51
|
Carnero E, Fortes P. HCV infection, IFN response and the coding and non-coding host cell genome. Virus Res 2015; 212:85-102. [PMID: 26454190 DOI: 10.1016/j.virusres.2015.10.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 10/01/2015] [Indexed: 02/07/2023]
Abstract
HCV is an ideal model to study how the infected cell is altered to allow the establishment of a chronic infection. After infection, the transcriptome of the cell changes in response to the virus or to the antiviral pathways induced by infection. The cell has evolved to sense HCV soon after infection and to activate antiviral pathways. In turn, HCV has evolved to block the antiviral pathways induced by the cell and, at the same time, to use some for its own benefit. In this review, we summarize the proviral and antiviral factors induced in HCV infected cells. These factors can be proteins and microRNAs, but also long noncoding RNAs (lncRNAs) that are induced by infection. Interestingly, several of the lncRNAs upregulated after HCV infection have oncogenic functions, suggesting that upregulation of lncRNAs could explain, at least in part, the increased rate of liver tumors observed in HCV-infected patients. Other lncRNAs induced by HCV infection may regulate the expression of coding genes required for replication or control genes involved in the cellular antiviral response. Given the evolutionary pressure imposed by viral infections and that lncRNAs are specially targeted by evolution, we believe that the study of proviral and antiviral lncRNAs may lead to unexpected discoveries that may have a strong impact on basic science and translational research.
Collapse
Affiliation(s)
- Elena Carnero
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain
| | - Puri Fortes
- Center for Applied Medical Research (CIMA) and Navarra Institute for Health Research (IdiSNA), Department of Gene Therapy and Hepatology, University of Navarra, Pamplona, Spain.
| |
Collapse
|
52
|
Rennoll-Bankert KE, Rahman MS, Gillespie JJ, Guillotte ML, Kaur SJ, Lehman SS, Beier-Sexton M, Azad AF. Which Way In? The RalF Arf-GEF Orchestrates Rickettsia Host Cell Invasion. PLoS Pathog 2015; 11:e1005115. [PMID: 26291822 PMCID: PMC4546372 DOI: 10.1371/journal.ppat.1005115] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 07/28/2015] [Indexed: 01/09/2023] Open
Abstract
Bacterial Sec7-domain-containing proteins (RalF) are known only from species of Legionella and Rickettsia, which have facultative and obligate intracellular lifestyles, respectively. L. pneumophila RalF, a type IV secretion system (T4SS) effector, is a guanine nucleotide exchange factor (GEF) of ADP-ribosylation factors (Arfs), activating and recruiting host Arf1 to the Legionella-containing vacuole. In contrast, previous in vitro studies showed R. prowazekii (Typhus Group) RalF is a functional Arf-GEF that localizes to the host plasma membrane and interacts with the actin cytoskeleton via a unique C-terminal domain. As RalF is differentially encoded across Rickettsia species (e.g., pseudogenized in all Spotted Fever Group species), it may function in lineage-specific biology and pathogenicity. Herein, we demonstrate RalF of R. typhi (Typhus Group) interacts with the Rickettsia T4SS coupling protein (RvhD4) via its proximal C-terminal sequence. RalF is expressed early during infection, with its inactivation via antibody blocking significantly reducing R. typhi host cell invasion. For R. typhi and R. felis (Transitional Group), RalF ectopic expression revealed subcellular localization with the host plasma membrane and actin cytoskeleton. Remarkably, R. bellii (Ancestral Group) RalF showed perinuclear localization reminiscent of ectopically expressed Legionella RalF, for which it shares several structural features. For R. typhi, RalF co-localization with Arf6 and PI(4,5)P2 at entry foci on the host plasma membrane was determined to be critical for invasion. Thus, we propose recruitment of PI(4,5)P2 at entry foci, mediated by RalF activation of Arf6, initiates actin remodeling and ultimately facilitates bacterial invasion. Collectively, our characterization of RalF as an invasin suggests that, despite carrying a similar Arf-GEF unknown from other bacteria, different intracellular lifestyles across Rickettsia and Legionella species have driven divergent roles for RalF during infection. Furthermore, our identification of lineage-specific Arf-GEF utilization across some rickettsial species illustrates different pathogenicity factors that define diverse agents of rickettsial diseases. Phylogenomics analysis indicates divergent mechanisms for host cell invasion across diverse species of obligate intracellular Rickettsia. For instance, only some Rickettsia species carry RalF, the rare bacterial Arf-GEF effector utilized by Legionella pneumophila to facilitate fusion of ER-derived membranes with its host-derived vacuole. For R. prowazekii (Typhus Group, TG), prior in vitro studies suggested the Arf-GEF activity of RalF, which is absent from Spotted Fever Group species, might be spatially regulated at the host plasma membrane. Herein, we demonstrate RalF of R. typhi (TG) and R. felis (Transitional Group) localizes to the host plasma membrane, yet R. bellii (Ancestral Group) RalF shows perinuclear localization reminiscent of RalF-mediated recruitment of Arf1 by L. pneumophila to its vacuole. For R. typhi, RalF expression occurs early during infection, with RalF inactivation significantly reducing host cell invasion. Furthermore, RalF co-localization with Arf6 and the phosphoinositide PI(4,5)P2 at the host plasma membrane was determined to be critical for R. typhi invasion. Thus, our work illustrates that different intracellular lifestyles across species of Rickettsia and Legionella have driven divergent roles for RalF during host cell infection. Collectively, we identify lineage-specific Arf-GEF utilization across diverse rickettsial species, previously unappreciated mechanisms for host cell invasion and infection.
Collapse
Affiliation(s)
- Kristen E. Rennoll-Bankert
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - M. Sayeedur Rahman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph J. Gillespie
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Mark L. Guillotte
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Simran J. Kaur
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Stephanie S. Lehman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Magda Beier-Sexton
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Abdu F. Azad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
53
|
Chiang C, Beljanski V, Yin K, Olagnier D, Ben Yebdri F, Steel C, Goulet ML, DeFilippis VR, Streblow DN, Haddad EK, Trautmann L, Ross T, Lin R, Hiscott J. Sequence-Specific Modifications Enhance the Broad-Spectrum Antiviral Response Activated by RIG-I Agonists. J Virol 2015; 89:8011-25. [PMID: 26018150 PMCID: PMC4505665 DOI: 10.1128/jvi.00845-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/17/2015] [Indexed: 12/24/2022] Open
Abstract
UNLABELLED The cytosolic RIG-I (retinoic acid-inducible gene I) receptor plays a pivotal role in the initiation of the immune response against RNA virus infection by recognizing short 5'-triphosphate (5'ppp)-containing viral RNA and activating the host antiviral innate response. In the present study, we generated novel 5'ppp RIG-I agonists of varieous lengths, structures, and sequences and evaluated the generation of the antiviral and inflammatory responses in human epithelial A549 cells, human innate immune primary cells, and murine models of influenza and chikungunya viral pathogenesis. A 99-nucleotide, uridine-rich hairpin 5'pppRNA termed M8 stimulated an extensive and robust interferon response compared to other modified 5'pppRNA structures, RIG-I aptamers, or poly(I·C). Interestingly, manipulation of the primary RNA sequence alone was sufficient to modulate antiviral activity and inflammatory response, in a manner dependent exclusively on RIG-I and independent of MDA5 and TLR3. Both prophylactic and therapeutic administration of M8 effectively inhibited influenza virus and dengue virus replication in vitro. Furthermore, multiple strains of influenza virus that were resistant to oseltamivir, an FDA-approved therapeutic treatment for influenza, were highly sensitive to inhibition by M8. Finally, prophylactic M8 treatment in vivo prolonged survival and reduced lung viral titers of mice challenged with influenza virus, as well as reducing chikungunya virus-associated foot swelling and viral load. Altogether, these results demonstrate that 5'pppRNA can be rationally designed to achieve a maximal RIG-I-mediated protective antiviral response against human-pathogenic RNA viruses. IMPORTANCE The development of novel therapeutics to treat human-pathogenic RNA viral infections is an important goal to reduce spread of infection and to improve human health and safety. This study investigated the design of an RNA agonist with enhanced antiviral and inflammatory properties against influenza, dengue, and chikungunya viruses. A novel, sequence-dependent, uridine-rich RIG-I agonist generated a protective antiviral response in vitro and in vivo and was effective at concentrations 100-fold lower than prototype sequences or other RNA agonists, highlighting the robust activity and potential clinical use of the 5'pppRNA against RNA virus infection. Altogether, the results identify a novel, sequence-specific RIG-I agonist as an attractive therapeutic candidate for the treatment of a broad range of RNA viruses, a pressing issue in which a need for new and more effective options persists.
