51
|
Loh JJ, Ma S. The Role of Cancer-Associated Fibroblast as a Dynamic Player in Mediating Cancer Stemness in the Tumor Microenvironment. Front Cell Dev Biol 2021; 9:727640. [PMID: 34760886 PMCID: PMC8573407 DOI: 10.3389/fcell.2021.727640] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Accepted: 09/24/2021] [Indexed: 01/15/2023] Open
Abstract
The enrichment of cancer-associated fibroblast (CAFs) in a tumor microenvironment (TME) cultivates a pro-tumorigenic niche via aberrant paracrine signaling and matrix remodeling. A favorable niche is critical to the maintenance of cancer stem cells (CSCs), a population of cells that are characterized by their enhanced ability to self-renew, metastasis, and develop therapy resistance. Mounting evidence illustrates the interplay between CAF and cancer cells expedites malignant progression. Therefore, targeting the key cellular components and factors in the niche may promote a more efficacious treatment. In this study, we discuss how CAF orchestrates a niche that enhances CSC features and the potential therapeutic implication.
Collapse
Affiliation(s)
- Jia Jian Loh
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong
| | - Stephanie Ma
- School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Pokfulam, Hong Kong, SAR China
| |
Collapse
|
52
|
Cirillo N, Wu C, Prime SS. Heterogeneity of Cancer Stem Cells in Tumorigenesis, Metastasis, and Resistance to Antineoplastic Treatment of Head and Neck Tumours. Cells 2021; 10:cells10113068. [PMID: 34831291 PMCID: PMC8619944 DOI: 10.3390/cells10113068] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 11/01/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The discovery of a small subset of cancer cells with self-renewal properties that can give rise to phenotypically diverse tumour populations has shifted our understanding of cancer biology. Targeting cancer stem cells (CSCs) is becoming a promising therapeutic strategy in various malignancies, including head and neck squamous cell carcinoma (HNSCC). Diverse sub-populations of head and neck cancer stem cells (HNCSCs) have been identified previously using CSC specific markers, the most common being CD44, Aldehyde Dehydrogenase 1 (ALDH1), and CD133, or by side population assays. Interestingly, distinct HNCSC subsets play different roles in the generation and progression of tumours. This article aims to review the evidence for a role of specific CSCs in HNSCC tumorigenesis, invasion, and metastasis, together with resistance to treatment.
Collapse
Affiliation(s)
- Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
- Correspondence:
| | - Carmen Wu
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia;
| | - Stephen S. Prime
- Centre for Immunology and Regenerative Medicine, Institute of Dentistry, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London E1 4NS, UK;
| |
Collapse
|
53
|
Ebrahimie E, Rahimirad S, Tahsili M, Mohammadi-Dehcheshmeh M. Alternative RNA splicing in stem cells and cancer stem cells: Importance of transcript-based expression analysis. World J Stem Cells 2021; 13:1394-1416. [PMID: 34786151 PMCID: PMC8567453 DOI: 10.4252/wjsc.v13.i10.1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 06/21/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023] Open
Abstract
Alternative ribonucleic acid (RNA) splicing can lead to the assembly of different protein isoforms with distinctive functions. The outcome of alternative splicing (AS) can result in a complete loss of function or the acquisition of new functions. There is a gap in knowledge of abnormal RNA splice variants promoting cancer stem cells (CSCs), and their prospective contribution in cancer progression. AS directly regulates the self-renewal features of stem cells (SCs) and stem-like cancer cells. Notably, octamer-binding transcription factor 4A spliced variant of octamer-binding transcription factor 4 contributes to maintaining stemness properties in both SCs and CSCs. The epithelial to mesenchymal transition pathway regulates the AS events in CSCs to maintain stemness. The alternative spliced variants of CSCs markers, including cluster of differentiation 44, aldehyde dehydrogenase, and doublecortin-like kinase, α6β1 integrin, have pivotal roles in increasing self-renewal properties and maintaining the pluripotency of CSCs. Various splicing analysis tools are considered in this study. LeafCutter software can be considered as the best tool for differential splicing analysis and identification of the type of splicing events. Additionally, LeafCutter can be used for efficient mapping splicing quantitative trait loci. Altogether, the accumulating evidence re-enforces the fact that gene and protein expression need to be investigated in parallel with alternative splice variants.
Collapse
Affiliation(s)
- Esmaeil Ebrahimie
- School of Animal and Veterinary Sciences, The University of Adelaide, Adelaide 5005, South Australia, Australia
- La Trobe Genomics Research Platform, School of Life Sciences, College of Science, Health and Engineering, La Trobe University, Melbourne 3086, Australia
- School of Biosciences, The University of Melbourne, Melbourne 3010, Australia,
| | - Samira Rahimirad
- Department of Medical Genetics, National Institute of Genetic Engineering and Biotechnology, Tehran 1497716316, Iran
- Division of Urology, Department of Surgery, McGill University and the Research Institute of the McGill University Health Centre, Montreal H4A 3J1, Quebec, Canada
| | | | | |
Collapse
|
54
|
Li Y, Tang B, Lyu K, Yue H, Wei F, Xu Y, Chen S, Lin Y, Cai Z, Guo X, Li C, Lei W. Low expression of lncRNA SBF2-AS1 regulates the miR-302b-3p/TGFBR2 axis, promoting metastasis in laryngeal cancer. Mol Carcinog 2021; 61:45-58. [PMID: 34644425 DOI: 10.1002/mc.23358] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/03/2021] [Accepted: 09/18/2021] [Indexed: 01/02/2023]
Abstract
The 5-year survival rate of laryngeal cancer continues to decline, and the laryngeal particularity of the anatomy adversely affects the patient's quality of life. Emerging evidence suggests that long noncoding RNAs (lncRNAs) are closely correlated to key steps in the malignant progression of cancer cells. In this study, we report the role of lncRNA SBF2-AS1/miR-302b-3p/TGFBR2 interactions in the metastasis of laryngeal squamous cell carcinoma (LSCC). We verified that SBF2-AS1 was significantly downregulated in LSCC tissues and cell lines using qRT-PCR analysis. Its low expression was correlated to lymph node metastasis and an advanced clinical stage. More importantly, LSCC patients with low expression of SBF2-AS1 tended to have a poor prognosis. Based on this, we performed gain-of-function and loss-of-function experiments in LSCC cell lines. The results confirmed that knocking down SBF2-AS1 can promote the metastasis of LSCC cells and enhance epithelial-mesenchymal transition phenotype, while the upregulation of SBF2-AS1 expression resulted in the opposite. Our in vivo model verified that SBF2-AS1 overexpression could inhibit LSCC cell metastasis. Subsequent mechanistic studies revealed that SBF2-AS1 acted as a competing endogenous RNA that upregulated the expression of TGFBR2 by endogenous sponging for miR-302b-3p in LSCC cell lines. Moreover, miR-302b-3p overexpression reversed the inhibitory effects on LSCC metastasis induced by upregulation of SBF2-AS1 expression, and inhibition of TGFBR2 expression reversed the effect of SBF2-AS1 on metastasis. Our study proposes SBF2-AS1 as a biomarker to predict the prognosis of LSCC patients and a novel potential therapeutic target.
Collapse
Affiliation(s)
- Yun Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Bingjie Tang
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Kexing Lyu
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huijun Yue
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Fanqin Wei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yang Xu
- Department of Otolaryngology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Siyu Chen
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Yu Lin
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhimou Cai
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueqin Guo
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chunwei Li
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Wenbin Lei
- Otorhinolaryngology Hospital, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
55
|
Kawahara K, Nagata M, Yoshida R, Hirosue A, Tanaka T, Matsuoka Y, Arita H, Nakashima H, Sakata J, Yamana K, Kawaguchi S, Gohara S, Nagao Y, Hirayama M, Takahashi N, Hirayama M, Nakayama H. miR-30a attenuates drug sensitivity to 5-FU by modulating cell proliferation possibly by downregulating cyclin E2 in oral squamous cell carcinoma. Biochem Biophys Rep 2021; 28:101114. [PMID: 34589618 PMCID: PMC8461355 DOI: 10.1016/j.bbrep.2021.101114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 08/04/2021] [Accepted: 08/23/2021] [Indexed: 11/30/2022] Open
Abstract
We aimed to determine the functional role of the miRNA, which affects drug sensitivity to 5-FU in oral squamous cell carcinoma (OSCC), using two types of 5-FU-resistant and parental OSCC cell lines. MiRNA microarray data showed that miR-30a was significantly upregulated in two resistant cell lines. Therefore, we investigated the effects and molecular mechanism of miR-30a on 5-FU sensitivity. Stable overexpression of miR-30a in parental OSCC cells decreased cell proliferation and attenuated drug sensitivity to 5-FU. Cell cycle analysis indicated that miR-30a overexpression increased the proportion of G1 phase cells and decreased the proportion of S phase cells. MiR-30a knockdown using siRNA reversed the effects of miR-30a overexpression. DNA microarray analysis using miR-30a-overexpressing cell lines and a TargetScan database search showed that cyclin E2 (CCNE2) is a target of miR-30a. A luciferase reporter assay confirmed that a miR-30a mimic interacted with the specific binding site in the 3' UTR of CCNE2. CCNE2 knockdown with siRNA in OSCC cells yielded decreased drug sensitivity to 5-FU, similar to miR-30a overexpressing cells. These findings suggest that miR-30a in OSCC may be a novel biomarker of 5-FU-resistant tumors, as well as a therapeutic target for combating resistance. miR-30a overexpression increased the proportion of G1 phase cells. miR-30a knockdown using si-RNA reversed the effects of miR-30a overexpression. CCNE2 knockdown with si-RNA in OSCC cells decreased drug sensitivity to 5-FU.
Collapse
Affiliation(s)
- Kenta Kawahara
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masashi Nagata
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoji Yoshida
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akiyuki Hirosue
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takuya Tanaka
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Dentistry and Oral Surgery, Amakusa Central General Hospital, Amakusa 863-0033, Japan
| | - Yuichiro Matsuoka
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hidetaka Arita
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hikaru Nakashima
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Department of Oral & Maxillofacial Surgery, Kyushu Central Hospital, Fukuoka 815-8588, Japan
| | - Junki Sakata
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Keisuke Yamana
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Sho Kawaguchi
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Shunsuke Gohara
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Yuka Nagao
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Masatoshi Hirayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Nozomu Takahashi
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Mayumi Hirayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Hideki Nakayama
- Department of Oral & Maxillofacial Surgery, Faculty of Life Sciences, Kumamoto University, 1-1-1, Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
- Corresponding author.
| |
Collapse
|
56
|
Patil K, Khan FB, Akhtar S, Ahmad A, Uddin S. The plasticity of pancreatic cancer stem cells: implications in therapeutic resistance. Cancer Metastasis Rev 2021; 40:691-720. [PMID: 34453639 PMCID: PMC8556195 DOI: 10.1007/s10555-021-09979-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/12/2021] [Indexed: 02/07/2023]
Abstract
The ever-growing perception of cancer stem cells (CSCs) as a plastic state rather than a hardwired defined entity has evolved our understanding of the functional and biological plasticity of these elusive components in malignancies. Pancreatic cancer (PC), based on its biological features and clinical evolution, is a prototypical example of a CSC-driven disease. Since the discovery of pancreatic CSCs (PCSCs) in 2007, evidence has unraveled their control over many facets of the natural history of PC, including primary tumor growth, metastatic progression, disease recurrence, and acquired drug resistance. Consequently, the current near-ubiquitous treatment regimens for PC using aggressive cytotoxic agents, aimed at ''tumor debulking'' rather than eradication of CSCs, have proven ineffective in providing clinically convincing improvements in patients with this dreadful disease. Herein, we review the key hallmarks as well as the intrinsic and extrinsic resistance mechanisms of CSCs that mediate treatment failure in PC and enlist the potential CSC-targeting 'natural agents' that are gaining popularity in recent years. A better understanding of the molecular and functional landscape of PCSC-intrinsic evasion of chemotherapeutic drugs offers a facile opportunity for treating PC, an intractable cancer with a grim prognosis and in dire need of effective therapeutic advances.
