed conversion of a Tyr codon in the EPRS-coding sequence to a stop codon (PAY(∗)). Genome-wide analysis revealed multiple candidate PAY(∗) targets, including the authenticated target RRM1, suggesting a general mechanism for production of C terminus-truncated regulatory proteins.
Collapse
Affiliation(s)
- Peng Yao
- Department of Cell Biology, The Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|