Collapse
Affiliation(s)
- Cindy Chiang
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Vladimir Beljanski
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Kevin Yin
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - David Olagnier
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - Fethia Ben Yebdri
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - Courtney Steel
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Marie-Line Goulet
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - Victor R DeFilippis
- Vaccine & Gene Therapy Institute-Oregon Health and Science University, Beaverton, Oregon, USA
| | - Daniel N Streblow
- Vaccine & Gene Therapy Institute-Oregon Health and Science University, Beaverton, Oregon, USA
| | - Elias K Haddad
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Lydie Trautmann
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Ted Ross
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| | - Rongtuan Lin
- Lady Davis Institute-Jewish General Hospital, McGill University, Montreal, Canada
| | - John Hiscott
- Vaccine & Gene Therapy Institute of Florida, Port St. Lucie, Florida, USA
| |
Collapse
|
54
|
Louber J, Brunel J, Uchikawa E, Cusack S, Gerlier D. Kinetic discrimination of self/non-self RNA by the ATPase activity of RIG-I and MDA5. BMC Biol 2015; 13:54. [PMID: 26215161 PMCID: PMC4517655 DOI: 10.1186/s12915-015-0166-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 07/11/2015] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND The cytoplasmic RIG-like receptors are responsible for the early detection of viruses and other intracellular microbes by activating the innate immune response mediated by type I interferons (IFNs). RIG-I and MDA5 detect virus-specific RNA motifs with short 5'-tri/diphosphorylated, blunt-end double-stranded RNA (dsRNA) and >0.5-2 kb long dsRNA as canonical agonists, respectively. However, in vitro, they can bind to many RNA species, while in cells there is an activation threshold. As SF2 helicase/ATPase family members, ATP hydrolysis is dependent on co-operative RNA and ATP binding. Whereas simultaneous ATP and cognate RNA binding is sufficient to activate RIG-I by releasing autoinhibition of the signaling domains, the physiological role of the ATPase activity of RIG-I and MDA5 remains controversial. RESULTS A cross-analysis of a rationally designed panel of RNA binding and ATPase mutants and truncated receptors, using type I IFN promoter activation as readout, allows us to refine our understanding of the structure-function relationships of RIG-I and MDA5. RNA activation of RIG-I depends on multiple critical RNA binding sites in its helicase domain as confirmed by functional evidence using novel mutations. We found that RIG-I or MDA5 mutants with low ATP hydrolysis activity exhibit constitutive activity but this was fully reverted when associated with mutations preventing RNA binding to the helicase domain. We propose that the turnover kinetics of the ATPase domain enables the discrimination of self/non-self RNA by both RIG-I and MDA5. Non-cognate, possibly self, RNA binding would lead to fast ATP turnover and RNA disassociation and thus insufficient time for the caspase activation and recruitment domains (CARDs) to promote downstream signaling, whereas tighter cognate RNA binding provides a longer time window for downstream events to be engaged. CONCLUSIONS The exquisite fine-tuning of RIG-I and MDA5 RNA-dependent ATPase activity coupled to CARD release allows a robust IFN response from a minor subset of non-self RNAs within a sea of cellular self RNAs. This avoids the eventuality of deleterious autoimmunity effects as have been recently described to arise from natural gain-of-function alleles of RIG-I and MDA5.
Collapse
Affiliation(s)
- Jade Louber
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| | - Joanna Brunel
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| | - Emiko Uchikawa
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
- Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
- Unit of Virus Host Cell Interactions, UJF-EMBL-CNRS, UMI 3265, 71 Avenue des Martyrs, BP 181, 38042, Grenoble, Cedex 9, France.
| | - Denis Gerlier
- CIRI, International Center for Infectiology Research, Université de Lyon, Lyon, France.
- INSERM, U1111, Lyon, France.
- Ecole Normale Supérieure de Lyon, Lyon, France.
- Université Claude Bernard Lyon 1, Centre International de Recherche en Infectiologie, Lyon, France.
- CNRS, UMR5308, Lyon, France.
| |
Collapse
|
55
|
Wu B, Hur S. How RIG-I like receptors activate MAVS. Curr Opin Virol 2015; 12:91-8. [PMID: 25942693 PMCID: PMC4470786 DOI: 10.1016/j.coviro.2015.04.004] [Citation(s) in RCA: 168] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 03/26/2015] [Accepted: 04/16/2015] [Indexed: 12/22/2022]
Abstract
RIG-I and MDA5 are well-conserved cytoplasmic pattern recognition receptors that detect viral RNAs during infection and activate the type I interferon (IFN)-mediated antiviral immune response. While much is known about how these receptors recognize viral RNAs, how they interact with their common signaling adaptor molecule MAVS and activate the downstream signaling pathway had been less clear. Previous studies have shown that the signaling domains (tandem CARDs or 2CARDs) of RIG-I and MDA5 must form homo-oligomers in order to interact with MAVS, and that their interactions lead to filament formation of MAVS, a pre-requisite for downstream signal activation. More recent data suggest that multiple mechanisms synergistically promote tetramer formation of RIG-I 2CARD, and that this tetramer resembles a lock-washer, which serves as a helical template to nucleate the MAVS filament. We here summarize these recent findings and discuss the current understanding of the signal activation mechanisms of RIG-I and MDA5.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States
| | - Sun Hur
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, United States; Program in Cellular and Molecular Medicine, Boston Children's Hospital, United States.
| |
Collapse
|
56
|
Cytoplasmic sensing of viral nucleic acids. Curr Opin Virol 2015; 11:31-7. [PMID: 25668758 PMCID: PMC7172233 DOI: 10.1016/j.coviro.2015.01.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 12/24/2022]
Abstract
Viral nucleic acids (NAs) are targeted by cellular proteins with diverse functions. NA sensing proteins are forming a three-layered defence system. NA localisation and modifications synergistically activate defence systems.
Viruses are the most abundant pathogens on earth. A fine-tuned framework of intervening pathways is in place in mammalian cells to orchestrate the cellular defence against these pathogens. Key for this system is sensor proteins that recognise specific features associated with nucleic acids of incoming viruses. Here we review the current knowledge on cytoplasmic sensors for viral nucleic acids. These sensors induce expression of cytokines, affect cellular functions required for virus replication and directly target viral nucleic acids through degradation or sequestration. Their ability to respond to a given nucleic acid is based on both the differential specificity of the individual proteins and the downstream signalling or adaptor proteins. The cooperation of these multiple proteins and pathways plays a key role in inducing successful immunity against virus infections.
Collapse
|
57
|
Dash P, Thomas PG. Host detection and the stealthy phenotype in influenza virus infection. Curr Top Microbiol Immunol 2015; 386:121-47. [PMID: 25038940 DOI: 10.1007/82_2014_412] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The innate host response to influenza virus infection plays a critical role in determining the subsequent course of infection and the clinical outcome of disease. The host has a diverse array of detection and effector mechanisms that are able to recognize and initiate effective antiviral responses. In opposition, the virus utilizes a number of distinct mechanisms to evade host detection and effector activity in order to remain "stealthy" throughout its replication cycle. In this review, we describe these host and viral mechanisms, including the major pattern recognition receptor families (the TLRs, NLRs, and RLRs) in the host and the specific viral proteins such as NS1 that are key players in this interaction. Additionally, we explore nonreductive mechanisms of viral immune evasion and propose areas important for future inquiry.
Collapse
Affiliation(s)
- Pradyot Dash
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, 38105, USA
| | | |
Collapse
|
58
|
Bryant CE, Orr S, Ferguson B, Symmons MF, Boyle JP, Monie TP. International Union of Basic and Clinical Pharmacology. XCVI. Pattern recognition receptors in health and disease. Pharmacol Rev 2015; 67:462-504. [PMID: 25829385 PMCID: PMC4394686 DOI: 10.1124/pr.114.009928] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Since the discovery of Toll, in the fruit fly Drosophila melanogaster, as the first described pattern recognition receptor (PRR) in 1996, many families of these receptors have been discovered and characterized. PRRs play critically important roles in pathogen recognition to initiate innate immune responses that ultimately link to the generation of adaptive immunity. Activation of PRRs leads to the induction of immune and inflammatory genes, including proinflammatory cytokines and chemokines. It is increasingly clear that many PRRs are linked to a range of inflammatory, infectious, immune, and chronic degenerative diseases. Several drugs to modulate PRR activity are already in clinical trials and many more are likely to appear in the near future. Here, we review the different families of mammalian PRRs, the ligands they recognize, the mechanisms of activation, their role in disease, and the potential of targeting these proteins to develop the anti-inflammatory therapeutics of the future.
Collapse
Affiliation(s)
- Clare E Bryant
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Selinda Orr
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Brian Ferguson
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Martyn F Symmons
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Joseph P Boyle
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| | - Tom P Monie
- Departments of Veterinary Medicine (C.E.B., J.P.B., T.P.M.), Pathology (B.F.), and Biochemistry (M.F.S., J.P.B.), University of Cambridge, Cambridge, United Kingdom; and Institute of Infection and Immunity, Cardiff University, Cardiff, United Kingdom (S.O.)
| |
Collapse
|
59
|
Zheng J, Yong HY, Panutdaporn N, Liu C, Tang K, Luo D. High-resolution HDX-MS reveals distinct mechanisms of RNA recognition and activation by RIG-I and MDA5. Nucleic Acids Res 2015; 43:1216-30. [PMID: 25539915 PMCID: PMC4333383 DOI: 10.1093/nar/gku1329] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 12/07/2014] [Accepted: 12/09/2014] [Indexed: 12/25/2022] Open
Abstract
RIG-I and MDA5 are the major intracellular immune receptors that recognize viral RNA species and undergo a series of conformational transitions leading to the activation of the interferon-mediated antiviral response. However, to date, full-length RLRs have resisted crystallographic efforts and a molecular description of their activation pathways remains hypothetical. Here we employ hydrogen/deuterium exchange coupled with mass spectrometry (HDX-MS) to probe the apo states of RIG-I and MDA5 and to dissect the molecular details with respect to distinct RNA species recognition, ATP binding and hydrolysis and CARDs activation. We show that human RIG-I maintains an auto-inhibited resting state owing to the intra-molecular HEL2i-CARD2 interactions while apo MDA5 lacks the analogous intra-molecular interactions and therefore adopts an extended conformation. Our work demonstrates that RIG-I binds and responds differently to short triphosphorylated RNA and long duplex RNA and that sequential addition of RNA and ATP triggers specific allosteric effects leading to RIG-I CARDs activation. We also present a high-resolution protein surface mapping technique that refines the cooperative oligomerization model of neighboring MDA5 molecules on long duplex RNA. Taken together, our data provide a high-resolution view of RLR activation in solution and offer new evidence for the molecular mechanism of RLR activation.
Collapse
Affiliation(s)
- Jie Zheng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Hui Yee Yong
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, 138673, Singapore
| | - Nantika Panutdaporn
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Chuanfa Liu
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Kai Tang
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, 637551, Singapore
| | - Dahai Luo
- Lee Kong Chian School of Medicine, Nanyang Technological University, 61 Biopolis Drive, Proteos Building, #07-03, 138673, Singapore
| |
Collapse
|
60
|
Rawling DC, Kohlway AS, Luo D, Ding SC, Pyle AM. The RIG-I ATPase core has evolved a functional requirement for allosteric stabilization by the Pincer domain. Nucleic Acids Res 2014; 42:11601-11. [PMID: 25217590 PMCID: PMC4191399 DOI: 10.1093/nar/gku817] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 08/16/2014] [Accepted: 08/29/2014] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) is a pattern recognition receptor expressed in metazoan cells that is responsible for eliciting the production of type I interferons and pro-inflammatory cytokines upon detection of intracellular, non-self RNA. Structural studies of RIG-I have identified a novel Pincer domain composed of two alpha helices that physically tethers the C-terminal domain to the SF2 helicase core. We find that the Pincer plays an important role in mediating the enzymatic and signaling activities of RIG-I. We identify a series of mutations that additively decouple the Pincer motif from the ATPase core and show that this decoupling results in impaired signaling. Through enzymological and biophysical analysis, we further show that the Pincer domain controls coupled enzymatic activity of the protein through allosteric control of the ATPase core. Further, we show that select regions of the HEL1 domain have evolved to potentiate interactions with the Pincer domain, resulting in an adapted ATPase cleft that is now responsive to adjacent domains that selectively bind viral RNA.
