51
|
Nishida M, Saiki S, Kitajima N, Nakaya M, Sato Y, Kurose H. [Regulation of cardiovascular functions by the phosphorylation of TRPC channels]. YAKUGAKU ZASSHI 2010; 130:1427-33. [PMID: 21048399 DOI: 10.1248/yakushi.130.1427] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Calcium ions (Ca²(+)) play an essential role in homeostasis and the activity of cardiovascular cells. Ca²(+) influx across the plasma membrane induced by neurohumoral factors or mechanical stress elicits physiologically relevant timing and spatial patterns of Ca²(+) signaling, which leads to the activation of various cardiovascular functions, such as muscle contraction, gene expression, and hypertrophic growth of myocytes. A canonical transient receptor potential protein subfamily member, TRPC6, which is activated by diacylglycerol and mechanical stretch, works as an upstream regulator of the Ca²(+) signaling pathway required for pathological hypertrophy. We have recently found that the inhibition of cGMP-selective phosphodiesterase 5 (PDE5) suppresses agonist- and mechanical stretch-induced hypertrophy through inhibition of Ca²(+) influx in rat cardiomyocytes. The inhibition of PDE5 suppressed the increase in frequency of Ca²(+) spikes induced by receptor stimulation or mechanical stretch. Activation of protein kinase G by PDE5 inhibition phosphorylated TRPC6 proteins at Thr⁶⁹ and prevented TRPC6-mediated Ca²(+) influx. Substitution of Ala for Thr⁶⁹ in TRPC6 abolished the antihypertrophic effects of PDE5 inhibition. These results suggest that phosphorylation and functional suppression of TRPC6 underlies the prevention of cardiac hypertrophy by PDE5 inhibition. As TRPC6 proteins are also expressed in vascular smooth muscle cells and reportedly participate in vascular remodeling, TRPC6 blockade may be an effective therapeutic strategy for preventing pathologic cardiovascular remodeling.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
52
|
Wu LJ, Sweet TB, Clapham DE. International Union of Basic and Clinical Pharmacology. LXXVI. Current progress in the mammalian TRP ion channel family. Pharmacol Rev 2010; 62:381-404. [PMID: 20716668 PMCID: PMC2964900 DOI: 10.1124/pr.110.002725] [Citation(s) in RCA: 439] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Transient receptor potential (TRP) channels are a large family of ion channel proteins, surpassed in number in mammals only by voltage-gated potassium channels. TRP channels are activated and regulated through strikingly diverse mechanisms, making them suitable candidates for cellular sensors. They respond to environmental stimuli such as temperature, pH, osmolarity, pheromones, taste, and plant compounds, and intracellular stimuli such as Ca(2+) and phosphatidylinositol signal transduction pathways. However, it is still largely unknown how TRP channels are activated in vivo. Despite the uncertainties, emerging evidence using TRP channel knockout mice indicates that these channels have broad function in physiology. Here we review the recent progress on the physiology, pharmacology and pathophysiological function of mammalian TRP channels.
Collapse
Affiliation(s)
- Long-Jun Wu
- Howard Hughes Medical Institute, Department of Cardiology, Children's Hospital Boston, 320 Longwood Avenue, Boston, MA 02115, USA
| | | | | |
Collapse
|
53
|
Suzuki R, Liu X, Olivera A, Aguiniga L, Yamashita Y, Blank U, Ambudkar I, Rivera J. Loss of TRPC1-mediated Ca2+ influx contributes to impaired degranulation in Fyn-deficient mouse bone marrow-derived mast cells. J Leukoc Biol 2010; 88:863-75. [PMID: 20571036 DOI: 10.1189/jlb.0510253] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
MC degranulation requires the influx of calcium from the extracellular environment. Orai1/STIM1 is essential to MC SOCE, as shown in rat peritoneal MCs, the rat MC lines (RBL-2H3), or in Orai1 null embryo liver-derived, cultured MCs. However, minimal information exists about the role of other calcium channels expressed on these cells. Here, we demonstrate that the nonselective TRPC1 participates in FcεRI-mediated calcium entry in mouse BMMCs. We found that Fyn null MCs, which have an impaired degranulation response, expressed reduced levels of TRPC1, had normal depletion of intracellular calcium stores but an impaired calcium influx, and failed to depolymerize cortical F-actin (a key step for granule-plasma membrane fusion). Partial RNAi silencing of TRPC1 expression in WT MCs (to the level of Fyn null MCs) mimicked the Fyn null defect in calcium influx, cortical F-actin depolymerization, and MC degranulation. Ectopic expression of Fyn or TRPC1 in Fyn null MCs restored calcium responses and cortical F-actin depolymerization and increased MC degranulation. Together with our findings that expression of Orai1 is not altered in Fyn null MCs, our findings suggest that TRPC1 participates in calcium influx and other key events required for MC degranulation. This demonstrates that in addition to a role described previously for Orai1 in promoting MC degranulation, nonselective cation channels participate in promoting the exocytotic response.