Collapse
Affiliation(s)
- Kalyani Patil
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Farheen B Khan
- Department of Biology, College of Science, The United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Sabah Akhtar
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Shahab Uddin
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
- Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
57
|
Patil S. CD44 Sorted Cells Have an Augmented Potential for Proliferation, Epithelial-Mesenchymal Transition, Stemness, and a Predominantly Inflammatory Cytokine and Angiogenic Secretome. Curr Issues Mol Biol 2021; 43:423-433. [PMID: 34205649 PMCID: PMC8929035 DOI: 10.3390/cimb43010034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022] Open
Abstract
Cancer stem cells (CSCs) have garnered attention with their potential for early diagnosis and prognosis of oral squamous cell carcinoma (OSCC). It is still indistinct whether CSCs are recognized with a specific set of characteristics. The present study aimed to assess the association of CD44 with stemness-related, Epithelial Mesenchymal Transition EMT-related genes and the secretome of the CSCs. The single-cell suspension from primary OSCC tumors was prepared by enzymatic digestion and the cells were cultured in-vitro. The cancer stem cells were isolated by CD44+ selection using magnetic cell-sorting. The expression of CD44, proliferation rate, gene expression of EMT-related transcription factors, stemness markers, cytokine levels and angiogenic factors in both cell population was assessed. The sorted CD44+ cells showed significantly higher proliferation rate than heterogenous population. The CD44 expression was >90% in the sorted cells which was higher than the heterogenous cells. The CD44+ CSCs cells demonstrated significant increased levels of EMT-related genes TWIST1 and CDH2 (N-cadherin), CSC-related genes CD44 and CD133 (PROM1), stemness-related genes OCT4, SOX2, inflammatory cytokines IL-1ß, IL-12, IL-18 and TNF-α and angiogenic factors Angiopoietin-1, Angiopoietin-2, bFGF and VEGF while levels of epithelial gene CDH1 (E-cadherin) decreased in comparison to mixed cell population. The genetic and secretome profiling of the CD44+ CSCs could serve as diagnostic and prognostic tools in the treatment of oral cancers.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan 45142, Saudi Arabia
| |
Collapse
|
58
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021. [DOI: 10.3390/cancers13112759
expr 955442319 + 839973387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
59
|
ECM Remodeling in Squamous Cell Carcinoma of the Aerodigestive Tract: Pathways for Cancer Dissemination and Emerging Biomarkers. Cancers (Basel) 2021; 13:cancers13112759. [PMID: 34199373 PMCID: PMC8199582 DOI: 10.3390/cancers13112759] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Local and distant metastasis of patients affected by squamous cell carcinoma of the upper aerodigestive tract predicts poor prognosis. In the latest years, the introduction of new therapeutic approaches, including targeted and immune therapies, has improved the overall survival. However, a large number of these patients do not benefit from these treatments. Thus, the identification of suitable prognostic and predictive biomarkers, as well as the discovery of new therapeutic targets have emerged as a crucial clinical need. In this context, the extracellular matrix represents a suitable target for the development of such therapeutic tools. In fact, the extracellular matrix is composed by complex molecules able to interact with a plethora of receptors and growth factors, thus modulating the dynamic crosstalk between cancer cells and the tumor microenvironment. In this review, we summarize the current knowledge of the role of the extracellular matrix in affecting squamous cell carcinoma growth and dissemination. Despite extracellular matrix is known to affect the development of many cancer types, only a restricted number of these molecules have been recognized to impact on squamous cell carcinoma progression. Thus, we consider that a thorough analysis of these molecules may be key to develop new potential therapeutic targets/biomarkers. Abstract Squamous cell carcinomas (SCC) include a number of different types of tumors developing in the skin, in hollow organs, as well as the upper aerodigestive tract (UADT) including the head and neck region and the esophagus which will be dealt with in this review. These tumors are often refractory to current therapeutic approaches with poor patient outcome. The most important prognostic determinant of SCC tumors is the presence of distant metastasis, significantly correlating with low patient survival rates. Rapidly emerging evidence indicate that the extracellular matrix (ECM) composition and remodeling profoundly affect SSC metastatic dissemination. In this review, we will summarize the current knowledge on the role of ECM and its remodeling enzymes in affecting the growth and dissemination of UADT SCC. Taken together, these published evidence suggest that a thorough analysis of the ECM composition in the UADT SCC microenvironment may help disclosing the mechanism of resistance to the treatments and help defining possible targets for clinical intervention.
Collapse
|
60
|
Fontanella RA, Sideri S, Di Stefano C, Catizone A, Di Agostino S, Angelini DF, Guerrera G, Battistini L, Battafarano G, Del Fattore A, Campese AF, Padula F, De Cesaris P, Filippini A, Riccioli A. CD44v8-10 is a marker for malignant traits and a potential driver of bone metastasis in a subpopulation of prostate cancer cells. Cancer Biol Med 2021; 18:j.issn.2095-3941.2020.0495. [PMID: 34018387 PMCID: PMC8330537 DOI: 10.20892/j.issn.2095-3941.2020.0495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 03/08/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Bone metastasis is a clinically important outcome of prostate carcinoma (PC). We focused on the phenotypic and functional characterization of a particularly aggressive phenotype within the androgen-independent bone metastasis-derived PC3 cell line. These cells, originated from the spontaneous conversion of a CD44-negative subpopulation, stably express the CD44v8-10 isoform (CD44v8-10pos) and display stem cell-like features and a marked invasive phenotype in vitro that is lost upon CD44v8-10 silencing. METHODS Flow cytometry, enzyme-linked immunoassay, immunofluorescence, and Western blot were used for phenotypic and immunologic characterization. Real-time quantitative polymerase chain reaction and functional assays were used to assess osteomimicry. RESULTS Analysis of epithelial-mesenchymal transition markers showed that CD44v8-10pos PC3 cells surprisingly display epithelial phenotype and can undergo osteomimicry, acquiring bone cell phenotypic and behavioral traits. Use of specific siRNA evidenced the ability of CD44v8-10 variant to confer osteomimetic features, hence the potential to form bone-specific metastasis. Moreover, the ability of tumors to activate immunosuppressive mechanisms which counteract effective immune responses is a sign of the aggressiveness of a tumor. Here we report that CD44v8-10pos cells express programmed death ligand 1, a negative regulator of anticancer immunity, and secrete exceptionally high amounts of interleukin-6, favoring osteoclastogenesis and immunosuppression in bone microenvironment. Notably, we identified a novel pathway activated by CD44v8-10, involving tafazzin (TAZ) and likely the Wnt/TAZ axis, known to play a role in upregulating osteomimetic genes. CONCLUSIONS CD44v8-10 could represent a marker of a more aggressive bone metastatic PC population exerting a driver role in osteomimicry in bone. A novel link between TAZ and CD44v8-10 is also shown.
Collapse
Affiliation(s)
- Rosaria A. Fontanella
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Silvia Sideri
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Chiara Di Stefano
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Angiolina Catizone
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Silvia Di Agostino
- Department of Health Sciences School of Medicine – “Magna Graecia” University of Catanzaro, Catanzaro 88100, Italy
| | | | | | | | - Giulia Battafarano
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome 00146, Italy
| | - Andrea Del Fattore
- Bone Physiopathology Research Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children’s Hospital, IRCCS, Rome 00146, Italy
| | | | - Fabrizio Padula
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Paola De Cesaris
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila 67100, Italy
| | - Antonio Filippini
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| | - Anna Riccioli
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, Unit of Histology and Medical Embryology, Sapienza University, Rome 00161, Italy
| |
Collapse
|
61
|
Yaghobi Z, Movassaghpour A, Talebi M, Abdoli Shadbad M, Hajiasgharzadeh K, Pourvahdani S, Baradaran B. The role of CD44 in cancer chemoresistance: A concise review. Eur J Pharmacol 2021; 903:174147. [PMID: 33961871 DOI: 10.1016/j.ejphar.2021.174147] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 04/28/2021] [Accepted: 04/30/2021] [Indexed: 12/14/2022]
Abstract
CD44 is a cell surface adhesion molecule, which is overexpressed on cancer stem cells. The interaction of CD44 with hyaluronan is responsible for tumor development, metastasis, and expression of the chemoresistant phenotype. The overexpression of CD44 impedes the cytotoxic effect of chemotherapy medications in various cancers. Therefore, the high expression of CD44 is associated with a poor prognosis in affected patients. This high expression of CD44 in various cancers has provided an ample opportunity for the treatment of patients with chemoresistant malignancy. This review aims to demonstrate the various cross-talk between CD44 and intracellular and extracellular factors and highlight its role in developing chemoresistant tumors in some troublesome cancers.
Collapse
Affiliation(s)
- Zohreh Yaghobi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aliakbar Movassaghpour
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehdi Talebi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | | | - Shiva Pourvahdani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
62
|
Huang J, Zhang L, Wan D, Zhou L, Zheng S, Lin S, Qiao Y. Extracellular matrix and its therapeutic potential for cancer treatment. Signal Transduct Target Ther 2021; 6:153. [PMID: 33888679 PMCID: PMC8062524 DOI: 10.1038/s41392-021-00544-0] [Citation(s) in RCA: 441] [Impact Index Per Article: 110.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 02/17/2021] [Accepted: 03/09/2021] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is one of the major components of tumors that plays multiple crucial roles, including mechanical support, modulation of the microenvironment, and a source of signaling molecules. The quantity and cross-linking status of ECM components are major factors determining tissue stiffness. During tumorigenesis, the interplay between cancer cells and the tumor microenvironment (TME) often results in the stiffness of the ECM, leading to aberrant mechanotransduction and further malignant transformation. Therefore, a comprehensive understanding of ECM dysregulation in the TME would contribute to the discovery of promising therapeutic targets for cancer treatment. Herein, we summarized the knowledge concerning the following: (1) major ECM constituents and their functions in both normal and malignant conditions; (2) the interplay between cancer cells and the ECM in the TME; (3) key receptors for mechanotransduction and their alteration during carcinogenesis; and (4) the current therapeutic strategies targeting aberrant ECM for cancer treatment.