Collapse
Affiliation(s)
- David C Rawling
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Andrew S Kohlway
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Dahai Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - Steve C Ding
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA Department of Chemistry, Yale University, New Haven, CT 06520, USA
| |
Collapse
|
61
|
Patel JR, García-Sastre A. Activation and regulation of pathogen sensor RIG-I. Cytokine Growth Factor Rev 2014; 25:513-23. [PMID: 25212896 DOI: 10.1016/j.cytogfr.2014.08.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2014] [Accepted: 08/15/2014] [Indexed: 12/24/2022]
Abstract
Cells are equipped with a large set of pattern recognition receptors or sensors that detect foreign molecules such as pathogenic nucleic acids and initiate proinflammatory and antimicrobial innate immune responses. RIG-I is a cytosolic sensor that detects 5'-triphosphate double-stranded RNAs produced during infection. RIG-I is responsible for mounting an antimicrobial response against a variety of viruses and intracellular bacteria. RIG-I contains an intricate structural architecture that allows for efficient signaling downstream in the pathway and autoregulation. The RIG-I-mediated antimicrobial pathway is highly regulated in cells requiring various cofactors, negative regulators, and posttranslational modifications. Modulation of RIG-I and RIG-I-mediated signaling in cells by pathogens to evade recognition and activation of the antimicrobial pathway highlights the essential nature of RIG-I in the innate immune response.
Collapse
Affiliation(s)
- Jenish R Patel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
62
|
Weber M, Weber F. RIG-I-like receptors and negative-strand RNA viruses: RLRly bird catches some worms. Cytokine Growth Factor Rev 2014; 25:621-8. [PMID: 24894317 PMCID: PMC7108359 DOI: 10.1016/j.cytogfr.2014.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Accepted: 05/12/2014] [Indexed: 12/16/2022]
Abstract
Negative strand RNA viruses with a nonsegmented genome (ns-NSVs) or a segmented genome (s-NSVs) are an important source of human and animal diseases. Survival of the host from those infections is critically dependent on rapidly reacting innate immune responses. Two cytoplasmic RNA helicases, RIG-I and MDA5 (collectively termed RIG-I-like receptors, RLRs), are essential for recognizing virus-specific RNA structures to initiate a signalling cascade, resulting in the production of the antiviral type I interferons. Here, we will review the current knowledge and views on RLR agonists, RLR signalling, and the wide variety of countermeasures ns-NSVs and s-NSVs have evolved. Specific aspects include the consequences of genome segmentation for RLR activation and a discussion on the physiological ligands of RLRs.
Collapse
Affiliation(s)
- Michaela Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Friedemann Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany.
| |
Collapse
|
63
|
Louber J, Kowalinski E, Bloyet LM, Brunel J, Cusack S, Gerlier D. RIG-I self-oligomerization is either dispensable or very transient for signal transduction. PLoS One 2014; 9:e108770. [PMID: 25259935 PMCID: PMC4178188 DOI: 10.1371/journal.pone.0108770] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 09/04/2014] [Indexed: 01/01/2023] Open
Abstract
Effective host defence against viruses depends on the rapid triggering of innate immunity through the induction of a type I interferon (IFN) response. To this end, microbe-associated molecular patterns are detected by dedicated receptors. Among them, the RIG-I-like receptors RIG-I and MDA5 activate IFN gene expression upon sensing viral RNA in the cytoplasm. While MDA5 forms long filaments in vitro upon activation, RIG-I is believed to oligomerize after RNA binding in order to transduce a signal. Here, we show that in vitro binding of synthetic RNA mimicking that of Mononegavirales (Ebola, rabies and measles viruses) leader sequences to purified RIG-I does not induce RIG-I oligomerization. Furthermore, in cells devoid of endogenous functional RIG-I-like receptors, after activation of exogenous Flag-RIG-I by a 62-mer-5'ppp-dsRNA or by polyinosinic:polycytidylic acid, a dsRNA analogue, or by measles virus infection, anti-Flag immunoprecipitation and specific elution with Flag peptide indicated a monomeric form of RIG-I. Accordingly, when using the Gaussia Luciferase-Based Protein Complementation Assay (PCA), a more sensitive in cellula assay, no RIG-I oligomerization could be detected upon RNA stimulation. Altogether our data indicate that the need for self-oligomerization of RIG-I for signal transduction is either dispensable or very transient.
Collapse
Affiliation(s)
- Jade Louber
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| | - Eva Kowalinski
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, Grenoble Cedex 9, France
| | - Louis-Marie Bloyet
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| | - Joanna Brunel
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, Grenoble Cedex 9, France
- Unit of Virus Host-Cell Interactions, UJF-EMBL-CNRS, UMI 3265, Grenoble Cedex 9, France
| | - Denis Gerlier
- Centre International de Recherche en Infectiologie, INSERM, U1111, CNRS, UMR5308, Université Lyon 1, ENS Lyon, Lyon, France
| |
Collapse
|
64
|
Weber M, Weber F. Monitoring activation of the antiviral pattern recognition receptors RIG-I and PKR by limited protease digestion and native PAGE. J Vis Exp 2014:e51415. [PMID: 25146252 PMCID: PMC4470399 DOI: 10.3791/51415] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Host defenses to virus infection are dependent on a rapid detection by pattern recognition receptors (PRRs) of the innate immune system. In the cytoplasm, the PRRs RIG-I and PKR bind to specific viral RNA ligands. This first mediates conformational switching and oligomerization, and then enables activation of an antiviral interferon response. While methods to measure antiviral host gene expression are well established, methods to directly monitor the activation states of RIG-I and PKR are only partially and less well established. Here, we describe two methods to monitor RIG-I and PKR stimulation upon infection with an established interferon inducer, the Rift Valley fever virus mutant clone 13 (Cl 13). Limited trypsin digestion allows to analyze alterations in protease sensitivity, indicating conformational changes of the PRRs. Trypsin digestion of lysates from mock infected cells results in a rapid degradation of RIG-I and PKR, whereas Cl 13 infection leads to the emergence of a protease-resistant RIG-I fragment. Also PKR shows a virus-induced partial resistance to trypsin digestion, which coincides with its hallmark phosphorylation at Thr 446. The formation of RIG-I and PKR oligomers was validated by native polyacrylamide gel electrophoresis (PAGE). Upon infection, there is a strong accumulation of RIG-I and PKR oligomeric complexes, whereas these proteins remained as monomers in mock infected samples. Limited protease digestion and native PAGE, both coupled to western blot analysis, allow a sensitive and direct measurement of two diverse steps of RIG-I and PKR activation. These techniques are relatively easy and quick to perform and do not require expensive equipment.
Collapse
|
65
|
Reikine S, Nguyen JB, Modis Y. Pattern Recognition and Signaling Mechanisms of RIG-I and MDA5. Front Immunol 2014; 5:342. [PMID: 25101084 PMCID: PMC4107945 DOI: 10.3389/fimmu.2014.00342] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 07/05/2014] [Indexed: 12/25/2022] Open
Abstract
Most organisms rely on innate immune receptors to recognize conserved molecular structures from invading microbes. Two essential innate immune receptors, RIG-I and MDA5, detect viral double-stranded RNA in the cytoplasm. The inflammatory response triggered by these RIG-I-like receptors (RLRs) is one of the first and most important lines of defense against infection. RIG-I recognizes short RNA ligands with 5′-triphosphate caps. MDA5 recognizes long kilobase-scale genomic RNA and replication intermediates. Ligand binding induces conformational changes and oligomerization of RLRs that activate the signaling partner MAVS on the mitochondrial and peroxisomal membranes. This signaling process is under tight regulation, dependent on post-translational modifications of RIG-I and MDA5, and on regulatory proteins including unanchored ubiquitin chains and a third RLR, LGP2. Here, we review recent advances that have shifted the paradigm of RLR signaling away from the conventional linear signaling cascade. In the emerging RLR signaling model, large multimeric signaling platforms generate a highly cooperative, self-propagating, and context-dependent signal, which varies with the subcellular localization of the signaling platform.
Collapse
Affiliation(s)
- Stephanie Reikine
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT , USA
| | - Jennifer B Nguyen
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT , USA
| | - Yorgo Modis
- Department of Molecular Biophysics and Biochemistry, Yale University , New Haven, CT , USA
| |
Collapse
|
66
|
Feng Q, Langereis MA, Olagnier D, Chiang C, van de Winkel R, van Essen P, Zoll J, Hiscott J, van Kuppeveld FJM. Coxsackievirus cloverleaf RNA containing a 5' triphosphate triggers an antiviral response via RIG-I activation. PLoS One 2014; 9:e95927. [PMID: 24759703 PMCID: PMC3997492 DOI: 10.1371/journal.pone.0095927] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Accepted: 04/01/2014] [Indexed: 12/25/2022] Open
Abstract
Upon viral infections, pattern recognition receptors (PRRs) recognize pathogen-associated molecular patterns (PAMPs) and stimulate an antiviral state associated with the production of type I interferons (IFNs) and inflammatory markers. Type I IFNs play crucial roles in innate antiviral responses by inducing expression of interferon-stimulated genes and by activating components of the adaptive immune system. Although pegylated IFNs have been used to treat hepatitis B and C virus infections for decades, they exert substantial side effects that limit their use. Current efforts are directed toward the use of PRR agonists as an alternative approach to elicit host antiviral responses in a manner similar to that achieved in a natural infection. RIG-I is a cytosolic PRR that recognizes 5' triphosphate (5'ppp)-containing RNA ligands. Due to its ubiquitous expression profile, induction of the RIG-I pathway provides a promising platform for the development of novel antiviral agents and vaccine adjuvants. In this study, we investigated whether structured RNA elements in the genome of coxsackievirus B3 (CVB3), a picornavirus that is recognized by MDA5 during infection, could activate RIG-I when supplied with 5'ppp. We show here that a 5'ppp-containing cloverleaf (CL) RNA structure is a potent RIG-I inducer that elicits an extensive antiviral response that includes induction of classical interferon-stimulated genes, as well as type III IFNs and proinflammatory cytokines and chemokines. In addition, we show that prophylactic treatment with CVB3 CL provides protection against various viral infections including dengue virus, vesicular stomatitis virus and enterovirus 71, demonstrating the antiviral efficacy of this RNA ligand.
