51
|
Liu D, Liu NY, Chen LT, Shao Y, Shi XM, Zhu DY. Perfluorooctane sulfonate induced toxicity in embryonic stem cell-derived cardiomyocytes via inhibiting autophagy-lysosome pathway. Toxicol In Vitro 2020; 69:104988. [PMID: 32861759 DOI: 10.1016/j.tiv.2020.104988] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/22/2020] [Accepted: 08/24/2020] [Indexed: 01/07/2023]
Abstract
Perfluorooctane sulfonate (PFOS), a classic environmental pollutant, is reported to cause cardiotoxicity in animals and humans. It has been demonstrated that PFOS exposure down-regulates expression of cardiac-development related genes and proteins. However, the related mechanism of PFOS has not been fully elucidated. In the present study, the embryonic stem (ES) cells-derived cardiomyocytes (ESC-CMs) was employed to investigate PFOS-mediated mechanism in developmental toxicity of cardiomyocytes. Our previous study shows that PFOS induces cardiomyocyte toxicity via causing mitochondrial damage. Nevertheless, the underlying mechanism by which PFOS affects the autophagy-related mitochondrial toxicity in ESC-CMs remains unclear. Here, we found that PFOS induced the swelling of mitochondria and the autophagosome accumulation in ESC-CMs at 40 μM concentration. PFOS increased the levels of LC3-II, p62, and ubiquitinated proteins. PFOS also induced an increase of LC3 and p62 localization into mitochondria, indicating that mitophagy degradation was impaired. The results of autophagic flux using chloroquine and RFP-GFP-LC3 analysis showed that the accumulation of autophagosome was not caused by the formation but by the impaired degradation. PFOS was capable of blocking the fusion between autophagosome and lysosome. PFOS caused dysfunction of lysosomes because it down-regulated Lamp2a and cathepsin D, but it did not induced lysosome membrane permeabilization. Meanwhile, PFOS-mediated lysosomal function and the inhibitory effect of autophagic flux could be reversed by PP242 at 40 nM concentration, an mTOR inhibitor. Furthermore, PP242 restored PFOS-induced ATP depletion and mitochondrial membrane potential. In conclusion, PFOS induced mitochondrial dysfunction via blocking autophagy-lysosome degradation, leading to cardiomyocyte toxicity from ES cells.
Collapse
Affiliation(s)
- Dan Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Nuo-Ya Liu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Li-Ting Chen
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Ying Shao
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China
| | - Xiao-Meng Shi
- Undergraduate Students in Research Training Project at Zhejiang University, Hangzhou 310058, China
| | - Dan-Yan Zhu
- Institute of Pharmacology and Toxicology, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, China.
| |
Collapse
|
52
|
Buchanan S, Combet E, Stenvinkel P, Shiels PG. Klotho, Aging, and the Failing Kidney. Front Endocrinol (Lausanne) 2020; 11:560. [PMID: 32982966 PMCID: PMC7481361 DOI: 10.3389/fendo.2020.00560] [Citation(s) in RCA: 136] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 07/09/2020] [Indexed: 12/11/2022] Open
Abstract
Klotho has been recognized as a gene involved in the aging process in mammals for over 30 years, where it regulates phosphate homeostasis and the activity of members of the fibroblast growth factor (FGF) family. The α-Klotho protein is the receptor for Fibroblast Growth Factor-23 (FGF23), regulating phosphate homeostasis and vitamin D metabolism. Phosphate toxicity is a hallmark of mammalian aging and correlates with diminution of Klotho levels with increasing age. As such, modulation of Klotho activity is an attractive target for therapeutic intervention in the diseasome of aging; in particular for chronic kidney disease (CKD), where Klotho has been implicated directly in the pathophysiology. A range of senotherapeutic strategies have been developed to directly or indirectly influence Klotho expression, with varying degrees of success. These include administration of exogenous Klotho, synthetic and natural Klotho agonists and indirect approaches, via modulation of the foodome and the gut microbiota. All these approaches have significant potential to mitigate loss of physiological function and resilience accompanying old age and to improve outcomes within the diseasome of aging.
Collapse
Affiliation(s)
- Sarah Buchanan
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Emilie Combet
- School of Medicine, Dentistry & Nursing, Human Nutrition, Glasgow Royal Infirmary, Glasgow, United Kingdom
| | - Peter Stenvinkel
- Division of Renal Medicine M99, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Paul G. Shiels
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
53
|
Xu D, Shen L, Zhou L, Sha W, Yang J, Lu G. Upregulation of FABP7 inhibits acute kidney injury-induced TCMK-1 cell apoptosis via activating the PPAR gamma signalling pathway. Mol Omics 2020; 16:533-542. [PMID: 33315023 DOI: 10.1039/d0mo00056f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acute kidney injury (AKI) is a frequently seen critical disorder in the clinic. The current research aimed to examine the role of hydroxyacid oxidase 2 (FABP7) in AKI-induced cell apoptosis. A total of 289 overlapping genes were used to perform gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses and to construct a protein-protein interaction (PPI) network using the DAVID database and Cytoscape software. The 10 hub genes of the PPI network were screened out using the cytohubba plug-in of Cytoscape software. FABP7 represented both the differentially expressed gene (DEG) from the GSE44925 and GSE62732 datasets and the top hub gene of the PPI network. The results of the PAS assay showed that FABP7 knockout in vivo aggravated lipopolysaccharide (LPS)-induced AKI. Meanwhile, LPS inhibited cell viability and the expression of FABP7, PPARγ, PPARα, PTEN and p27kip1, and increased the TNF-α level, and cleaved caspase-3/-9 expression and the phosphorylation of PTEN in vitro. FABP7 overexpression reversed the effects of LPS on inhibiting cell viability and proliferation, promoting cell apoptosis, increasing the expression of FABP7, PPARγ, PTEN and p27kip1, and reducing cleaved caspase-3/-9 expression and the phosphorylation of PTEN, but had no influence on PPARα expression. The PPARγ signal pathway inhibitors blocked the protective effect of FABP7 overexpression in LPS-treated TCMK-1 cells, while the PPARγ signal pathway activator inhibited the harmful effect of FABP7 inhibition in LPS-treated TCMK-1 cells. In conclusion, FABP7 overexpression inhibited the AKI-induced cell apoptosis and promoted the proliferation through activating the PPARγ signal pathway in vivo and in vitro.
Collapse
Affiliation(s)
- Deyu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, No. 188, Shizi Street, Suzhou, Jiangsu Province 215006, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
54
|
Guo J, Zheng HJ, Zhang W, Lou W, Xia C, Han XT, Huang WJ, Zhang F, Wang Y, Liu WJ. Accelerated Kidney Aging in Diabetes Mellitus. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:1234059. [PMID: 32774664 PMCID: PMC7407029 DOI: 10.1155/2020/1234059] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/25/2020] [Accepted: 06/25/2020] [Indexed: 02/07/2023]
Abstract
With aging, the kidney undergoes inexorable and progressive changes in structural and functional performance. These aging-related alterations are more obvious and serious in diabetes mellitus (DM). Renal accelerated aging under DM conditions is associated with multiple stresses such as accumulation of advanced glycation end products (AGEs), hypertension, oxidative stress, and inflammation. The main hallmarks of cellular senescence in diabetic kidneys include cyclin-dependent kinase inhibitors, telomere shortening, and diabetic nephropathy-associated secretory phenotype. Lysosome-dependent autophagy and antiaging proteins Klotho and Sirt1 play a fundamental role in the accelerated aging of kidneys in DM, among which the autophagy-lysosome system is the convergent mechanism of the multiple antiaging pathways involved in renal aging under DM conditions. Metformin and the inhibitor of sodium-glucose cotransporter 2 are recommended due to their antiaging effects independent of antihyperglycemia, besides angiotensin-converting enzyme inhibitors/angiotensin receptor blockers. Additionally, diet intervention including low protein and low AGEs with antioxidants are suggested for patients with diabetic nephropathy (DN). However, their long-term benefits still need further study. Exploring the interactive relationships among antiaging protein Klotho, Sirt1, and autophagy-lysosome system may provide insight into better satisfying the urgent medical needs of elderly patients with aging-related DN.
Collapse
Affiliation(s)
- Jing Guo
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hui Juan Zheng
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenting Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wenjiao Lou
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Chenhui Xia
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xue Ting Han
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jun Huang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Fan Zhang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yaoxian Wang
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Renal Research Institution; Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, No. 57th South Renmin Road, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
55
|
Packer M. Mechanisms Leading to Differential Hypoxia-Inducible Factor Signaling in the Diabetic Kidney: Modulation by SGLT2 Inhibitors and Hypoxia Mimetics. Am J Kidney Dis 2020; 77:280-286. [PMID: 32711072 DOI: 10.1053/j.ajkd.2020.04.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 04/26/2020] [Indexed: 12/13/2022]
Abstract
Sodium/glucose cotransporter 2 (SGLT2) inhibitors exert important renoprotective effects in the diabetic kidney, which cannot be readily explained by their actions to lower blood glucose, blood pressure, or glomerular filtration pressures. Their effects to promote erythrocytosis suggest that these drugs act on hypoxia-inducible factors (HIFs; specifically, HIF-1α and HIF-2α), which may underlie their ability to reduce the progression of nephropathy. Type 2 diabetes is characterized by renal hypoxia, oxidative and endoplasmic reticulum stress, and defective nutrient deprivation signaling, which (acting in concert) are poised to cause both activation of HIF-1α and suppression of HIF-2α. This shift in the balance of HIF-1α/HIF-2α activities promotes proinflammatory and profibrotic pathways in glomerular and renal tubular cells. SGLT2 inhibitors alleviate renal hypoxia and cellular stress and enhance nutrient deprivation signaling, which collectively may explain their actions to suppress HIF-1α and activate HIF-2α and thereby augment erythropoiesis, while muting organellar dysfunction, inflammation, and fibrosis. Cobalt chloride, a drug conventionally classified as a hypoxia mimetic, has a profile of molecular and cellular actions in the kidney that is similar to those of SGLT2 inhibitors. Therefore, many renoprotective benefits of SGLT2 inhibitors may be related to their effect to promote oxygen deprivation signaling in the diabetic kidney.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX; Imperial College, London, United Kingdom.
| |
Collapse
|
56
|
Adaptive Autophagy Offers Cardiorenal Protection in Rats with Acute Myocardial Infarction. Cardiol Res Pract 2020; 2020:7158975. [PMID: 32655948 PMCID: PMC7322605 DOI: 10.1155/2020/7158975] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 04/14/2020] [Accepted: 05/15/2020] [Indexed: 01/19/2023] Open
Abstract
Objective Understanding the multifactorial changes involved in the kidney and heart after acute myocardial infarction (AMI) is prerequisite for further mechanisms and early intervention, especially autophagy changes. Here, we discussed the role of adaptive autophagy in the heart and kidney of rats with AMI. Methods A rat model of AMI was established by ligating the left anterior descending branch of the coronary artery. Animals were sacrificed at 2 and 4 weeks after the operation to assess the morphological and functional changes of the heart and kidney, as well as the autophagy pathway. In vitro, HK-2 and AC16 cell injuries and the autophagy pathway were assayed after autophagy was inhibited by 3-methyladenine (3-MA) in a hypoxia incubator. Results We found that the left ventricular systolic pressure (LVSP) significantly decreased in the model group at weeks 2 and 4. At weeks 2 and 4, the level of urinary kidney injury molecule 1 (uKIM1) of the model group was significantly higher than the sham group. At week 4, urinary neutrophil gelatinase-associated lipocalcin (uNGAL) and urinary albumin also significantly increased. At week 2, microtubule-associated protein 1 light chain 3-II (LC3-II), ATG5, and Beclin1 were significantly elevated in the heart and kidney compared with the sham-operated rats, but there was no change in p62 levels. At week 4, LC3-II did not significantly increase and p62 levels significantly increased. In addition, 3-MA markedly increased KIM1, NGAL, and the activity of caspase-3 in the hypoxic HK-2 and AC16 cell. Conclusion Autophagy will undergo adaptive changes and play a protective role in the heart and kidney of rats after AMI.