Collapse
Affiliation(s)
- Jiacheng Huang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Lele Zhang
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Dalong Wan
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
| | - Lin Zhou
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shusen Zheng
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China
| | - Shengzhang Lin
- School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- Shulan (Hangzhou) Hospital Affiliated to Zhejiang Shuren University Shulan International Medical College, Hangzhou, 310000, China.
| | - Yiting Qiao
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310003, China.
- NHC Key Laboratory of Combined Multi-Organ Transplantation, Hangzhou, 310003, China.
- Key Laboratory of the Diagnosis and Treatment of Organ Transplantation, Research Unit of Collaborative Diagnosis and Treatment For Hepatobiliary and Pancreatic Cancer, Chinese Academy of Medical Sciences (2019RU019), Hangzhou, 310003, China.
- Key Laboratory of Organ Transplantation, Zhejiang Province, Hangzhou, 310003, China.
| |
Collapse
|
63
|
Deng K, Yao J, Huang J, Ding Y, Zuo J. Abnormal alternative splicing promotes tumor resistance in targeted therapy and immunotherapy. Transl Oncol 2021; 14:101077. [PMID: 33774500 PMCID: PMC8039720 DOI: 10.1016/j.tranon.2021.101077] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 12/19/2022] Open
Abstract
Abnormal alternative splicing is involve in abnormal expression of genes in cancer. Abnormal alternative splicing events promote malignant progression of cancer. Abnormal alternative splicing develops tumor resistance to targeted therapy by changing the target point and signal transduction pathway. Abnormal alternative splicing develops tumor resistance to immunotherapy by changing cell surface antigens and protein structure.
Abnormally alternative splicing events are common hallmark of diverse types of cancers. Splicing variants with aberrant functions play an important role in cancer development. Most importantly, a growing body of evidence has supported that alternative splicing might play a significant role in the therapeutic resistance of tumors. Targeted therapy and immunotherapy are the future directions of tumor therapy; however, the loss of antigen targets on the tumor cells surface and alterations in drug efficacy have resulted in the failure of targeted therapy and immunotherapy. Interestingly, abnormal alternative splicing, as a strategy to regulate gene expression, is reportedly involved in the reprogramming of cell signaling pathways and epitopes on the tumor cell surface by changing splicing patterns of genes, thus rendering tumors resisted to targeted therapy and immunotherapy. Accordingly, increased knowledge regarding abnormal alternative splicing in tumors may help predict therapeutic resistance during targeted therapy and immunotherapy and lead to novel therapeutic approaches in cancer. Herein, we provide a brief synopsis of abnormal alternative splicing events in cancer progression and therapeutic resistance.
Collapse
Affiliation(s)
- Kun Deng
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Jingwei Yao
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jialu Huang
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China
| | - Yubo Ding
- The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China
| | - Jianhong Zuo
- The Laboratory of translational medicine, Hengyang Medical School, University of South China, 28 Changsheng Road, Hengyang, Hunan 421001, P R China; The Affiliated Nanhua Hospital of University of South China, Hengyang, Hunan 421002, P R China; Clinical Laboratory, The Third Affiliated Hospital of University of South China, Hengyang, Hunan 421900, China.
| |
Collapse
|
64
|
Ortiz-Cuaran S, Bouaoud J, Karabajakian A, Fayette J, Saintigny P. Precision Medicine Approaches to Overcome Resistance to Therapy in Head and Neck Cancers. Front Oncol 2021; 11:614332. [PMID: 33718169 PMCID: PMC7947611 DOI: 10.3389/fonc.2021.614332] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is the sixth most incident cancer worldwide. More than half of HNSCC patients experience locoregional or distant relapse to treatment despite aggressive multimodal therapeutic approaches that include surgical resection, radiation therapy, and adjuvant chemotherapy. Before the arrival of immunotherapy, systemic chemotherapy was previously employed as the standard first-line protocol with an association of cisplatin or carboplatin plus 5-fluorouracil plus cetuximab (anti-EFGR antibody). Unfortunately, acquisition of therapy resistance is common in patients with HNSCC and often results in local and distant failure. Despite our better understanding of HNSCC biology, no other molecular-targeted agent has been approved for HNSCC. In this review, we outline the mechanisms of resistance to the therapeutic strategies currently used in HNSCC, discuss combination treatment strategies to overcome them, and summarize the therapeutic regimens that are presently being evaluated in early- and late-phase clinical trials.
Collapse
Affiliation(s)
- Sandra Ortiz-Cuaran
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
| | - Jebrane Bouaoud
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
- Department of Maxillofacial Surgery and Stomatology, Pitié-Salpêtrière University Hospital, Pierre et Marie Curie University, Sorbonne University, Paris, France
| | - Andy Karabajakian
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Jérôme Fayette
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| | - Pierre Saintigny
- Univ Lyon, Université Claude Bernard Lyon 1, INSERM 1052, CNRS 5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon, Lyon, France
- Department of Medical Oncology, Centre Léon Bérard, Lyon, France
| |
Collapse
|
65
|
Lee SN, Kim SJ, Yoon SA, Song JM, Ahn JS, Kim HC, Choi AMK, Yoon JH. CD44v3-Positive Intermediate Progenitor Cells Contribute to Airway Goblet Cell Hyperplasia. Am J Respir Cell Mol Biol 2021; 64:247-259. [PMID: 33264080 DOI: 10.1165/rcmb.2020-0350oc] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022] Open
Abstract
In allergic airway diseases, intermediate progenitor cells (IPCs) increase in number in the surface epithelium. IPCs arise from basal cells, the origin of hallmark pathological changes, including goblet cell hyperplasia and mucus hypersecretion. Thus, targeting IPCs will benefit future treatment of allergic airway diseases. However, the lack of adequate cell surface markers for IPCs limits their identification and characterization. We now show that CD44 containing exon v3 (CD44v3) is a surface marker for IPCs that are capable of both proliferating and generating differentiated goblet cells in allergic human nasal epithelium. In primary human nasal epithelial cells that had differentiated at an air-liquid interface, IL-4 upregulated mRNA expression of three CD44v variants that include exon v3 (CD44v3-v6, CD44v3,v8-v10, and CD44v3-v10), and it induced expression of CD44v3 protein in the basal and suprabasal layers of the culture. FACS analysis revealed two subpopulations differing in CD44v3 concentrations, as follows: CD44v3low cells expressed high amounts of proliferative and basal cell markers (Ki-67 and TP63), whereas CD44v3high cells strongly expressed progenitor and immature and mature goblet cell markers (SOX2, CA2, and SPDEF). Importantly, a blocking anti-CD44 antibody suppressed IL-4-induced mucin production by human nasal epithelial cells. Furthermore, CD44v3 was coexpressed with TP63, KRT5, or SOX2 and was upregulated in the basal and suprabasal layers of the nasal surface epithelium of subjects with allergic rhinitis. Taken together, these data demonstrate that high CD44v3 expression contributes to goblet cell hyperplasia in inflammation of the allergic airway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Augustine M K Choi
- Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, New York; and.,Division of Pulmonary and Critical Care Medicine, Weill Cornell Medical College, New York, New York
| | - Joo-Heon Yoon
- The Airway Mucus Institute and.,Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Korea
| |
Collapse
|
66
|
Tansi FL, Fröbel F, Maduabuchi WO, Steiniger F, Westermann M, Quaas R, Teichgräber UK, Hilger I. Effect of Matrix-Modulating Enzymes on The Cellular Uptake of Magnetic Nanoparticles and on Magnetic Hyperthermia Treatment of Pancreatic Cancer Models In Vivo. NANOMATERIALS 2021; 11:nano11020438. [PMID: 33572222 PMCID: PMC7915425 DOI: 10.3390/nano11020438] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 01/10/2021] [Accepted: 02/03/2021] [Indexed: 12/18/2022]
Abstract
Magnetic hyperthermia can cause localized thermal eradication of several solid cancers. However, a localized and homogenous deposition of high concentrations of magnetic nanomaterials into the tumor stroma and tumor cells is mostly required. Poorly responsive cancers such as the pancreatic adenocarcinomas are hallmarked by a rigid stroma and poor perfusion to therapeutics and nanomaterials. Hence, approaches that enhance the infiltration of magnetic nanofluids into the tumor stroma convey potentials to improve thermal tumor therapy. We studied the influence of the matrix-modulating enzymes hyaluronidase and collagenase on the uptake of magnetic nanoparticles by pancreatic cancer cells and 3D spheroids thereof, and the overall impact on magnetic heating and cell death. Furthermore, we validated the effect of hyaluronidase on magnetic hyperthermia treatment of heterotopic pancreatic cancer models in mice. Treatment of cultured cells with the enzymes caused higher uptake of magnetic nanoparticles (MNP) as compared to nontreated cells. For example, hyaluronidase caused a 28% increase in iron deposits per cell. Consequently, the thermal doses (cumulative equivalent minutes at 43 °C, CEM43) increased by 15–23% as compared to heat dose achieved for cells treated with magnetic hyperthermia without using enzymes. Likewise, heat-induced cell death increased. In in vivo studies, hyaluronidase-enhanced infiltration and distribution of the nanoparticles in the tumors resulted in moderate heating levels (CEM43 of 128 min as compared to 479 min) and a slower, but persistent decrease in tumor volumes over time after treatment, as compared to comparable treatment without hyaluronidase. The results indicate that hyaluronidase, in particular, improves the infiltration of magnetic nanoparticles into pancreatic cancer models, impacts their thermal treatment and cell depletion, and hence, will contribute immensely in the fight against pancreatic and many other adenocarcinomas.
Collapse
Affiliation(s)
- Felista L. Tansi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.F.); (W.O.M.)
- Correspondence: (F.L.T.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-9325921 (I.H.)
| | - Filipp Fröbel
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.F.); (W.O.M.)
| | - Wisdom O. Maduabuchi
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.F.); (W.O.M.)
| | - Frank Steiniger
- Center for Electron Microscopy, Jena University Hospital—Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany; (F.S.); (M.W.)
| | - Martin Westermann
- Center for Electron Microscopy, Jena University Hospital—Friedrich Schiller University Jena, Ziegelmuehlenweg 1, 07743 Jena, Germany; (F.S.); (M.W.)
| | | | - Ulf K. Teichgräber
- Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany;
| | - Ingrid Hilger
- Department of Experimental Radiology, Institute of Diagnostic and Interventional Radiology, Jena University Hospital—Friedrich Schiller University Jena, Am Klinikum 1, 07747 Jena, Germany; (F.F.); (W.O.M.)
