51
|
Cluxton CD, Caffrey BE, Kinsella GK, Moynagh PN, Fares MA, Fallon PG. Functional conservation of an ancestral Pellino protein in helminth species. Sci Rep 2015; 5:11687. [PMID: 26120048 PMCID: PMC4484250 DOI: 10.1038/srep11687] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 05/26/2015] [Indexed: 12/27/2022] Open
Abstract
The immune system of H. sapiens has innate signaling pathways that arose in ancestral species. This is exemplified by the discovery of the Toll-like receptor (TLR) pathway using free-living model organisms such as Drosophila melanogaster. The TLR pathway is ubiquitous and controls sensitivity to pathogen-associated molecular patterns (PAMPs) in eukaryotes. There is, however, a marked absence of this pathway from the plathyhelminthes, with the exception of the Pellino protein family, which is present in a number of species from this phylum. Helminth Pellino proteins are conserved having high similarity, both at the sequence and predicted structural protein level, with that of human Pellino proteins. Pellino from a model helminth, Schistosoma mansoni Pellino (SmPellino), was shown to bind and poly-ubiquitinate human IRAK-1, displaying E3 ligase activity consistent with its human counterparts. When transfected into human cells SmPellino is functional, interacting with signaling proteins and modulating mammalian signaling pathways. Strict conservation of a protein family in species lacking its niche signalling pathway is rare and provides a platform to examine the ancestral functions of Pellino proteins that may translate into novel mechanisms of immune regulation in humans.
Collapse
Affiliation(s)
- Christopher D Cluxton
- School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland
| | - Brian E Caffrey
- Department of Genetics, Trinity College Dublin, Dublin 2, Ireland
| | - Gemma K Kinsella
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Paul N Moynagh
- Institute of Immunology, National University of Ireland Maynooth, County Kildare, Ireland
| | - Mario A Fares
- 1] Department of Genetics, Trinity College Dublin, Dublin 2, Ireland [2] Integrative Systems Biology Group, Instituto de Biología Molecular y Celular de Plantas (C.S.I.C-UPV)
| | - Padraic G Fallon
- 1] School of Medicine, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland [2] National Children's Research Centre, Our Lady's Children's Hospital, Dublin 8, Ireland
| |
Collapse
|
52
|
Humphries F, Moynagh PN. Molecular and physiological roles of Pellino E3 ubiquitin ligases in immunity. Immunol Rev 2015; 266:93-108. [DOI: 10.1111/imr.12306] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Fiachra Humphries
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
| | - Paul N. Moynagh
- Institute of Immunology; Department of Biology; National University of Ireland Maynooth; Maynooth Ireland
- Centre for Infection and Immunity; School of Medicine, Dentistry and Biomedical Sciences; Queen's University Belfast; Northern Ireland UK
| |
Collapse
|
53
|
Murphy M, Xiong Y, Pattabiraman G, Qiu F, Medvedev AE. Pellino-1 Positively Regulates Toll-like Receptor (TLR) 2 and TLR4 Signaling and Is Suppressed upon Induction of Endotoxin Tolerance. J Biol Chem 2015; 290:19218-32. [PMID: 26082489 DOI: 10.1074/jbc.m115.640128] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Indexed: 11/06/2022] Open
Abstract
Endotoxin tolerance reprograms Toll-like receptor (TLR) 4-mediated macrophage responses by attenuating induction of proinflammatory cytokines while retaining expression of anti-inflammatory and antimicrobial mediators. We previously demonstrated deficient TLR4-induced activation of IL-1 receptor-associated kinase (IRAK) 4, IRAK1, and TANK-binding kinase (TBK) 1 as critical hallmarks of endotoxin tolerance, but mechanisms remain unclear. In this study, we examined the role of the E3 ubiquitin ligase Pellino-1 in endotoxin tolerance and TLR signaling. LPS stimulation increased Pellino-1 mRNA and protein expression in macrophages from mice injected with saline and in medium-pretreated human monocytes, THP-1, and MonoMac-6 cells, whereas endotoxin tolerization abrogated LPS inducibility of Pellino-1. Overexpression of Pellino-1 in 293/TLR2 and 293/TLR4/MD2 cells enhanced TLR2- and TLR4-induced nuclear factor κB (NF-κB) and expression of IL-8 mRNA, whereas Pellino-1 knockdown reduced these responses. Pellino-1 ablation in THP-1 cells impaired induction of myeloid differentiation primary response protein (MyD88), and Toll-IL-1R domain-containing adapter inducing IFN-β (TRIF)-dependent cytokine genes in response to TLR4 and TLR2 agonists and heat-killed Escherichia coli and Staphylococcus aureus, whereas only weakly affecting phagocytosis of heat-killed bacteria. Co-expressed Pellino-1 potentiated NF-κB activation driven by transfected MyD88, TRIF, IRAK1, TBK1, TGF-β-activated kinase (TAK) 1, and TNFR-associated factor 6, whereas not affecting p65-induced responses. Mechanistically, Pellino-1 increased LPS-driven K63-linked polyubiquitination of IRAK1, TBK1, TAK1, and phosphorylation of TBK1 and IFN regulatory factor 3. These results reveal a novel mechanism by which endotoxin tolerance re-programs TLR4 signaling via suppression of Pellino-1, a positive regulator of MyD88- and TRIF-dependent signaling that promotes K63-linked polyubiquitination of IRAK1, TBK1, and TAK1.
Collapse
Affiliation(s)
- Michael Murphy
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Yanbao Xiong
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Goutham Pattabiraman
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| | - Fu Qiu
- the Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Andrei E Medvedev
- From the Department of Immunology, University of Connecticut Health Center, Farmington, Connecticut 06030 and
| |
Collapse
|
54
|
Davis ME, Gack MU. Ubiquitination in the antiviral immune response. Virology 2015; 479-480:52-65. [PMID: 25753787 PMCID: PMC4774549 DOI: 10.1016/j.virol.2015.02.033] [Citation(s) in RCA: 145] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/12/2015] [Accepted: 02/17/2015] [Indexed: 01/07/2023]
Abstract
Ubiquitination has long been known to regulate fundamental cellular processes through the induction of proteasomal degradation of target proteins. More recently, 'atypical' non-degradative types of polyubiquitin chains have been appreciated as important regulatory moieties by modulating the activity or subcellular localization of key signaling proteins. Intriguingly, many of these non-degradative types of ubiquitination regulate the innate sensing pathways initiated by pattern recognition receptors (PRRs), ultimately coordinating an effective antiviral immune response. Here we discuss recent advances in understanding the functional roles of degradative and atypical types of ubiquitination in innate immunity to viral infections, with a specific focus on the signaling pathways triggered by RIG-I-like receptors, Toll-like receptors, and the intracellular viral DNA sensor cGAS.
Collapse
Affiliation(s)
- Meredith E Davis
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States
| | - Michaela U Gack
- Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115, United States.
| |
Collapse
|
55
|
Bahia MS, Kaur M, Silakari P, Silakari O. Interleukin-1 receptor associated kinase inhibitors: potential therapeutic agents for inflammatory- and immune-related disorders. Cell Signal 2015; 27:1039-55. [PMID: 25728511 DOI: 10.1016/j.cellsig.2015.02.025] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 01/30/2015] [Accepted: 02/23/2015] [Indexed: 12/15/2022]
Abstract
The various cells of innate immune system quickly counter-attack invading pathogens, and mount up "first line" defense through their trans-membrane receptors including Toll-like receptors (TLRs) and interleukin receptors (IL-Rs) that result in the secretion of pro-inflammatory cytokines. Albeit such inflammatory responses are beneficial in pathological conditions, their overstimulation may cause severe inflammatory damage; thus, make this defense system a "double edged sword". IRAK-4 has been evaluated as an indispensable element of IL-Rs and TLR pathways that can regulate the abnormal levels of cytokines, and therefore could be employed to manage immune- and inflammation-related disorders. Historically, the identification of selective and potent inhibitors has been challenging; thus, a limited number of small molecule IRAK-4 inhibitors are available in literature. Recently, IRAK-4 achieved great attention, when Ligand® pharmaceutical and Nimbus Discovery® reported the beneficial potentials of IRAK-4 inhibitors in the pre-clinical evaluation for various inflammatory- and immune-related disorders, but not limited to, such as rheumatoid arthritis, inflammatory bowel disease, psoriasis, gout, asthma and cancer.
Collapse
Affiliation(s)
- Malkeet Singh Bahia
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Maninder Kaur
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Pragati Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India
| | - Om Silakari
- Molecular Modeling Lab (MML), Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab 147002, India.
| |
Collapse
|
56
|
Chen FR, Zhai ZF, Shi XW, Feng L, Zhong BY, Yan WJ, Wang H, Chen Y, You Y, Luo N, Zhang DM, Hao F. Association of PELI1 polymorphisms in systemic lupus erythematosus susceptibility in a Chinese population. Lupus 2015; 24:1037-44. [PMID: 25712248 DOI: 10.1177/0961203315571463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2013] [Accepted: 01/12/2015] [Indexed: 01/08/2023]
Abstract
Objective Studies in animal models have indicated that Pellino 1 is involved in inflammatory and autoimmune diseases, such as systemic lupus erythematosus (SLE). The current study was designed to determine whether PELI1 confers genetic susceptibility to SLE in humans, as assessed in a Chinese Han population. Methods Blood samples were drawn from patients diagnosed with SLE and healthy volunteers. Three single nucleotide polymorphism (SNP) loci with a minor allele frequency of at least 0.05 were chosen to evaluate the correlation between PELI1 genotype and the incidence of SLE. Results There was a significant difference in the frequency distribution of the rs329497 allele between the SLE patients and the healthy controls (A vs. G; Bonferroni corrected p = 0.036, odds ratio = 0.75, 95% confidence interval = 0.60–0.94). No differences in the genotype and allele frequencies of other SNP loci were observed between the two groups. Furthermore, the alleles and genotypes of the three SNPs were not associated with lupus nephritis. Conclusion In the Chinese Han population, PELI1 SNPs may be associated with SLE susceptibility.