Collapse
|
57
|
Zheng HJ, Zhang X, Guo J, Zhang W, Ai S, Zhang F, Wang Y, Liu WJ. Lysosomal dysfunction-induced autophagic stress in diabetic kidney disease. J Cell Mol Med 2020; 24:8276-8290. [PMID: 32583573 PMCID: PMC7412686 DOI: 10.1111/jcmm.15301] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/26/2020] [Accepted: 04/02/2020] [Indexed: 12/14/2022] Open
Abstract
The catabolic process that delivers cytoplasmic constituents to the lysosome for degradation, known as autophagy, is thought to act as a cytoprotective mechanism in response to stress or as a pathogenic process contributing towards cell death. Animal and human studies have shown that autophagy is substantially dysregulated in renal cells in diabetes, suggesting that activating autophagy could be a therapeutic intervention. However, under prolonged hyperglycaemia with impaired lysosome function, increased autophagy induction that exceeds the degradative capacity in cells could contribute toward autophagic stress or even the stagnation of autophagy, leading to renal cytotoxicity. Since lysosomal function is likely key to linking the dual cytoprotective and cytotoxic actions of autophagy, it is important to develop novel pharmacological agents that improve lysosomal function and restore autophagic flux. In this review, we first provide an overview of the autophagic-lysosomal pathway, particularly focusing on stages of lysosomal degradation during autophagy. Then, we discuss the role of adaptive autophagy and autophagic stress based on lysosomal function. More importantly, we focus on the role of autophagic stress induced by lysosomal dysfunction according to the pathogenic factors (including high glucose, advanced glycation end products (AGEs), urinary protein, excessive reactive oxygen species (ROS) and lipid overload) in diabetic kidney disease (DKD), respectively. Finally, therapeutic possibilities aimed at lysosomal restoration in DKD are introduced.
Collapse
Affiliation(s)
- Hui Juan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xueqin Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Sinan Ai
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Fan Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing, China.,Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
58
|
Packer M. Role of Deranged Energy Deprivation Signaling in the Pathogenesis of Cardiac and Renal Disease in States of Perceived Nutrient Overabundance. Circulation 2020; 141:2095-2105. [DOI: 10.1161/circulationaha.119.045561] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Sodium-glucose cotransporter 2 inhibitors reduce the risk of serious heart failure and adverse renal events, but the mechanisms that underlie this benefit are not understood. Treatment with SGLT2 inhibitors is distinguished by 2 intriguing features: ketogenesis and erythrocytosis. Both reflect the induction of a fasting-like and hypoxia-like transcriptional paradigm that is capable of restoring and maintaining cellular homeostasis and survival. In the face of perceived nutrient and oxygen deprivation, cells activate low-energy sensors, which include sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia inducible factors (HIFs; especially HIF-2α); these enzymes and transcription factors are master regulators of hundreds of genes and proteins that maintain cellular homeostasis. The activation of SIRT1 (through its effects to promote gluconeogenesis and fatty acid oxidation) drives ketogenesis, and working in concert with AMPK, it can directly inhibit inflammasome activation and maintain mitochondrial capacity and stability. HIFs act to promote oxygen delivery (by stimulating erythropoietin and erythrocytosis) and decrease oxygen consumption. The activation of SIRT1, AMPK, and HIF-2α enhances autophagy, a lysosome-dependent degradative pathway that removes dangerous constituents, particularly damaged mitochondria and peroxisomes, which are major sources of oxidative stress and triggers of cellular dysfunction and death. SIRT1 and AMPK also act on sodium transport mechanisms to reduce intracellular sodium concentrations. It is interesting that type 2 diabetes mellitus, obesity, chronic heart failure, and chronic kidney failure are characterized by the accumulation of intracellular glucose and lipid intermediates that are perceived by cells as indicators of energy overabundance. The cells respond by downregulating SIRT1, AMPK, and HIF-2α, thus leading to an impairment of autophagic flux and acceleration of cardiomyopathy and nephropathy. SGLT2 inhibitors reverse this maladaptive signaling by triggering a state of fasting and hypoxia mimicry, which includes activation of SIRT1, AMPK, and HIF-2α, enhanced autophagic flux, reduced cellular stress, decreased sodium influx into cells, and restoration of mitochondrial homeostasis. This mechanistic framework clarifies the findings of large-scale randomized trials and the close association of ketogenesis and erythrocytosis with the cardioprotective and renoprotective benefits of these drugs.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, TX. Imperial College, London, United Kingdom
| |
Collapse
|
59
|
Ahn HS, Kim JH, Jeong H, Yu J, Yeom J, Song SH, Kim SS, Kim IJ, Kim K. Differential Urinary Proteome Analysis for Predicting Prognosis in Type 2 Diabetes Patients with and without Renal Dysfunction. Int J Mol Sci 2020; 21:ijms21124236. [PMID: 32545899 PMCID: PMC7352871 DOI: 10.3390/ijms21124236] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/05/2020] [Accepted: 06/12/2020] [Indexed: 12/28/2022] Open
Abstract
Renal dysfunction, a major complication of type 2 diabetes, can be predicted from estimated glomerular filtration rate (eGFR) and protein markers such as albumin concentration. Urinary protein biomarkers may be used to monitor or predict patient status. Urine samples were selected from patients enrolled in the retrospective diabetic kidney disease (DKD) study, including 35 with good and 19 with poor prognosis. After removal of albumin and immunoglobulin, the remaining proteins were reduced, alkylated, digested, and analyzed qualitatively and quantitatively with a nano LC-MS platform. Each protein was identified, and its concentration normalized to that of creatinine. A prognostic model of DKD was formulated based on the adjusted quantities of each protein in the two groups. Of 1296 proteins identified in the 54 urine samples, 66 were differentially abundant in the two groups (area under the curve (AUC): p-value < 0.05), but none showed significantly better performance than albumin. To improve the predictive power by multivariate analysis, five proteins (ACP2, CTSA, GM2A, MUC1, and SPARCL1) were selected as significant by an AUC-based random forest method. The application of two classifiers—support vector machine and random forest—showed that the multivariate model performed better than univariate analysis of mucin-1 (AUC: 0.935 vs. 0.791) and albumin (AUC: 1.0 vs. 0.722). The urinary proteome can reflect kidney function directly and can predict the prognosis of patients with chronic kidney dysfunction. Classification based on five urinary proteins may better predict the prognosis of DKD patients than urinary albumin concentration or eGFR.
Collapse
Affiliation(s)
- Hee-Sung Ahn
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jong Ho Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Hwangkyo Jeong
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
| | - Jiyoung Yu
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
| | - Jeonghun Yeom
- Convergence Medicine Research Center, Asan Institute for Life Sciences, Seoul 05505, Korea;
| | - Sang Heon Song
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - Sang Soo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
| | - In Joo Kim
- Department of Internal Medicine and Biomedical Research Institute, Pusan National University Hospital, Busan 49241, Korea; (J.H.K.); (S.H.S.); (S.S.K.)
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| | - Kyunggon Kim
- Asan Institute for Life Sciences, Asan Medical Center, Seoul 05505, Korea; (H.-S.A.); (J.Y.)
- Department of Biomedical Sciences, University of Ulsan College of Medicine, Seoul 05505, Korea;
- Clinical Proteomics Core Laboratory, Convergence Medicine Research Center, Asan Medical Center, Seoul 05505, Korea
- Bio-Medical Institute of Technology, Asan Medical Center, Seoul 05505, Korea
- Correspondence: (I.J.K.); (K.K.); Tel.: +82-51-240-7224 (I.J.K.); +82-2-1688-7575 (K.K.)
| |
Collapse
|
60
|
Zhang W, Li X, Wang S, Chen Y, Liu H. Regulation of TFEB activity and its potential as a therapeutic target against kidney diseases. Cell Death Discov 2020; 6:32. [PMID: 32377395 PMCID: PMC7195473 DOI: 10.1038/s41420-020-0265-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/20/2020] [Accepted: 04/09/2020] [Indexed: 12/24/2022] Open
Abstract
The transcription factor EB (TFEB) regulates the expression of target genes bearing the Coordinated Lysosomal Expression and Regulation (CLEAR) motif, thereby modulating autophagy and lysosomal biogenesis. Furthermore, TFEB can bind to the promoter of autophagy-associated genes and induce the formation of autophagosomes, autophagosome-lysosome fusion, and lysosomal cargo degradation. An increasing number of studies have shown that TFEB stimulates the intracellular clearance of pathogenic factors by enhancing autophagy and lysosomal function in multiple kidney diseases, such as cystinosis, acute kidney injury, and diabetic nephropathy. Taken together, this highlights the importance of developing novel therapeutic strategies against kidney diseases based on TFEB regulation. In this review, we present an overview of the current data on TFEB and its implication in kidney disease.
Collapse
Affiliation(s)
- Weihuang Zhang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Xiaoyu Li
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Shujun Wang
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Yanse Chen
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| | - Huafeng Liu
- Institute of Nephrology, and Key Laboratory of Prevention and Management of Chronic Kidney Disease of Zhanjiang City, Affiliated Hospital of Guangdong Medical University, 524001 Zhanjiang, Guangdong China
| |
Collapse
|
61
|
Packer M. Interplay of adenosine monophosphate-activated protein kinase/sirtuin-1 activation and sodium influx inhibition mediates the renal benefits of sodium-glucose co-transporter-2 inhibitors in type 2 diabetes: A novel conceptual framework. Diabetes Obes Metab 2020; 22:734-742. [PMID: 31916329 DOI: 10.1111/dom.13961] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/29/2019] [Accepted: 01/04/2020] [Indexed: 12/11/2022]
Abstract
Long-term treatment with sodium-glucose co-transporter-2 (SGLT2) inhibitors slows the deterioration of renal function in patients with diabetes. This benefit cannot be ascribed to an action on blood glucose, ketone utilization, uric acid or systolic blood pressure. SGLT2 inhibitors produce a striking amelioration of glomerular hyperfiltration. Although initially ascribed to an action of these drugs to inhibit proximal tubular glucose reabsorption, SGLT2 inhibitors exert renoprotective effects, even in patients with meaningfully impaired levels of glomerular function that are sufficient to abolish their glycosuric actions. Instead, the reduction in intraglomerular pressures may be related to an action of SGLT2 inhibitors to interfere with the activity of sodium-hydrogen exchanger isoform 3, thereby inhibiting proximal tubular sodium reabsorption and promoting tubuloglomerular feedback. Yet, experimentally, such an effect may not be sufficient to prevent renal injury. It is therefore noteworthy that the diabetic kidney exhibits an important defect in adenosine monophosphate-activated protein kinase (AMPK) and sirtuin-1 (SIRT1) signalling, which may contribute to the development of nephropathy. These transcription factors exert direct effects to mute oxidative stress and inflammation, and they also stimulate autophagy, a lysosomally mediated degradative pathway that maintains cellular homeostasis in the kidney. SGLT2 inhibitors induce both AMPK and SIRT1, and they have been shown to stimulate autophagy, thereby ameliorating cellular stress and glomerular and tubular injury. Enhanced AMPK/SIRT1 signalling may also contribute to the action of SGLT2 inhibitors to interfere with sodium transport mechanisms. The dual effects of SGLT2 inhibitors on AMPK/SIRT1 activation and renal tubular sodium transport may explain the protective effects of these drugs on the kidney in type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas
- Imperial College, London, UK
| |
Collapse
|
62
|
Packer M. Role of Impaired Nutrient and Oxygen Deprivation Signaling and Deficient Autophagic Flux in Diabetic CKD Development: Implications for Understanding the Effects of Sodium-Glucose Cotransporter 2-Inhibitors. J Am Soc Nephrol 2020; 31:907-919. [PMID: 32276962 DOI: 10.1681/asn.2020010010] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Growing evidence indicates that oxidative and endoplasmic reticular stress, which trigger changes in ion channels and inflammatory pathways that may undermine cellular homeostasis and survival, are critical determinants of injury in the diabetic kidney. Cells are normally able to mitigate these cellular stresses by maintaining high levels of autophagy, an intracellular lysosome-dependent degradative pathway that clears the cytoplasm of dysfunctional organelles. However, the capacity for autophagy in both podocytes and renal tubular cells is markedly impaired in type 2 diabetes, and this deficiency contributes importantly to the intensity of renal injury. The primary drivers of autophagy in states of nutrient and oxygen deprivation-sirtuin-1 (SIRT1), AMP-activated protein kinase (AMPK), and hypoxia-inducible factors (HIF-1α and HIF-2α)-can exert renoprotective effects by promoting autophagic flux and by exerting direct effects on sodium transport and inflammasome activation. Type 2 diabetes is characterized by marked suppression of SIRT1 and AMPK, leading to a diminution in autophagic flux in glomerular podocytes and renal tubules and markedly increasing their susceptibility to renal injury. Importantly, because insulin acts to depress autophagic flux, these derangements in nutrient deprivation signaling are not ameliorated by antihyperglycemic drugs that enhance insulin secretion or signaling. Metformin is an established AMPK agonist that can promote autophagy, but its effects on the course of CKD have been demonstrated only in the experimental setting. In contrast, the effects of sodium-glucose cotransporter-2 (SGLT2) inhibitors may be related primarily to enhanced SIRT1 and HIF-2α signaling; this can explain the effects of SGLT2 inhibitors to promote ketonemia and erythrocytosis and potentially underlies their actions to increase autophagy and mute inflammation in the diabetic kidney. These distinctions may contribute importantly to the consistent benefit of SGLT2 inhibitors to slow the deterioration in glomerular function and reduce the risk of ESKD in large-scale randomized clinical trials of patients with type 2 diabetes.