Collapse
Affiliation(s)
- Qian Feng
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - Martijn A. Langereis
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
| | - David Olagnier
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Cindy Chiang
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Roel van de Winkel
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Peter van Essen
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Jan Zoll
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - John Hiscott
- Division of Infectious Diseases, Vaccine and Gene Therapy Institute of Florida, Port Saint Lucie, Florida, United States of America
| | - Frank J. M. van Kuppeveld
- Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, University of Utrecht, Utrecht, The Netherlands
- * E-mail:
| |
Collapse
|
67
|
Virulence factor NSs of rift valley fever virus recruits the F-box protein FBXO3 to degrade subunit p62 of general transcription factor TFIIH. J Virol 2014; 88:3464-73. [PMID: 24403578 DOI: 10.1128/jvi.02914-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The nonstructural protein NSs is the main virulence factor of Rift Valley fever virus (RVFV; family Bunyaviridae, genus Phlebovirus), a serious pathogen of livestock and humans in Africa. RVFV NSs blocks transcriptional upregulation of antiviral type I interferons (IFN) and destroys the general transcription factor TFIIH subunit p62 via the ubiquitin/proteasome pathway. Here, we identified a subunit of E3 ubiquitin ligases, F-box protein FBXO3, as a host cell interactor of NSs. Small interfering RNA (siRNA)-mediated depletion of FBXO3 rescued p62 protein levels in RVFV-infected cells and elevated IFN transcription by 1 order of magnitude. NSs interacts with the full-length FBXO3 protein as well as with a truncated isoform that lacks the C-terminal acidic and poly(R)-rich domains. These isoforms are present in both the nucleus and the cytoplasm. NSs exclusively removes the nuclear pool of full-length FBXO3, likely due to consumption during the degradation process. F-box proteins form the variable substrate recognition subunit of the so-called SCF ubiquitin ligases, which also contain the constant components Skp1, cullin 1 (or cullin 7), and Rbx1. siRNA knockdown of Skp1 also protected p62 from degradation, suggesting involvement in NSs action. However, knockdown of cullin 1, cullin 7, or Rbx1 could not rescue p62 degradation by NSs. Our data show that the enzymatic removal of p62 via the host cell factor FBXO3 is a major mechanism of IFN suppression by RVFV. IMPORTANCE Rift Valley fever virus is a serious emerging pathogen of animals and humans. Its main virulence factor, NSs, enables unhindered virus replication by suppressing the antiviral innate immune system. We identified the E3 ubiquitin ligase FBXO3 as a novel host cell interactor of NSs. NSs recruits FBXO3 to destroy the general host cell transcription factor TFIIH-p62, resulting in suppression of the transcriptional upregulation of innate immunity.
Collapse
|
68
|
Abstract
The innate immune system faces the difficult task of keeping a fine balance between sensitive detection of microbial presence and avoidance of autoimmunity. To this aim, key mechanisms of innate responses rely on isolation of pathogens in specialized subcellular compartments, or sensing of specific microbial patterns absent from the host. Efficient detection of foreign RNA in the cytosol requires an additional layer of complexity from the immune system. In this particular case, innate sensors should be able to distinguish self and non-self molecules that share several similar properties. In this review, we discuss this interplay between cytosolic pattern recognition receptors and the microbial RNA they detect. We describe how microbial RNAs gain access to the cytosol, which receptors they activate and counter-strategies developed by microorganisms to avoid this response.
Collapse
Affiliation(s)
- Nicolas Vabret
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| | - J Magarian Blander
- Department of Medicine, Immunology Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA ; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai , New York, NY , USA
| |
Collapse
|
69
|
Metz P, Reuter A, Bender S, Bartenschlager R. Interferon-stimulated genes and their role in controlling hepatitis C virus. J Hepatol 2013; 59:1331-41. [PMID: 23933585 DOI: 10.1016/j.jhep.2013.07.033] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 07/23/2013] [Accepted: 07/24/2013] [Indexed: 12/24/2022]
Abstract
Infections with the hepatitis C virus (HCV) are a major cause of chronic liver disease. While the acute phase of infection is mostly asymptomatic, this virus has the high propensity to establish persistence and in the course of one to several decades liver disease can develop. HCV is a paradigm for the complex interplay between the interferon (IFN) system and viral countermeasures. The virus induces an IFN response within the infected cell and is rather sensitive against the antiviral state triggered by IFNs, yet in most cases HCV persists. Numerous IFN-stimulated genes (ISGs) have been reported to suppress HCV replication, but in only a few cases we begin to understand the molecular mechanisms underlying antiviral activity. It is becoming increasingly clear that blockage of viral replication is mediated by the concerted action of multiple ISGs that target different steps of the HCV replication cycle. This review briefly summarizes the activation of the IFN system by HCV and then focuses on ISGs targeting the HCV replication cycle and their possible mode of action.
Collapse
Affiliation(s)
- Philippe Metz
- Department of Infectious Diseases, Molecular Virology, Heidelberg University, Heidelberg, Germany
| | | | | | | |
Collapse
|
70
|
Schlee M. Master sensors of pathogenic RNA - RIG-I like receptors. Immunobiology 2013; 218:1322-35. [PMID: 23896194 PMCID: PMC7114584 DOI: 10.1016/j.imbio.2013.06.007] [Citation(s) in RCA: 181] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 05/27/2013] [Accepted: 06/05/2013] [Indexed: 12/25/2022]
Abstract
Initiating the immune response to invading pathogens, the innate immune system is constituted of immune receptors (pattern recognition receptors, PRR) that sense microbe-associated molecular patterns (MAMPs). Detection of pathogens triggers intracellular defense mechanisms, such as the secretion of cytokines or chemokines to alarm neighboring cells and attract or activate immune cells. The innate immune response to viruses is mostly based on PRRs that detect the unusual structure, modification or location of viral nucleic acids. Most of the highly pathogenic and emerging viruses are RNA genome-based viruses, which can give rise to zoonotic and epidemic diseases or cause viral hemorrhagic fever. As viral RNA is located in the same compartment as host RNA, PRRs in the cytosol have to discriminate between viral and endogenous RNA by virtue of their structure or modification. This challenging task is taken on by the homologous cytosolic DExD/H-box family helicases RIG-I and MDA5, which control the innate immune response to most RNA viruses. This review focuses on the molecular basis for RIG-I like receptor (RLR) activation by synthetic and natural ligands and will discuss controversial ligand definitions.
Collapse
Affiliation(s)
- Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53105 Bonn, Germany.
| |
Collapse
|
71
|
Activation and evasion of antiviral innate immunity by hepatitis C virus. J Mol Biol 2013; 426:1198-209. [PMID: 24184198 DOI: 10.1016/j.jmb.2013.10.032] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/22/2013] [Accepted: 10/23/2013] [Indexed: 02/08/2023]
Abstract
Hepatitis C virus (HCV) chronically infects 130-170 million people worldwide and is a major public health burden. HCV is an RNA virus that infects hepatocytes within liver, and this infection is sensed as non-self by the intracellular innate immune response to program antiviral immunity to HCV. HCV encodes several strategies to evade this antiviral response, and this evasion of innate immunity plays a key role in determining viral persistence. This review discusses the molecular mechanisms of how the intracellular innate immune system detects HCV infection, including how HCV pathogen-associated molecular patterns are generated during infection and where they are recognized as foreign by the innate immune system. Further, this review highlights the key innate immune evasion strategies used by HCV to establish persistent infection within the liver, as well as how host genotype influences the outcome of HCV infection. Understanding these HCV-host interactions is key in understanding how to target HCV during infection and for the design of more effective HCV therapies at the immunological level.
Collapse
|
72
|
Zinzula L, Tramontano E. Strategies of highly pathogenic RNA viruses to block dsRNA detection by RIG-I-like receptors: hide, mask, hit. Antiviral Res 2013; 100:615-35. [PMID: 24129118 PMCID: PMC7113674 DOI: 10.1016/j.antiviral.2013.10.002] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 09/24/2013] [Accepted: 10/04/2013] [Indexed: 12/24/2022]
Abstract
dsRNA species are byproducts of RNA virus replication and/or transcription. Prompt detection of dsRNA by RIG-I like receptors (RLRs) is a hallmark of the innate immune response. RLRs activation triggers production of the type I interferon (IFN)-based antiviral response. Highly pathogenic RNA viruses encode proteins that block the RLRs pathway. Hide, mask and hit are 3 strategies of RNA viruses to avoid immune system activation.
Double-stranded RNA (dsRNA) is synthesized during the course of infection by RNA viruses as a byproduct of replication and transcription and acts as a potent trigger of the host innate antiviral response. In the cytoplasm of the infected cell, recognition of the presence of viral dsRNA as a signature of “non-self” nucleic acid is carried out by RIG-I-like receptors (RLRs), a set of dedicated helicases whose activation leads to the production of type I interferon α/β (IFN-α/β). To overcome the innate antiviral response, RNA viruses encode suppressors of IFN-α/β induction, which block RLRs recognition of dsRNA by means of different mechanisms that can be categorized into: (i) dsRNA binding and/or shielding (“hide”), (ii) dsRNA termini processing (“mask”) and (iii) direct interaction with components of the RLRs pathway (“hit”). In light of recent functional, biochemical and structural findings, we review the inhibition mechanisms of RLRs recognition of dsRNA displayed by a number of highly pathogenic RNA viruses with different disease phenotypes such as haemorrhagic fever (Ebola, Marburg, Lassa fever, Lujo, Machupo, Junin, Guanarito, Crimean-Congo, Rift Valley fever, dengue), severe respiratory disease (influenza, SARS, Hendra, Hantaan, Sin Nombre, Andes) and encephalitis (Nipah, West Nile).