Collapse
Affiliation(s)
- F-R Chen
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Z-F Zhai
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - X-W Shi
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - L Feng
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - B-Y Zhong
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - W-J Yan
- Department of Dermatology, Affiliated Hospital of Guilin Medical College, Guilin, China
| | - H Wang
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Y Chen
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Y You
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - N Luo
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - D-M Zhang
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - F Hao
- Department of Dermatology, Southwest Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
57
|
Song J, Zhu Y, Li J, Liu J, Gao Y, Ha T, Que L, Liu L, Zhu G, Chen Q, Xu Y, Li C, Li Y. Pellino1-mediated TGF-β1 synthesis contributes to mechanical stress induced cardiac fibroblast activation. J Mol Cell Cardiol 2014; 79:145-56. [PMID: 25446187 DOI: 10.1016/j.yjmcc.2014.11.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 10/22/2014] [Accepted: 11/04/2014] [Indexed: 11/24/2022]
Abstract
Activation of cardiac fibroblasts is a key event in the progression of cardiac fibrosis that leads to heart failure. However, the molecular mechanisms underlying mechanical stress-induced cardiac fibroblast activation are complex and poorly understood. This study demonstrates that Pellino1, an E3 ubiquitin ligase, was activated in vivo in pressure overloaded rat hearts and in cultured neonatal rat cardiac fibroblasts (NRCFs) exposed to mechanical stretch in vitro. Suppression of the expression and activity of Pellino1 by adenovirus-mediated delivery of shPellino1 (adv-shpeli1) attenuated pressure overload-induced cardiac dysfunction and cardiac hypertrophy and decreased cardiac fibrosis in rat hearts. Transfection of adv-shpeli1 also significantly attenuated mechanical stress-induced proliferation, differentiation and collagen synthesis in NRCFs. Pellino1 silencing also abrogated mechanical stretch-induced polyubiquitination of tumor necrosis factor-alpha receptor association factor-6 (TRAF6) and receptor-interacting protein 1 (RIP1) and consequently decreased the DNA binding activity of nuclear factor-kappa B (NF-κB) in NRCFs. In addition, Pellino1 silencing prevented stretch-induced activation of p38 and activator protein 1 (AP-1) binding activity in NRCFs. Chromatin Immunoprecipitation (ChIP) and luciferase reporter assays showed that Pellino1 silencing prevented the binding of NF-κB and AP-1 to the promoter region of transforming growth factor-β1 (TGF-β1) thus dampening TGF-β1 transactivation. Our data reveal a previously unrecognized role of Pellino1 in extracellular matrix deposition and cardiac fibroblast activation in response to mechanical stress and provides a novel target for treatment of cardiac fibrosis and heart failure.
Collapse
Affiliation(s)
- Juan Song
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yun Zhu
- Department of Pathology, Jiangsu Institute of Nuclear Medicine, Wuxi 214063, Jiangsu, China
| | - Jiantao Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Jiahao Liu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yun Gao
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Tuanzhu Ha
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Linli Que
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Li Liu
- Department of Geriatrics, First Affiliated Hospital with Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Guoqing Zhu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Physiology, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Qi Chen
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Yong Xu
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China
| | - Chuanfu Li
- Department of Surgery, East Tennessee State University, Campus Box 70575, Johnson City, TN 37614-0575, USA
| | - Yuehua Li
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Department of Pathophysiology, Nanjing Medical University, 140 Hanzhong Road, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
58
|
Integrated Computational Model of Intracellular Signaling and microRNA Regulation Predicts the Network Balances and Timing Constraints Critical to the Hepatic Stellate Cell Activation Process. Processes (Basel) 2014. [DOI: 10.3390/pr2040773] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
|
59
|
Parker LC, Stokes CA, Sabroe I. Rhinoviral infection and asthma: the detection and management of rhinoviruses by airway epithelial cells. Clin Exp Allergy 2014; 44:20-8. [PMID: 24355017 DOI: 10.1111/cea.12182] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2013] [Revised: 07/02/2013] [Accepted: 07/22/2013] [Indexed: 11/28/2022]
Abstract
Human rhinoviruses (HRV) have been linked to the development of childhood asthma and recurrent acute asthma exacerbations throughout life, and contribute considerably to the healthcare and economic burden of this disease. However, the ability of HRV infections to trigger exacerbations, and the link between allergic status and HRV responsiveness, remains incompletely understood. Whilst the receptors on human airway cells that detect and are utilized by most HRV group A and B, but not C serotypes are known, how endosomal pattern recognition receptors (PRRs) detect HRV replication products that are generated within the cytoplasm remains somewhat of an enigma. In this article, we explore a role for autophagy, a cellular homeostatic process that allows the cell to encapsulate its own cytosolic constituents, as the crucial mechanism controlling this process and regulating the innate immune response of airway epithelial cells to viral infection. We will also briefly describe some of the recent insights into the immune responses of the airway to HRV, focusing on neutrophilic inflammation that is a potentially unwanted feature of the acute response to viral infection, and the roles of IL-1 and Pellinos in the regulation of responses to HRV.
Collapse
Affiliation(s)
- L C Parker
- Academic Unit of Respiratory Medicine, Department of Infection and Immunity, Faculty of Medicine, Dentistry and Health, University of Sheffield, Sheffield, UK
| | | | | |
Collapse
|
60
|
Tyrosine phosphorylation in Toll-like receptor signaling. Cytokine Growth Factor Rev 2014; 25:533-41. [PMID: 25022196 DOI: 10.1016/j.cytogfr.2014.06.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 06/16/2014] [Indexed: 12/28/2022]
Abstract
There is a wealth of knowledge about how different Ser/Thr protein kinases participate in Toll-like receptor (TLR) signaling. In many cases, we know the identities of the Ser/Thr residues of various components of the TLR-signaling pathways that are phosphorylated, the functional consequences of the phosphorylation and the responsible protein kinases. In contrast, the analysis of Tyr-phosphorylation of TLRs and their signaling proteins is currently incomplete, because several existing analyses are not systematic or they do not rely on robust experimental data. Nevertheless, it is clear that many TLRs require, for signaling, ligand-dependent phosphorylation of specific Tyr residues in their cytoplasmic domains; the list includes TLR2, TLR3, TLR4, TLR5, TLR8 and TLR9. In this article, we discuss the current status of knowledge of the effect of Tyr-phosphorylation of TLRs and their signaling proteins on their biochemical and biological functions, the possible identities of the relevant protein tyrosine kinases (PTKs) and the nature of regulations of PTK-mediated activation of TLR signaling pathways.
Collapse
|
61
|
Li C, Chai J, Li H, Zuo H, Wang S, Qiu W, Weng S, He J, Xu X. Pellino protein from pacific white shrimp Litopenaeus vannamei positively regulates NF-κB activation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 44:341-350. [PMID: 24463313 DOI: 10.1016/j.dci.2014.01.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/13/2014] [Accepted: 01/14/2014] [Indexed: 06/03/2023]
Abstract
Pellino, named after its property that binds Pelle (the Drosophila melanogaster homolog of IRAK1), is a highly conserved E3 class ubiquitin ligase in both vertebrates and invertebrates. Pellino interacts with phosphorylated IRAK1, causing polyubiquitination of IRAK1, and plays a critical upstream role in the toll-like receptor (TLR) pathway. In this study, we firstly cloned and identified a crustacean Pellino from pacific white shrimp Litopenaeus vannamei (LvPellino). LvPellino contains a putative N-terminal forkhead-associated (FHA) domain and a C-terminal ring finger (RING) domain with a potential E3 ubiquitin-protein ligase activity, and shows a high similarity with D. melanogaster Pellino. LvPellino could interact with L. vannamei Pelle (LvPelle) and over-expression of LvPellino could increase the activity of LvDorsal (a L. vannamei homolog of NF-κB) on promoters containing NF-κB binding motifs and enhance the expression of arthropod antimicrobial peptides (AMPs). The LvPellino protein was located in the cytoplasm and nucleus and LvPellino mRNA was detected in all the tissues examined and could be up-regulated after lipopolysaccharides, white spot syndrome virus (WSSV), Vibrio parahaemolyticus, and Staphylococcus aureus challenges, suggesting a stimulation response of LvPellino to bacterial and immune stimulant challenges. Knockdown of LvPellino in vivo could significantly decrease the expression of AMPs and increase the mortality of shrimps caused by V. parahaemolyticus challenge. However, suppression of the LvPellino expression could not change the mortality caused by WSSV infection, and dual-luciferase reporter assays demonstrated that over-expression of LvPellino could enhance the promoters of WSSV genes wsv069 (ie1), wsv303, and wsv371, indicating a complex role of LvPellino in WSSV pathogenesis and shrimp antiviral mechanisms.