Collapse
Affiliation(s)
- Milton Packer
- Baylor Heart and Vascular Institute, Baylor University Medical Center, Dallas, Texas .,Imperial College, London, United Kingdom
| |
Collapse
|
63
|
Van JAD, Clotet-Freixas S, Zhou J, Batruch I, Sun C, Glogauer M, Rampoldi L, Elia Y, Mahmud FH, Sochett E, Diamandis EP, Scholey JW, Konvalinka A. Peptidomic Analysis of Urine from Youths with Early Type 1 Diabetes Reveals Novel Bioactivity of Uromodulin Peptides In Vitro. Mol Cell Proteomics 2020; 19:501-517. [PMID: 31879271 PMCID: PMC7050109 DOI: 10.1074/mcp.ra119.001858] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 12/20/2019] [Indexed: 12/17/2022] Open
Abstract
Chronic hyperglycemia is known to disrupt the proteolytic milieu, initiating compensatory and maladaptive pathways in the diabetic kidney. Such changes in intrarenal proteolysis are captured by the urinary peptidome. To elucidate the early kidney response to chronic hyperglycemia, we conducted a peptidomic investigation into urines from otherwise healthy youths with type 1 diabetes and their non-diabetic peers using unbiased and targeted mass spectrometry-based techniques. This cross-sectional study included two separate cohorts for the discovery (n = 30) and internal validation (n = 30) of differential peptide excretion. Peptide bioactivity was predicted using PeptideRanker and subsequently verified in vitro Proteasix and the Nephroseq database were used to identify putative proteases responsible for peptide generation and examine their expression in diabetic nephropathy. A total of 6550 urinary peptides were identified in the discovery analysis. We further examined the subset of 162 peptides, which were quantified across all thirty samples. Of the 15 differentially excreted peptides (p < 0.05), seven derived from a C-terminal region (589SGSVIDQSRVLNLGPITRK607) of uromodulin, a kidney-specific protein. Increased excretion of five uromodulin peptides was replicated in the validation cohort using parallel reaction monitoring (p < 0.05). One of the validated peptides (SGSVIDQSRVLNLGPI) activated NFκB and AP-1 signaling, stimulated cytokine release, and enhanced neutrophil migration in vitro. In silico analyses highlighted several potential proteases such as hepsin, meprin A, and cathepsin B to be responsible for generating these peptides. In summary, we identified a urinary signature of uromodulin peptides associated with early type 1 diabetes before clinical manifestations of kidney disease and discovered novel bioactivity of uromodulin peptides in vitro Our present findings lay the groundwork for future studies to validate peptide excretion in larger and broader populations, to investigate the role of bioactive uromodulin peptides in high glucose conditions, and to examine proteases that cleave uromodulin.
Collapse
Affiliation(s)
- Julie A D Van
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada.
| | - Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Canada
| | - Joyce Zhou
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada
| | - Chunxiang Sun
- Faculty of Dentistry, University of Toronto, Toronto, Canada
| | | | - Luca Rampoldi
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS San Raffaele Scientific Institute, Milan, Italy; Vita-Salute San Raffaele University, Milan, Italy
| | | | | | | | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, University of Toronto, Toronto, Canada
| | - James W Scholey
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| | - Ana Konvalinka
- Institute of Medical Science, University of Toronto, Toronto, Canada; Toronto General Hospital Research Institute, University Health Network, Toronto, Canada; Department of Medicine, Division of Nephrology, University Health Network, Toronto, Canada
| |
Collapse
|
64
|
Podocyte Lysosome Dysfunction in Chronic Glomerular Diseases. Int J Mol Sci 2020; 21:ijms21051559. [PMID: 32106480 PMCID: PMC7084483 DOI: 10.3390/ijms21051559] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 02/06/2023] Open
Abstract
Podocytes are visceral epithelial cells covering the outer surface of glomerular capillaries in the kidney. Blood is filtered through the slit diaphragm of podocytes to form urine. The functional and structural integrity of podocytes is essential for the normal function of the kidney. As a membrane-bound organelle, lysosomes are responsible for the degradation of molecules via hydrolytic enzymes. In addition to its degradative properties, recent studies have revealed that lysosomes may serve as a platform mediating cellular signaling in different types of cells. In the last decade, increasing evidence has revealed that the normal function of the lysosome is important for the maintenance of podocyte homeostasis. Podocytes have no ability to proliferate under most pathological conditions; therefore, lysosome-dependent autophagic flux is critical for podocyte survival. In addition, new insights into the pathogenic role of lysosome and associated signaling in podocyte injury and chronic kidney disease have recently emerged. Targeting lysosomal functions or signaling pathways are considered potential therapeutic strategies for some chronic glomerular diseases. This review briefly summarizes current evidence demonstrating the regulation of lysosomal function and signaling mechanisms as well as the canonical and noncanonical roles of podocyte lysosome dysfunction in the development of chronic glomerular diseases and associated therapeutic strategies.
Collapse
|
65
|
Hou Y, Lin S, Qiu J, Sun W, Dong M, Xiang Y, Wang L, Du P. NLRP3 inflammasome negatively regulates podocyte autophagy in diabetic nephropathy. Biochem Biophys Res Commun 2020; 521:791-798. [DOI: 10.1016/j.bbrc.2019.10.194] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 10/29/2019] [Indexed: 01/14/2023]
|
66
|
Yan L, Sun A, Xu X. Zafirlukast, a Cysteinyl Leukotriene Receptor 1 Antagonist, Reduces the Effect of Advanced Glycation End-Products in Rat Renal Mesangial Cells In Vitro. Med Sci Monit 2019; 25:8753-8763. [PMID: 31745068 PMCID: PMC6880630 DOI: 10.12659/msm.918187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Zafirlukast is an antagonist of cysteinyl leukotriene receptor 1 (CysLTR1). Advanced glycation end-products (AGEs) are formed by the glycation of lipids and proteins in hyperglycemia, including diabetes mellitus. Zafirlukast has not previously been studied in diabetic nephropathy. This study aimed to investigate the effects of zafirlukast on rat renal mesangial cells cultured with AGEs in vitro. Material/Methods Mesangial cells were cultured in AGEs (0, 20, 50, 100 μg/ml), and with AGEs (100 μg/ml) and zafirlukast (2.5 μm, 5 μm, and 100 μm). An enzyme-linked immunoassay (ELISA) was used to measure the levels of tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), IL-6, and monocyte chemoattractant protein-1 (MCP-1). Reactive oxygen species (ROS) were assessed by intracellular fluorescence measurement of 2′-7′-dichlorodihydrofluorescein diacetate (DCFH-DA), and detection kits were used to measure malondialdehyde (MDA), lactate dehydrogenase (LDH), glutathione peroxidase (GSH-Px), and superoxide dismutase (SOD). Cell apoptosis was assessed by flow cytometry, and Western blot was used to measure protein levels. Results In mesangial cells cultured with AGEs, markers of inflammation, oxidative stress, and apoptosis and levels of CysLTR1 increased, and these effects were reduced by zafirlukast in a dose-dependent manner. The effects of zafirlukast as a CysLTR1 antagonist protected mesangial cells from the effects of AGE in vitro. Conclusions Zafirlukast, a CysLTR1 antagonist, reduced the levels of inflammatory cytokines, markers of oxidative stress, and cell apoptosis induced by AGE in mesangial cells in a dose-dependent way. Future in vivo studies are needed to investigate the potential role for zafirlukast in models of diabetic nephropathy.
Collapse
Affiliation(s)
- Liping Yan
- Administration Division, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Ani Sun
- Infection Control Office, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| | - Xinwei Xu
- Nephrology Department, Weifang People's Hospital, Weifang, Shandong, China (mainland)
| |
Collapse
|
67
|
Zhang XX, Jiang CH, Liu Y, Lou DX, Huang YP, Gao M, Zhang J, Yin ZQ, Pan K. Cyclocarya paliurus triterpenic acids fraction attenuates kidney injury via AMPK-mTOR-regulated autophagy pathway in diabetic rats. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 64:153060. [PMID: 31401495 DOI: 10.1016/j.phymed.2019.153060] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/29/2019] [Accepted: 07/29/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUD Diabetic nephropathy is the most serious complication of diabetes. Cyclocarya paliurus (CP), an herbal plant in China, has been reported the biological activity of anti-hyperglycemia. However, its effects on the diabetic nephropathy (DN) remain unclear. PURPOSE We aimed to investigate the potential role of CP and its underlying mechanisms on DN. STUDY DESIGN In this study, the effects of triterpenic acids-enriched fraction from CP (CPT) on DN was evaluated in streptozotocin (STZ)-induced rats and high glucose (HG)-induced HK-2 cells models. METHODS After oral administration with or without CPT for 10 weeks, body weight, glucose, microalbumin, serum creatinine and blood urea in STZ-induced rats were detected. Histological analysis was performed to evaluate renal function of mice. Moreover, the level of autophagy was detected by western blot or immunostaining. In vitro, HG-induced HK-2 cell was conducted to evaluate the renal protection and mechanism of CPT. RESULTS CPT dramatically decreased the levels of microalbumin, serum creatinine and blood urea nitrogen and ameliorated increased mesangial matrix and glomerular fibrosis. In addition, we found the CPT prevented renal damage and cell apoptosis through the autophagy. Furthermore, CPT could increase the phosphorylation of AMPK and decrease its downstream effector phosphorylation of mTOR. Besides, the expression of LC3-II were locked by AMPK inhibitor dorsomorphin dihydrochloride (compound C), implying that the autophagy may be regulated with AMPK activation. CONCLUSION These findings suggested that CPT might be a desired candidate against diabetes, potentially through AMPK-mTOR-regulated autophagy pathway.