Collapse
Affiliation(s)
- Ryo Suzuki
- National Institutes of Health, Bethesda, MD 20892-1930, USA
| | | | | | | | | | | | | | | |
Collapse
|
54
|
Selvaraj S, Sun Y, Singh BB. TRPC channels and their implication in neurological diseases. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2010; 9:94-104. [PMID: 20201820 DOI: 10.2174/187152710790966650] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2009] [Accepted: 08/07/2009] [Indexed: 11/22/2022]
Abstract
Calcium is an essential intracellular messenger and serves critical cellular functions in both excitable and non-excitable cells. Most of the physiological functions in these cells are uniquely regulated by changes in cytosolic Ca2+ levels ([Ca2+](i)), which are achieved via various mechanisms. One of these mechanism(s) is activated by the release of Ca2+ from the endoplasmic reticulum (ER), followed by Ca2+ influx across the plasma membrane (PM). Activation of PM Ca2+ channel is essential for not only refilling of the ER Ca2+ stores, but is also critical for maintaining [Ca2+](i) that regulates biological functions, such as neurosecretion, sensation, long term potentiation, synaptic plasticity, gene regulation, as well as cellular growth and differentiation. Alterations in Ca2+ homeostasis have been suggested in the onset/progression of neurological diseases, such as Parkinson's, Alzheimer's, bipolar disorder, and Huntington's. Available data on transient receptor potential conical (TRPC) protein indicate that these proteins initiate Ca2+ entry pathways and are essential in maintaining cytosolic, ER, and mitochondrial Ca2+ levels. A number of biological functions have been assigned to these TRPC proteins. Silencing of TRPC1 and TRPC3 has been shown to inhibit neuronal proliferation and loss of TRPC1 is implicated in neurodegeneration. Thus, TRPC channels not only contribute towards normal physiological processes, but are also implicated in several human pathological conditions. Overall, it is suggested that these channels could be used as potential therapeutic targets for many of these neurological diseases. Thus, in this review we have focused on the functional implication of TRPC channels in neuronal cells along with the elucidation of their role in neurodegeneration.
Collapse
Affiliation(s)
- Senthil Selvaraj
- Department of Biochemistry and Molecular Biology, School of Medicine and Health Sciences, University of North Dakota, Grand Forks, ND 58201, USA
| | | | | |
Collapse
|
55
|
Smedlund K, Tano JY, Vazquez G. The Constitutive Function of Native TRPC3 Channels Modulates Vascular Cell Adhesion Molecule-1 Expression in Coronary Endothelial Cells Through Nuclear Factor κB Signaling. Circ Res 2010; 106:1479-88. [DOI: 10.1161/circresaha.109.213314] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale
:
Upregulation of endothelial vascular cell adhesion molecule (VCAM)-1 and the subsequent increase in monocyte recruitment constitute critical events in atherogenesis. We have recently shown that in human coronary artery endothelial cells (HCAECs) regulated expression of VCAM-1 depends, to a significant extent, on expression and function of the Ca
2+
-permeable channel transient receptor potential canonical (TRPC)3, regardless of the ability of the stimulatory signal to induce regulated Ca
2+
influx, leading to the hypothesis that TRPC3 constitutive, rather than regulated function, contributes to the underlying signaling mechanism.
Objective
:
The present studies addressed this important question and gathered mechanistic insight on the signaling coupling constitutive TRPC3 function to VCAM-1 expression.
Methods and Results
:
In HCAECs, maneuvers that prevent Ca
2+
influx or knockdown of TRPC3 markedly reduced tumor necrosis factor (TNF)α-induced VCAM-1 and monocyte adhesion. TNFα also induced TRPC3 expression and TRPC3-mediated constitutive cation influx and currents. Stable (HEK293 cells) or transient (HCAECs) overexpression of TRPC3 enhanced TNFα-induced VCAM-1 compared to wild-type cells. IκBα phosphorylation/degradation was reduced by TRPC3 knockdown and increased by channel overexpression. Inhibition of calmodulin completely prevented nuclear factor κB activation, whereas blocking calmodulin-dependent kinases or NADPH oxidases rendered partial inhibition.
Conclusions
:
Our findings indicate that in HCAECs expression of VCAM-1 and monocyte adhesion depend, to a significant extent, on TRPC3 constitutive function through a signaling mechanism that requires constitutive TRPC3-mediated Ca
2+
influx for proper activation of nuclear factor κB, presumably through Ca
2+
-dependent activation of the calmodulin/calmodulin-dependent kinase axis.