Collapse
Affiliation(s)
- Chaozheng Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jiaoting Chai
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Haoyang Li
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Hongliang Zuo
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Sheng Wang
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Wei Qiu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Shaoping Weng
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China
| | - Jianguo He
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China; School of Marine Sciences, Sun Yat-sen University, Guangzhou, PR China.
| | - Xiaopeng Xu
- MOE Key Laboratory of Aquatic Product Safety, State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, PR China.
| |
Collapse
|
62
|
Yang S, Wang B, Tang LS, Siednienko J, Callanan JJ, Moynagh PN. Pellino3 targets RIP1 and regulates the pro-apoptotic effects of TNF-α. Nat Commun 2014; 4:2583. [PMID: 24113711 DOI: 10.1038/ncomms3583] [Citation(s) in RCA: 123] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Accepted: 09/10/2013] [Indexed: 10/26/2022] Open
Abstract
Tumour necrosis factor-α (TNF) can activate NF-κB to induce pro-inflammatory genes but can also stimulate the caspase cascade to promote apoptosis. Here we show that deficiency of the ubiquitin E3 ligase, Pellino3, sensitizes cells to TNF-induced apoptosis without inhibiting the NF-κB pathway. Suppressed expression of Pellino3 leads to enhanced formation of the death-induced signalling complex, complex II, in response to TNF. We show that Pellino3 targets RIP1, in a TNF-dependent manner, to inhibit TNF-induced complex II formation and caspase 8-mediated cleavage of RIP1 in response to TNF/cycloheximide co-stimulation. Pellino3-deficient mice also show increased sensitivity to TNF-induced apoptosis and greatly increased lethality in response to TNF administration. These findings define Pellino3 as a novel regulator of TNF signalling and an important determining factor in dictating whether TNF induces cell survival or death.
Collapse
Affiliation(s)
- Shuo Yang
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | | | |
Collapse
|
63
|
Cell-surface localization of Pellino antagonizes Toll-mediated innate immune signalling by controlling MyD88 turnover in Drosophila. Nat Commun 2014; 5:3458. [PMID: 24632597 PMCID: PMC3959197 DOI: 10.1038/ncomms4458] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 02/17/2014] [Indexed: 12/15/2022] Open
Abstract
Innate immunity mediated by Toll signalling has been extensively studied, but how Toll signalling is precisely controlled in balancing innate immune responses remains poorly understood. It was reported that the plasma membrane localization of Drosophila MyD88 is necessary for the recruitment of cytosolic adaptor Tube to the cell surface, thus contributing to Toll signalling transduction. Here we demonstrate that Drosophila Pellino functions as a negative regulator in Toll-mediated signalling. We show that Pellino accumulates at the plasma membrane upon the activation of Toll signalling in a MyD88-dependent manner. Moreover, we find that Pellino is associated with MyD88 via its CTE domain, which is necessary and sufficient to promote Pellino accumulation at the plasma membrane where it targets MyD88 for ubiquitination and degradation. Collectively, our study uncovers a mechanism by which a feedback regulatory loop involving MyD88 and Pellino controls Toll-mediated signalling, thereby maintaining homeostasis of host innate immunity. Toll signalling activates the innate immune response; however, it remains unclear how this pathway is suppressed to avoid excessive inflammatory responses. Here, the authors report that Pellino, a RING domain-containing ubiquitin E3 ligase, is a negative regulator of Toll signalling in Drosophila.
Collapse
|
64
|
Abstract
Pellino proteins were initially characterized as a family of E3 ubiquitin ligases that can catalyse the ubiquitylation of interleukin-1 receptor-associated kinase 1 (IRAK1) and regulate innate immune signalling pathways. More recently, physiological and molecular roles for members of the Pellino family have been described in the regulation of innate and adaptive immune responses by ubiquitylation. This Review describes the emerging roles of Pellino proteins in innate and adaptive immunity and discusses the mechanistic basis of these functions.
Collapse
Affiliation(s)
- Paul N Moynagh
- 1] Institute of Immunology, Department of Biology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland. [2] Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Northern Ireland, United Kingdom
| |
Collapse
|
65
|
Wu W, Hu Y, Li J, Zhu W, Ha T, Que L, Liu L, Zhu Q, Chen Q, Xu Y, Li C, Li Y. Silencing of Pellino1 improves post-infarct cardiac dysfunction and attenuates left ventricular remodelling in mice. Cardiovasc Res 2014; 102:46-55. [DOI: 10.1093/cvr/cvu007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
66
|
Singh A, Morris RJ. Innate immunity and the regulation and mobilization of keratinocyte stem cells: are the old players playing a new game? Exp Dermatol 2013; 21:660-4. [PMID: 22897573 DOI: 10.1111/j.1600-0625.2012.01566.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The skin provides an anatomical barrier to physical, chemical and biological agents. Hence, it is not surprising that it has well-developed innate immunity. What we find surprising is that the CD49f(+) /CD34(+) hair follicle stem cells should have an enriched expression profile of so many genes involved in innate immunity. Do these stem cells require extra protection from environmental insults? Or, could there be a new role for these genes? To probe these questions, we first summarize the roles of some key players in epidermal innate immunity. We next focus on their expression in CD49f(+) /CD34(+) hair follicle stem cells. Then, we consider recent data suggesting a new role for these 'old players' in the regulation and mobilization of haematopoietic and mesenchymal stem cells. Finally, we hypothesize that the 'old players' in these hair follicle stem cells may be playing a 'new game'.
Collapse
Affiliation(s)
- Ashok Singh
- Laboratory of Stem Cells and Cancer, The Hormel Institute, University of Minnesota, Austin, MN55912, USA
| | | |
Collapse
|
67
|
Ammar M, Bouchlaka-Souissi C, Helms C, Zaraa I, Jordan C, Anbunathan H, Bouhaha R, Kouidhi S, Doss N, Dhaoui R, Ben Osman A, Ben Ammar El Gaied A, Marrakchi R, Mokni M, Bowcock A. Genome-wide linkage scan for psoriasis susceptibility loci in multiplex Tunisian families. Br J Dermatol 2013; 168:583-7. [DOI: 10.1111/bjd.12050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
68
|
Siednienko J, Jackson R, Mellett M, Delagic N, Yang S, Wang B, Tang LS, Callanan JJ, Mahon BP, Moynagh PN. Pellino3 targets the IRF7 pathway and facilitates autoregulation of TLR3- and viral-induced expression of type I interferons. Nat Immunol 2012; 13:1055-62. [PMID: 23042151 DOI: 10.1038/ni.2429] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2012] [Accepted: 08/21/2012] [Indexed: 12/27/2022]
Abstract
Toll-like receptors (TLRs) sense pathogen-associated molecules and respond by inducing cytokines and type I interferon. Here we show that genetic ablation of the E3 ubiquitin ligase Pellino3 augmented the expression of type I interferon but not of proinflammatory cytokines in response to TLR3 activation. Pellino3-deficient mice had greater resistance against the pathogenic and lethal effects of encephalomyocarditis virus (EMCV). TLR3 signaling induced Pellino3, which in turn interacted with and ubiquitinated TRAF6. This modification suppressed the ability of TRAF6 to interact with and activate IRF7, resulting in downregulation of type I interferon expression. Our findings highlight a new physiological role for Pellino3 and define a new autoregulatory network for controlling type I interferon expression.
Collapse
Affiliation(s)
- Jakub Siednienko
- Department of Biology, Institute of Immunology, National University of Ireland Maynooth, Maynooth, County Kildare, Ireland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
69
|
Enesa K, Ordureau A, Smith H, Barford D, Cheung PCF, Patterson-Kane J, Arthur JSC, Cohen P. Pellino1 is required for interferon production by viral double-stranded RNA. J Biol Chem 2012; 287:34825-35. [PMID: 22902624 PMCID: PMC3464584 DOI: 10.1074/jbc.m112.367557] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 08/13/2012] [Indexed: 12/24/2022] Open
Abstract
Viral double-stranded RNA, a ligand for Toll-like Receptor 3 (TLR3) and the cytoplasmic RNA receptors RIG1 and MDA5, activate a signaling network in which the IKK-related protein kinase TBK1 phosphorylates the transcription factor Interferon Regulatory Factor 3 (IRF3) and the E3 ubiquitin ligase Pellino1. IRF3 then translocates to the nucleus where it stimulates transcription of the interferonβ (IFNβ) gene, but the function of Pellino1 in this pathway is unknown. Here, we report that myeloid cells and embryonic fibroblasts from knock-in mice expressing an E3 ligase-deficient mutant of Pellino1 produce reduced levels of IFNβ mRNA and secrete much less IFNβ in response to viral double-stranded RNA because the interaction of IRF3 with the IFNβ promoter is impaired. These results identify Pellino1 as a novel component of the signal transduction network by which viral double-stranded RNA stimulates IFNβ gene transcription.