Collapse
Affiliation(s)
- Luca Zinzula
- Department of Life and Environmental Sciences, University of Cagliari, Cittadella di Monserrato, SS554, 09042 Monserrato (Cagliari), Italy.
| | | |
Collapse
|
73
|
Peisley A, Wu B, Yao H, Walz T, Hur S. RIG-I forms signaling-competent filaments in an ATP-dependent, ubiquitin-independent manner. Mol Cell 2013; 51:573-83. [PMID: 23993742 DOI: 10.1016/j.molcel.2013.07.024] [Citation(s) in RCA: 170] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/27/2013] [Accepted: 07/25/2013] [Indexed: 12/24/2022]
Abstract
Retinoic acid-inducible gene 1 (RIG-I) and melanoma differentiation-associated protein 5 (MDA5) are paralogous receptors for viral double-stranded RNA (dsRNA) with divergent specificity. We have previously shown that MDA5 forms filaments upon viral dsRNA recognition and that this filament formation is essential for interferon signal activation. Here, we show that while RIG-I binds to a dsRNA end as a monomer in the absence of ATP, it assembles in the presence of ATP into a filament that propagates from the dsRNA end to the interior. Furthermore, RIG-I filaments directly stimulate mitochondrial antiviral signaling (MAVS) filament formation without any cofactor, such as polyubiquitin chains, and forced juxtaposition of the isolated signaling domain of RIG-I, as it would be in the filament, is sufficient to activate interferon signaling. Our findings thus define filamentous architecture as a common yet versatile molecular platform for divergent viral RNA detection and proximity-induced signal activation by RIG-I and MDA5.
Collapse
Affiliation(s)
- Alys Peisley
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA; Program in Cellular and Molecular Medicine, Children's Hospital Boston, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
74
|
Nikonov A, Mölder T, Sikut R, Kiiver K, Männik A, Toots U, Lulla A, Lulla V, Utt A, Merits A, Ustav M. RIG-I and MDA-5 detection of viral RNA-dependent RNA polymerase activity restricts positive-strand RNA virus replication. PLoS Pathog 2013; 9:e1003610. [PMID: 24039580 PMCID: PMC3764220 DOI: 10.1371/journal.ppat.1003610] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2012] [Accepted: 07/25/2013] [Indexed: 12/15/2022] Open
Abstract
Type I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)]. Here, we show that the Semliki Forest virus (SFV) RNA replicase can induce IFN-β independently of viral RNA replication and transcription. The SFV replicase converts host cell RNA into 5'-ppp dsRNA and induces IFN-β through the RIG-I and MDA-5 pathways. Inactivation of the SFV replicase RdRp activity prevents IFN-β induction. These IFN-inducing modified host cell RNAs are abundantly produced during both wild-type SFV and its non-pathogenic mutant infection. Furthermore, in contrast to the wild-type SFV replicase a non-pathogenic mutant replicase triggers increased IFN-β production, which leads to a shutdown of virus replication. These results suggest that host cells can restrict RNA virus replication by detecting the products of unspecific viral replicase RdRp activity.
Collapse
Affiliation(s)
- Andrei Nikonov
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Tarmo Mölder
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
| | | | - Kaja Kiiver
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Andres Männik
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Urve Toots
- FIT Biotech Oy, Tartu, Estonia
- Icosagen Cell Factory OÜ, Tartu, Estonia
| | - Aleksei Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Valeria Lulla
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Age Utt
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Andres Merits
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mart Ustav
- Department of Biomedical Technology, Institute of Technology, University of Tartu, Tartu, Estonia
- FIT Biotech Oy, Tartu, Estonia
- Estonian Academy of Sciences, Tallinn, Estonia
| |
Collapse
|
75
|
Abstract
RIG‐I is an RNA helicase with important roles in immunity to RNA viruses. Two studies in this issue of EMBO reports provide new insights into the role of ATP hydrolysis by the helicase domain and RIG‐I oligomerization.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Medical Research Council Human Immunology Unit of the Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| |
Collapse
|
76
|
Rehwinkel J, Reis e Sousa C. Targeting the viral Achilles' heel: recognition of 5'-triphosphate RNA in innate anti-viral defence. Curr Opin Microbiol 2013; 16:485-92. [PMID: 23707340 PMCID: PMC7185528 DOI: 10.1016/j.mib.2013.04.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2013] [Revised: 04/25/2013] [Accepted: 04/26/2013] [Indexed: 11/10/2022]
Abstract
Some RNA virus genomes bear 5'-triphosphates, which can be recognized in the cytoplasm of infected cells by host proteins that mediate anti-viral immunity. Both the innate sensor RIG-I and the interferon-induced IFIT proteins bind to 5'-triphosphate viral RNAs. RIG-I signals for induction of interferons during RNA virus infection while IFITs sequester viral RNAs to exert an anti-viral effect. Notably, the structures of these proteins reveal both similarities and differences, which are suggestive of independent evolution towards ligand binding. 5'-triphosphates, which are absent from most RNAs in the cytosol of uninfected cells, are thus a marker of virus infection that is targeted by the innate immune system for both induction and execution of the anti-viral response.
Collapse
Affiliation(s)
- Jan Rehwinkel
- Medical Research Council Human Immunology Unit, Medical Research Council Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DS, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln's Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
77
|
Kohlway A, Luo D, Rawling DC, Ding SC, Pyle AM. Defining the functional determinants for RNA surveillance by RIG-I. EMBO Rep 2013; 14:772-9. [PMID: 23897087 PMCID: PMC3790051 DOI: 10.1038/embor.2013.108] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/02/2013] [Accepted: 07/02/2013] [Indexed: 12/24/2022] Open
Abstract
This study shows that HEL2i-domain mediated scanning allows RIG-I to sense the length of RNA targets, and a short RNA duplex that binds one RIG-I molecule can stimulate ATPase activity and interferon response. Retinoic acid-inducible gene-I (RIG-I) is an intracellular RNA sensor that activates the innate immune machinery in response to infection by RNA viruses. Here, we report the crystal structure of distinct conformations of a RIG-I:dsRNA complex, which shows that HEL2i-mediated scanning allows RIG-I to sense the length of RNA targets. To understand the implications of HEL2i scanning for catalytic activity and signalling by RIG-I, we examined its ATPase activity when stimulated by duplex RNAs of varying lengths and 5′ composition. We identified a minimal RNA duplex that binds one RIG-I molecule, stimulates robust ATPase activity, and elicits a RIG-I-mediated interferon response in cells. Our results reveal that the minimal functional unit of the RIG-I:RNA complex is a monomer that binds at the terminus of a duplex RNA substrate. This behaviour is markedly different from the RIG-I paralog melanoma differentiation-associated gene 5 (MDA5), which forms cooperative filaments.
Collapse
|
78
|
Patel JR, Jain A, Chou YY, Baum A, Ha T, García-Sastre A. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep 2013; 14:780-7. [PMID: 23846310 DOI: 10.1038/embor.2013.102] [Citation(s) in RCA: 106] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 06/21/2013] [Accepted: 06/24/2013] [Indexed: 12/18/2022] Open
Abstract
The cytosolic pathogen sensor RIG-I is activated by RNAs with exposed 5'-triphosphate (5'-ppp) and terminal double-stranded structures, such as those that are generated during viral infection. RIG-I has been shown to translocate on dsRNA in an ATP-dependent manner. However, the precise role of the ATPase activity in RIG-I activation remains unclear. Using in vitro-transcribed Sendai virus defective interfering RNA as a model ligand, we show that RIG-I oligomerizes on 5'-ppp dsRNA in an ATP hydrolysis-dependent and dsRNA length-dependent manner, which correlates with the strength of type-I interferon (IFN-I) activation. These results establish a clear role for the ligand-induced ATPase activity of RIG-I in the stimulation of the IFN response.
Collapse
Affiliation(s)
- Jenish R Patel
- 1] Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA [2] Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| | | | | | | | | | | |
Collapse
|
79
|
Ebolavirus VP35 coats the backbone of double-stranded RNA for interferon antagonism. J Virol 2013; 87:10385-8. [PMID: 23824825 DOI: 10.1128/jvi.01452-13] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recognition of viral double-stranded RNA (dsRNA) activates interferon production and immune signaling in host cells. Crystal structures of ebolavirus VP35 show that it caps dsRNA ends to prevent sensing by pattern recognition receptors such as RIG-I. In contrast, structures of marburgvirus VP35 show that it primarily coats the dsRNA backbone. Here, we demonstrate that ebolavirus VP35 also coats the dsRNA backbone in solution, although binding to the dsRNA ends probably constitutes the initial binding event.
Collapse
|
80
|
Abstract
Cells are equipped with mechanisms that allow them to rapidly detect and respond to viruses. These defense mechanisms rely partly on receptors that monitor the cytosol for the presence of atypical nucleic acids associated with virus infection. RIG-I-like receptors detect RNA molecules that are absent from the uninfected host. DNA receptors alert the cell to the abnormal presence of that nucleic acid in the cytosol. Signaling by RNA and DNA receptors results in the induction of restriction factors that prevent virus replication and establish cell-intrinsic antiviral immunity. In light of these formidable obstacles, viruses have evolved mechanisms of evasion, masking nucleic acid structures recognized by the host, sequestering themselves away from the cytosol or targeting host sensors, and signaling adaptors for deactivation or degradation. Here, we detail recent advances in the molecular understanding of cytosolic nucleic acid detection and its evasion by viruses.