Collapse
Affiliation(s)
- Xuan-Xuan Zhang
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China; Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Cui-Hua Jiang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Yao Liu
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China
| | - Dong-Xiao Lou
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Ya-Ping Huang
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Meng Gao
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China
| | - Jian Zhang
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210009, PR China.
| | - Zhi-Qi Yin
- Department of TCMs Pharmaceuticals & State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing 210009, PR China.
| | - Ke Pan
- Department of Natural Medicinal Chemistry, School of Traditional Chinese Medicine, China Pharmaceutical University, Nanjing 211198, PR China.
| |
Collapse
|
68
|
Lysosome restoration to activate podocyte autophagy: a new therapeutic strategy for diabetic kidney disease. Cell Death Dis 2019; 10:806. [PMID: 31649253 PMCID: PMC6813305 DOI: 10.1038/s41419-019-2002-6] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 09/04/2019] [Accepted: 09/23/2019] [Indexed: 01/13/2023]
Abstract
Autophagy, the intracellular lysosomal degradation process plays a pivotal role in podocyte homeostasis in diabetic kidney disease (DKD). Lysosomal function, autophagic activity, and their actions were investigated in vitro and in vivo. We found that LC3-II- and p62-positive vacuoles accumulated in podocytes of patients with DKD. Moreover, we found that advanced glycation end products (AGEs) could increase the protein expression of LC3-II and p62 in a dose- and time-dependent manner in cultured podocytes. However, the mRNA expression of LC3B, Beclin-1 or ATG7, as well as the protein level of Beclin-1 or ATG7 did not change significantly in the AGE-treated cells compared with that in control groups, suggesting that AGEs did not induce autophagy. In addition, AGEs led to an increase in the number of autophagosomes but not autolysosomes, accompanied with a failure in lysosomal turnover of LC3-II or p62, indicating that the degradation of autophagic vacuoles was blocked. Furthermore, we observed a dramatic decrease in the enzymatic activities, and the degradation of DQ-ovalbumin was significantly suppressed after podocytes were treated with AGEs. Plasma-irregular lysosomal-associated membrane protein 1 granules accompanied with the diffusion of cathepsin D expression and acridine orange redistribution were observed in AGE-treated podocytes, indicating that the lysosomal membrane permeability was triggered. Interestingly, we also found that AGEs-induced autophagic inhibition and podocyte injury were mimicked by the specific lysosomotropic agent, l-leucyl-l-leucine methyl ester. The exacerbated apoptosis and Rac-1-dependent actin-cytoskeletal disorganization were alleviated by an improvement in the lysosomal-dependent autophagic pathway by resveratrol plus vitamin E treatment in AGE-treated podocytes. However, the rescued effects were reversed by the addition of leupeptin, a lysosomal inhibitor. It suggests that restoring lysosomal function to activate autophagy may contribute to the development of new therapeutic strategies for DKD.
Collapse
|
69
|
Shi M, Yang S, Zhu X, Sun D, Sun D, Jiang X, Zhang C, Wang L. The RAGE/STAT5/autophagy axis regulates senescence in mesangial cells. Cell Signal 2019; 62:109334. [PMID: 31158467 DOI: 10.1016/j.cellsig.2019.05.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 02/07/2023]
Abstract
Renal aging and associated functional decline are associated with an increase in cellular senescence. Previous studies show a direct correlation between advanced glycation end products (AGEs) accumulation and renal aging, chronic kidney disease (CKD) and other nephropathies, although the underlying molecular mechanisms remain largely unclear. We found elevated levels of the receptor of advanced glycation end product (RAGE) as well as STAT5 in aged human kidneys, as well as in human mesangial cells aged artificially through AGEs. Furthermore, genetic and pharmacological ablation of STAT5 significantly downregulated p16 levels and the percentage of β-Gal-positive senescent cells in mesangial cells and kidneys of SD rats, indicating that AGEs-induced senescence depends on STAT5 signaling. The aged kidney tissues (both in patients and SD rats) and mesangial cells show low levels of LC3 (both LC3-II and LC3-II/I), and cultured mesangial cells also show fewer autolysosomes, autophagosomes, and autophagic vacuoles, which can be partially restored upon STAT5 inhibition. This indicates that AGEs accumulation also obliterates the protective effects of autophagy against aging via the RAGE/STAT5 axis. Direct inhibition of autophagy via 3-methyladenine (3-MA) increases the phenotype of renal aging without activating RAGE, it is inhibition of autophagy caused by RAGE/STAT5 that leads to mesangial aging. In conclusion, we found AGEs induced inhibition of autophagy and cellular senescence in mesangial cells via the RAGE/STAT5 pathway. Moreover, we found that RAGE/STAT5 acts as a key link between autophagy and senescence in the process of mesangial aging in vivo and in vitro.
Collapse
Affiliation(s)
- Mai Shi
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Shuang Yang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Xinwang Zhu
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Da Sun
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Dan Sun
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Xue Jiang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Congxiao Zhang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China
| | - Lining Wang
- Department of Nephrology, The First Hospital of China Medical University, No.155 NanjingBei Rd., Heping District, Shenyang, Liaoning 110001, China.
| |
Collapse
|
70
|
Sakai S, Yamamoto T, Takabatake Y, Takahashi A, Namba-Hamano T, Minami S, Fujimura R, Yonishi H, Matsuda J, Hesaka A, Matsui I, Matsusaka T, Niimura F, Yanagita M, Isaka Y. Proximal Tubule Autophagy Differs in Type 1 and 2 Diabetes. J Am Soc Nephrol 2019; 30:929-945. [PMID: 31040190 DOI: 10.1681/asn.2018100983] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 02/22/2019] [Indexed: 11/03/2022] Open
Abstract
BACKGROUND Evidence of a protective role of autophagy in kidney diseases has sparked interest in autophagy as a potential therapeutic strategy. However, understanding how the autophagic process is altered in each disorder is critically important in working toward therapeutic applications. METHODS Using cultured kidney proximal tubule epithelial cells (PTECs) and diabetic mouse models, we investigated how autophagic activity differs in type 1 versus type 2 diabetic nephropathy. We explored nutrient signals regulating starvation-induced autophagy in PTECs and used autophagy-monitoring mice and PTEC-specific autophagy-deficient knockout mice to examine differences in autophagy status and autophagy's role in PTECs in streptozotocin (STZ)-treated type 1 and db/db type 2 diabetic nephropathy. We also examined the effects of rapamycin (an inhibitor of mammalian target of rapamycin [mTOR]) on vulnerability to ischemia-reperfusion injury. RESULTS Administering insulin or amino acids, but not glucose, suppressed autophagy by activating mTOR signaling. In db/db mice, autophagy induction was suppressed even under starvation; in STZ-treated mice, autophagy was enhanced even under fed conditions but stagnated under starvation due to lysosomal stress. Using knockout mice with diabetes, we found that, in STZ-treated mice, activated autophagy counteracts mitochondrial damage and fibrosis in the kidneys, whereas in db/db mice, autophagic suppression jeopardizes kidney even in the autophagy-competent state. Rapamycin-induced pharmacologic autophagy produced opposite effects on ischemia-reperfusion injury in STZ-treated and db/db mice. CONCLUSIONS Autophagic activity in PTECs is mainly regulated by insulin. Consequently, autophagic activity differs in types 1 and 2 diabetic nephropathy, which should be considered when developing strategies to treat diabetic nephropathy by modulating autophagy.
Collapse
Affiliation(s)
- Shinsuke Sakai
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan;
| | - Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Tomoko Namba-Hamano
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryuta Fujimura
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hiroaki Yonishi
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Atsushi Hesaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Taiji Matsusaka
- Institute of Medical Sciences and Department of Basic Medicine and
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Kanagawa, Japan
| | - Motoko Yanagita
- Department of Nephrology, Kyoto University Graduate School of Medicine, Kyoto, Japan; and.,Institute for the Advanced Study of Human Biology, Kyoto University, Kyoto, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
71
|
Zhao Y, Zhang W, Jia Q, Feng Z, Guo J, Han X, Liu Y, Shang H, Wang Y, Liu WJ. High Dose Vitamin E Attenuates Diabetic Nephropathy via Alleviation of Autophagic Stress. Front Physiol 2019; 9:1939. [PMID: 30719008 PMCID: PMC6348272 DOI: 10.3389/fphys.2018.01939] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/21/2018] [Indexed: 02/06/2023] Open
Abstract
It has been reported that autophagic stress, which is involved in many diseases, plays a key role in the development of diabetic nephropathy (DN). In this study, we investigated the effects of high dose vitamin E on renal tubular epithelial cells and autophagic stress-related mechanisms in diabetes condition. In diabetic rats, high dose vitamin E treatment significantly decreased the serum creatinine, urea nitrogen, urinary albumin and urinary protein, reduced the levels of LCN2, HAVCR1, LDH and 8-OHdG in urine, and attenuated the cellular apoptosis and interstitial fibrosis in renal cortex. In vitro, vitamin E could reduce the release of LCN2 and HAVCR1 and the protein levels of caspase 3 and TGF-β1, as well as improve the growth inhibition in cultured HK-2 cells after exposure to advanced glycation end products (AGEs). Also, LC3-II and SQSTM1-positive dots were significantly increased in the renal tubular epithelial cells of DN patients and diabetic rats, and in HK-2 cells after exposure to AGEs, which were markedly declined by vitamin E. In addition, we found that the autophagosome formation was not affected by AGEs, as assessed by the mRNA levels of LC3B, Beclin-1, and ATG7. However, AGEs blocked the lysosomal degradation of autophagosome, which was characterized by a decrease in the enzymatic activity of cathepsin B/cathepsin L and DQ-ovalbumin degradation in HK-2 cells, indicating that AGEs-induced accumulation of autophagic vacuoles was a sign of autophagic stress. Interestingly, vitamin E exerted a protective effect on lysosomes to reduce the autophagic stress. Taken together, we conclude that autophagic stress may play an important part in the progression of DN, and alleviation of autophagic stress though improvement of lysosomal function provides a promising novel approach for treating DN.
Collapse
Affiliation(s)
- Yuxue Zhao
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wenting Zhang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Qi Jia
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Zhendong Feng
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Jing Guo
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Xueting Han
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yuning Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | - Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China.,Renal Research Institution of Beijing University of Chinese Medicine, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
72
|
Zhao XC, Livingston MJ, Liang XL, Dong Z. Cell Apoptosis and Autophagy in Renal Fibrosis. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1165:557-584. [PMID: 31399985 DOI: 10.1007/978-981-13-8871-2_28] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Renal fibrosis is the final common pathway of all chronic kidney diseases progressing to end-stage renal diseases. Autophagy, a highly conserved lysosomal degradation pathway, plays important roles in maintaining cellular homeostasis in all major types of kidney cells including renal tubular cells as well as podocytes, mesangial cells and endothelial cells in glomeruli. Autophagy dysfunction is implicated in the pathogenesis of various renal pathologies. Here, we analyze the pathological role and regulation of autophagy in renal fibrosis and related kidney diseases in both glomeruli and tubulointerstitial compartments. Further research is expected to gain significant mechanistic insights and discover pathway-specific and kidney-selective therapies targeting autophagy to prevent renal fibrosis and related kidney diseases.