Collapse
MESH Headings
- Active Transport, Cell Nucleus
- Animals
- Cell Nucleus/genetics
- Cell Nucleus/metabolism
- DEAD Box Protein 58
- DEAD-box RNA Helicases/genetics
- DEAD-box RNA Helicases/metabolism
- Embryo, Mammalian/cytology
- Embryo, Mammalian/metabolism
- Fibroblasts/cytology
- Fibroblasts/metabolism
- Gene Knock-In Techniques
- Interferon Regulatory Factor-3/genetics
- Interferon Regulatory Factor-3/metabolism
- Interferon-Induced Helicase, IFIH1
- Interferon-beta/biosynthesis
- Interferon-beta/genetics
- Mice
- Mice, Transgenic
- Nuclear Proteins/genetics
- Nuclear Proteins/metabolism
- Promoter Regions, Genetic/physiology
- Protein Serine-Threonine Kinases/genetics
- Protein Serine-Threonine Kinases/metabolism
- RNA, Double-Stranded/genetics
- RNA, Double-Stranded/metabolism
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- RNA, Viral/genetics
- RNA, Viral/metabolism
- Signal Transduction/physiology
- Toll-Like Receptor 3/genetics
- Toll-Like Receptor 3/metabolism
- Transcription, Genetic/physiology
- Ubiquitin-Protein Ligases
Collapse
Affiliation(s)
| | | | | | - David Barford
- the Institute of Cancer Research, London SW36JB, United Kingdom
| | | | - Janet Patterson-Kane
- the Institute of Infection, Immunity, and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, G611QH, United Kingdom
| | | | - Philip Cohen
- From the MRC Protein Phosphorylation Unit and
- Scottish Institute for Cell Signaling, Sir James Black Centre, University of Dundee, DD15EH, United Kingdom
| |
Collapse
|
70
|
β-TrCP-mediated IRAK1 degradation releases TAK1-TRAF6 from the membrane to the cytosol for TAK1-dependent NF-κB activation. Mol Cell Biol 2012; 32:3990-4000. [PMID: 22851693 DOI: 10.1128/mcb.00722-12] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Interleukin-1 (IL-1) receptor-associated kinase (IRAK1) is phosphorylated, ubiquitinated, and degraded upon IL-1 stimulation. IRAK1 can be ubiquitinated through both K48- and K63-linked polyubiquitin chains upon IL-1 stimulation. While the Pellino proteins have been shown to meditate K63-linked polyubiquitination on IRAK1, the E3 ligase for K48-linked ubiquitination of IRAK1 has not been identified. In this study, we report that the SCF (Skp1-Cullin1-F-box)-β-TrCP complex functions as the K48-linked ubiquitination E3 ligase for IRAK1. IL-1 stimulation induced the interaction of IRAK1 with Cullin1 and β-TrCP. Knockdown of β-TrCP1 and β-TrCP2 attenuated the K48-linked ubiquitination and degradation of IRAK1. Importantly, β-TrCP deficiency abolished the translocation TAK1-TRAF6 complex from the membrane to the cytosol, resulting in a diminishment of the IL-1-induced TAK1-dependent pathway. Taken together, these results implicate a positive role of β-TrCP-mediated IRAK1 degradation in IL-1-induced TAK1 activation.
Collapse
|
71
|
Kim TW, Yu M, Zhou H, Cui W, Wang J, DiCorleto P, Fox P, Xiao H, Li X. Pellino 2 is critical for Toll-like receptor/interleukin-1 receptor (TLR/IL-1R)-mediated post-transcriptional control. J Biol Chem 2012; 287:25686-95. [PMID: 22669975 PMCID: PMC3408172 DOI: 10.1074/jbc.m112.352625] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 05/29/2012] [Indexed: 12/20/2022] Open
Abstract
Interleukin 1 receptor-associated kinase 1(IRAK1), a key molecule in TLR/IL-1R-mediated signaling, is phosphorylated, ubiquitinated, and degraded upon ligand stimulation. We and others have recently identified Pellino proteins as novel RING E3 ubiquitin ligases involved in IRAK1 polyubiquitination and degradation. However, it remains unclear how each Pellino member distinctly regulates TLR/IL-1R signaling by modulating IRAK1 ubiquitination. In this study we examined the role of Pellino 2 in IL-1- and LPS-mediated signaling and gene expression by knocking down Pellino 2 in human 293-IL-1R cells and primary bone marrow macrophages. Pellino 2 (but not Pellino 1) knockdown abolished IL-1- and LPS-induced Lys-63-linked IRAK1 ubiquitination with reduced Lys-48-linked IRAK1 ubiquitination. Furthermore, Pellino 2 is required for TAK1-dependent NFκB activation. However, because of the retained TAK1-independent NFκB activation, the levels of IL-1- and LPS-induced NFκB activation were not substantially affected in Pellino 2 knockdown 293-IL-1R cells and primary macrophages, respectively. On the other hand, Pellino 2 knockdown reduced the IL-1- and LPS-induced inflammatory gene expression at late time points, which was accompanied by increased decay rates of the mRNAs of the inflammatory genes. Importantly, IL-1- and LPS-mediated JNK and ERK activation were substantially attenuated in Pellino 2 knock-down cells, implicating MAPK activation in TLR/IL-1R-induced mRNA stabilization. Taken together, this study demonstrated that Pellino 2 plays a critical role for TLR/IL-1R-mediated post-transcriptional control.
Collapse
Affiliation(s)
| | - Minjia Yu
- From the Department of Immunology and
- the Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, China
| | - Hao Zhou
- From the Department of Immunology and
| | - Wei Cui
- From the Department of Immunology and
| | - Jianan Wang
- the Department of Cardiology, Second Affiliated Hospital, School of Medicine, Zhejiang University, 310009 Hangzhou, China
| | - Paul DiCorleto
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Paul Fox
- the Department of Cell Biology, Cleveland Clinic Foundation, Cleveland, Ohio 44195 and
| | - Hui Xiao
- From the Department of Immunology and
| | | |
Collapse
|
72
|
Abstract
Pellino-1 has recently been identified as a regulator of interleukin-1 (IL-1) signaling, but its roles in regulation of responses of human cells to human pathogens are unknown. We investigated the potential roles of Pellino-1 in the airways. We show for the first time that Pellino-1 regulates responses to a human pathogen, rhinovirus minor group serotype 1B (RV-1B). Knockdown of Pellino-1 by small interfering RNA (siRNA) was associated with impaired production of innate immune cytokines such as CXCL8 from human primary bronchial epithelial cells in response to RV-1B, without impairment in production of antiviral interferons (IFN), and without loss of control of viral replication. Pellino-1 actions were likely to be independent of interleukin-1 receptor-associated kinase-1 (IRAK-1) regulation, since Pellino-1 knockdown in primary epithelial cells did not alter responses to IL-1 but did inhibit responses to poly(I·C), a Toll-like receptor 3 (TLR3) activator that does not signal via IRAK-1 to engender a response. These data indicate that Pellino-1 represents a novel target that regulates responses of human airways to human viral pathogens, independently of IRAK signaling. Neutralization of Pellino-1 may therefore provide opportunities to inhibit potentially harmful neutrophilic inflammation of the airways induced by respiratory viruses, without loss of control of the underlying viral infection.
Collapse
|
73
|
Jin W, Chang M, Sun SC. Peli: a family of signal-responsive E3 ubiquitin ligases mediating TLR signaling and T-cell tolerance. Cell Mol Immunol 2012; 9:113-22. [PMID: 22307041 PMCID: PMC4002811 DOI: 10.1038/cmi.2011.60] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2011] [Revised: 12/26/2011] [Accepted: 12/28/2011] [Indexed: 12/24/2022] Open
Abstract
E3 ubiquitin ligases play a crucial role in regulating immune receptor signaling and modulating immune homeostasis and activation. One emerging family of such E3s is the Pelle-interacting (Peli) proteins, characterized by the presence of a cryptic forkhead-associated domain involved in substrate binding and an atypical RING domain mediating formation of both lysine (K) 63- and K48-linked polyubiquitin chains. A well-recognized function of Peli family members is participation in the signal transduction mediated by Toll-like receptors (TLRs) and IL-1 receptor. Recent gene targeting studies have provided important insights into the in vivo functions of Peli1 in the regulation of TLR signaling and inflammation. These studies have also extended the biological functions of Peli1 to the regulation of T-cell tolerance. Consistent with its immunoregulatory functions, Peli1 responds to different immune stimuli for its gene expression and catalytic activation. In this review, we discuss the recent progress, as well as the historical perspectives in the regulation and biological functions of Peli.
Collapse
Affiliation(s)
- Wei Jin
- Immunology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA.
| | | | | |
Collapse
|
74
|
Ng R, Song G, Roll GR, Frandsen NM, Willenbring H. A microRNA-21 surge facilitates rapid cyclin D1 translation and cell cycle progression in mouse liver regeneration. J Clin Invest 2012; 122:1097-108. [PMID: 22326957 DOI: 10.1172/jci46039] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Accepted: 01/04/2012] [Indexed: 12/12/2022] Open
Abstract
MicroRNA-21 (miR-21) is thought to be an oncomir because it promotes cancer cell proliferation, migration, and survival. miR-21 is also expressed in normal cells, but its physiological role is poorly understood. Recently, it has been found that miR-21 expression is rapidly induced in rodent hepatocytes during liver regeneration after two-thirds partial hepatectomy (2/3 PH). Here, we investigated the function of miR-21 in regenerating mouse hepatocytes by inhibiting it with an antisense oligonucleotide. To maintain normal hepatocyte viability and function, we antagonized the miR-21 surge induced by 2/3 PH while preserving baseline expression. We found that knockdown of miR-21 impaired progression of hepatocytes into S phase of the cell cycle, mainly through a decrease in levels of cyclin D1 protein, but not Ccnd1 mRNA. Mechanistically, we discovered that increased miR-21 expression facilitated cyclin D1 translation in the early phase of liver regeneration by relieving Akt1/mTOR complex 1 signaling (and thus eIF-4F-mediated translation initiation) from suppression by Rhob. Our findings reveal that miR-21 enables rapid hepatocyte proliferation during liver regeneration by accelerating cyclin D1 translation.