- Correspondence: (F.L.T.); (I.H.); Tel.: +49-3641-9324993 (F.L.T.); +49-3641-9325921 (I.H.)
| |
Collapse
|
67
|
Porter L, McCaughan F. SOX2 and squamous cancers. Semin Cancer Biol 2020; 67:154-167. [PMID: 32905832 DOI: 10.1016/j.semcancer.2020.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 11/10/2019] [Accepted: 05/09/2020] [Indexed: 12/20/2022]
Abstract
SOX2 is a pleiotropic nuclear transcription factor with major roles in stem cell biology and in development. Over the last 10 years SOX2 has also been implicated as a lineage-specific oncogene, notably in squamous carcinomas but also neurological tumours, particularly glioblastoma. Squamous carcinomas (SQCs) comprise a common group of malignancies for which there are no targeted therapeutic interventions. In this article we review the molecular epidemiological and laboratory evidence linking SOX2 with squamous carcinogenesis, explore in detail the multifaceted impact of SOX2 in SQC, describe areas of uncertainty and highlight areas for potential future research.
Collapse
Affiliation(s)
- Linsey Porter
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom
| | - Frank McCaughan
- Department of Medicine, University of Cambridge, Addenbrookes Hospital, Box 157, Hills Rd, Cambridge, CB2 0QQ, United Kingdom.
| |
Collapse
|
68
|
Therapy Resistance, Cancer Stem Cells and ECM in Cancer: The Matrix Reloaded. Cancers (Basel) 2020; 12:cancers12103067. [PMID: 33096662 PMCID: PMC7589733 DOI: 10.3390/cancers12103067] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) has remained an enigmatic component of the tumor microenvironment. It drives metastasis via its interaction with the integrin signaling pathway, contributes to tumor progression and confers therapy resistance by providing a physical barrier around the tumor. The complexity of the ECM lies in its heterogeneous composition and complex glycosylation that can provide a support matrix as well as trigger oncogenic signaling pathways by interacting with the tumor cells. In this review, we attempt to dissect the role of the ECM in enriching for the treatment refractory cancer stem cell population and how it may be involved in regulating their metabolic needs. Additionally, we discuss how the ECM is instrumental in remodeling the tumor immune microenvironment and the potential ways to target this component in order to develop a viable therapy.
Collapse
|
69
|
Li B, Chen M, Pan MX. Sex determining region Y-box 2 is a prognostic factor for head and neck squamous cell carcinoma: Evidence from 11 published investigations. J Cancer Res Ther 2020; 16:434-439. [PMID: 32719247 DOI: 10.4103/0973-1482.189238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Objective The aim of this study was to review the published literature and investigate whether sex determining region Y-box 2 (SOX2) is a prognostic factor in head and neck squamous cell carcinoma (HNSCC) by conduct a meta-analysis. Materials and Methods Trials were identified from the major electronic databases (MEDLINE, EMBASE, and Cochrane Library) using the key words "HNSCC" and "SOX2." The overall survival (OS), disease-specific survival (DPS), and disease-free survival (DFS) were the primary outcome measures. Results We identified 371 articles, 9 articles 11 studies with a total number of 1334 cases were eligible for inclusion of this meta-analysis. The results showed that OS (DPS) in low-expression group was higher than that in high-expression group. However, the difference between the two groups was not significant (hazard ratio [HR] = 1.30, 95% confidence interval [95% CI] = [0.88, 1.91]; P = 0.18), and there was great statistical heterogeneity (I2 = 66%, P = 0.002). After subgroup analysis, the HR for OS of the patients with reduced expression of SOX2 was 1.34 (95% CI = [1.04, 1.74], P = 0.03), and the heterogeneity became acceptable (I2 = 32%, P = 0.16). The HR for DFS of the patients with reduced expression of SOX2 was 1.39 (95% CI = [1.00, 1.93]; P = 0.05). Conclusion The findings of this meta-analysis are indicative of that high SOX2 expression is a negative prognostic factor of HNSCC and exhibit both worse OS and DFS. However, the small sample size available for this systematic review limited the power of this quantitative meta-analysis. It may therefore be too early to place complete confidence in these results.
Collapse
Affiliation(s)
- Bo Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| | - Mei Chen
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| | - Meng-Xiong Pan
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi Zhuang Autonomous Region, 541001, China
| |
Collapse
|
70
|
Najafzadeh B, Asadzadeh Z, Motafakker Azad R, Mokhtarzadeh A, Baghbanzadeh A, Alemohammad H, Abdoli Shadbad M, Vasefifar P, Najafi S, Baradaran B. The oncogenic potential of NANOG: An important cancer induction mediator. J Cell Physiol 2020; 236:2443-2458. [PMID: 32960465 DOI: 10.1002/jcp.30063] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/02/2020] [Accepted: 09/07/2020] [Indexed: 12/11/2022]
Abstract
Cancer stem cells (CSCs) are a unique population in the tumor, but they only comprise 2%-5% of the tumor bulk. Although CSCs share several features with embryonic stem cells, CSCs can give rise to the tumor cells. CSCs overexpress embryonic transcription factor NANOG, which is downregulated in differentiated tissues. This transcription factor confers CSC's stemness, unlimited self-renewal, metastasis, invasiveness, angiogenesis, and drug-resistance with the assistance of WNT, OCT4, SOX2, Hedgehog, BMI-1, and other complexes. NANOG facilitates CSCs development via multiple pathways, like angiogenesis and lessening E-cadherin expression levels, which paves the road for metastasis. Moreover, NANOG represses apoptosis and leads to drug-resistance. This review aims to highlight the pivotal role of NANOG and the pertained pathways in CSCs. Also, this current study intends to demonstrate that targeting NANOG can dimmish the CSCs, sensitize the tumor to chemotherapy, and eradicate the cancer cells.
Collapse
Affiliation(s)
- Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amir Baghbanzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Immunology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
71
|
Penteado CAS, Batista TBD, Chaiben CL, Bonacin BG, Ventura TMO, Dionizio A, Couto Souza PH, Buzalaf MAR, Azevedo-Alanis LR. Salivary protein candidates for biomarkers of oral disorders in alcohol and tobacco dependents. Oral Dis 2020; 26:1200-1208. [PMID: 32237000 DOI: 10.1111/odi.13337] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/20/2020] [Accepted: 03/19/2020] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To evaluate the oral condition of alcohol and tobacco dependents and identify salivary protein candidates for biomarkers of oral disorders. SUBJECTS AND METHODS Thirty-three male volunteers were evaluated for alcohol abuse rehabilitation; nine were selected for proteomic analysis. Intraoral examination was performed, and non-stimulated saliva was collected. Salivary proteins were extracted and processed for analysis. A list of proteins identified in saliva was generated from the database and manually revised, obtaining the total number of candidate biomarkers for oral disorders. RESULTS The mean age (n = 33) was 42.94 ± 8.61 years. Fourteen (42.4%) subjects presented with 23 oral mucosa changes, and 31 (94%) had dental plaque. A total of 282 proteins were found in saliva (n = 9), of which 26 were identified as candidates for biomarkers of oral disorders. After manual review, 21 proteins were selected. The highest number of candidates for biomarkers was associated with carcinoma of head and neck (n = 10), nasopharyngeal carcinoma (n = 6), and periodontal disease (n = 6). CONCLUSION Alcohol and tobacco dependents showed gingival inflammation, and less than half of them showed oral mucosa changes. Twenty-one protein candidates for biomarkers of oral disorders were identified in saliva. The two major oral disorders in number of candidates for biomarkers were head and neck cancer and periodontal disease.
Collapse
Affiliation(s)
| | - Thiago Beltrami Dias Batista
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Cassiano Lima Chaiben
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | - Bruna Guedes Bonacin
- Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Aline Dionizio
- Bauru School of Dentistry, University of São Paulo, Bauru, SP, Brasil
| | - Paulo Henrique Couto Souza
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| | | | - Luciana Reis Azevedo-Alanis
- Graduate Program in Dentistry, School of Life Sciences, Pontifícia Universidade Católica do Paraná, Curitiba, Brazil
| |
Collapse
|
72
|
Alemohammad H, Asadzadeh Z, Motafakker Azad R, Hemmat N, Najafzadeh B, Vasefifar P, Najafi S, Baradaran B. Signaling pathways and microRNAs, the orchestrators of NANOG activity during cancer induction. Life Sci 2020; 260:118337. [PMID: 32841661 DOI: 10.1016/j.lfs.2020.118337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a small part of cancer cells inside the tumor that have similar characteristics to normal stem cells. CSCs stimulate tumor initiation and progression in a variety of cancers. Several transcription factors such as NANOG, SOX2, and OCT4 maintain the characteristics of CSCs and their upregulation is seen in many malignancies resulting in increased metastasis, invasion, and recurrence. Among these factors, NANOG plays an important role in regulating the self-renewal and pluripotency of CSCs and the clinical significance of NANOG has been suggested as a marker of CSCs in many cancers. The up and down-regulation of NANOG is associated with several important signaling pathways, including JAK/STAT, Wnt/β-catenin, Notch, TGF-β, Hedgehog, and several microRNAs (miRNAs). In this review, we will investigate the function of NANOG in CSCs and the molecular mechanism of its regulation by signaling pathways and miRNAs. We will also investigate targeting NANOG with different techniques, which is a promising treatment strategy for cancer treatment.
Collapse
Affiliation(s)
- Hajar Alemohammad
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Zahra Asadzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Nima Hemmat
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Basira Najafzadeh
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Parisa Vasefifar
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Souzan Najafi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
73
|
Gomez KE, Wu F, Keysar SB, Morton JJ, Miller B, Chimed TS, Le PN, Nieto C, Chowdhury FN, Tyagi A, Lyons TR, Young CD, Zhou H, Somerset HL, Wang XJ, Jimeno A. Cancer Cell CD44 Mediates Macrophage/Monocyte-Driven Regulation of Head and Neck Cancer Stem Cells. Cancer Res 2020; 80:4185-4198. [PMID: 32816856 DOI: 10.1158/0008-5472.can-20-1079] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 06/24/2020] [Accepted: 07/30/2020] [Indexed: 02/05/2023]
Abstract
Tumor-associated macrophages (TAM) in the tumor microenvironment (TME) cooperate with cancer stem cells (CSC) to maintain stemness. We recently identified cluster of differentiation 44 (CD44) as a surface marker defining head and neck squamous cell carcinoma (HNSCC) CSC. PI3K-4EBP1-SOX2 activation and signaling regulate CSC properties, yet the upstream molecular control of this pathway and the mechanisms underlying cross-talk between TAM and CSC in HNSCC remain largely unknown. Because CD44 is a molecular mediator in the TME, we propose here that TAM-influenced CD44 signaling could mediate stemness via the PI3K-4EBP1-SOX2 pathway, possibly by modulating availability of hyaluronic acid (HA), the main CD44 ligand. HNSCC IHC was used to identify TAM/CSC relationships, and in vitro coculture spheroid models and in vivo mouse models were used to identify the influence of TAMs on CSC function via CD44. Patient HNSCC-derived TAMs were positively and negatively associated with CSC marker expression at noninvasive and invasive edge regions, respectively. TAMs increased availability of HA and increased cancer cell invasion. HA binding to CD44 increased PI3K-4EBP1-SOX2 signaling and the CSC fraction, whereas CD44-VCAM-1 binding promoted invasive signaling by ezrin/PI3K. In vivo, targeting CD44 decreased PI3K-4EBP1-SOX2 signaling, tumor growth, and CSC. TAM depletion in syngeneic and humanized mouse models also diminished growth and CSC numbers. Finally, a CD44 isoform switch regulated epithelial-to-mesenchymal plasticity as standard form of CD44 and CD44v8-10 determined invasive and tumorigenic phenotypes, respectively. We have established a mechanistic link between TAMs and CSCs in HNSCC that is mediated by CD44 intracellular signaling in response to extracellular signals. SIGNIFICANCE: These findings establish a mechanistic link between tumor cell CD44, TAM, and CSC properties at the tumor-stroma interface that can serve as a vital area of focus for target and drug discovery.