Collapse
Affiliation(s)
- Xing-Chen Zhao
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA
| | - Xin-Ling Liang
- Division of Nephrology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University and Charlie Norwood VA Medical Center, Augusta, GA, 30912, USA.
| |
Collapse
|
73
|
Zha ZM, Wang JH, Li SL, Guo Y. Pitavastatin attenuates AGEs-induced mitophagy via inhibition of ROS generation in the mitochondria of cardiomyocytes. J Biomed Res 2018; 32:281-287. [PMID: 29089470 PMCID: PMC6117602 DOI: 10.7555/jbr.31.20160116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
This study aimed to investigate whether pitavastatin protected against injury induced by advanced glycation end products products (AGEs) in neonatal rat cardiomyocytes, and to examine the underlying mechanisms. Cardiomyocytes of neonatal rats were incubated for 48 hours with AGEs (100μg/mL), receptor for advanced glycation end products (RAGE), antibody (1μg/mL) and pitavastatin (600 ng/mL). The levels of p62 and beclin1 were determined by Western blotting. Mitochondrial membrane potential (ΔΨm) and the generation of reactive oxygen species (ROS) were measured through the JC-1 and DCFH-DA. In the AGEs group, the expression of beclin1 was remarkably increased compared to the control group, while the expression of p62 was significantly decreased. AGEs also markedly decreased ΔΨm and significantly increased ROS compared with the control group. After treatment with RAGE antibody or pitavastatin, the level of beclin1 was markedly decreased compared with the AGEs group, but the level of p62 was remarkably increased. In the AGEs+ RAGE antibody group and AGEs+ pitavastatin group, ΔΨm was significantly increased and ROS was remarkably decreased compared with the AGEs group. In conclusion, AGEs-RAGE may induce autophagy of cardiomyocytes by generation of ROS and pitavastatin could protect against AGEs-induced injury against cardiomyocytes.
Collapse
Affiliation(s)
- Zhi-Min Zha
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jun-Hong Wang
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Cardiology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shi-Ling Li
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yan Guo
- Department of Gerontology, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China.,Department of Cardioangiology, Shengze Hospital of Jiangsu Province, Suzhou, China
| |
Collapse
|
74
|
Kurosaki Y, Imoto A, Kawakami F, Yokoba M, Takenaka T, Ichikawa T, Katagiri M, Ishii N. Oxidative stress increases megalin expression in the renal proximal tubules during the normoalbuminuric stage of diabetes mellitus. Am J Physiol Renal Physiol 2018; 314:F462-F470. [DOI: 10.1152/ajprenal.00108.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Megalin, an endocytic receptor expressed in proximal tubule cells, plays a critical role in renal tubular protein reabsorption and is associated with the albuminuria observed in diabetic nephropathy. We have previously reported increased oxidant production in the renal cortex during the normoalbuminuric stage of diabetes mellitus (DM); however, the relationship between oxidative stress and renal megalin expression during the normoalbuminuric stage of DM remains unclear. In the present study, we evaluated whether oxidative stress affects megalin expression in the normoalbuminuric stage of DM in a streptozotocin-induced diabetic rat model and in immortalized human proximal tubular cells (HK-2). We demonstrated that increased expression of renal megalin accompanies oxidative stress during the early stage of DM, before albuminuria development. Telmisartan treatment prevented the diabetes-induced elevation in megalin level, possibly through an oxidative stress-dependent mechanism. In HK-2 cells, hydrogen peroxide significantly increased megalin levels in a dose- and time-dependent manner; however, the elevation in megalin expression was decreased following prolonged exposure to severe oxidative stress induced by 0.4 mmol/l hydrogen peroxide. High-glucose treatment also significantly increased megalin expression in HK-2 cells. Concurrent administration of the antioxidant N-acetyl-cysteine blocked the effects of high glucose on megalin expression. Furthermore, the hydrogen peroxide-induced increase in megalin expression was blocked by treatment with phosphatidylinositol 3-kinase and Akt inhibitors. Increase of phosphorylated Akt expression was also seen in the renal cortex of diabetic rats. Taken together, our results indicate that mild oxidative stress increases renal megalin expression through the phosphatidylinositol 3-kinase-Akt pathway in the normoalbuminuric stage of DM.
Collapse
Affiliation(s)
- Yoshifumi Kurosaki
- Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Akemi Imoto
- Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Fumitaka Kawakami
- Department of Pathological Biochemistry, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Masanori Yokoba
- Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Tsuneo Takenaka
- Department of Medicine, International University of Health and Welfare, Tokyo, Japan
| | - Takafumi Ichikawa
- Department of Pathological Biochemistry, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Masato Katagiri
- Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| | - Naohito Ishii
- Department of Medical Laboratory Sciences, Kitasato University School of Allied Health Sciences, Kanagawa, Japan
| |
Collapse
|
75
|
Yang D, Livingston MJ, Liu Z, Dong G, Zhang M, Chen JK, Dong Z. Autophagy in diabetic kidney disease: regulation, pathological role and therapeutic potential. Cell Mol Life Sci 2018; 75:669-688. [PMID: 28871310 PMCID: PMC5771948 DOI: 10.1007/s00018-017-2639-1] [Citation(s) in RCA: 180] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 08/29/2017] [Accepted: 08/31/2017] [Indexed: 12/17/2022]
Abstract
Diabetic kidney disease, a leading cause of end-stage renal disease, has become a serious public health problem worldwide and lacks effective therapies. Autophagy is a highly conserved lysosomal degradation pathway that removes protein aggregates and damaged organelles to maintain cellular homeostasis. As important stress-responsive machinery, autophagy is involved in the pathogenesis of various diseases. Emerging evidence has suggested that dysregulated autophagy may contribute to both glomerular and tubulointerstitial pathologies in kidneys under diabetic conditions. This review summarizes the recent findings regarding the role of autophagy in the pathogenesis of diabetic kidney disease and highlights the regulation of autophagy by the nutrient-sensing pathways and intracellular stress signaling in this disease. The advances in our understanding of autophagy in diabetic kidney disease will facilitate the discovery of a new therapeutic target for the prevention and treatment of this life-threatening diabetes complication.
Collapse
Affiliation(s)
- Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Man J Livingston
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zhiwen Liu
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China
| | - Guie Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Ming Zhang
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA
| | - Zheng Dong
- Department of Nephrology, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, People's Republic of China.
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University and Charlie Norwood VA Medical Center, 1459 Laney Walker Blvd, Augusta, GA, 30912, USA.
| |
Collapse
|
76
|
Arden C. A role for Glucagon-Like Peptide-1 in the regulation of β-cell autophagy. Peptides 2018; 100:85-93. [PMID: 29412836 DOI: 10.1016/j.peptides.2017.12.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 12/04/2017] [Accepted: 12/04/2017] [Indexed: 12/11/2022]
Abstract
Autophagy is a highly conserved intracellular recycling pathway that serves to recycle damaged organelles/proteins or superfluous nutrients during times of nutritional stress to provide energy to maintain intracellular homeostasis and sustain core metabolic functions. Under these conditions, autophagy functions as a cell survival mechanism but impairment of this pathway can lead to pro-death stimuli. Due to their role in synthesising and secreting insulin, pancreatic β-cells have a high requirement for robust degradation pathways. Recent research suggests that functional autophagy is required to maintain β-cell survival and function in response to high fat diet suggesting a pro-survival role. However, a role for autophagy has also been implicated in the pathogenesis of type 2 diabetes. Thus, the pro-survival vs pro-death role of autophagy in regulating β-cell mass requires discussion. Emerging evidence suggests that Glucagon-Like Peptide-1 (GLP-1) may exert beneficial effects on glucose homeostasis via autophagy-dependent pathways both in pancreatic β-cells and in other cell types. The aim of the current review is to: i) summarise the literature surrounding β-cell autophagy and its pro-death vs pro-survival role in regulating β-cell mass; ii) review the literature describing the impact of GLP-1 on β-cell autophagy and in other cell types; iii) discuss the potential underlying mechanisms.
Collapse
Affiliation(s)
- Catherine Arden
- Institute of Cellular Medicine, The Medical School, Newcastle University, Newcastle upon Tyne NE2 4HH, UK.
| |
Collapse
|
77
|
Optineurin-mediated mitophagy protects renal tubular epithelial cells against accelerated senescence in diabetic nephropathy. Cell Death Dis 2018; 9:105. [PMID: 29367621 PMCID: PMC5833650 DOI: 10.1038/s41419-017-0127-z] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Revised: 11/03/2017] [Accepted: 11/06/2017] [Indexed: 02/07/2023]
Abstract
Premature senescence is a key process in the progression of diabetic nephropathy (DN). Premature senescence of renal tubular epithelial cells (RTEC) in DN may result from the accumulation of damaged mitochondria. Mitophagy is the principal process that eliminates damaged mitochondria through PTEN-induced putative kinase 1 (PINK1)-mediated recruitment of optineurin (OPTN) to mitochondria. We aimed to examine the involvement of OPTN in mitophagy regulation of cellular senescence in RTEC in the context of DN. In vitro, the expression of senescence markers P16, P21, DcR2, SA-β-gal, SAHF, and insufficient mitophagic degradation marker (mitochondrial P62) in mouse RTECs increased after culture in 30 mM high-glucose (HG) conditions for 48 h. Mitochondrial fission/mitophagy inhibitor Mdivi-1 significantly enhanced RTEC senescence under HG conditions, whereas autophagy/mitophagy agonist Torin1 inhibited cell senescence. MitoTempo inhibited HG-induced mitochondrial reactive oxygen species and cell senescence with or without Mdivi-1. The expression of PINK1 and OPTN, two regulatory factors for mitophagosome formation, decreased significantly after HG stimulation. Overexpression of PINK1 did not enhance mitophagosome formation under HG conditions. OPTN silencing significantly inhibited HG-induced mitophagosome formation, and overexpression of OPTN relieved cellular senescence through promoting mitophagy. In clinical specimens, renal OPTN expression was gradually decreased with increased tubulointerstitial injury scores. OPTN-positive renal tubular cells did not express senescence marker P16. OPTN expression also negatively correlated with serum creatinine levels, and positively correlated with eGFR. Thus, OPTN-mediated mitophagy plays a crucial regulatory role in HG-induced RTEC senescence in DN. OPTN may, therefore, be a potential antisenescence factor in DN.
Collapse
|
78
|
Cocchiaro P, De Pasquale V, Della Morte R, Tafuri S, Avallone L, Pizard A, Moles A, Pavone LM. The Multifaceted Role of the Lysosomal Protease Cathepsins in Kidney Disease. Front Cell Dev Biol 2017; 5:114. [PMID: 29312937 PMCID: PMC5742100 DOI: 10.3389/fcell.2017.00114] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 12/07/2017] [Indexed: 12/18/2022] Open
Abstract
Kidney disease is worldwide the 12th leading cause of death affecting 8–16% of the entire population. Kidney disease encompasses acute (short-lasting episode) and chronic (developing over years) pathologies both leading to renal failure. Since specific treatments for acute or chronic kidney disease are limited, more than 2 million people a year require dialysis or kidney transplantation. Several recent evidences identified lysosomal proteases cathepsins as key players in kidney pathophysiology. Cathepsins, originally found in the lysosomes, exert important functions also in the cytosol and nucleus of cells as well as in the extracellular space, thus participating in a wide range of physiological and pathological processes. Based on their catalytic active site residue, the 15 human cathepsins identified up to now are classified in three different families: serine (cathepsins A and G), aspartate (cathepsins D and E), or cysteine (cathepsins B, C, F, H, K, L, O, S, V, X, and W) proteases. Specifically in the kidney, cathepsins B, D, L and S have been shown to regulate extracellular matrix homeostasis, autophagy, apoptosis, glomerular permeability, endothelial function, and inflammation. Dysregulation of their expression/activity has been associated to the onset and progression of kidney disease. This review summarizes most of the recent findings that highlight the critical role of cathepsins in kidney disease development and progression. A better understanding of the signaling pathways governed by cathepsins in kidney physiopathology may yield novel selective biomarkers or therapeutic targets for developing specific treatments against kidney disease.