Collapse
Affiliation(s)
- Raymond Ng
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, UCSF, San Francisco, California 94143, USA
| | | | | | | | | |
Collapse
|
75
|
Xiong Y, Medvedev AE. Induction of endotoxin tolerance in vivo inhibits activation of IRAK4 and increases negative regulators IRAK-M, SHIP-1, and A20. J Leukoc Biol 2011; 90:1141-8. [PMID: 21934070 DOI: 10.1189/jlb.0611273] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
TLRs mediate host defense against microbial pathogens by eliciting production of inflammatory mediators and activating expression of MHC, adhesion, and costimulatory molecules. Endotoxin tolerance limits excessive TLR-driven inflammation during sepsis and reprograms macrophage responses to LPS, decreasing expression of proinflammatory cytokines without inhibiting anti-inflammatory and antimicrobial mediators. Molecular mechanisms of reprogramming of TLR4 signaling upon in vivo induction of endotoxin tolerance are incompletely understood. We used an in vivo model of endotoxin tolerance, whereby C57BL/6 mice were i.p.-inoculated with LPS or PBS, followed by in vitro challenge of peritoneal or splenic macrophages with LPS to examine activation of IRAK4 and expression of negative regulatory molecules. Administration of LPS in vivo-induced endotoxin tolerance in peritoneal and splenic macrophages, as evidenced by decreased degradation of IκBα, suppressed phosphorylation of p38 and reduced expression of TNF-α, IL-6, and KC mRNA upon in vitro LPS challenge. Macrophages from control and endotoxin-tolerant mice exhibited comparable TLR4 mRNA levels and similar expression of IL-1RA and IL-10 genes. Endotoxin tolerization in vivo blocked TLR4-driven IRAK4 phosphorylation and activation in macrophages, while increasing expression of IRAK-M, SHIP-1, A20 mRNA, and A20 protein. Thus, induction of endotoxin tolerance in vivo inhibits expression of proinflammatory mediators via impaired activation of IRAK4, p38, and NF-κB and increases expression of negative regulators of TLR4 pathways.
Collapse
Affiliation(s)
- Yanbao Xiong
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland, USA
| | | |
Collapse
|
76
|
White KL, Rider DN, Kalli KR, Knutson KL, Jarvik GP, Goode EL. Genomics of the NF-κB signaling pathway: hypothesized role in ovarian cancer. Cancer Causes Control 2011; 22:785-801. [PMID: 21359843 PMCID: PMC3119514 DOI: 10.1007/s10552-011-9745-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Accepted: 02/09/2011] [Indexed: 12/17/2022]
Abstract
OBJECTIVE We sought to review evidence linking nuclear factor-kappa B (NF-κB) to ovarian cancer and to identify genetic variants involved in NF-κB signaling. METHODS PubMed was reviewed to inform on ovarian cancer biology and NF-κB signaling and to identify key genes. Public linkage disequilibrium (LD) data were analyzed to identify informative inherited variants (tagSNPs) using ldSelect. RESULTS We identified 319 key NF-κB genes including five NF-κB subunits, 167 activating genes, and 55 inhibiting genes. We found that the 1000 Genomes Project was the most informative LD source for most genes (92.8%), and we identified 13,027 LD bins (r (2) ≥ 0.9, minor allele frequency ≥ 0.05) and 1,018 putative-functional variants worthy of investigation. We also report that reliance on a commonly used genome-wide SNP array and genotype imputation with HapMap Phase II data provides data on only 74% of the common inherited NF-κB SNPs of interest. CONCLUSIONS Compelling evidence suggests that NF-κB plays a critical role in ovarian cancer, yet inherited variation in these genes has not been thoroughly assessed in relation to disease risk or outcome. We present a collection of variants in key genes and suggest creation of a custom genotyping array as an optimal approach.
Collapse
Affiliation(s)
- Kristin L. White
- Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - David N. Rider
- Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Kimberly R. Kalli
- Department of Oncology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | - Keith L. Knutson
- Department of Immunology, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| | | | - Ellen L. Goode
- Department of Health Sciences Research, Mayo Clinic College of Medicine, 200 First Street SW, Rochester, MN 55905, USA
| |
Collapse
|
77
|
Fan Y, Yu Y, Mao R, Zhang H, Yang J. TAK1 Lys-158 but not Lys-209 is required for IL-1β-induced Lys63-linked TAK1 polyubiquitination and IKK/NF-κB activation. Cell Signal 2011; 23:660-5. [PMID: 21130870 PMCID: PMC3035988 DOI: 10.1016/j.cellsig.2010.11.017] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 11/25/2010] [Indexed: 10/18/2022]
Abstract
The nuclear factor kappa B (NF-κB) transcription factor-mediated transcription is the endpoint of a series of signal transduction events that are initiated by a vast array of stimuli. Both the proteolytic and non-proteolytic functions of ubiquitination are critically important for the regulation of NF-κB activation. Lys63-linked polyubiquitination of TAK1 is required for IL-1β-induced IKK/NF-κB activation. However, the lysine site that mediates Lys63-linked TAK1 polyubiquitination in IL-1β signaling is still controversial. Here we report that TAK1 Lysine 158 but not Lysine 209 is required for IL-1β-induced Lys63-linked TAK1 polyubiquitination and TAK1-mediated IKK, JNK, and p38 activation. Co-overexpression of TAK1 wild-type and K209R mutant with TAB1 induced Lys63-linked TAK1 polyubiquitination and NF-κB activation whereas TAK1 K158R mutant failed to do so. Furthermore, IL-1β induces polyubiquitination of TAK1 wild-type and K209R mutant but not K158R mutant. Reconstitution of TAK1-deficient mouse embryo fibroblast cells with wild-type, K158R mutant, or K209R mutant TAK1 reveals that TAK1 Lys-158 but not Lys-209 is required for IL-1β-induced IKK, p38 and JNK activation.
Collapse
Affiliation(s)
- Yihui Fan
- From Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Yang Yu
- From Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Renfang Mao
- Department of Pathology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Hong Zhang
- Department of Pathology, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| | - Jianhua Yang
- From Texas Children's Cancer Center, Department of Pediatrics, Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030
| |
Collapse
|
78
|
Comparación de los perfiles de transcripción de pacientes con fiebre de dengue y fiebre hemorrágica por dengue que muestra diferencias en la respuesta inmunitaria y claves en la inmunopatogénesis. BIOMEDICA 2011. [DOI: 10.7705/biomedica.v30i4.297] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
79
|
Lipopolysaccharide inhibits transforming growth factor-beta1-stimulated Smad6 expression by inducing phosphorylation of the linker region of Smad3 through a TLR4-IRAK1-ERK1/2 pathway. FEBS Lett 2011; 585:779-85. [PMID: 21295571 DOI: 10.1016/j.febslet.2011.01.044] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2010] [Revised: 01/25/2011] [Accepted: 01/31/2011] [Indexed: 11/24/2022]
Abstract
Smad6, one of the inhibitory Smads, plays an important role in transforming growth factor-beta1 (TGF-β1)-mediated negative regulation of pro-inflammatory signaling. In this study, we found that bacterial endotoxin lipopolysaccharide (LPS) inhibits TGF-β1-induced expression of Smad6 in RAW264.7 cells. This repression was accompanied by increased Smad3 linker phosphorylation at Thr-179 and Ser-208 and was dependent on ERK1/2 activity via the TLR4-IRAK1-linked signaling cascade. The expression of a mutant Smad3, that lacks the phosphorylation sites in the linker regions, significantly reversed the inhibitory effect of LPS on TGF-β1-induced Smad6 expression and its anti-inflammatory capacity. Collectively, our findings show how LPS pro-inflammatory signal antagonizes the anti-inflammatory activity of TGF-β1.
Collapse
|
80
|
Gauthier MEA, Du Pasquier L, Degnan BM. The genome of the sponge Amphimedon queenslandica provides new perspectives into the origin of Toll-like and interleukin 1 receptor pathways. Evol Dev 2011; 12:519-33. [PMID: 20883219 DOI: 10.1111/j.1525-142x.2010.00436.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Members of the Toll-like receptor (TLR) and the interleukin 1 receptor (IL1R) superfamilies activate various signaling cascades that are evolutionarily conserved in eumetazoans. In this study, we have searched the genome and expressed sequence tags of the demosponge Amphimedon queenslandica for molecules involved in TLR and IL1R signaling. Although we did not identify a conventional TLR or ILR, the Amphimedon genome encodes two related receptors, AmqIgTIRs, which are comprised of at least three extracellular IL1R-like immunoglobulins (Ig) and an intracellular TLR-like Toll/interleukin1 receptor/resistance (TIR) domain. The remainder of the TLR/IL1R pathway is mostly conserved in Amphimedon and includes genes known to interact with TLRs and IL1Rs in bilaterians, such as Toll-interacting protein (Tollip) and myeloid differentiation factor 88 (MyD88). By comparing the sponge genome to that of nonmetazoan eukaryotes and other basal animal phyla (i.e., placozoan and cnidarian representatives) we can infer that most components of the signaling cascade, including the receptors, evolved after the divergence of metazoan, and choanoflagellate lineages. In most cases, these proteins are composed of metazoan-specific domains (e.g., Pellino) or architectures (e.g., the association of a death domain with a TIR domain in the MyD88). The dynamic expression of the two AmqIgTIRs, AmqMyD88, AmqTollip, and AmqPellino during Amphimedon embryogenesis and larval development is consistent with the TLR/IL1R pathway having a role in both development and immunity in the last common metazoan ancestor.