Collapse
Affiliation(s)
- Karina E Gomez
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - FangLong Wu
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Stephen B Keysar
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - J Jason Morton
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Bettina Miller
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Tugs-Saikhan Chimed
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Phuong N Le
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Cera Nieto
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Farshad N Chowdhury
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Anit Tyagi
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Traci R Lyons
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Christian D Young
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Hongmei Zhou
- State Key Laboratory of Oral Diseases, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Hilary L Somerset
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiao-Jing Wang
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Veterans Affairs Medical Center, VA Eastern Colorado Health Care System, Aurora, Colorado
| | - Antonio Jimeno
- Division of Medical Oncology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado. .,Gates Center for Regenerative Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
74
|
Hsu YC, Luo CW, Huang WL, Wu CC, Chou CL, Chen CI, Chang SJ, Chai CY, Wang HC, Chen TY, Li CF, Pan MR. BMI1-KLF4 axis deficiency improves responses to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Radiother Oncol 2020; 149:249-258. [PMID: 32592893 DOI: 10.1016/j.radonc.2020.06.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 06/17/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE Neoadjuvant concurrent chemoradiotherapy (CCRT) is a gold standard treatment for patients with stage II/III rectal cancer. B-cell-specific Moloney murine leukemia virus insertion site 1 (BMI1) is a member of the polycomb group of proteins that are involved in regulating gene expression. High levels of BMI1 have been demonstrated to contribute to the malignant phenotypes of several cancers; however, its relevance in rectal cancer treated with CCRT is largely unknown. METHODS AND MATERIALS We used two patient cohorts to address the clinical relevance of BMI1 in human cancers. In addition, HT-29 and HCT-116 cells were chosen as our in vitro models to verify the role of BMI1 in cell response to ionizing radiation. Stemness-related proteins were analyzed by western blotting and cell survival was determined using clonogenic assays. RESULTS BMI1 overexpression was found to significantly correlate with advanced pre-treatment nodal status (N1-N2; p < 0.001), post-treatment tumor stage (T1-T2; p = 0.015), inferior tumor regression grade (p = 0.001), and also an independent prognosis factor in 172 rectal cancer patients receiving CCRT. Serial cell-based functional examination indicated that BMI1 deficiency sensitized cells to radiation treatment by modulating the gene expression of Kruppel-like factor 4 (KLF4) and enhanced radiosensitivity in microsatellite stable (MSS) colorectal cancers. Overexpression of KLF4 partially overcame BMI1-deficiency-mediated γ-H2AX expression after ionizing radiation exposure. Consistent with in vitro data, an analysis of an additional 30 rectal cancer tissue specimens revealed a positive correlation between BMI1 and KLF4 (p = 0.02). CONCLUSION Higher levels of BMI1 are associated with poor therapeutic response and adverse outcomes in rectal cancer patients receiving CCRT.
Collapse
Affiliation(s)
- Yin-Chou Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Emergency Medicine, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chi-Wen Luo
- Division of Breast Surgery, Department of Surgery, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Wei-Lun Huang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chun-Chieh Wu
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chia-Lin Chou
- Division of Colon & Rectal Surgery, Department of Surgery, Chi Mei Medical Center, Tainan, Taiwan; Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chih-I Chen
- Division of Colon & Rectal Surgery, Department of Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Shu-Jyuan Chang
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chee-Yin Chai
- Department of Pathology, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Hui-Ching Wang
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Division of Hematology and Oncology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yi Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Chien-Feng Li
- Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Mei-Ren Pan
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan.
| |
Collapse
|
75
|
Lorusso G, Rüegg C, Kuonen F. Targeting the Extra-Cellular Matrix-Tumor Cell Crosstalk for Anti-Cancer Therapy: Emerging Alternatives to Integrin Inhibitors. Front Oncol 2020; 10:1231. [PMID: 32793493 PMCID: PMC7387567 DOI: 10.3389/fonc.2020.01231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 06/16/2020] [Indexed: 12/11/2022] Open
Abstract
The extracellular matrix (ECM) is a complex network composed of a multitude of different macromolecules. ECM components typically provide a supportive structure to the tissue and engender positional information and crosstalk with neighboring cells in a dynamic reciprocal manner, thereby regulating tissue development and homeostasis. During tumor progression, tumor cells commonly modify and hijack the surrounding ECM to sustain anchorage-dependent growth and survival, guide migration, store pro-tumorigenic cell-derived molecules and present them to enhance receptor activation. Thereby, ECM potentially supports tumor progression at various steps from initiation, to local growth, invasion, and systemic dissemination and ECM-tumor cells interactions have long been considered promising targets for cancer therapy. Integrins represent key surface receptors for the tumor cell to sense and interact with the ECM. Yet, attempts to therapeutically impinge on these interactions using integrin inhibitors have failed to deliver anticipated results, and integrin inhibitors are still missing in the emerging arsenal of drugs for targeted therapies. This paradox situation should urge the field to reconsider the role of integrins in cancer and their targeting, but also to envisage alternative strategies. Here, we review the therapeutic targets implicated in tumor cell adhesion to the ECM, whose inhibitors are currently in clinical trials and may offer alternatives to integrin inhibition.
Collapse
Affiliation(s)
- Girieca Lorusso
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Curzio Rüegg
- Experimental and Translational Oncology, Department of Oncology Microbiology and Immunology, Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - François Kuonen
- Department of Dermatology and Venereology, Hôpital de Beaumont, Lausanne University Hospital Center, Lausanne, Switzerland
| |
Collapse
|
76
|
Expression of NANOG and Its Regulation in Oral Squamous Cell Carcinoma. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8573793. [PMID: 32733958 PMCID: PMC7383335 DOI: 10.1155/2020/8573793] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/11/2020] [Accepted: 05/30/2020] [Indexed: 02/07/2023]
Abstract
Background Results of previous studies suggest that NANOG may be an important prognostic biomarker in oral squamous cell carcinoma (OSCC), but there are contradictory results regarding NANOG expression patterns on mRNA and protein levels, and the mechanisms of its regulation are poorly understood. Our aim was to analyze the expression and diagnostic significance of NANOG in OSCC, and the possible mechanisms of its regulation, i.e., protein regulators on mRNA level (OCT4, SOX2, KLF4, AGR2, and NOTCH1), methylation status, copy number variation, and regulatory miRNAs, miR-145, miR-335, miR-150, miR-34a, miR-128, and miR-27a. Methods Our study included 120 patients with OSCC. Expression of NANOG protein and mRNA was analyzed using immunohistochemistry and qPCR. Expression of regulatory factors, miRNAs, and copy number variation was performed using qPCR. Methylation status of NANOG promoter was determined using PCR and Sanger sequencing. Results We detected upregulation of NANOG and OCT4 and downregulation of NOTCH1 and AGR2 mRNA in OSCC with lymph node metastases compared to OSCC without lymph node metastases. We observed a strong positive correlation between mRNAs of NANOG and those of its protein regulators OCT4, SOX2, NOTCH1, AGR2, and KLF4. The expression of NANOG was in positive correlation with the expression of miR-34a. There was also a correlation between T status of OSCC and the expression of miR-335 and miR-150 and a correlation of miR-150 with the N status of T2 OSCC. NANOG promoter methylation and copy number variation were only observed in a small proportion of samples. Conclusions Our findings confirm the diagnostic significance of NANOG in OSCC and provide information on NANOG expression patterns on both mRNA and protein levels. They also suggest that protein regulators and microRNAs might play a crucial role, whereas methylation of its promoter and copy number variation probably have a minor role in the regulation of NANOG expression in OSCC.
Collapse
|
77
|
Jariyal H, Gupta C, Srivastava A. Hyaluronic acid induction on breast cancer stem cells unfolds subtype specific variations in stemness and epithelial-to-mesenchymal transition. Int J Biol Macromol 2020; 160:1078-1089. [PMID: 32479949 DOI: 10.1016/j.ijbiomac.2020.05.236] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/17/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
The reoccurrence of breast cancer is a major concern due to presence of cancer stem cells (CSCs). Considering the key role of hyaluronic acid (HA) in modulating the inflammation and cellular migration in cancer, the response of high molecular weight (HMW) and low molecular weight (LMW) HA towards various subtypes of breast cancer and breast cancer stem cells remain elusive. The aim of this study is to determine the effect of exogenous HMW-HA and LMW-HA on stemness of CSCs and epithelial-to-mesenchymal transition which may help in designing HA based therapeutic strategies. LMW-HA induces EMT in MCF-7 more prominently as compared to MDA-MB-231. However, HMW-HA did not show significant changes in the expression of EMT genes. Surprisingly, both HMW-HA and LMW-HA have shown to decrease the expression of EpCAM in MCF-7 cells and decrease the expression of CD44 in MDAMB-231 cells. HA has maintained the native stem cells phenotype of bCSCs isolated from MCF-7 only. The bCSCs isolated form MDAMB-231 showed a decrease in CD44. Luminal subtype has shown to follow Wnt/β-catenin whereas in the basal subtype localization of CD44 from surface to cytosol was observed in response to HA. Our study has demonstrated that bCSCs in luminal and basal cells follow differential intracellular signaling mechanisms in response to HA. This study could significantly influence the therapeutics involving HA in breast cancer.
Collapse
Affiliation(s)
- Heena Jariyal
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| | - Chanchal Gupta
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India
| | - Akshay Srivastava
- Department of Medical Devices, National Institute of Pharmaceutical Education and Research-Ahmedabad, Gandhinagar, Gujarat, India.
| |
Collapse
|
78
|
Cancer stem cells and oral cancer: insights into molecular mechanisms and therapeutic approaches. Cancer Cell Int 2020; 20:113. [PMID: 32280305 PMCID: PMC7137421 DOI: 10.1186/s12935-020-01192-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 03/27/2020] [Indexed: 02/06/2023] Open
Abstract
Cancer stem cells (CSCs) have been identified as a little population of cancer cells, which have features as the same as the cells normal stem cells. There is enough knowledge of the CSCs responsibility for metastasis, medicine resistance, and cancer outbreak. Therefore, CSCs control possibly provides an efficient treatment intervention inhibiting tumor growth and invasion. In spite of the significance of targeting CSCs in treating cancer, few study comprehensively explored the nature of oral CSCs. It has been showed that oral CSCs are able to contribute to oral cancer progression though activation/inhibition a sequences of cellular and molecular pathways (microRNA network, histone modifications and calcium regulation). Hence, more understanding about the properties of oral cancers and their behaviors will help us to develop new therapeutic platforms. Head and neck CSCs remain a viable and intriguing option for targeted therapy. Multiple investigations suggested the major contribution of the CSCs to the metastasis, tumorigenesis, and resistance to the new therapeutic regimes. Therefore, experts in the field are examining the encouraging targeted therapeutic choices. In spite of the advancements, there are not enough information in this area and thus a magic bullet for targeting and eliminating the CSCs deviated us. Hence, additional investigations on the combined therapies against the head and neck CSCs could offer considerable achievements. The present research is a review of the recent information on oral CSCs, and focused on current advancements in new signaling pathways contributed to their stemness regulation. Moreover, we highlighted various therapeutic approaches against oral CSCs.