Collapse
Affiliation(s)
- Pasquale Cocchiaro
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.,Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Valeria De Pasquale
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rossella Della Morte
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Simona Tafuri
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Anne Pizard
- Faculty of Medicine, Institut National de la Santé Et de la Recherche Médicale, "Défaillance Cardiaque Aigüe et Chronique", Nancy, France.,Université de Lorraine, Nancy, France.,Institut Lorrain du Coeur et des Vaisseaux, Center for Clinical Investigation 1433, Nancy, France.,CHRU de Nancy, Hôpitaux de Brabois, Nancy, France
| | - Anna Moles
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
79
|
Zeni L, Norden AGW, Cancarini G, Unwin RJ. A more tubulocentric view of diabetic kidney disease. J Nephrol 2017; 30:701-717. [PMID: 28840540 PMCID: PMC5698396 DOI: 10.1007/s40620-017-0423-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/22/2017] [Indexed: 12/14/2022]
Abstract
Diabetic nephropathy (DN) is a common complication of Diabetes Mellitus (DM) Types 1 and 2, and prevention of end stage renal disease (ESRD) remains a major challenge. Despite its high prevalence, the pathogenesis of DN is still controversial. Initial glomerular disease manifested by hyperfiltration and loss of glomerular size and charge permselectivity may initiate a cascade of injuries, including tubulo-interstitial disease. Clinically, 'microalbuminuria' is still accepted as an early biomarker of glomerular damage, despite mounting evidence that its predictive value for DN is questionable, and findings that suggest the proximal tubule is an important link in the development of DN. The concept of 'diabetic tubulopathy' has emerged from recent studies, and its causative role in DN is supported by clinical and experimental evidence, as well as plausible pathogenetic mechanisms. This review explores the 'tubulocentric' view of DN. The recent finding that inhibition of proximal tubule (PT) glucose transport (via SGLT2) is nephro-protective in diabetic patients is discussed in relation to the tubule's potential role in DN. Studies with a tubulocentric view of DN have stimulated alternative clinical approaches to the early detection of diabetic kidney disease. There are tubular biomarkers considered as direct indicators of injury of the proximal tubule (PT), such as N-acetyl-β-D-glucosaminidase, Neutrophil Gelatinase-Associated Lipocalin and Kidney Injury Molecule-1, and other functional PT biomarkers, such as Urine free Retinol-Binding Protein 4 and Cystatin C, which reflect impaired reabsorption of filtered proteins. The clinical application of these measurements to diabetic patients will be reviewed in the context of the need for better biomarkers for early DN.
Collapse
Affiliation(s)
- Letizia Zeni
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy.
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK.
- Operative Unit of Nephrology, ASST Spedali Civili, Piazzale Spedali Civili 1, Brescia, Italy.
| | - Anthony G W Norden
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
| | - Giovanni Cancarini
- Department of Medical and Surgical Specialities, Radiological Sciences and Public Health, University of Brescia, Piazza del Mercato 15, 25121, Brescia, Italy
- Operative Unit of Nephrology, ASST Spedali Civili, Piazzale Spedali Civili 1, Brescia, Italy
| | - Robert J Unwin
- UCL Centre for Nephrology, UCL Medical School, Royal Free Campus, Rowland Hill Street, London, NW3 2PF, UK
- Cardiovascular and Metabolic Diseases iMED ECD, AstraZeneca Gothenburg, Mölndal, Sweden
| |
Collapse
|
80
|
Yu Y, Wang L, Delguste F, Durand A, Guilbaud A, Rousselin C, Schmidt AM, Tessier F, Boulanger E, Neviere R. Advanced glycation end products receptor RAGE controls myocardial dysfunction and oxidative stress in high-fat fed mice by sustaining mitochondrial dynamics and autophagy-lysosome pathway. Free Radic Biol Med 2017; 112:397-410. [PMID: 28826719 DOI: 10.1016/j.freeradbiomed.2017.08.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Revised: 08/05/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022]
Abstract
Oxidative stress and mitochondrial dysfunction are recognized as major contributors of cardiovascular damage in diabetes and high fat diet (HFD) fed mice. Blockade of receptor for advanced glycation end products (RAGE) attenuates vascular oxidative stress and development of atherosclerosis. We tested whether HFD-induced myocardial dysfunction would be reversed in RAGE deficiency mice, in association with changes in oxidative stress damage, mitochondrial respiration, mitochondrial fission and autophagy-lysosomal pathway. Cardiac antioxidant capacity was upregulated in RAGE-/- mice under normal diet as evidenced by increased superoxide dismutase and sirtuin mRNA expressions. Mitochondrial fragmentation and mitochondrial fission protein Drp1 and Fis1 expressions were increased in RAGE-/- mice. Autophagy-related protein expressions and cathepsin-L activity were increased in RAGE-/- mice suggesting sustained autophagy-lysosomal flux. HFD induced mitochondrial respiration defects, cardiac contractile dysfunction, disrupted mitochondrial dynamics and autophagy inhibition, which were partially prevented in RAGE-/- mice. Our results suggest that cardioprotection against HFD in RAGE-/- mice include reactivation of autophagy, as inhibition of autophagic flux by chloroquine fully abrogated beneficial myocardial effects and its stimulation by rapamycin improved myocardial function in HFD wild type mice. As mitochondrial fission is necessary to mitophagy, increased fragmentation of mitochondrial network in HFD RAGE-/- mice may have facilitated removal of damaged mitochondria leading to better mitochondrial quality control. In conclusion, modulation of RAGE pathway may improve mitochondrial damage and myocardial dysfunction in HFD mice. Attenuation of cardiac oxidative stress and maintenance of healthy mitochondria population ensuring adequate energy supply may be involved in myocardial protection against HFD.
Collapse
Affiliation(s)
- Yichi Yu
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Wang
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France; School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Florian Delguste
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France
| | - Arthur Durand
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France; University Hospital CHU of Lille, F-59000 Lille, France
| | - Axel Guilbaud
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France
| | - Clementine Rousselin
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France; University Hospital CHU of Lille, F-59000 Lille, France
| | - Ann Marie Schmidt
- Diabetes Research Center, Department of Medicine, NYU Langone Medical Center, New York, NY, USA
| | - Frédéric Tessier
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France
| | - Eric Boulanger
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France; University Hospital CHU of Lille, F-59000 Lille, France
| | - Remi Neviere
- INSERM U995, LIRIC /Team "Glycation: from inflammation to aging", Lille University, France; University Hospital CHU of Martinique, University of Antilles, Fort de France F-97200, France.
| |
Collapse
|
81
|
Liu WJ, Li ZH, Chen XC, Zhao XL, Zhong Z, Yang C, Wu HL, An N, Li WY, Liu HF. Blockage of the lysosome-dependent autophagic pathway contributes to complement membrane attack complex-induced podocyte injury in idiopathic membranous nephropathy. Sci Rep 2017; 7:8643. [PMID: 28819100 PMCID: PMC5561110 DOI: 10.1038/s41598-017-07889-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Accepted: 07/05/2017] [Indexed: 11/21/2022] Open
Abstract
Dysregulation of autophagy-mediated podocyte homeostasis is proposed to play a role in idiopathic membranous nephropathy (IMN). In the present study, autophagic activity and lysosomal alterations were investigated in podocytes of IMN patients and in cultured podocytes exposed to sublytic terminal complement complex, C5b-9. C5b-9 upregulated the number of LC3 positive puncta and the expression of p62 in patient podocytes and in C5b-9 injuried podocyte model. The lysosomal turnover of LC3-II was not influenced, although the BECN1 expression level was upregulated after exposure of podocytes to C5b-9. C5b-9 also caused a significant increase in the number of autophagosomes but not autolysosomes, suggesting that C5b-9 impairs the lysosomal degration of autophagosomes. Moreover, C5b-9 exacerbated the apoptosis of podocytes, which could be mimicked by chloroquine treatment, indicating that C5b-9 triggered podocyte injury, at least partially through inhibiting autophagy. Subsequent studies revealed that C5b-9 triggered lysosomal membrane permeabilization, which likely caused the decrease in enzymatic activity, defective acidification of lysosomes, and suppression of DQ-ovalbumin degradation. Taken together, our results suggest that the lysosomal-dependent autophagic pathway is blocked by C5b-9, which may play a key role in podocyte injury during the development of IMN.
Collapse
Affiliation(s)
- Wei Jing Liu
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.,Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Zhi-Hang Li
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xiao-Cui Chen
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Xiao-Lu Zhao
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Zhen Zhong
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Chen Yang
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Hong-Luan Wu
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Ning An
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Wei-Yan Li
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China
| | - Hua-Feng Liu
- Institute of Nephrology, and Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong, 524001, China.
| |
Collapse
|
82
|
Singh H, Yu Y, Suh MJ, Torralba MG, Stenzel RD, Tovchigrechko A, Thovarai V, Harkins DM, Rajagopala SV, Osborne W, Cogen FR, Kaplowitz PB, Nelson KE, Madupu R, Pieper R. Type 1 Diabetes: Urinary Proteomics and Protein Network Analysis Support Perturbation of Lysosomal Function. Theranostics 2017; 7:2704-2717. [PMID: 28819457 PMCID: PMC5558563 DOI: 10.7150/thno.19679] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Accepted: 04/25/2017] [Indexed: 12/11/2022] Open
Abstract
While insulin replacement therapy restores the health and prevents the onset of diabetic complications (DC) for many decades, some T1D patients have elevated hemoglobin A1c values suggesting poor glycemic control, a risk factor of DC. We surveyed the stool microbiome and urinary proteome of a cohort of 220 adolescents and children, half of which had lived with T1D for an average of 7 years and half of which were healthy siblings. Phylogenetic analysis of the 16S rRNA gene did not reveal significant differences in gut microbial alpha-diversity comparing the two cohorts. The urinary proteome of T1D patients revealed increased abundances of several lysosomal proteins that correlated with elevated HbA1c values. In silico protein network analysis linked such proteins to extracellular matrix components and the glycoprotein LRG1. LRG1 is a prominent inflammation and neovascularization biomarker. We hypothesize that these changes implicate aberrant glycation of macromolecules that alter lysosomal function and metabolism in renal tubular epithelial cells, cells that line part of the upper urinary tract.
Collapse
|
83
|
Zhu ML, Lu JX, Pan GP, Ping S, Zhao FR, Qi HT, Yu HY, Jian X, Wan GR, Li P. Traditional Chinese medicine Ka-Sai-Ping suppresses the growths of gastric cancers via induction of autophagy. Oncotarget 2017; 8:95075-95082. [PMID: 29221112 PMCID: PMC5707006 DOI: 10.18632/oncotarget.18041] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 05/10/2017] [Indexed: 11/25/2022] Open
Abstract
Traditional Chinese medication is increasingly used to treat a wide range of human chronic diseases like cardiovascular diseases and cancers. This study was designed to explore whether ka-sai-ping (KSP), a novel traditional Chinese medicine developed by us, prevents gastric cancer growths and to investigate the underlying mechanism. The xenograft model of mouse gastric cancer was established by injecting MFCs into nude mouse subcutaneously. Cell autophagy was assessed by MDC staining. Lysosome and mitochondria were detected by Lyso-Tracker Red and Mito-Traker Green staining. Incubation of cultured mouse gastric cancer cell line MFCs with KSP for 48 hours, concentration-dependently reduced cell survivals and activated autophagy, which were accompanied with damaged lysosomes and mitochondria. In vivo studies indicated that KSP therapy (20 ml/kg/day) for two weeks suppressed the growth of gastric cancer, increased the protein levels of LC3-II, beclin-1, cathepsin L, bcl-2, p53, and capase-3 in tumor tissues from the xenograft model of mouse gastric cancer. Importantly, all these effects induced by KSP were abolished by co-administration of autophagy inhibitor 3-MA. In conclusion, KSP activates cell autophagy to suppress gastric cancer growths. Clinically, KSP is potentially considered as a medicine to treat patients with gastric cancer.