Collapse
Affiliation(s)
- Delphine Goubau
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Safia Deddouche
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, Cancer Research UK London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3LY, UK
| |
Collapse
|
81
|
Paul D, Bartenschlager R. Architecture and biogenesis of plus-strand RNA virus replication factories. World J Virol 2013; 2:32-48. [PMID: 24175228 PMCID: PMC3785047 DOI: 10.5501/wjv.v2.i2.32] [Citation(s) in RCA: 219] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Revised: 01/18/2013] [Accepted: 01/24/2013] [Indexed: 02/05/2023] Open
Abstract
Plus-strand RNA virus replication occurs in tight association with cytoplasmic host cell membranes. Both, viral and cellular factors cooperatively generate distinct organelle-like structures, designated viral replication factories. This compartmentalization allows coordination of the different steps of the viral replication cycle, highly efficient genome replication and protection of the viral RNA from cellular defense mechanisms. Electron tomography studies conducted during the last couple of years revealed the three dimensional structure of numerous plus-strand RNA virus replication compartments and highlight morphological analogies between different virus families. Based on the morphology of virus-induced membrane rearrangements, we propose two separate subclasses: the invaginated vesicle/spherule type and the double membrane vesicle type. This review discusses common themes and distinct differences in the architecture of plus-strand RNA virus-induced membrane alterations and summarizes recent progress that has been made in understanding the complex interplay between viral and co-opted cellular factors in biogenesis and maintenance of plus-strand RNA virus replication factories.
Collapse
|
82
|
Childs KS, Randall RE, Goodbourn S. LGP2 plays a critical role in sensitizing mda-5 to activation by double-stranded RNA. PLoS One 2013; 8:e64202. [PMID: 23671710 PMCID: PMC3650065 DOI: 10.1371/journal.pone.0064202] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/10/2013] [Indexed: 12/24/2022] Open
Abstract
The DExD/H box RNA helicases retinoic acid-inducible gene-I (RIG-I) and melanoma differentiation associated gene-5 (mda-5) sense viral RNA in the cytoplasm of infected cells and activate signal transduction pathways that trigger the production of type I interferons (IFNs). Laboratory of genetics and physiology 2 (LGP2) is thought to influence IFN production by regulating the activity of RIG-I and mda-5, although its mechanism of action is not known and its function is controversial. Here we show that expression of LGP2 potentiates IFN induction by polyinosinic-polycytidylic acid [poly(I:C)], commonly used as a synthetic mimic of viral dsRNA, and that this is particularly significant at limited levels of the inducer. The observed enhancement is mediated through co-operation with mda-5, which depends upon LGP2 for maximal activation in response to poly(I:C). This co-operation is dependent upon dsRNA binding by LGP2, and the presence of helicase domain IV, both of which are required for LGP2 to interact with mda-5. In contrast, although RIG-I can also be activated by poly(I:C), LGP2 does not have the ability to enhance IFN induction by RIG-I, and instead acts as an inhibitor of RIG-I-dependent poly(I:C) signaling. Thus the level of LGP2 expression is a critical factor in determining the cellular sensitivity to induction by dsRNA, and this may be important for rapid activation of the IFN response at early times post-infection when the levels of inducer are low.
Collapse
Affiliation(s)
- Kay S. Childs
- Division of Biomedical Sciences, St. George's, University of London, London, United Kingdom
| | - Richard E. Randall
- School of Biology, University of St. Andrews, St. Andrews, United Kingdom
| | - Stephen Goodbourn
- Division of Biomedical Sciences, St. George's, University of London, London, United Kingdom
| |
Collapse
|
83
|
Fullam A, Schröder M. DExD/H-box RNA helicases as mediators of anti-viral innate immunity and essential host factors for viral replication. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2013; 1829:854-65. [PMID: 23567047 PMCID: PMC7157912 DOI: 10.1016/j.bbagrm.2013.03.012] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2012] [Revised: 03/27/2013] [Accepted: 03/29/2013] [Indexed: 12/17/2022]
Abstract
Traditional functions of DExD/H-box helicases are concerned with RNA metabolism; they have been shown to play a part in nearly every cellular process that involves RNA. On the other hand, it is accepted that DexD/H-box helicases also engage in activities that do not require helicase activity. A number of DExD/H-box helicases have been shown to be involved in anti-viral immunity. The RIG-like helicases, RIG-I, mda5 and lgp2, act as important cytosolic pattern recognition receptors for viral RNA. Detection of viral nucleic acids by the RIG-like helicases or other anti-viral pattern recognition receptors leads to the induction of type I interferons and pro-inflammatory cytokines. More recently, additional DExD/H-box helicases have also been implicated to act as cytosolic sensors of viral nucleic acids, including DDX3, DDX41, DHX9, DDX60, DDX1 and DHX36. However, there is evidence that at least some of these helicases might have more downstream functions in pattern recognition receptor signalling pathways, as signalling adaptors or transcriptional regulators. In an interesting twist, a lot of DExD/H-box helicases have also been identified as essential host factors for the replication of different viruses, suggesting that viruses 'hijack' their RNA helicase activities for their benefit. Interestingly, DDX3, DDX1 and DHX9 are among the helicases that are required for the replication of a diverse range of viruses. This might suggest that these helicases are highly contested targets in the ongoing 'arms race' between viruses and the host immune system. This article is part of a Special Issue entitled: The Biology of RNA helicases - Modulation for life.
Collapse
Affiliation(s)
- Anthony Fullam
- National University of Ireland, Maynooth, Kildare, Ireland.
| | | |
Collapse
|
84
|
Weber M, Gawanbacht A, Habjan M, Rang A, Borner C, Schmidt AM, Veitinger S, Jacob R, Devignot S, Kochs G, García-Sastre A, Weber F. Incoming RNA virus nucleocapsids containing a 5'-triphosphorylated genome activate RIG-I and antiviral signaling. Cell Host Microbe 2013; 13:336-46. [PMID: 23498958 PMCID: PMC5515363 DOI: 10.1016/j.chom.2013.01.012] [Citation(s) in RCA: 159] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 10/12/2012] [Accepted: 01/25/2013] [Indexed: 12/24/2022]
Abstract
Host defense to RNA viruses depends on rapid intracellular recognition of viral RNA by two cytoplasmic RNA helicases: RIG-I and MDA5. RNA transfection experiments indicate that RIG-I responds to naked double-stranded RNAs (dsRNAs) with a triphosphorylated 5' (5'ppp) terminus. However, the identity of the RIG-I stimulating viral structures in an authentic infection context remains unresolved. We show that incoming viral nucleocapsids containing a 5'ppp dsRNA "panhandle" structure trigger antiviral signaling that commences with RIG-I, is mediated through the adaptor protein MAVS, and terminates with transcription factor IRF-3. Independent of mammalian cofactors or viral polymerase activity, RIG-I bound to viral nucleocapsids, underwent a conformational switch, and homo-oligomerized. Enzymatic probing and superresolution microscopy suggest that RIG-I interacts with the panhandle structure of the viral nucleocapsids. These results define cytoplasmic entry of nucleocapsids as the proximal RIG-I-sensitive step during infection and establish viral nucleocapsids with a 5'ppp dsRNA panhandle as a RIG-I activator.
Collapse
Affiliation(s)
- Michaela Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Ali Gawanbacht
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Matthias Habjan
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Andreas Rang
- Institute of Virology, Helmut-Ruska-Haus, University Hospital Charité, Charité Campus Mitte, Berlin, Germany
| | - Christoph Borner
- Institute of Molecular Medicine, Stefan-Meier-Strasse 17, D-79104 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| | - Anna Mareike Schmidt
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| | - Sophie Veitinger
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, Marburg, Germany
| | - Ralf Jacob
- Department of Cell Biology and Cell Pathology, Philipps-University Marburg, Marburg, Germany
| | - Stéphanie Devignot
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
| | - Georg Kochs
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
| | - Adolfo García-Sastre
- Department of Microbiology, Mount Sinai School of Medicine, New York, NY-10029, USA
- Department of Medicine, Division of Infectious Diseases, Mount Sinai School of Medicine, New York, NY-10029, USA
- Global Health and Emerging Pathogens Institute, Mount Sinai School of Medicine, New York, NY-10029, USA
| | - Friedemann Weber
- Institute for Virology, Philipps-University Marburg, D-35043 Marburg, Germany
- Department of Virology, University Freiburg, Hermann-Herder-Strasse 11, D-79008 Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), Albert-Ludwigs University Freiburg, Germany
| |
Collapse
|
85
|
Beckham SA, Brouwer J, Roth A, Wang D, Sadler AJ, John M, Jahn-Hofmann K, Williams BRG, Wilce JA, Wilce MCJ. Conformational rearrangements of RIG-I receptor on formation of a multiprotein:dsRNA assembly. Nucleic Acids Res 2013; 41:3436-45. [PMID: 23325848 PMCID: PMC3597671 DOI: 10.1093/nar/gks1477] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 11/22/2022] Open
Abstract
The retinoic acid inducible gene-I (RIG-I)-like family of receptors is positioned at the front line of our innate cellular defence system. RIG-I detects and binds to foreign duplex RNA in the cytoplasm of both immune and non-immune cells, and initiates the induction of type I interferons and pro-inflammatory cytokines. The mechanism of RIG-I activation by double-stranded RNA (dsRNA) involves a molecular rearrangement proposed to expose the N-terminal pair of caspase activation recruitment domains, enabling an interaction with interferon-beta promoter stimulator 1 (IPS-1) and thereby initiating downstream signalling. dsRNA is particularly stimulatory when longer than 20 bp, potentially through allowing binding of more than one RIG-I molecule. Here, we characterize full-length RIG-I and RIG-I subdomains combined with a stimulatory 29mer dsRNA using multi-angle light scattering and size-exclusion chromatography-coupled small-angle X-ray scattering, to build up a molecular model of RIG-I before and after the formation of a 2:1 protein:dsRNA assembly. We report the small-angle X-ray scattering-derived solution structure of the human apo-RIG-I and observe that on binding of RIG-I to dsRNA in a 2:1 ratio, the complex becomes highly extended and flexible. Hence, here we present the first model of the fully activated oligomeric RIG-I.