Collapse
Affiliation(s)
- Marie E A Gauthier
- School of Biological Sciences, University of Queensland, Brisbane, Qld 4072, Australia
| | | | | |
Collapse
|
81
|
Chiou WF, Chen CC, Lin IH, Chiu JH, Chen YJ. 1,3,5-trihydroxy-4-prenylxanthone represses lipopolysaccharide-induced iNOS expression via impeding posttranslational modification of IRAK-1. Biochem Pharmacol 2011; 81:752-60. [PMID: 21232528 DOI: 10.1016/j.bcp.2010.12.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 12/20/2010] [Accepted: 12/21/2010] [Indexed: 12/30/2022]
Abstract
Both high level of nitric oxide (NO) and its generating enzyme, inducible NO synthase (iNOS), play important roles in pathophysiological conditions such as inflammatory processes. We previously found that 1,3,5-trihydroxy-4-prenylxanthone (TH-4-PX) isolated from Cudrania cochinchinensis repressed lipopolysaccharide (LPS)-induced NO production in RAW264.7 macrophages. Here we further examined the underlying mechanisms using RT-PCR and Western blot analyses. Consistent with NO inhibition, suppression of LPS-induced iNOS expression by TH-4-PX through abolishing IκB kinase (IKK) phosphorylation, IκB degradation and nuclear factor-κB (NF-κB) nuclear translocation was observed. After LPS stimulation, the increased nuclear level of c-Fos and c-Jun (major components of activator protein-1, AP-1) and the phosphorylated level of upstream signal molecules, such as c-Jun NH2-terminal kinase (JNK) and extracellular signal-regulated kinase, (ERK) were all significantly suppressed by TH-4-PX, while p38 remained unaffected. A further experiment revealed that TH-4-PX inhibited the phosphorylation of transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), an upstream signaling molecule required for IKK and mitogen-activated protein kinases (MAPKs) activation. Stimulation with LPS also triggered the modification (phosphorylation and ubiquitination) and eventually the proteasomal degradation of membrane-associated interleukin (IL)-1 receptor-associated serine/threonine kinase 1 (IRAK-1), an essential signaling component to toll-like receptor (TLR)-mediated TAK-1 activation. Interestingly, the modified pattern of IRAK-1 in the presence LPS was significantly attenuated by TH-4-PX treatment. In conclusion, TH-4-PX inhibited LPS-induced NF-κB and AP-1 activations by interfering with the posttranslational modification (phosphorylation and/or ubiquitinylation) of IRAK-1 in the cell membrane to impede TAK1-mediated activation of IKK and MAPKs signal transduction.
Collapse
Affiliation(s)
- Wen-Fei Chiou
- National Research Institute of Chinese Medicine, Taipei, Taiwan.
| | | | | | | | | |
Collapse
|
82
|
Kim JH, Sung KS, Jung SM, Lee YS, Kwon JY, Choi CY, Park SH. Pellino-1, an adaptor protein of interleukin-1 receptor/toll-like receptor signaling, is sumoylated by Ubc9. Mol Cells 2011; 31:85-9. [PMID: 21120624 PMCID: PMC3906868 DOI: 10.1007/s10059-011-0006-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Accepted: 10/04/2010] [Indexed: 01/07/2023] Open
Abstract
Covalent modifications of the Pellino-1 protein are essential for transmitting innate immune response signals downstream, as the phosphorylation and polyubiquitination of Pellino-1 mediated by the IRAK proteins appear to have roles in regulating Pellino-1 function. In this study, we demonstrate that the Pellino-1 protein is post-translationally modified by small-ubiquitin-related modifier-1 (SUMO-1). Sumoylation assays with Pellino-1 and SUMO-1 expression plasmids reveal that the Pellino-1 protein is sumoylated in vitro and in vivo. Treatment of SUMO-1 specific protease 1 (SENP1) inhibited the sumoylation of the Pellino-1 protein and a GST pull-down assay as well as a yeast two hybrid assay showed that Pellino-1 binds to the SUMO-conjugating enzyme, Ubc9. Furthermore, we identified the five lysine residues of the Pellino-1 protein where SUMO-1 covalently attaches. Some of the sumoylated sites overlap with previously identified ubiquitination sites, suggesting competition between sumoylation and ubiquitination, as well as suggesting that the sumoylated Pellino-1 protein may have a cellular function distinct from previously identified functions.
Collapse
Affiliation(s)
- Jun Hwan Kim
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | - Ki Sa Sung
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| | | | | | | | | | - Seok Hee Park
- Department of Biological Sciences, Sungkyunkwan University, Suwon 440-746, Korea
| |
Collapse
|
83
|
Shinohara H, Kurosaki T. Comprehending the complex connection between PKCbeta, TAK1, and IKK in BCR signaling. Immunol Rev 2010; 232:300-18. [PMID: 19909372 DOI: 10.1111/j.1600-065x.2009.00836.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The transcription factor nuclear factor-kappaB (NF-kappaB) contributes to many events in the immune system. Characterization of NF-kappaB has facilitated our understanding of immune cell differentiation, survival, proliferation, and effector functions. Intense research continues to elucidate the role of NF-kappaB, which is shared in several receptor signaling pathways, such as Toll-like receptors, the tumor necrosis factor receptor, and antigen receptors. The specificity of cellular responses emanating from stimulation of these receptors is determined by post-translational modification, or 'fine tuning', which regulates spatiotemporal dynamics of downstream signaling. Understanding the fine tuning mechanisms of NF-kappaB activation is crucial for insights into biological regulation and for understanding how cellular signaling pathways are tightly regulated to guide different cell fates. In this review, we focus on recent advances that illuminate the fine tuning mechanisms of NF-kappaB activation by BCR signaling and have increased our comprehension of complex signal systems.
Collapse
Affiliation(s)
- Hisaaki Shinohara
- Laboratory for Lymphocyte Differentiation, RIKEN Research Center for Allergy and Immunology, Yokohama, Kanagawa, Japan.
| | | |
Collapse
|
84
|
Marquez RT, Wendlandt E, Galle CS, Keck K, McCaffrey AP. MicroRNA-21 is upregulated during the proliferative phase of liver regeneration, targets Pellino-1, and inhibits NF-kappaB signaling. Am J Physiol Gastrointest Liver Physiol 2010; 298:G535-41. [PMID: 20167875 PMCID: PMC2853303 DOI: 10.1152/ajpgi.00338.2009] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
During liver regeneration, normally quiescent liver cells reenter the cell cycle, nonparenchymal and parenchymal cells divide, and proper liver architecture is restored. The gene expression programs regulating these transitions are not completely understood. MicroRNAs are a newly discovered class of small regulatory RNAs that silence messenger RNAs by binding to their 3'-untranslated regions (UTRs). A number of microRNAs, including miR-21, have been shown to be involved in regulation of cell proliferation. We performed partial hepatectomies on mice and allowed the liver to regenerate for 1, 6, 12, 24, and 48 h and 4 and 7 days. We compared the expression of miR-21 in the posthepatectomy liver to the prehepatectomy liver by Northern blot and found that miR-21 was upregulated during the early stages of liver regeneration. NF-kappaB signaling is also activated very early during liver regeneration. It has been previously reported that NF-kappaB upregulates the miR-21 precursor transcript. The predicted miR-21 target, Pellino (Peli1), is a ubiquitin ligase involved in activating NF-kappaB signaling. We observed an inverse correlation between miR-21 and Peli1 mRNA levels during liver regeneration. miR-21 overexpression in cultured cells inhibited a Peli1 3'-UTR luciferase reporter. Using NF-kappaB reporter assays, we determined that miR-21 overexpression inhibits NF-kappaB signaling. In conclusion, miR-21 expression was upregulated during early stages of liver regeneration. Targeting of Peli1 by miR-21 could potentially provide the basis for a negative feedback cycle regulating NF-kappaB signaling.
Collapse
Affiliation(s)
- Rebecca T. Marquez
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Erik Wendlandt
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Courtney Searcey Galle
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Kathy Keck
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | - Anton P. McCaffrey
- University of Iowa School of Medicine, Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
85
|
Smad7 and Smad6 bind to discrete regions of Pellino-1 via their MH2 domains to mediate TGF-beta1-induced negative regulation of IL-1R/TLR signaling. Biochem Biophys Res Commun 2010; 393:836-43. [PMID: 20171181 DOI: 10.1016/j.bbrc.2010.02.094] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Accepted: 02/13/2010] [Indexed: 11/21/2022]
Abstract
Transforming growth factor-beta1 (TGF-beta1) performs diverse cellular functions, including anti-inflammatory activity. The inhibitory Smad (I-Smad) Smad6 was previously shown to play an important role in TGF-beta1-induced negative regulation of Interleukin-1/Toll-like receptor (IL-1R/TLR) signaling through binding to Pellino-1, an adaptor protein of interleukin-1 receptor associated kinase 1(IRAK1). However, it is unknown whether Smad7, the other inhibitory Smad, also has a role in regulating IL-1R/TLR signaling. Here, we demonstrate that endogeneous Smad7 and Smad6 simultaneously bind to discrete regions of Pellino-1 upon TGF-beta1 treatment, via distinct regions of the Smad MH2 domains. In addition, the Smad7-Pellino-1 interaction abrogated NF-kappaB activity by blocking formation of the IRAK1-mediated IL-1R/TLR signaling complex, subsequently causing reduced expression of pro-inflammatory genes. Double knock-down of endogenous Smad6 and Smad7 genes by RNA interference further reduced the anti-inflammatory activity of TGF-beta1 than when compared with single knock-down of Smad7. These results provide evidence that the I-Smads, Smad6 and Smad7, act as critical mediators for effective TGF-beta1-mediated suppression of IL-1R/TLR signaling, by simultaneous binding to discrete regions of Pellino-1.