Collapse
|
79
|
Prasad S, Ramachandran S, Gupta N, Kaushik I, Srivastava SK. Cancer cells stemness: A doorstep to targeted therapy. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165424. [PMID: 30818002 DOI: 10.1016/j.bbadis.2019.02.019] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/15/2019] [Accepted: 02/20/2019] [Indexed: 02/07/2023]
Abstract
Recent advances in research on cancer have led to understand the pathogenesis of cancer and development of new anticancer drugs. Despite of these advancements, many tumors have been found to recur, undergo metastasis and develop resistance to therapy. Accumulated evidences suggest that small population of cancer cells known as cancer stem cells (CSC) are responsible for reconstitution and propagation of the disease. CSCs possess the ability to self-renew, differentiate and proliferate like normal stem cells. CSCs also appear to have resistance to anti-cancer therapies and subsequent relapse. The underlying stemness properties of the CSCs are reliant on multiple molecular targets such as signaling pathways, cell surface molecules, tumor microenvironment, apoptotic pathways, microRNA, stem cell differentiation, and drug resistance markers. Thus an effective therapeutic strategy relies on targeting CSCs to overcome the possible tumor relapse and chemoresistance. The targeted inhibition of these stem cell biomarkers is one of the promising approaches to eliminate cancer stemness. This review article summarizes possible targets of cancer cell stemness for the complete treatment of cancer.
Collapse
Affiliation(s)
- Sahdeo Prasad
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sharavan Ramachandran
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Nehal Gupta
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Itishree Kaushik
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Sanjay K Srivastava
- Department of Immunotherapeutics and Biotechnology, and Center for Tumor Immunology and Targeted Cancer Therapy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
80
|
Patil S. Metformin treatment decreases the expression of cancer stem cell marker CD44 and stemness related gene expression in primary oral cancer cells. Arch Oral Biol 2020; 113:104710. [PMID: 32208194 DOI: 10.1016/j.archoralbio.2020.104710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/02/2020] [Accepted: 03/13/2020] [Indexed: 12/13/2022]
Abstract
OBJECTIVE Metformin, a common drug for diabetes treatment has shown promising characteristics against wide types of cancer cells in vitro as well as in vivo in the context of halted growth of cancer. But, it was unclear whether cancer stem cells are affected by the metformin treatment. Here, we attempt to find out the effect of metformin on cancer stem cell marker CD44 and stemness related transcription factors including OCT4, SOX2, NANOG, c-Myc and KLF4. MATERIALS AND METHODS We prepared single-cell suspension from primary oral tumors and subjected the cells to grow in vitro. Gene expression of transcription factors was assessed by real-time PCR. Further, the expression of CD44 was checked by flow Cytometry. RESULTS Metformin showed downregulation in the gene expressions of stemness related transcription factors OCT4, SOX2, NANOG, c-Myc, and KLF4 in a dose-dependent as well as time-dependent manner. Also, the most effective concentration of metformin at 25 μM was found to decrease the expression of CD44 in the primary tumor cells in a time-dependent manner. CONCLUSION Continuous treatment of lower concentrations of metformin decreases the expression of cancer stem cell markers at the transcription level and cancer stem cell-surface marker CD44 in primary oral cancer cells.
Collapse
Affiliation(s)
- Shankargouda Patil
- Department of Maxillofacial Surgery and Diagnostic Sciences, Division of Oral Pathology, College of Dentistry, Jazan University, Jazan, Saudi Arabia.
| |
Collapse
|
81
|
Zhang M, Wei Y, Liu Y, Guan W, Zhang X, Kong J, Li H, Yang S, Wang H. Metastatic Phosphatase PRL-3 Induces Ovarian Cancer Stem Cell Sub-population through Phosphatase-Independent Deacetylation Modulations. iScience 2020; 23:100766. [PMID: 31887658 PMCID: PMC6941878 DOI: 10.1016/j.isci.2019.100766] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 09/01/2019] [Accepted: 12/09/2019] [Indexed: 12/18/2022] Open
Abstract
Cancer stem cells (CSCs) are responsible for tumor initiation, chemoresistance, metastasis, and relapse, but the underlying molecular origin of CSCs remains elusive. Here we identified that metastatic phosphatase of regenerating liver 3 (PRL-3) transcriptionally upregulates SOX2 in the expansion of CSC sub-population from normal cancer cells. Mechanistically, SOX2 upregulation is attributed to the binding of the acetylated myocyte enhancer factor 2A (MEF2A) to SOX2 promoter in tumor cells. In parallel, PRL-3 competitively binds to Class IIa histone deacetylase 4 (HDAC4) to facilitate HDAC4 translocation, leading to the disassociation of HDAC4 from MEF2A and histones. The released MEF2A and histones thus remain acetylated and render the subsequent accessibility of the acetylated MEF2A to SOX2 promoter region. Clinical relevance among PRL-3, SOX2, and HDAC4 is validated in ovary cancer samples. Therefore, this PRL-3-HDAC4-MEF2A/histones-SOX2 signaling axis would be a potential therapeutic target in inhibiting ovarian cancer metastasis and relapse.
Collapse
Affiliation(s)
- Mingming Zhang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanli Wei
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Yanbin Liu
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Institute of Immunology and Molecular Medicine, Jining Medical University, Jining, Shandong 272067, China
| | - Wen Guan
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiaomei Zhang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Jianqiu Kong
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Hui Li
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shulan Yang
- Centre for Translational Medicine, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Engineering & Technology Research Center for Disease-Model Animals, Sun Yat-sen University, Guangzhou 510006, China.
| | - Haihe Wang
- Department of Biochemistry, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China; Center for Stem Cell Biology and Tissue Engineering, Key Laboratory of Ministry of Education, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
82
|
Gzil A, Zarębska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg Ł. Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep 2019; 46:6629-6645. [PMID: 31486978 DOI: 10.1007/s11033-019-05058-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 08/31/2019] [Indexed: 12/17/2022]
Abstract
Pancreatic cancer (PC) is the fourth most common cause of death among all cancers. Poor prognosis of PC may be caused by a prevalence of cancer stem cells (CSCs). CSCs are a population of cancer cells showing stem cell-like characteristics. CSCs have the ability to self-renew and may initiate tumorigenesis. PC CSCs express markers such as CD133, CD24, CD44, DCLK1, CXCR4, ESA, Oct4 and ABCB1. There is a wide complexity of interaction and relationships between CSC markers in PC. These markers are negative prognostic factors and are connected with tumor recurrence and clinical progression. Additionally, PC CSCs are resistant to treatment with gemcitabine. Thus, most current therapies for PC are ineffective. Numerous studies have shown, that targeting of these proteins may increase both disease-free and overall survival in PC.
Collapse
Affiliation(s)
- Arkadiusz Gzil
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland.
| | - Izabela Zarębska
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Wiktor Bursiewicz
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Paulina Antosik
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Dariusz Grzanka
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Clinical Pathomorphology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Sklodowskiej-Curie Str. 9, 85-094, Bydgoszcz, Poland
- Department of Pathomorphology, Military Clinical Hospital, Bydgoszcz, Poland
| |
Collapse
|
83
|
Piperigkou Z, Karamanos NK. Dynamic Interplay between miRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem Sci 2019; 44:1076-1088. [DOI: 10.1016/j.tibs.2019.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
84
|
Sangiorgi B, de Souza FC, Mota de Souza Lima I, Dos Santos Schiavinato JL, Corveloni AC, Thomé CH, Araújo Silva W, Faça VM, Covas DT, Zago MA, Panepucci RA. A High-Content Screening Approach to Identify MicroRNAs Against Head and Neck Cancer Cell Survival and EMT in an Inflammatory Microenvironment. Front Oncol 2019; 9:1100. [PMID: 31788442 PMCID: PMC6856008 DOI: 10.3389/fonc.2019.01100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is among the most common cancer types. Metastasis, the main cause of death by cancer, can be promoted by an inflammatory microenvironment, which induces epithelial-mesenchymal transition (EMT) through a NF-κB-mediated stabilization of Snail. Here, we aimed to explore how microRNAs (miRs) can affect cell survival and EMT in HNSCC cells under an inflammatory microenvironment. By using a high-content screening (HCS) approach, we evaluated alterations in morphometric parameters, as well as expression/localization of Snail/Slug, in HNSCC cells primed with TNF-α. Based on those quantitation, we established the optimal experimental conditions of EMT induction driven by TNF-α. Those conditions were applied to cells transfected with distinct miRs (N = 31), followed by clusterization of miRs based on alterations related to cell survival and EMT. The signaling pathways enriched with molecular targets from each group of miRs were identified by in silico analyses. Finally, cells were transfected with siRNAs against signaling pathways targeted by miRs with anti-survival/EMT effect and evaluated for alterations in cell survival and EMT. Overall, we observed that TNF-α, at 20 ng/ml, induced EMT-related changes in cell morphology, Snail/Slug expression, and cell migration. Predicted targets of miRs with anti-survival/EMT effect were enriched with targets of NF-κB, PI3K/ATK, and Wnt/beta catenin pathways. Strikingly, individual gene silencing of elements from those pathways, namely RELA (NF-kB), AKT1 (PI3K/AKT), and CTNNB1 (Wnt/beta catenin) reduced cell survival and/or expression of Snail/Slug in cells stimulated with TNF-α. As a whole, our HCS approach allowed for the identification of miRs capable of inhibiting cell survival and EMT considering the presence of an inflammatory microenvironment, also indicating the common signaling pathways and molecular targets most likely to underlie those alterations. These findings may contribute to the development of targeted therapies against HNSCC.