Collapse
Affiliation(s)
- Simone A. Beckham
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Jason Brouwer
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Anna Roth
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Die Wang
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Anthony J. Sadler
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Matthias John
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Kerstin Jahn-Hofmann
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Bryan R. G. Williams
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Jacqueline A. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| | - Matthew C. J. Wilce
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia Monash Institute of Medical Research, Monash University, Clayton, Victoria 3168, Australia, Roche Kulmbach GmbH, 95326 Kulmbach, Germany and Sanofi Deutschland GmbH, 65926 Frankfurt, Germany
| |
Collapse
|
86
|
Abstract
Hepatitis C virus (HCV) infections become chronic in the majority of infected individuals, and chronic hepatitis C (CHC) can lead to cirrhosis and hepatocellular carcinoma. The innate immune system is central to host-virus interactions during the entire natural course of the disease. The HCV NS3/4A protease efficiently cleaves and inactivates two important signaling molecules in the sensory pathways that react to HCV pathogen-associated molecular patterns (PAMPs) to induce interferons (IFNs), i.e., mitochondrial antiviral signaling protein (MAVS) and Toll-IL-1 receptor domain-containing adaptor inducing IFN-β (TRIF). Despite this viral escape mechanism, the innate immune system strongly reacts to HCV within the first days after infection. The sensory pathways, the type(s) of IFNs involved and the cellular source of IFNs are largely unknown. After 4-8weeks, HCV specific T cells are recruited to the liver. IFN-γ-stimulated genes get strongly expressed in the liver. In about 30% of patients, the virus is eliminated during the acute phase of the infection by T cell-mediated antiviral mechanisms. In the remaining 70% of patients, HCV persists for decades. During this phase, T cell-derived IFN-γ cannot be detected any more in liver biopsies. Instead, in about half of the patients, hundreds of type I or III IFN-stimulated genes become again strongly expressed. However, this innate immune reaction is ineffective against HCV. Moreover, patients with constitutive IFN-stimulated gene (ISG) expression have a poor response to treatment with pegylated IFN-α (PegIFN-α) and ribavirin. The viral escape mechanisms that protect HCV from IFN-mediated innate immune reactions are not entirely understood, but might involve blockade of ISG protein translation at the ribosome, localization of viral replication to cells with refractory IFN signal transduction pathways or to cell compartments that are not accessible to antiviral IFN-stimulated effector systems. Recently, genetic variations near the IL28B (IFN-λ3) were found to be strongly associated with spontaneous clearance of HCV and response to treatment with PegIFN-α and ribavirin. The finding supports a central role of the innate immune response in host-viral interactions. The signaling pathways that link genetic variants of IL28B with immune answers to HCV remain to be elucidated. The present review article attempts to summarize current knowledge of some central aspects of the interactions of HCV with the innate immune system.
Collapse
Affiliation(s)
- Markus H Heim
- Division of Gastroenterology and Hepatology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland.
| |
Collapse
|
87
|
|
88
|
König SLB, Liyanage PS, Sigel RKO, Rueda D. Helicase-mediated changes in RNA structure at the single-molecule level. RNA Biol 2013; 10:133-48. [PMID: 23353571 DOI: 10.4161/rna.23507] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
RNA helicases are a diverse group of RNA-dependent ATPases known to play a large number of biological roles inside the cell, such as RNA unwinding, remodeling, export and degradation. Understanding how helicases mediate changes in RNA structure is therefore of fundamental interest. The advent of single-molecule spectroscopic techniques has unveiled with unprecedented detail the interplay of RNA helicases with their substrates. In this review, we describe the characterization of helicase-RNA interactions by single-molecule approaches. State-of-the-art techniques are presented, followed by a discussion of recent advancements in this exciting field.
Collapse
|
89
|
Wu B, Peisley A, Richards C, Yao H, Zeng X, Lin C, Chu F, Walz T, Hur S. Structural basis for dsRNA recognition, filament formation, and antiviral signal activation by MDA5. Cell 2012; 152:276-89. [PMID: 23273991 DOI: 10.1016/j.cell.2012.11.048] [Citation(s) in RCA: 424] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 10/12/2012] [Accepted: 11/20/2012] [Indexed: 12/31/2022]
Abstract
MDA5, a viral double-stranded RNA (dsRNA) receptor, shares sequence similarity and signaling pathways with RIG-I yet plays essential functions in antiviral immunity through distinct specificity for viral RNA. Revealing the molecular basis for the functional divergence, we report here the crystal structure of MDA5 bound to dsRNA, which shows how, using the same domain architecture, MDA5 recognizes the internal duplex structure, whereas RIG-I recognizes the terminus of dsRNA. We further show that MDA5 uses direct protein-protein contacts to stack along dsRNA in a head-to-tail arrangement, and that the signaling domain (tandem CARD), which decorates the outside of the core MDA5 filament, also has an intrinsic propensity to oligomerize into an elongated structure that activates the signaling adaptor, MAVS. These data support a model in which MDA5 uses long dsRNA as a signaling platform to cooperatively assemble the core filament, which in turn promotes stochastic assembly of the tandem CARD oligomers for signaling.
Collapse
Affiliation(s)
- Bin Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
90
|
Luo D, Kohlway A, Pyle AM. Duplex RNA activated ATPases (DRAs): platforms for RNA sensing, signaling and processing. RNA Biol 2012; 10:111-20. [PMID: 23228901 PMCID: PMC3590228 DOI: 10.4161/rna.22706] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Double-stranded RNAs are an important class of functional macromolecules in living systems. They are usually found as part of highly specialized intracellular machines that control diverse cellular events, ranging from virus replication, antiviral defense, RNA interference, to regulation of gene activities and genomic integrity. Within different intracellular machines, the RNA duplex is often found in association with specific RNA-dependent ATPases, including Dicer, RIG-I and DRH-3 proteins. These duplex RNA-activated ATPases represent an emerging group of motor proteins within the large and diverse super family 2 nucleic acid-dependent ATPases (which are historically defined as SF2 helicases). The duplex RNA-activated ATPases share characteristic molecular features for duplex RNA recognition, including motifs (e.g., motifs IIa and Vc) and an insertion domain (HEL2i), and they require double-strand RNA binding for their enzymatic activities. Proteins in this family undergo large conformational changes concomitant with RNA binding, ATP binding and ATP hydrolysis in order to achieve their functions, which include the release of signaling domains and the recruitment of partner proteins. The duplex RNA-activated ATPases represent a distinct and fascinating group of nanomechanical molecular motors that are essential for duplex RNA sensing and processing in diverse cellular pathways.
Collapse
Affiliation(s)
- Dahai Luo
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA.
| | | | | |
Collapse
|
91
|
Kolakofsky D, Kowalinski E, Cusack S. A structure-based model of RIG-I activation. RNA (NEW YORK, N.Y.) 2012; 18:2118-27. [PMID: 23118418 PMCID: PMC3504664 DOI: 10.1261/rna.035949.112] [Citation(s) in RCA: 120] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
A series of high-resolution crystal structures of RIG-I and RIG-I:dsRNA cocrystals has recently been reported. Comparison of these structures provides considerable insight into how this innate immune pattern recognition receptor is activated upon detecting and binding a certain class of viral RNAs.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Microbiology and Molecular Medicine, University of Geneva School of Medicine, CMU, 1211 Geneva, Switzerland.
| | | | | |
Collapse
|
92
|
Wu W, Zhang W, Booth JL, Metcalf JP. Influenza A(H1N1)pdm09 virus suppresses RIG-I initiated innate antiviral responses in the human lung. PLoS One 2012; 7:e49856. [PMID: 23185463 PMCID: PMC3503992 DOI: 10.1371/journal.pone.0049856] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 10/15/2012] [Indexed: 12/31/2022] Open
Abstract
Influenza infection is a major cause of morbidity and mortality. Retinoic acid-inducible gene I (RIG-I) is believed to play an important role in the recognition of, and response to, influenza virus and other RNA viruses. Our study focuses on the hypothesis that pandemic H1N1/09 influenza virus alters the influenza-induced proinflammatory response and suppresses host antiviral activity. We first compared the innate response to a clinical isolate of influenza A(H1N1)pdm09 virus, OK/09, a clinical isolate of seasonal H3N2 virus, OK/06, and to a laboratory adapted seasonal H1N1 virus, PR8, using a unique human lung organ culture model. Exposure of human lung tissue to either pandemic or seasonal influenza virus resulted in infection and replication in alveolar epithelial cells. Pandemic virus induces a diminished RIG-I mRNA and antiviral cytokine response than seasonal virus in human lung. The suppression of antiviral response and RIG-I mRNA expression was confirmed at the protein level by ELISA and western blot. We performed a time course of RIG-I and interferon-β (IFN-β) mRNA induction by the two viruses. RIG-I and IFN-β induction by OK/09 was of lower amplitude and shorter duration than that caused by PR8. In contrast, the pandemic virus OK/09 caused similar induction of proinflammatory cytokines, IL-8 and IL-6, at both the transcriptional and translational level as PR8 in human lung. Differential antiviral responses did not appear to be due to a difference in cellular infectivity as immunohistochemistry showed that both viruses infected alveolar macrophages and epithelial cells. These findings show that influenza A(H1N1)pdm09 virus suppresses anti-viral immune responses in infected human lung through inhibition of viral-mediated induction of the pattern recognition receptor, RIG-I, though proinflammatory cytokine induction was unaltered. This immunosuppression of the host antiviral response by pandemic virus may have contributed to the more serious lung infections that occurred in the H1N1 pandemic of 2009.
Collapse
MESH Headings
- Antiviral Agents
- DEAD Box Protein 58
- DEAD-box RNA Helicases/administration & dosage
- DEAD-box RNA Helicases/metabolism
- Humans
- Immunity, Innate/drug effects
- Immunity, Innate/immunology
- Immunosuppression Therapy
- Influenza A Virus, H1N1 Subtype/genetics
- Influenza A Virus, H1N1 Subtype/immunology
- Influenza A Virus, H1N1 Subtype/pathogenicity
- Influenza A Virus, H3N2 Subtype/immunology
- Influenza A Virus, H3N2 Subtype/metabolism
- Influenza, Human/immunology
- Influenza, Human/metabolism
- Influenza, Human/virology
- Interferon-beta/administration & dosage
- Interferon-beta/immunology
- Interleukin-6/immunology
- Interleukin-6/metabolism
- Interleukin-8/immunology
- Interleukin-8/metabolism
- Lung/immunology
- Lung/metabolism
- Lung/virology
- Organ Culture Techniques
- Pandemics
- Receptors, Immunologic
Collapse
Affiliation(s)
- Wenxin Wu
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Wei Zhang
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - J. Leland Booth
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| | - Jordan P. Metcalf
- Pulmonary and Critical Care Division, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
- Department of Microbiology and Immunology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
93
|
Abstract
The double-stranded RNA-dependent protein kinase PKR plays multiple roles in cells, in response to different stress situations. As a member of the interferon (IFN)‑Stimulated Genes, PKR was initially recognized as an actor in the antiviral action of IFN, due to its ability to control translation, through phosphorylation, of the alpha subunit of eukaryotic initiation factor 2 (eIF2α). As such, PKR participates in the generation of stress granules, or autophagy and a number of viruses have designed strategies to inhibit its action. However, PKR deficient mice resist most viral infections, indicating that PKR may play other roles in the cell other than just acting as an antiviral agent. Indeed, PKR regulates several signaling pathways, either as an adapter protein and/or using its kinase activity. Here we review the role of PKR as an eIF2α kinase, its participation in the regulation of the NF-κB, p38MAPK and insulin pathways, and we focus on its role during infection with the hepatitis C virus (HCV). PKR binds the HCV IRES RNA, cooperates with some functions of the HCV core protein and may represent a target for NS5A or E2. Novel data points out for a role of PKR as a pro-HCV agent, both as an adapter protein and as an eIF2α-kinase, and in cooperation with the di-ubiquitin-like protein ISG15. Developing pharmaceutical inhibitors of PKR may help in resolving some viral infections as well as stress-related damages.