Collapse
|
86
|
Haghayeghi A, Sarac A, Czerniecki S, Grosshans J, Schöck F. Pellino enhances innate immunity in Drosophila. Mech Dev 2010; 127:301-7. [PMID: 20117206 DOI: 10.1016/j.mod.2010.01.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2009] [Revised: 01/19/2010] [Accepted: 01/25/2010] [Indexed: 01/02/2023]
Abstract
The innate immune response is a defense mechanism against infectious agents in both vertebrates and invertebrates, and is in part mediated by the Toll pathway. Toll receptor activation upon exposure to bacteria causes stimulation of Pelle/IRAK kinase, eventually resulting in translocation of the transcription factor NF-kappaB to the nucleus. Here we show that Pellino, a highly conserved protein interacting with activated Pelle/IRAK, acts as a positive regulator of innate immunity in Drosophila.
Collapse
Affiliation(s)
- Amirhossein Haghayeghi
- Department of Biology, McGill University, 1205 Dr. Penfield Avenue, Montreal, Que., Canada H3A 1B1
| | | | | | | | | |
Collapse
|
87
|
|
88
|
Klingenberg JM, McFarland KL, Friedman AJ, Boyce ST, Aronow BJ, Supp DM. Engineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation after transplantation to athymic mice. J Invest Dermatol 2009; 130:587-601. [PMID: 19798058 DOI: 10.1038/jid.2009.295] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bioengineered skin substitutes can facilitate wound closure in severely burned patients, but deficiencies limit their outcomes compared with native skin autografts. To identify gene programs associated with their in vivo capabilities and limitations, we extended previous gene expression profile analyses to now compare engineered skin after in vivo grafting with both in vitro maturation and normal human skin. Cultured skin substitutes were grafted on full-thickness wounds in athymic mice, and biopsy samples for microarray analyses were collected at multiple in vitro and in vivo time points. Over 10,000 transcripts exhibited large-scale expression pattern differences during in vitro and in vivo maturation. Using hierarchical clustering, 11 different expression profile clusters were partitioned on the basis of differential sample type and temporal stage-specific activation or repression. Analyses show that the wound environment exerts a massive influence on gene expression in skin substitutes. For example, in vivo-healed skin substitutes gained the expression of many native skin-expressed genes, including those associated with epidermal barrier and multiple categories of cell-cell and cell-basement membrane adhesion. In contrast, immunological, trichogenic, and endothelial gene programs were largely lacking. These analyses suggest important areas for guiding further improvement of engineered skin for both increased homology with native skin and enhanced wound healing.
Collapse
Affiliation(s)
- Jennifer M Klingenberg
- Research Department, Shriners Hospitals for Children-Cincinnati, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | |
Collapse
|
89
|
Innate immune signals in atherosclerosis. Clin Immunol 2009; 134:5-24. [PMID: 19740706 DOI: 10.1016/j.clim.2009.07.016] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 07/30/2009] [Accepted: 07/31/2009] [Indexed: 12/15/2022]
Abstract
Atherosclerosis is a chronic disease characterised by lipid retention and inflammation in the arterial intima. Innate immune mechanisms are central to atherogenesis, involving activation of pattern-recognition receptors (PRRs) and induction of inflammatory processes. In a complex tissue, such as the atherosclerotic lesion, innate signals can originate from several sources and promote atherogenesis through ligation of PRRs. The receptors recognise conserved molecular patterns on pathogens and endogenous products of tissue injury and inflammation. Activation of PRRs might affect several aspects of atherosclerosis by acting on lesion resident cells. Scavenger receptors mediate antigen uptake and clearance of lipoproteins, thereby promoting foam cell formation. Signalling receptors, such as Toll-like receptors (TLRs), lead to induction of pro-inflammatory cytokines and antigen-specific immune responses. In this review we describe the innate mechanisms present in the plaque. We focus on TLRs, their cross-talk with other PRRs, and how their signalling cascades influence inflammation within the atherosclerotic lesion.
Collapse
|
90
|
Peli1 facilitates TRIF-dependent Toll-like receptor signaling and proinflammatory cytokine production. Nat Immunol 2009; 10:1089-95. [PMID: 19734906 PMCID: PMC2748822 DOI: 10.1038/ni.1777] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 07/01/2009] [Indexed: 11/08/2022]
Abstract
Toll-like receptors (TLRs) are pivotal in innate immunity and inflammation. Here we show that genetic deficiency in Peli1, an E3 ubiquitin ligase, attenuated the induction of proinflammatory cytokines by ligands of TLR3 and TLR4 and rendered mice resistant to septic shock. Peli1 was required for TLR3-induced activation of IkappaB kinase (IKK) and its 'downstream' target, transcription factor NF-kappaB, but was dispensable for IKK-NF-kappaB activation induced by several other TLRs and the interleukin 1 (IL-1) receptor. Notably, Peli1 bound to and ubiquitinated RIP1, a signaling molecule that mediates IKK activation induced by the TLR3 and TLR4 adaptor TRIF. Our findings suggest that Peli1 is a ubiquitin ligase needed for the transmission of TRIF-dependent TLR signals.
Collapse
|
91
|
Recent insights into the structure of Toll-like receptors and post-translational modifications of their associated signalling proteins. Biochem J 2009; 422:1-10. [PMID: 19627256 DOI: 10.1042/bj20090616] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
TLRs (Toll-like receptors) are essential modulators of the innate immune response through their ability to respond to a diverse range of conserved structures within microbes. Recent advances have been made in our understanding of the initiation of TLR signals as a result of the elucidation of crystal structures of TLRs interacting with their ligands. Most notably the structure of TLR1/2 with triacylated lipopeptide and TLR4 in a complex with LPS (lipopolysaccharide) and MD2 has been solved. These explain the basis for TLR dimerization which initiates signalling. Modifications of TLRs and their receptor proximal signalling proteins have also been uncovered. Phosphorylation of adaptor proteins and ubiquitination (both Lys48- and Lys63-linked) of TLRs, IRAKs (interleukin-1 receptor-associated kinase), Pellinos and TRAF6 (tumour-necrosis-factor-receptor-associated factor 6) have been described, which promote signalling and lead to signal termination. A detailed molecular account of the initiation and termination of TLR signalling is presented.
Collapse
|
92
|
Smith DE, Lipsky BP, Russell C, Ketchem RR, Kirchner J, Hensley K, Huang Y, Friedman WJ, Boissonneault V, Plante MM, Rivest S, Sims JE. A central nervous system-restricted isoform of the interleukin-1 receptor accessory protein modulates neuronal responses to interleukin-1. Immunity 2009; 30:817-31. [PMID: 19481478 DOI: 10.1016/j.immuni.2009.03.020] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/06/2009] [Accepted: 03/17/2009] [Indexed: 01/01/2023]
Abstract
Interleukin-1 (IL-1) has multiple functions in both the periphery and the central nervous system (CNS) and is regulated at many levels. We identified an isoform of the IL-1 receptor (IL-1R) accessory protein (termed AcPb) that is expressed exclusively in the CNS. AcPb interacted with IL-1 and the IL-1R but was unable to mediate canonical IL-1 responses. AcPb expression, however, modulated neuronal gene expression in response to IL-1 treatment in vitro. Animals lacking AcPb demonstrated an intact peripheral IL-1 response and developed experimental autoimmune encephalomyelitis (EAE) similarly to wild-type mice. AcPb-deficient mice were instead more vulnerable to local inflammatory challenge in the CNS and suffered enhanced neuronal degeneration as compared to AcP-deficient or wild-type mice. These findings implicate AcPb as an additional component of the highly regulated IL-1 system and suggest that it may play a role in modulating CNS responses to IL-1 and the interplay between inflammation and neuronal survival.
Collapse
Affiliation(s)
- Dirk E Smith
- Department of Inflammation Research, Amgen, Seattle, WA 98119, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Lin CC, Huoh YS, Schmitz KR, Jensen LE, Ferguson KM. Pellino proteins contain a cryptic FHA domain that mediates interaction with phosphorylated IRAK1. Structure 2009; 16:1806-16. [PMID: 19081057 DOI: 10.1016/j.str.2008.09.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2008] [Revised: 09/11/2008] [Accepted: 09/18/2008] [Indexed: 02/06/2023]
Abstract
Pellino proteins are RING E3 ubiquitin ligases involved in signaling events downstream of the Toll and interleukin-1 (IL-1) receptors, key initiators of innate immune and inflammatory responses. Pellino proteins associate with and ubiquitinate proteins in these pathways, including the interleukin-1 receptor associated kinase-1 (IRAK1). We determined the X-ray crystal structure of a Pellino2 fragment lacking only the RING domain. This structure reveals that the IRAK1-binding region of Pellino proteins consists largely of a previously unidentified forkhead-associated (FHA) domain. FHA domains are well-characterized phosphothreonine-binding modules, and this cryptic example in Pellino2 can drive interaction of this protein with phosphorylated IRAK1. The Pellino FHA domain is decorated with an unusual appendage or "wing" composed of two long inserts that lie within the FHA homology region. Delineating how this E3 ligase associates with substrates, and how these interactions are regulated by phosphorylation, is crucial for a complete understanding of Toll/IL-1 receptor signaling.
Collapse
Affiliation(s)
- Chun-Chi Lin
- Department of Physiology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104, USA
| | | | | | | | | |
Collapse
|
94
|
Abstract
Over the past 20 years great progress has been made in defining most of the key signalling pathways that functionally regulate immune cells. Recently, it has become clear that scaffold proteins have a crucial role in regulating many of these signalling cascades. By binding two or more components of a signalling pathway, scaffold proteins can help to localize signalling molecules to a specific part of the cell or to enhance the efficacy of a signalling pathway. Scaffold proteins can also affect the thresholds and the dynamics of signalling reactions by coordinating positive and negative feedback signals. In this Review, we focus on recent progress in the understanding of the function of scaffold proteins in immune cells.