Collapse
Affiliation(s)
- Bruno Sangiorgi
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Genetics and Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Felipe Canto de Souza
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Genetics and Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Ildercílio Mota de Souza Lima
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Genetics and Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Josiane Lilian Dos Santos Schiavinato
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Genetics and Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Amanda Cristina Corveloni
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Genetics and Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Carolina Hassibe Thomé
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Wilson Araújo Silva
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Genetics and Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Vitor Marcel Faça
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Biochemistry and Immunology, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Marco Antônio Zago
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil
| | - Rodrigo Alexandre Panepucci
- Center for Cell-Based Therapy (CTC), Regional Blood Center of Ribeirão Preto, Ribeirão Preto, Brazil.,Department of Genetics and Internal Medicine, Ribeirão Preto Medical School, University of São Paulo (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
85
|
Heldin P, Kolliopoulos C, Lin CY, Heldin CH. Involvement of hyaluronan and CD44 in cancer and viral infections. Cell Signal 2019; 65:109427. [PMID: 31654718 DOI: 10.1016/j.cellsig.2019.109427] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 09/19/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023]
Abstract
Hyaluronan and its major receptor CD44 are ubiquitously distributed. They have important structural as well as signaling roles, regulating tissue homeostasis, and their expression levels are tightly regulated. In addition to signaling initiated by the interaction of the intracellular domain of CD44 with cytoplasmic signaling molecules, CD44 has important roles as a co-receptor for different types of receptors of growth factors and cytokines. Dysregulation of hyaluronan-CD44 interactions is seen in diseases, such as inflammation and cancer. In the present communication, we discuss the mechanism of hyaluronan-induced signaling via CD44, as well as the involvement of hyaluronan-engaged CD44 in malignancies and in viral infections.
Collapse
Affiliation(s)
- Paraskevi Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| | - Constantinos Kolliopoulos
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden
| | - Chun-Yu Lin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden; Division of Infectious Diseases, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung Medical University Department of Surgery, Uppsala University, Sweden; Department of Surgical Sciences, Uppsala University, Akademiska Hospital, 751 85 Uppsala, Sweden
| | - Carl-Henrik Heldin
- Department of Medical Biochemistry and Microbiology, Box 582, Uppsala University, SE-751 23 Uppsala, Sweden.
| |
Collapse
|
86
|
Chen D, Wang CY. Targeting cancer stem cells in squamous cell carcinoma. PRECISION CLINICAL MEDICINE 2019; 2:152-165. [PMID: 31598386 PMCID: PMC6770277 DOI: 10.1093/pcmedi/pbz016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 12/24/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive tumor and the sixth
most common cancer worldwide. Current treatment strategies for HNSCC are surgery,
radiotherapy, chemotherapy, immunotherapy or combinatorial therapies. However, the overall
5-year survival rate of HNSCC patients remains at about 50%. Cancer stem cells (CSCs), a
small population among tumor cells, are able to self-renew and differentiate into
different tumor cell types in a hierarchical manner, similar to normal tissue. In HNSCC,
CSCs are proposed to be responsible for tumor initiation, progression, metastasis, drug
resistance, and recurrence. In this review, we discuss the molecular and cellular
characteristics of CSCs in HNSCC. We summarize current approaches used in the literature
for identification of HNSCC CSCs, and mechanisms required for CSC regulation. We also
highlight the role of CSCs in treatment failure and therapeutic targeting options for
eliminating CSCs in HNSCC.
Collapse
Affiliation(s)
- Demeng Chen
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, UCLA, Los Angeles, CA 90095, USA.,Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, UCLA, Los Angeles, CA 90095, USA.,Jonsson Comprehensive Cancer Center and Broad Stem Cell Research Center, UCLA, Los Angeles, CA 90095, USA
| |
Collapse
|
87
|
Li M, Chen H, Wu T. LIN28: A cancer stem cell promoter for immunotherapy in head and neck squamous cell carcinoma. Oral Oncol 2019; 98:92-95. [PMID: 31574415 DOI: 10.1016/j.oraloncology.2019.09.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/19/2019] [Accepted: 09/24/2019] [Indexed: 02/06/2023]
Abstract
Lin28, a highly conserved RNA-binding protein, plays an important role in differentiation, metabolism, proliferation, pluripotency, and tumourigenicity. Lin28 overexpression promotes tumour-cell proliferation and metastasis in various human cancers, including head and neck cancer. Multiple studies demonstrate that Lin28 critically contributes to anti-tumour immunity and production of cancer stem cells in head and neck squamous cell carcinoma (HNSCC). Thus, Lin28 has potential application in HNSCC treatment.
Collapse
Affiliation(s)
- Mengxue Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Heng Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China
| | - Tianfu Wu
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomatology, Wuhan University, People's Republic of China.
| |
Collapse
|
88
|
MicroRNA-302c enhances the chemosensitivity of human glioma cells to temozolomide by suppressing P-gp expression. Biosci Rep 2019; 39:BSR20190421. [PMID: 31409725 PMCID: PMC6744599 DOI: 10.1042/bsr20190421] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/06/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
Increasing evidence indicates that microRNAs (miRNAs) participate in the regulation of chemoresistance in a variety of cancers including glioma. However, the molecular mechanism underlying the development of chemoresistance in glioma is not well understood. The aim of the present study was to explore the role of miRNAs in the chemosensitivity of glioma cells and the underlying mechanism. By microarray and qRT-PCR, we observed significant down-regulation of microRNA-302c (miR-302c) in the temozolomide (TMZ)-resistant human glioma tissues/cells. The low expression of miR-302c was closely associated with poor prognosis and chemotherapy resistant in patients. miR-302c up-regulation re-sensitized U251MG-TMZ cells and LN229-TMZ cells to TMZ treatment, as evidenced by inhibition of the cell viability, cell migration, and invasion capacity, and promotion of the apoptosis after TMZ treatment. Furthermore, P-glycoprotein (P-gp) was identified as a functional target of miR-302c and this was validated using a luciferase reporter assay. In addition, P-gp was found to be highly expressed in U251MG-TMZ cells and there was an inverse correlation between P-gp and miR-302c expression levels in clinical glioma specimens. Most importantly, we further confirmed that overexpression of P-gp reversed the enhanced TMZ-sensitivity induced by miR-302c overexpression in U251MG-TMZ and LN229-TMZ cells. Our finding showed that up-regulation of miR-302c enhanced TMZ-sensitivity by targeting P-gp in TMZ-resistant human glioma cells, which suggests that miR-302c would be potential therapeutic targets for chemotherapy-resistant glioma patients.
Collapse
|
89
|
Pang X, O'Malley C, Borges J, Rahman MM, Collis DWP, Mano JF, Mackenzie IC, S. Azevedo H. Supramolecular Presentation of Hyaluronan onto Model Surfaces for Studying the Behavior of Cancer Stem Cells. ACTA ACUST UNITED AC 2019; 3:e1900017. [DOI: 10.1002/adbi.201900017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 07/15/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Xinqing Pang
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - Clare O'Malley
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - João Borges
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Muhammad M. Rahman
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of London E1 2AT UK
| | - Dominic W. P. Collis
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| | - João F. Mano
- Department of ChemistryCICECO – Aveiro Institute of MaterialsUniversity of Aveiro 3810‐193 Aveiro Portugal
| | - Ian C. Mackenzie
- Blizard InstituteBarts and The London School of Medicine and DentistryQueen Mary University of London E1 2AT UK
| | - Helena S. Azevedo
- School of Engineering and Materials ScienceInstitute of BioengineeringQueen Mary University of London E1 4NS UK
| |
Collapse
|
90
|
Najafi M, Mortezaee K, Majidpoor J. Cancer stem cell (CSC) resistance drivers. Life Sci 2019; 234:116781. [PMID: 31430455 DOI: 10.1016/j.lfs.2019.116781] [Citation(s) in RCA: 290] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) are a population of self-renewal cells with high tumorigenic potency. CSCs can adopt easily with changes in the nearby milieu, and are more resistant to conventional therapies than other cells within a tumor. CSC resistance can be induced secondary to radio- and chemotherapy, or even after chemotherapy secession. A combination of both intrinsic and extrinsic factors is contributed to CSC-mediated therapy resistance. CSCs represent protective autophagy and efficient cell cycling, along with highly qualified epithelial-mesenchymal transition (EMT) regulators, reactive oxygen species (ROS) scavengers, drug transporters, and anti-apoptotic and DNA repairing systems. In addition, CSCs develop cross-talking and share some characteristics with other cells within the tumor microenvironment (TME) being more intense in higher stage tumors, and thereby sophisticating tumor-targeted therapies. TME, in fact, is a nest for aggravating resistance mechanisms in CSCs. TME is exposed constantly to the nutritional, metabolic and oxygen deprivation; these conditions promote CSC adaptation. This review is aimed to discuss main (intrinsic and extrinsic) mechanisms of CSC resistance and suggest some strategies to revoke this important promoter of therapy failure.
Collapse
Affiliation(s)
- Masoud Najafi
- Radiology and Nuclear Medicine Department, School of Paramedical Sciences, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Keywan Mortezaee
- Department of Anatomy, School of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran; Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.
| | - Jamal Majidpoor
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
91
|
Novak D, Hüser L, Elton JJ, Umansky V, Altevogt P, Utikal J. SOX2 in development and cancer biology. Semin Cancer Biol 2019; 67:74-82. [PMID: 31412296 DOI: 10.1016/j.semcancer.2019.08.007] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 08/05/2019] [Accepted: 08/08/2019] [Indexed: 01/06/2023]
Abstract
The transcription factor SOX2 is essential for embryonic development and plays a crucial role in maintaining the stemness of embryonic cells and various adult stem cell populations. On the other hand, dysregulation of SOX2 expression is associated with a multitude of cancer types and it has been shown that SOX2 positively affects cancer cell traits such as the capacity to proliferate, migrate, invade and metastasize. Moreover, there is growing evidence that SOX2 mediates resistance towards established cancer therapies and that it is expressed in cancer stem cells. These findings indicate that studying the role of SOX2 in the context of cancer progression could lead to the development of new therapeutic options. In this review, the current knowledge about the role of SOX2 in development, maintenance of stemness, cancer progression and the resistance towards cancer therapies is summarized.
Collapse
Affiliation(s)
- Daniel Novak
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Laura Hüser
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jonathan J Elton
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Peter Altevogt
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Jochen Utikal
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany; Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany.
| |
Collapse
|
92
|
Hyaluronan-CD44 axis orchestrates cancer stem cell functions. Cell Signal 2019; 63:109377. [PMID: 31362044 DOI: 10.1016/j.cellsig.2019.109377] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/26/2019] [Accepted: 07/26/2019] [Indexed: 02/06/2023]
Abstract
The prominent role of CD44 in tumor cell signaling together with its establishment as a cancer stem cell (CSC) marker for various tumor entities imply a key role for CD44 in CSC functional properties. Hyaluronan, the main ligand of CD44, is a major constituent of CSC niche and, therefore, the hyaluronan-CD44 signaling axis is of functional importance in this special microenvironment. This review aims to provide recent advances in the importance of hyaluronan-CD44 interactions in the acquisition and maintenance of a CSC phenotype. Hyaluronan-CD44 axis has a substantial impact on stemness properties of CSCs and drug resistance through induction of EMT program, oxidative stress resistance, secretion of extracellular vesicles/exosomes and epigenetic control. Potential therapeutic approaches targeting CSCs based on the hyaluronan-CD44 axis are also presented.