Collapse
Affiliation(s)
- Mo-Li Zhu
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Jun-Xiu Lu
- Department of Histology and Embryology, Xinxiang Medical University, Xinxiang, China
| | - Guo-Pin Pan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Song Ping
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Fan-Rong Zhao
- San-Quan College of Xinxiang Medical University, Xinxiang, China
| | - Heng-Tian Qi
- Department of Cardiothoracic Surgery, The Third Affiliated Hospital, Xinxiang Medical University, Xinxiang, China
| | - Hai-Ya Yu
- Department of Neurology, The People's Hospital of Xishui County, Huangang, Hubei, China
| | - Xu Jian
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Guang-Rui Wan
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| | - Peng Li
- College of Pharmacy, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
84
|
Green Tea Polyphenols, Mimicking the Effects of Dietary Restriction, Ameliorate High-Fat Diet-Induced Kidney Injury via Regulating Autophagy Flux. Nutrients 2017; 9:nu9050497. [PMID: 28505110 PMCID: PMC5452227 DOI: 10.3390/nu9050497] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 04/25/2017] [Accepted: 05/09/2017] [Indexed: 02/07/2023] Open
Abstract
Epidemiological and experimental studies reveal that Western dietary patterns contribute to chronic kidney disease, whereas dietary restriction (DR) or dietary polyphenols such as green tea polyphenols (GTPs) can ameliorate the progression of kidney injury. This study aimed to investigate the renal protective effects of GTPs and explore the underlying mechanisms. Sixty Wistar rats were randomly divided into 6 groups: standard diet (STD), DR, high-fat diet (HFD), and three diets plus 200 mg/kg(bw)/day GTPs, respectively. After 18 weeks, HFD group exhibited renal injuries by increased serum cystatin C levels and urinary N-acetyl-β-d-glucosaminidase activity, which can be ameliorated by GTPs. Meanwhile, autophagy impairment as denoted by autophagy-lysosome related proteins, including LC3-II, Beclin-1, p62, cathepsin B, cathepsin D and LAMP-1, was observed in HFD group, whereas DR or GTPs promoted renal autophagy activities and GTPs ameliorated HFD-induced autophagy impairment. In vitro, autophagy flux suppression was detected in palmitic acid (PA)-treated human proximal tubular epithelial cells (HK-2), which was ameliorated by epigallocatechin-3-gallate (EGCG). Furthermore, GTPs (or EGCG) elevated phosphorylation of AMP-activated protein kinase in the kidneys of HFD-treated rats and in PA-treated HK-2 cells. These findings revealed that GTPs mimic the effects of DR to induce autophagy and exert a renal protective effect by alleviating HFD-induced autophagy suppression.
Collapse
|
85
|
Zummo FP, Cullen KS, Honkanen-Scott M, Shaw JAM, Lovat PE, Arden C. Glucagon-Like Peptide 1 Protects Pancreatic β-Cells From Death by Increasing Autophagic Flux and Restoring Lysosomal Function. Diabetes 2017; 66:1272-1285. [PMID: 28232493 DOI: 10.2337/db16-1009] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022]
Abstract
Studies in animal models of type 2 diabetes have shown that glucagon-like peptide 1 (GLP-1) receptor agonists prevent β-cell loss. Whether GLP-1 mediates β-cell survival via the key lysosomal-mediated process of autophagy is unknown. In this study, we report that treatment of INS-1E β-cells and primary islets with glucolipotoxicity (0.5 mmol/L palmitate and 25 mmol/L glucose) increases LC3 II, a marker of autophagy. Further analysis indicates a blockage in autophagic flux associated with lysosomal dysfunction. Accumulation of defective lysosomes leads to lysosomal membrane permeabilization and release of cathepsin D, which contributes to cell death. Our data further demonstrated defects in autophagic flux and lysosomal staining in human samples of type 2 diabetes. Cotreatment with the GLP-1 receptor agonist exendin-4 reversed the lysosomal dysfunction, relieving the impairment in autophagic flux and further stimulated autophagy. Small interfering RNA knockdown showed the restoration of autophagic flux is also essential for the protective effects of exendin-4. Collectively, our data highlight lysosomal dysfunction as a critical mediator of β-cell loss and shows that exendin-4 improves cell survival via restoration of lysosomal function and autophagic flux. Modulation of autophagy/lysosomal homeostasis may thus define a novel therapeutic strategy for type 2 diabetes, with the GLP-1 signaling pathway as a potential focus.
Collapse
Affiliation(s)
- Francesco P Zummo
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, U.K
| | - Kirsty S Cullen
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, U.K
| | | | - James A M Shaw
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, U.K
| | - Penny E Lovat
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, U.K
| | - Catherine Arden
- Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, U.K.
| |
Collapse
|
86
|
Takahashi A, Takabatake Y, Kimura T, Maejima I, Namba T, Yamamoto T, Matsuda J, Minami S, Kaimori JY, Matsui I, Matsusaka T, Niimura F, Yoshimori T, Isaka Y. Autophagy Inhibits the Accumulation of Advanced Glycation End Products by Promoting Lysosomal Biogenesis and Function in the Kidney Proximal Tubules. Diabetes 2017; 66:1359-1372. [PMID: 28246295 DOI: 10.2337/db16-0397] [Citation(s) in RCA: 92] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022]
Abstract
Advanced glycation end products (AGEs) are involved in the progression of diabetic nephropathy. AGEs filtered by glomeruli or delivered from the circulation are endocytosed and degraded in the lysosomes of kidney proximal tubular epithelial cells (PTECs). Autophagy is a highly conserved degradation system that regulates intracellular homeostasis by engulfing cytoplasmic components. We have recently demonstrated that autophagic degradation of damaged lysosomes is indispensable for cellular homeostasis in some settings. In this study, we tested the hypothesis that autophagy could contribute to the degradation of AGEs in the diabetic kidney by modulating lysosomal biogenesis. Both a high-glucose and exogenous AGE overload gradually blunted autophagic flux in the cultured PTECs. AGE overload upregulated lysosomal biogenesis and function in vitro, which was inhibited in autophagy-deficient PTECs because of the impaired nuclear translocation of transcription factor EB. Consistently, streptozotocin-treated, PTEC-specific, autophagy-deficient mice failed to upregulate lysosomal biogenesis and exhibited the accumulation of AGEs in the glomeruli and renal vasculature as well as in the PTECs, along with worsened inflammation and fibrosis. These results indicate that autophagy contributes to the degradation of AGEs by the upregulation of lysosomal biogenesis and function in diabetic nephropathy. Strategies aimed at promoting lysosomal function hold promise for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Atsushi Takahashi
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitsugu Takabatake
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Tomonori Kimura
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Ikuko Maejima
- Laboratory of Molecular Traffic, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Gunma, Japan
| | - Tomoko Namba
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Takeshi Yamamoto
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun Matsuda
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Satoshi Minami
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Jun-Ya Kaimori
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Isao Matsui
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Taiji Matsusaka
- Institute of Medical Science and Department of Internal Medicine, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Fumio Niimura
- Department of Pediatrics, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Tamotsu Yoshimori
- Department of Genetics, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Yoshitaka Isaka
- Department of Nephrology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
87
|
De S, Kuwahara S, Hosojima M, Ishikawa T, Kaseda R, Sarkar P, Yoshioka Y, Kabasawa H, Iida T, Goto S, Toba K, Higuchi Y, Suzuki Y, Hara M, Kurosawa H, Narita I, Hirayama Y, Ochiya T, Saito A. Exocytosis-Mediated Urinary Full-Length Megalin Excretion Is Linked With the Pathogenesis of Diabetic Nephropathy. Diabetes 2017; 66:1391-1404. [PMID: 28289043 DOI: 10.2337/db16-1031] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/15/2017] [Indexed: 11/13/2022]
Abstract
Efficient biomarkers for diabetic nephropathy (DN) have not been established. Using ELISA, we found previously that urinary levels of full-length megalin (C-megalin), a multiligand endocytic receptor in proximal tubules, was positively correlated with DN progression in patients with type 2 diabetes mellitus (T2DM). Here, we found that urinary extracellular vesicle (UEV) excretion and C-megalin content in UEVs or in their exosomal fraction increased along with the progression of the albuminuric stages in patients with T2DM. Cultured immortalized rat proximal tubule cells (IRPTCs) treated with fatty acid-free BSA or advanced glycation end product-modified BSA (AGE-BSA), endocytic ligands of megalin, increased EV excretion, and their C-megalin content. C-megalin excretion from IRPTCs via extracellular vesicles was significantly blocked by an exosome-specific inhibitor, GW4869, indicating that this excretion is mainly exocytosis-mediated. AGE-BSA treatment of IRPTCs caused apparent lysosomal dysfunction, which stimulated multivesicular body formation, resulting in increased exosomal C-megalin excretion. In a high-fat diet-induced, megalin-mediated kidney injury model in mice, urinary C-megalin excretion also increased via UEVs. Collectively, exocytosis-mediated urinary C-megalin excretion is associated with the development and progression of DN in patients with T2DM, particularly due to megalin-mediated lysosomal dysfunction in proximal tubules, and hence it could be a candidate biomarker linked with DN pathogenesis.
Collapse
MESH Headings
- Acute Kidney Injury/metabolism
- Adult
- Aged
- Aged, 80 and over
- Animals
- Case-Control Studies
- Diabetes Mellitus, Type 2/complications
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/urine
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/urine
- Diet, High-Fat
- Exocytosis
- Extracellular Vesicles/metabolism
- Extracellular Vesicles/ultrastructure
- Female
- Glycation End Products, Advanced/pharmacology
- Humans
- Immunoblotting
- Kidney Tubules, Proximal/drug effects
- Kidney Tubules, Proximal/metabolism
- Kidney Tubules, Proximal/ultrastructure
- Low Density Lipoprotein Receptor-Related Protein-2/metabolism
- Male
- Mice
- MicroRNAs
- Microscopy, Electron, Transmission
- Microscopy, Immunoelectron
- Middle Aged
- RNA, Messenger
- Rats
- Serum Albumin, Bovine/pharmacology
Collapse
Affiliation(s)
- Shankhajit De
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Shoji Kuwahara
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Michihiro Hosojima
- Department of Clinical Nutrition Science, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Tomomi Ishikawa
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Ryohei Kaseda
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Piyali Sarkar
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Yusuke Yoshioka
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Hideyuki Kabasawa
- Department of Clinical Nutrition Science, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Tomomichi Iida
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Sawako Goto
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Koji Toba
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Yuki Higuchi
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Yoshiki Suzuki
- Health Administration Center, Niigata University, Nishi-ku, Niigata, Niigata, Japan
| | - Masanori Hara
- Department of Pediatrics, Yoshida Hospital, Tsubame, Niigata, Japan
| | - Hiroyuki Kurosawa
- Diagnostics Research Department, Life Innovation Research Institute, DENKA Innovation Center, Denka Co., Ltd., Machida, Tokyo, Japan
| | - Ichiei Narita
- Division of Clinical Nephrology and Rheumatology, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| | - Yoshiaki Hirayama
- Diagnostics Research Department, Life Innovation Research Institute, DENKA Innovation Center, Denka Co., Ltd., Machida, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Chuo-ku, Tokyo, Japan
| | - Akihiko Saito
- Department of Applied Molecular Medicine, Niigata University Graduate School of Medical and Dental Sciences, Chuo-ku, Niigata, Niigata, Japan
| |
Collapse
|
88
|
Abstract
Inflammation plays a pivotal role in pathophysiological processes of kidney diseases. Macroautophagy/autophagy plays multiple roles in inflammatory responses, and the regulation of inflammation by autophagy has great potential as a treatment for damaged kidneys. A growing body of evidence suggests autophagy protects kidney from versatile kidney inflammatory insults, including those that are acute, chronic, metabolic, and aging-related. It is noteworthy that, in kidney, mitophagy is active, and damaged lysosomes are removed by autophagy. In this mode, autophagy suppresses inflammation to protect the kidney. Systemic inflammation also affects the kidney via pro-inflammatory cytokines and infiltration of inflammatory cells, and autophagy also has a regulatory role in systemic inflammation. This review focuses on the roles of autophagy in kidney diseases and aging through inflammation, and discusses the potential usage of autophagy as an inflammatory modulator for the treatment of kidney diseases.