Collapse
Affiliation(s)
- Andrey S Shaw
- Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid, Saint Louis, Missouri 63110, USA.
| | | |
Collapse
|
95
|
The Pellino family: IRAK E3 ligases with emerging roles in innate immune signalling. Trends Immunol 2008; 30:33-42. [PMID: 19022706 DOI: 10.1016/j.it.2008.10.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Revised: 10/13/2008] [Accepted: 10/14/2008] [Indexed: 01/07/2023]
Abstract
This review highlights the emerging roles of the Pellino family of E3 ubiquitin ligases as upstream mediators in Toll-like receptor (TLR) pathways that lead to activation of MAP kinases and transcription factors. The functional importance of the Pellino family as RING-like-domain-containing proteins with intrinsic ubiquitin E3 ligase activity that can catalyse polyubiquitylation of the key TLR signalling molecule IRAK1 is discussed in detail. The importance of Pellino proteins as novel targets for mediating negative regulation of TLR signalling is also explored. This new knowledge and understanding of Pellino biology begins to fill some long-standing voids in our understanding of TLR signalling.
Collapse
|
96
|
Wu T, Sun W, Yuan S, Chen CH, Li KC. A method for analyzing censored survival phenotype with gene expression data. BMC Bioinformatics 2008; 9:417. [PMID: 18837994 PMCID: PMC2579309 DOI: 10.1186/1471-2105-9-417] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 10/06/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Survival time is an important clinical trait for many disease studies. Previous works have shown certain relationship between patients' gene expression profiles and survival time. However, due to the censoring effects of survival time and the high dimensionality of gene expression data, effective and unbiased selection of a gene expression signature to predict survival probabilities requires further study. METHOD We propose a method for an integrated study of survival time and gene expression. This method can be summarized as a two-step procedure: in the first step, a moderate number of genes are pre-selected using correlation or liquid association (LA). Imputation and transformation methods are employed for the correlation/LA calculation. In the second step, the dimension of the predictors is further reduced using the modified sliced inverse regression for censored data (censorSIR). RESULTS The new method is tested via both simulated and real data. For the real data application, we employed a set of 295 breast cancer patients and found a linear combination of 22 gene expression profiles that are significantly correlated with patients' survival rate. CONCLUSION By an appropriate combination of feature selection and dimension reduction, we find a method of identifying gene expression signatures which is effective for survival prediction.
Collapse
Affiliation(s)
- Tongtong Wu
- Department of Epidemiology and Biostatistics, University of Maryland, College Park, MD 20742, USA.
| | | | | | | | | |
Collapse
|
97
|
Lockett A, Goebl MG, Harrington MA. Transient membrane recruitment of IRAK-1 in response to LPS and IL-1β requires TNF R1. Am J Physiol Cell Physiol 2008; 295:C313-23. [DOI: 10.1152/ajpcell.00500.2007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The transcription factor NF-κB is an essential regulator of the innate immune response that functions as the first line of defense against infections. Activation of the innate immune response by bacterial lipopolysaccharide (LPS) triggers production of tumor necrosis factor-α (TNF-α) followed by interleukin-1 (IL-1). The IL-1 receptor associated kinase-1 (IRAK-1) is an integral component of the LPS, TNF-α, and IL-1 signaling pathways that regulate NF-κB. Thus we hypothesized that IRAK-1 coordinates cellular NF-κB responses to LPS, TNF-α, and IL-1. In contrast to TNF-α where IRAK-1 subcellular localization does not change, treatment with LPS or IL-1 leads to a loss in cytoplasmic IRAK-1 with a coordinate increase in plasma membrane associated modified IRAK-1. In fibroblasts lacking the type 1 TNF-α receptor (TNF R1), IRAK-1 turnover is altered and modification of IRAK-1 in the plasma membrane is decreased in response to LPS and IL-1, respectively. When NF-κB controlled gene expression is measured, fibroblasts lacking TNF R1 are hyperresponsive to LPS, whereas a more variable response to IL-1 is seen. Further analysis of the LPS response revealed that plasma membrane-associated IRAK-1 is found in Toll 4, IL-1, and TNF R1-containing complexes. The data presented herein suggest a model whereby the TNF R1-IRAK-1 interaction integrates the cellular response to LPS, TNF-α, and IL-1, culminating in a cell poised to activate TNF-α-dependent NF-κB controlled gene expression. In the absence of TNF R1-dependent events, exposure to LPS or IL-1 leads to hyperactivation of the inflammatory response.
Collapse
|
98
|
Xiao H, Qian W, Staschke K, Qian Y, Cui G, Deng L, Ehsani M, Wang X, Qian YW, Chen ZJ, Gilmour R, Jiang Z, Li X. Pellino 3b negatively regulates interleukin-1-induced TAK1-dependent NF kappaB activation. J Biol Chem 2008; 283:14654-64. [PMID: 18326498 DOI: 10.1074/jbc.m706931200] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
IL-1 receptor-associated kinase (IRAK) is phosphorylated, ubiquitinated, and degraded upon interleukin-1 (IL-1) stimulation. In this study, we showed that IRAK can be ubiquitinated through both Lys-48- and Lys-63-linked polyubiquitin chains upon IL-1 induction. Pellino 3b is the RING-like motif ubiquitin protein ligase that promotes the Lys-63-linked polyubiquitination on IRAK. Pellino 3b-mediated Lys-63-linked IRAK polyubiquitination competed with Lys-48-linked IRAK polyubiquitination for the same ubiquitination site, Lys-134 of IRAK, thereby blocking IL-1-induced IRAK degradation. Importantly, the negative impact of Pellino 3b on IL-1-induced IRAK degradation correlated with the inhibitory effect of Pellino 3b on the IL-1-induced TAK1-dependent pathway, suggesting that a positive role of IRAK degradation in IL-1 induced TAK1 activation. Taken together, our results suggest that Pellino 3b acts as a negative regulator for IL-1 signaling by regulating IRAK degradation through its ubiquitin protein ligase activity.
Collapse
Affiliation(s)
- Hui Xiao
- Department of Immunology, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
Windheim M, Stafford M, Peggie M, Cohen P. Interleukin-1 (IL-1) induces the Lys63-linked polyubiquitination of IL-1 receptor-associated kinase 1 to facilitate NEMO binding and the activation of IkappaBalpha kinase. Mol Cell Biol 2008; 28:1783-91. [PMID: 18180283 PMCID: PMC2258775 DOI: 10.1128/mcb.02380-06] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2006] [Revised: 01/23/2007] [Accepted: 12/13/2007] [Indexed: 11/20/2022] Open
Abstract
Interleukin 1 (IL-1) has been reported to stimulate the polyubiquitination and disappearance of IL-1 receptor-associated kinase 1 (IRAK1) within minutes. It has been thought that the polyubiquitin chains attached to IRAK1 are linked via Lys48 of ubiquitin, leading to its destruction by the proteasome and explaining the rapid IL-1-induced disappearance of IRAK1. In this paper, we demonstrate that IL-1 stimulates the formation of K63-pUb-IRAK1 and not K48-pUb-IRAK1 and that the IL-1-induced disappearance of IRAK1 is not blocked by inhibition of the proteasome. We also show that IL-1 triggers the interaction of K63-pUb-IRAK1 with NEMO, a regulatory subunit of the IkappaBalpha kinase (IKK) complex, but not with the NEMO[D311N] mutant that cannot bind K63-pUb chains. Moreover, unlike wild-type NEMO, the NEMO[D311N] mutant was unable to restore IL-1-stimulated NF-kappaB-dependent gene transcription to NEMO-deficient cells. Our data suggest a model in which the recruitment of the NEMO-IKK complex to K63-pUb-IRAK1 and the recruitment of the TAK1 complex to TRAF6 facilitate the TAK1-catalyzed activation of IKK by the TRAF6-IRAK1 complex.
Collapse
Affiliation(s)
- Mark Windheim
- MRC Protein Phosphorylation Unit, College of Life Sciences, The Sir James Black Centre, University of Dundee, Dow Street, Dundee DD1 5EH, Scotland, United Kingdom
| | | | | | | |
Collapse
|
100
|
Gottipati S, Rao NL, Fung-Leung WP. IRAK1: A critical signaling mediator of innate immunity. Cell Signal 2008; 20:269-76. [PMID: 17890055 DOI: 10.1016/j.cellsig.2007.08.009] [Citation(s) in RCA: 218] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 08/14/2007] [Indexed: 11/17/2022]
Abstract
The innate immune system is equipped with sensitive and efficient machineries to provide an immediate, first line defense against infections. Toll-like receptors (TLRs) detect pathogens and the IL-1 receptor (IL-1R) family enables cells to quickly respond to inflammatory cytokines by mounting an efficient protective response. Interleukin-1 receptor activated kinases (IRAKs) are key mediators in the signaling pathways of TLRs/IL-1Rs. By means of their kinase and adaptor functions, IRAKs initiate a cascade of signaling events eventually leading to induction of inflammatory target gene expression. Due to this pivotal role, IRAK function is also highly regulated via multiple mechanisms. In this review, we focus on IRAK1, the earliest known and yet the most interesting member of this family. An overview on its structure, function and biology is given, with emphasis on the different novel mechanisms that regulate IRAK1 function. We also highlight several unresolved questions in this field and evaluate the potential of IRAK1 as a target for therapeutic intervention.
Collapse
Affiliation(s)
- Sridevi Gottipati
- Immunology, Johnson & Johnson Pharmaceutical Research and Development, L.L.C., San Diego, CA 92121, USA
| | | | | |
Collapse
|