Collapse
|
93
|
Cancer Stem Cells in Head and Neck Carcinomas: Identification and Possible Therapeutic Implications. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1083:89-102. [PMID: 29139089 DOI: 10.1007/5584_2017_116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The recurrence and/or lack of response of certain tumors to radio- and chemotherapy has been attributed to a small subpopulation of cells termed cancer stem cells (CSCs). CSCs have been identified in many tumors (including solid and hematological tumors). CSCs are characterized by their capacity for self-renewal, their ability to introduce heterogeneity within a tumor mass and its metastases, genomic instability, and their insensitivity to both radiation and chemotherapy. The latter highlights the clinical importance of studying this subpopulation since their resistance to traditional treatments may lead to metastatic disease and/or tumor relapse. Head and neck squamous cell carcinomas (HNSCCs) are the sixth most common malignancy worldwide with the highest incidence occurring in East Asia and eastern and southern Africa. Several cellular subpopulations believed to have CSC properties have been isolated from HNSCCs, but at present, identification and characterization of CSCs remains an experimental challenge with no established or standardized protocols in place to confirm their identity. In this review we discuss current approaches to the study of CSCs with a focus on HNSCCs, particularly in the context of what this might mean from a therapeutic perspective.
Collapse
|
94
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
95
|
Revisiting the hallmarks of cancer: The role of hyaluronan. Semin Cancer Biol 2019; 62:9-19. [PMID: 31319162 DOI: 10.1016/j.semcancer.2019.07.007] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/19/2019] [Accepted: 07/14/2019] [Indexed: 12/15/2022]
Abstract
Extracellular matrix (ECM) is a complex network of macromolecules such as proteoglycans (PGs), glycosaminoglycans (GAGs) and fibrous proteins present within all tissues and organs. The main role of ECM is not only to provide an essential mechanical scaffold for the cells but also to mediate crucial biochemical cues that are required for tissue homeostasis. Dysregulations in ECM deposition alter cell microenvironment, triggering the onset or the rapid progression of several diseases, including cancer. Hyaluronan (HA) is a ubiquitous component of ECM considered as one of the main players of cancer initiation and progression. This review discusses how HA participate in and regulate several aspects of tumorigenesis, with particular attention to the hallmarks of cancer proposed by Hanahan and Weinberg such as sustaining of the proliferative signaling, evasion of apoptosis, angiogenesis, activation of invasion and metastases, reprogramming of energy metabolism and evasion of immune response.
Collapse
|
96
|
Shin KH, Kim RH. An Updated Review of Oral Cancer Stem Cells and Their Stemness Regulation. Crit Rev Oncog 2019; 23:189-200. [PMID: 30311574 DOI: 10.1615/critrevoncog.2018027501] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Cancer stem cells (CSCs; also known as tumor-initiating cells) are a small population of cancer cells that retain characteristics similar to those of normal stem cells. CSCs are known to be responsible for metastasis, drug resistance, and cancer recurrence. Thus, controlling CSCs may provide an effective therapeutic intervention that inhibits tumor growth and aggressiveness. Despite the importance of targeting CSCs in cancer therapy, the detailed nature of oral CSCs remains underexplored. This article reviews the current understanding of oral CSCs, with emphasis on recent advances in novel signaling pathways involved in their stemness regulation.
Collapse
Affiliation(s)
- Ki-Hyuk Shin
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
| | - Reuben H Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, Los Angeles, CA 90095; UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095
| |
Collapse
|
97
|
Yang Q, Pinto VMR, Duan W, Paxton EE, Dessauer JH, Ryan W, Lopez MJ. In vitro Characteristics of Heterogeneous Equine Hoof Progenitor Cell Isolates. Front Bioeng Biotechnol 2019; 7:155. [PMID: 31355191 PMCID: PMC6637248 DOI: 10.3389/fbioe.2019.00155] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 06/10/2019] [Indexed: 12/12/2022] Open
Abstract
Damage to an ectodermal-mesodermal interface like that in the equine hoof and human finger nail bed can permanently alter tissue structure and associated function. The purpose of this study was to establish and validate in vitro culture of primary progenitor cell isolates from the ectodermal-mesodermal tissue junction in equine hooves, the stratum internum, with and without chronic inflammation known to contribute to lifelong tissue defects. The following were evaluated in hoof stratum internum cell isolates up to 5 cell passages (P): expansion capacity by cell doublings and doubling time; plasticity with multi-lineage differentiation and colony-forming unit (CFU) frequency percentage; immunophenotype with immunocytochemistry and flow cytometry; gene expression with RT-PCR; and ultrastructure with transmission electron microscopy. The presence of keratin (K)14, 15 and K19 as well as cluster of differentiation (CD)44 and CD29 was determined in situ with immunohistochemistry. To confirm in vivo extracellular matrix (ECM) formation, cell-scaffold (polyethylene glycol/poly-L-lactic acid and tricalcium phosphate/hydroxyapatite) constructs were evaluated with scanning electron microscopy 9 weeks after implantation in athymic mice. Cultured cells had characteristic progenitor cell morphology, expansion, CFU frequency percentage and adipocytic, osteoblastic, and neurocytic differentiation capacity. CD44, CD29, K14, K15 and K19 proteins were present in native hoof stratum internum. Cultured cells also expressed K15, K19 and desmogleins 1 and 3. Gene expression of CD105, CD44, K14, K15, sex determining region Y-box 2 (SOX2) and octamer-binding transcription factor 4 (OCT4) was confirmed in vitro. Cultured cells had large, eccentric nuclei, elongated mitochondria, and intracellular vacuoles. Scaffold implants with cells contained fibrous ECM 9 weeks after implantation compared to little or none on acellular scaffolds. In vitro expansion and plasticity and in vivo ECM deposition of heterogeneous, immature cell isolates from the ectodermal-mesodermal tissue interface of normal and chronically inflamed hooves are typical of primary cell isolates from other adult tissues, and they appear to have both mesodermal and ectodermal qualities in vitro. These results establish a unique cell culture model to target preventative and restorative therapies for ectodermal-mesodermal tissue junctions.
Collapse
Affiliation(s)
- Qingqiu Yang
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Vanessa Marigo Rocha Pinto
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Wei Duan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Erica E Paxton
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Jenna H Dessauer
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - William Ryan
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| | - Mandi J Lopez
- Laboratory for Equine and Comparative Orthopedic Research, Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA, United States
| |
Collapse
|
98
|
Nallanthighal S, Heiserman JP, Cheon DJ. The Role of the Extracellular Matrix in Cancer Stemness. Front Cell Dev Biol 2019; 7:86. [PMID: 31334229 PMCID: PMC6624409 DOI: 10.3389/fcell.2019.00086] [Citation(s) in RCA: 239] [Impact Index Per Article: 39.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/03/2019] [Indexed: 12/12/2022] Open
Abstract
As our understanding of cancer cell biology progresses, it has become clear that tumors are a heterogenous mixture of different cell populations, some of which contain so called "cancer stem cells" (CSCs). Hallmarks of CSCs include self-renewing capability, tumor-initiating capacity and chemoresistance. The extracellular matrix (ECM), a major structural component of the tumor microenvironment, is a highly dynamic structure and increasing evidence suggests that ECM proteins establish a physical and biochemical niche for CSCs. In cancer, abnormal ECM dynamics occur due to disrupted balance between ECM synthesis and secretion and altered expression of matrix-remodeling enzymes. Tumor-derived ECM is biochemically distinct in its composition and is stiffer compared to normal ECM. In this review, we will provide a brief overview of how different components of the ECM modulate CSC properties then discuss how physical, mechanical, and biochemical cues from the ECM drive cancer stemness. Given the fact that current CSC targeting therapies face many challenges, a better understanding of CSC-ECM interactions will be crucial to identify more effective therapeutic strategies to eliminate CSCs.
Collapse
Affiliation(s)
| | | | - Dong-Joo Cheon
- Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, NY, United States
| |
Collapse
|
99
|
Bourguignon LYW. Matrix Hyaluronan-CD44 Interaction Activates MicroRNA and LncRNA Signaling Associated With Chemoresistance, Invasion, and Tumor Progression. Front Oncol 2019; 9:492. [PMID: 31293964 PMCID: PMC6598393 DOI: 10.3389/fonc.2019.00492] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
Tumor malignancies involve cancer cell growth, issue invasion, metastasis and often drug resistance. A great deal of effort has been placed on searching for unique molecule(s) overexpressed in cancer cells that correlate(s) with tumor cell-specific behaviors. Hyaluronan (HA), one of the major ECM (extracellular matrix) components have been identified as a physiological ligand for surface CD44 isoforms which are frequently overexpressed in malignant tumor cells during cancer progression. The binding interaction between HA and CD44 isoforms often stimulates aberrant cellular signaling processes and appears to be responsible for the induction of multiple oncogenic events required for cancer-specific phenotypes and behaviors. In recent years, both microRNAs (miRNAs) (with ~20–25 nucleotides) and long non-coding RNAs (lncRNAs) (with ~200 nucleotides) have been found to be abnormally expressed in cancer cells and actively participate in numerous oncogenic signaling events needed for tumor cell-specific functions. In this review, I plan to place a special emphasis on HA/CD44-induced signaling pathways and the presence of several novel miRNAs (e.g., miR-10b/miR-302/miR-21) and lncRNAs (e.g., UCA1) together with their target functions (e.g., tumor cell migration, invasion, and chemoresistance) during cancer development and progression. I believe that important information can be obtained from these studies on HA/CD44-activated miRNAs and lncRNA that may be very valuable for the future development of innovative therapeutic drugs for the treatment of matrix HA/CD44-mediated cancers.
Collapse
Affiliation(s)
- Lilly Y W Bourguignon
- Endocrine Unit (111N2), Department of Medicine, San Francisco Veterans Affairs Medical Center, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
100
|
Yu SS, Cirillo N. The molecular markers of cancer stem cells in head and neck tumors. J Cell Physiol 2019; 235:65-73. [PMID: 31206697 DOI: 10.1002/jcp.28963] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 05/21/2019] [Indexed: 01/06/2023]
Abstract
Head and neck cancer (HNC) is the six most common malignancy worldwide leading to more than 350,000 deaths annually. Despite recent advances in treatment modalities for these patients, there has been only a slight improvement of prognosis. As cancer stem cells (CSCs) have been implicated in tumor cell survival, progression, and response to therapy, the identification of this tumor subpopulation would have important therapeutic and prognostic implications. In this structured appraisal of the literature, Embase, PubMed, and Ovid were searched for publications that investigated CSC markers of HNC in humans. The search was conducted under the PRISMA guidelines with clear inclusion and exclusion criteria for articles published in the last two decades. The review process resulted in the identification of some key CSC-associated molecules such as CD44, ALDH1, CD133, Oct3/4, Nanog, and Sox2, although a single common CSC sorting marker could not be found. These biomarkers were identified in a range of HNCs but the most common one was squamous cell carcinoma (SCC), predominantly oral SCC. Patient cohorts were of variable size (3-195 individuals) and the most common technique used for detection was immunohistochemistry. Some of the molecules were associated with poor prognosis and may be able to inform the choice of appropriate treatment for these patients.
Collapse
Affiliation(s)
- Si Si Yu
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|