Collapse
Affiliation(s)
- Stéphanie Dabo
- Unit Hepacivirus and Innate Immunity, Department Virology, Institut Pasteur, 28 rue du Dr Roux, 75724 Paris Cedex 15, France.
| | | |
Collapse
|
94
|
Multi-level regulation of cellular recognition of viral dsRNA. Cell Mol Life Sci 2012; 70:1949-63. [PMID: 22960755 PMCID: PMC7079809 DOI: 10.1007/s00018-012-1149-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Revised: 08/20/2012] [Accepted: 08/23/2012] [Indexed: 12/13/2022]
Abstract
Effective antiviral immunity depends on accurate recognition of viral RNAs by the innate immune system. Double-stranded RNA (dsRNA) often accumulates in virally infected cells and was initially considered a unique viral signature that was sufficient to initiate antiviral response through dsRNA receptors and dsRNA-dependent effectors such as Toll-like receptor 3, retinoic acid inducible gene-1, protein kinase RNA-activated and oligoadenylate synthetase. However, dsRNA is also present in many cellular RNAs, raising a question of how these receptors and effectors discriminate between viral and cellular dsRNAs. Accumulating evidence suggests that innate immune sensors detect not only dsRNA structure but also other and often multiple features of RNA such as length, sequence, cellular location, post-transcriptional processing and modification, which are divergent between viral and cellular RNAs. This review summarizes recent findings on the substrate specificities of a few selected dsRNA-dependent effectors and receptors, which have revealed more complex mechanisms involved in cellular discrimination between self and non-self RNA.
Collapse
|
95
|
Bale S, Julien JP, Bornholdt ZA, Kimberlin CR, Halfmann P, Zandonatti MA, Kunert J, Kroon GJA, Kawaoka Y, MacRae IJ, Wilson IA, Saphire EO. Marburg virus VP35 can both fully coat the backbone and cap the ends of dsRNA for interferon antagonism. PLoS Pathog 2012; 8:e1002916. [PMID: 23028316 PMCID: PMC3441732 DOI: 10.1371/journal.ppat.1002916] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2012] [Accepted: 08/06/2012] [Indexed: 12/24/2022] Open
Abstract
Filoviruses, including Marburg virus (MARV) and Ebola virus (EBOV), cause fatal hemorrhagic fever in humans and non-human primates. All filoviruses encode a unique multi-functional protein termed VP35. The C-terminal double-stranded (ds)RNA-binding domain (RBD) of VP35 has been implicated in interferon antagonism and immune evasion. Crystal structures of the VP35 RBD from two ebolaviruses have previously demonstrated that the viral protein caps the ends of dsRNA. However, it is not yet understood how the expanses of dsRNA backbone, between the ends, are masked from immune surveillance during filovirus infection. Here, we report the crystal structure of MARV VP35 RBD bound to dsRNA. In the crystal structure, molecules of dsRNA stack end-to-end to form a pseudo-continuous oligonucleotide. This oligonucleotide is continuously and completely coated along its sugar-phosphate backbone by the MARV VP35 RBD. Analysis of dsRNA binding by dot-blot and isothermal titration calorimetry reveals that multiple copies of MARV VP35 RBD can indeed bind the dsRNA sugar-phosphate backbone in a cooperative manner in solution. Further, MARV VP35 RBD can also cap the ends of the dsRNA in solution, although this arrangement was not captured in crystals. Together, these studies suggest that MARV VP35 can both coat the backbone and cap the ends, and that for MARV, coating of the dsRNA backbone may be an essential mechanism by which dsRNA is masked from backbone-sensing immune surveillance molecules.
Collapse
Affiliation(s)
- Shridhar Bale
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Jean-Philippe Julien
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Zachary A. Bornholdt
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Christopher R. Kimberlin
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Michelle A. Zandonatti
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
| | - John Kunert
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Gerard J. A. Kroon
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, United States of America
- Division of Virology, Department of Microbiology and Immunology, Institute of Medical Science, University of Tokyo, Tokyo, Japan
- International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Ian J. MacRae
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Ian A. Wilson
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Erica Ollmann Saphire
- Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, California, United States of America
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, California, United States of America
| |
Collapse
|
96
|
Drews K, Tavernier G, Demeester J, Lehrach H, De Smedt SC, Rejman J, Adjaye J. The cytotoxic and immunogenic hurdles associated with non-viral mRNA-mediated reprogramming of human fibroblasts. Biomaterials 2012; 33:4059-68. [DOI: 10.1016/j.biomaterials.2012.02.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Accepted: 02/09/2012] [Indexed: 11/28/2022]
|
97
|
Abstract
Besides their well known functions in storage and translation of information nucleic acids have emerged as a target of pattern recognition receptors that drive activation of innate immunity. Due to the paucity of building block monomers used in nucleic acids, discrimination of host and microbial nucleic acids as a means of self/foreign discrimination is a complicated task. Pattern recognition receptors rely on discrimination by sequence, structural features and spatial compartmentalization to differentiate microbial derived nucleic acids from host ones. Microbial nucleic acid detection is important for the sensing of infectious danger and initiating an immune response to microbial attack. Failures in the underlying recognitions systems can have severe consequences: thus, inefficient recognition of microbial nucleic acids may increase susceptibility to infectious diseases. On the other hand, excessive immune responses as a result of failed self/foreign discrimination are associated with autoimmune diseases. This review gives a general overview over the underlying concepts of nucleic acid sensing by Toll-like receptors. Within this general framework, we focus on bacterial RNA and synthetic RNA oligomers.
Collapse
Affiliation(s)
- Alexander Dalpke
- Heidelberg University, Department of Infectious Diseases - Medical Microbiology and Hygiene, Im Neuenheimer Feld 324, Heidelberg 69120, Germany
| | | |
Collapse
|
98
|
Leung DW, Amarasinghe GK. Structural insights into RNA recognition and activation of RIG-I-like receptors. Curr Opin Struct Biol 2012; 22:297-303. [PMID: 22560447 PMCID: PMC3383332 DOI: 10.1016/j.sbi.2012.03.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Accepted: 03/25/2012] [Indexed: 12/24/2022]
Abstract
RIG-I like receptors (RLR) that recognize non-self RNA play critical roles in activating host innate immune pathways in response to viral infections. Not surprisingly, RLRs and their associated signaling networks are also targeted by numerous antagonists that facilitate viral pathogenesis. Although the role of RLRs in orchestrating antiviral signaling has been recognized for some time, our knowledge of the complex regulatory mechanisms that control signaling through these key molecules is incomplete. A series of recent structural studies shed new light into the structural basis for dsRNA recognition and activation of RLRs. Collectively, these studies suggest that the repression of RLRs is facilitated by a cis element that makes multiple contacts with domains within the helicase and that RNA binding initiated by the C-terminal RNA binding domain is important for ATP hydrolysis and release of the CARD domain containing signaling module from the repressed conformation. These studies also highlight potential differences between RIG-I and MDA5, two RLR members. Together with previous studies, these new results bring us a step closer to uncovering the complex regulatory process of a key protein that protects host cells from invading pathogens.
Collapse
Affiliation(s)
- Daisy W Leung
- Department of Pathology and Immunology, Washington University School of Medicine, Campus Box 8118, 660 South Euclid Avenue, St Louis, MO 63110, United States.
| | | |
Collapse
|
99
|
Thimme R, Binder M, Bartenschlager R. Failure of innate and adaptive immune responses in controlling hepatitis C virus infection. FEMS Microbiol Rev 2012; 36:663-83. [PMID: 22142141 DOI: 10.1111/j.1574-6976.2011.00319.x] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 11/07/2011] [Accepted: 11/25/2011] [Indexed: 12/24/2022] Open
Affiliation(s)
- Robert Thimme
- Department of Medicine II, University Medical Center Freiburg, Freiburg, Germany
| | | | | |
Collapse
|
100
|
MDA5 cooperatively forms dimers and ATP-sensitive filaments upon binding double-stranded RNA. EMBO J 2012; 31:1714-26. [PMID: 22314235 DOI: 10.1038/emboj.2012.19] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/10/2012] [Indexed: 12/24/2022] Open
Abstract
Melanoma differentiation-associated gene-5 (MDA5) detects viral double-stranded RNA in the cytoplasm. RNA binding induces MDA5 to activate the signalling adaptor MAVS through interactions between the caspase recruitment domains (CARDs) of the two proteins. The molecular mechanism of MDA5 signalling is not well understood. Here, we show that MDA5 cooperatively binds short RNA ligands as a dimer with a 16-18-basepair footprint. A crystal structure of the MDA5 helicase-insert domain demonstrates an evolutionary relationship with the archaeal Hef helicases. In X-ray solution structures, the CARDs in unliganded MDA5 are flexible, and RNA binds on one side of an asymmetric MDA5 dimer, bridging the two subunits. On longer RNA, full-length and CARD-deleted MDA5 constructs assemble into ATP-sensitive filaments. We propose a signalling model in which the CARDs on MDA5-RNA filaments nucleate the assembly of MAVS filaments with the same polymeric geometry.
Collapse
|