Collapse
Affiliation(s)
- Tomonori Kimura
- a Department of Nephrology , Osaka University , Suita , Japan
| | - Yoshitaka Isaka
- a Department of Nephrology , Osaka University , Suita , Japan
| | - Tamotsu Yoshimori
- b Department of Genetics , Osaka University Graduate School of Medicine, Osaka University , Suita , Japan.,c Laboratory of Intracellular Membrane Dynamics , Graduate School of Frontier Bioscience, Osaka University , Suita , Japan
| |
Collapse
|
89
|
Impact of high glucose and AGEs on cultured kidney-derived cells. Effects on cell viability, lysosomal enzymes and effectors of cell signaling pathways. Biochimie 2017; 135:137-148. [DOI: 10.1016/j.biochi.2017.02.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 02/06/2017] [Accepted: 02/10/2017] [Indexed: 12/16/2022]
|
90
|
Chen J, Zhao D, Zhu M, Zhang M, Hou X, Ding W, Sun S, Bu W, Feng L, Ma S, Jia X. Paeoniflorin ameliorates AGEs-induced mesangial cell injury through inhibiting RAGE/mTOR/autophagy pathway. Biomed Pharmacother 2017; 89:1362-1369. [PMID: 28320103 DOI: 10.1016/j.biopha.2017.03.016] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 02/28/2017] [Accepted: 03/07/2017] [Indexed: 01/01/2023] Open
Abstract
Glomerular mesangial cell plays a vital role in diabetic nephropathy (DN). Recent research has demonstrated that autophagy involved in the development of DN. Paeoniflorin (PF), a monoterpene glucoside, has been proved to attenuate advanced glycation end products (AGEs)-induced mesangial cell injury. However, the regulatory mechanism of PF on autophagy in mesangial cell remains unclear. The aim of this study was to explore the effect of PF on autophagy in AGEs-induced mesangial cell dysfunction. In this study, the leakage of the lactic dehydrogenase (LDH) into the extracellular medium was measured by LDH kit. Transmission electron microscopy (TEM) and mRFP-GFP-microtubule-associated protein light chain 3 (LC3) transfection were performed to observe the formation of autophagy in AGEs-induced mesangial cell. The RAGE/mTOR/autophagy pathway was analyzed by western blotting and small-interfering RNA transfection. Our results showed that the expression of LC3II, p62 were changed in a time-dependent manner in AGEs-stimulated mesangial cell. While PF could decrease the expression of LC3II/LC3I and reduce the number of autophagosomes. Knockdown of Atg5 promoted the protective effect of PF on AGEs-induced HBZY-1 injury. Furthermore, we found PF inhibited autophagy at least partly through inhibiting RAGE and upregulating the level of p-mTOR to against AGEs-induced mesangial cell dysfunction. Thus, PF could be a potential agent for the treatment of DN.
Collapse
Affiliation(s)
- Juan Chen
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Di Zhao
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China
| | - Maomao Zhu
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Minghua Zhang
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Xuefeng Hou
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Wenbo Ding
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Shuai Sun
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Weiquan Bu
- Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| | - Liang Feng
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China; State Key Laboratory Breeding Base of Dao-di Herbs, China Academy of Chinese Medical Sciences, Beijng, 100700, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China.
| | - Shiping Ma
- Department of Pharmacology of Chinese Materia Medica, China Pharmaceutical University, Nanjing, 210009, PR China.
| | - Xiaobin Jia
- Key Laboratory of New Drug Delivery Systems of Chinese Materia Medica, Jiangsu Provincial Academy of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China; Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Jiangsu, Nanjing, 210028, PR China
| |
Collapse
|
91
|
Hirakawa Y, Inagi R. Glycative Stress and Its Defense Machinery Glyoxalase 1 in Renal Pathogenesis. Int J Mol Sci 2017; 18:ijms18010174. [PMID: 28106734 PMCID: PMC5297806 DOI: 10.3390/ijms18010174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/05/2017] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Chronic kidney disease is a major public health problem around the world. Because the kidney plays a role in reducing glycative stress, renal dysfunction results in increased glycative stress. In turn, glycative stress, especially that due to advanced glycated end products (AGEs) and their precursors such as reactive carbonyl compounds, exacerbates chronic kidney disease and is related to premature aging in chronic kidney disease, whether caused by diabetes mellitus or otherwise. Factors which hinder a sufficient reduction in glycative stress include the inhibition of anti-glycation enzymes (e.g., GLO-1), as well as pathogenically activated endoplasmic reticulum (ER) stress and hypoxia in the kidney. Promising strategies aimed at halting the vicious cycle between chronic kidney disease and increases in glycative stress include the suppression of AGE accumulation in the body and the enhancement of GLO-1 to strengthen the host defense machinery against glycative stress.
Collapse
Affiliation(s)
- Yosuke Hirakawa
- Division of Nephrology and Endocrinology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| | - Reiko Inagi
- Division of Chronic Kidney Disease (CKD) Pathophysiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan.
| |
Collapse
|
92
|
Liu WJ, Reiser J, Park TS, Liu Z, Ishibe S. New Insights into Diabetic Kidney Disease: The Potential Pathogenesis and Therapeutic Targets. J Diabetes Res 2017; 2017:3945469. [PMID: 29250556 PMCID: PMC5698813 DOI: 10.1155/2017/3945469] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 08/27/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Wei Jing Liu
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing, China
| | | | - Tae Sun Park
- Chonbuk National University Medical School, Jeonju, Republic of Korea
| | - Zhangsuo Liu
- The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shuta Ishibe
- Yale University School of Medicine, New Haven, CT, USA
| |
Collapse
|
93
|
Autophagy in kidney disease and aging: lessons from rodent models. Kidney Int 2016; 90:950-964. [DOI: 10.1016/j.kint.2016.04.014] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 04/17/2016] [Accepted: 04/20/2016] [Indexed: 12/14/2022]
|
94
|
Spironolactone promotes autophagy via inhibiting PI3K/AKT/mTOR signalling pathway and reduce adhesive capacity damage in podocytes under mechanical stress. Biosci Rep 2016; 36:BSR20160086. [PMID: 27129295 PMCID: PMC4937173 DOI: 10.1042/bsr20160086] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/08/2016] [Indexed: 01/13/2023] Open
Abstract
Mechanical stress which would cause deleterious adhesive effects on podocytes is considered a major contributor to the early progress of diabetic nephropathy (DN). Our previous study has shown that spironolactone could ameliorate podocytic adhesive capacity in diabetic rats. Autophagy has been reported to have a protective role against renal injury. The present study investigated the underlying mechanisms by which spironolactone reduced adhesive capacity damage in podocytes under mechanical stress, focusing on the involvement of autophagy. Human conditional immortalized podocytes exposed to mechanical stress were treated with spironolactone, LY294002 or rapamycin for 48 h. The accumulation of LC3 puncta was detected by immunofluorescence staining. Podocyte expression of mineralocorticoid receptor (MR), integrin β1, LC3, Atg5, p85-PI3K, p-Akt, p-mTOR were detected by Western blotting. Podocyte adhesion to collagen type IV was also performed with spectrophotometry. Immunofluorescence staining showed that the normal level of autophagy was reduced in podocytes under mechanical stress. Decreased integrin β1, LC3, Atg5 and abnormal activation of the PI3K/Akt/mTOR pathway were also detected in podocytes under mechanical stress. Spironolactone up-regulated integrin β1, LC3, Atg5 expression, down-regulated p85-PI3K, p-Akt, p-mTOR expression and reduced podocytic adhesive capacity damage. Our data demonstrated that spironolactone inhibited mechanical-stress-induced podocytic adhesive capacity damage through blocking PI3K/Akt/mTOR pathway and restoring autophagy activity.
Collapse
|
95
|
Inagi R. RAGE and glyoxalase in kidney disease. Glycoconj J 2016; 33:619-26. [PMID: 27270765 DOI: 10.1007/s10719-016-9689-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 05/24/2016] [Accepted: 05/24/2016] [Indexed: 12/19/2022]
Abstract
Glycation is an important reaction in the regulation of physiological state. When poorly controlled, however, glycation can also result in the accumulation of glycated proteins (advanced glycation endproducts; AGEs) in the body. This AGE accumulation is termed glycative stress, and is an established pathological factor: to date, glycative stress has been closely associated with not only kidney diseases, but also kidney aging. Accumulating evidence demonstrates that the progression of renal tubular damage and tubular aging are often correlated with activation of the receptor for the AGE (RAGE)-AGE pathway or decreased activity of glyoxalase 1, which is an anti-glycation enzyme to lower glycative stress. Further, glycative stress exacerbates the derangement of protein homeostasis: the posttranslationally modified proteins by glycation often lose or gain their functions. Such deranged protein homeostasis leads to endoplasmic reticulum (ER) stress, a state of ER dysfunction in which the quality control of proteins is defective, as well as to induction of its stress signal, the unfolded protein response (UPR), in the kidney. The lowering of glycative stress via modulation of RAGE-AGE axis or glyoxalase 1 activity is beneficial for tubular homeostasis and the subsequent prevention and treatment of kidney disease, suggesting the possibility of novel therapeutic approaches which target glycative stress. In this review, we focused on the impact of glycative stress in the kidney, especially the role of RAGE and glyoxalase 1. Further we also discuss the crosstalk between glycative stress and ER stress in their effect on protein homeostasis.
Collapse
Affiliation(s)
- Reiko Inagi
- Division of Chronic Kidney Disease (CKD) Pathophysiology, The University of Tokyo Graduate School of Medicine, 7-3-1, Hongo Bunkyo-ku, Tokyo, 113-8655, Japan.
| |
Collapse
|
96
|
Zheng Z, Zheng F. Immune Cells and Inflammation in Diabetic Nephropathy. J Diabetes Res 2016; 2016:1841690. [PMID: 26824038 PMCID: PMC4707326 DOI: 10.1155/2016/1841690] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 10/21/2015] [Indexed: 12/20/2022] Open
Abstract
Diabetic nephropathy (DN) is a serious complication of diabetes. At its core, DN is a metabolic disorder which can also manifest itself in terms of local inflammation in the kidneys. Such inflammation can then drive the classical markers of fibrosis and structural remodeling. As a result, resolution of immune-mediated inflammation is critical towards achieving a cure for DN. Many immune cells play a part in DN, including key members of both the innate and adaptive immune systems. While these cells were classically understood to primarily function against pathogen insult, it has also become increasingly clear that they also serve a major role as internal sensors of damage. In fact, damage sensing may serve as the impetus for much of the inflammation that occurs in DN, in a vicious positive feedback cycle. Although direct targeting of these proinflammatory cells may be difficult, new approaches that focus on their metabolic profiles may be able to alleviate DN significantly, especially since dysregulation of the local metabolic environment may well be responsible for triggering inflammation to begin with. In this review, the authors consider the metabolic profile of several relevant immune types and discuss their respective roles.
Collapse
Affiliation(s)
- Zihan Zheng
- College of Arts and Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27514, USA
| | - Feng Zheng
- Department of Nephrology, Advanced Institute for Medical Sciences, Second Hospital, Dalian Medical University, Dalian 116023, China
- Department of Nephrology and Basic Science Laboratory, Fujian Medical University, Fuzhou 350002, China
- *Feng Zheng:
| |
Collapse
|