Collapse
Affiliation(s)
- Kathryn Smedlund
- From the Department of Physiology and Pharmacology (K.S., J.-Y.T., G.V.) and Center for Diabetes and Endocrine Research (G.V.), University of Toledo College of Medicine, Ohio
| | - Jean-Yves Tano
- From the Department of Physiology and Pharmacology (K.S., J.-Y.T., G.V.) and Center for Diabetes and Endocrine Research (G.V.), University of Toledo College of Medicine, Ohio
| | - Guillermo Vazquez
- From the Department of Physiology and Pharmacology (K.S., J.-Y.T., G.V.) and Center for Diabetes and Endocrine Research (G.V.), University of Toledo College of Medicine, Ohio
| |
Collapse
|
56
|
Voolstra O, Beck K, Oberegelsbacher C, Pfannstiel J, Huber A. Light-dependent phosphorylation of the drosophila transient receptor potential ion channel. J Biol Chem 2010; 285:14275-84. [PMID: 20215118 PMCID: PMC2863191 DOI: 10.1074/jbc.m110.102053] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2010] [Revised: 03/04/2010] [Indexed: 11/06/2022] Open
Abstract
The Drosophila phototransduction cascade terminates in the opening of an ion channel, designated transient receptor potential (TRP). TRP has been shown to become phosphorylated in vitro, suggesting regulation of the ion channel through posttranslational modification. However, except for one phosphorylation site, Ser(982), which was analyzed by functional in vivo studies (Popescu, D. C., Ham, A. J., and Shieh, B. H. (2006) J. Neurosci. 26, 8570-8577), nothing is known about the role of TRP phosphorylation in vivo. Here, we report the identification of 21 TRP phosphorylation sites by a mass spectrometry approach. 20 phosphorylation sites are located in the C-terminal portion of the channel, and one site is located near the N terminus. All 21 phosphorylation sites were also identified in the inaC(P209) mutant, indicating that phosphorylation of TRP at these sites occurred independently from the eye-enriched protein kinase C. Relative quantification of phosphopeptides revealed that at least seven phosphorylation sites were predominantly phosphorylated in the light, whereas one site, Ser(936), was predominantly phosphorylated in the dark. We show that TRP phosphorylated at Ser(936) was located in the rhabomere. Light-dependent changes in the phosphorylation state of this site occurred within minutes. The dephosphorylation of TRP at Ser(936) required activation of the phototransduction cascade.
Collapse
Affiliation(s)
- Olaf Voolstra
- Department of Biosensorics, Institute of Physiology, Germany.
| | | | | | | | | |
Collapse
|
57
|
Komarova Y, Malik AB. Regulation of endothelial permeability via paracellular and transcellular transport pathways. Annu Rev Physiol 2010; 72:463-93. [PMID: 20148685 DOI: 10.1146/annurev-physiol-021909-135833] [Citation(s) in RCA: 495] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The endothelium functions as a semipermeable barrier regulating tissue fluid homeostasis and transmigration of leukocytes and providing essential nutrients across the vessel wall. Transport of plasma proteins and solutes across the endothelium involves two different routes: one transcellular, via caveolae-mediated vesicular transport, and the other paracellular, through interendothelial junctions. The permeability of the endothelial barrier is an exquisitely regulated process in the resting state and in response to extracellular stimuli and mediators. The focus of this review is to provide a comprehensive overview of molecular and signaling mechanisms regulating endothelial barrier permeability with emphasis on the cross-talk between paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Yulia Komarova
- Department of Pharmacology and Center for Lung and Vascular Biology, University of Illinois College of Medicine, Chicago, IL 60612, USA
| | | |
Collapse
|
58
|
Phan PAB, Tadros SF, Kim Y, Birnbaumer L, Housley GD. Developmental regulation of TRPC3 ion channel expression in the mouse cochlea. Histochem Cell Biol 2010; 133:437-48. [PMID: 20229053 DOI: 10.1007/s00418-010-0686-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2010] [Indexed: 02/07/2023]
Abstract
Canonical transient receptor potential type 3 (TRPC3) ion channels assemble from TRPC3 subunits and exhibit multiple activation mechanisms. TRPC3 has been proposed to contribute to Ca(2+) entry supporting Ca(2+) homeostasis in cochlear hair cells and to be activated by G protein-coupled receptor (GPCR) signaling in spiral ganglion neurons. The present study was designed to determine the spatiotemporal profile of TRPC3 expression during mouse cochlear ontogeny. TRPC3 immunofluorescence of cryosectioned cochleae was performed using E16-adult tissue. We found that prior to birth, TRPC3 expression was strongest in epithelial cells that form the cochlear partition. In the early postnatal period, to the onset of hearing (~P12), immunofluorescence was strongest in the hair cells, with increased expression in stria vascularis and Reissner's membrane. Afferent neurite labeling in inner spiral plexus and outer spiral bundles developed transiently in the perinatal period, corresponding to the critical period of synaptic consolidation, while signal in the spiral ganglion soma increased from the perinatal period through to adulthood. Compared with the late embryonic/early postnatal levels, hair cell expression was relatively weaker from the third postnatal week, whereas spiral ganglion soma labeling was stronger. In the adult, TRPC3 expression was primarily in the soma of spiral ganglion neurons, the hair cells, and the inner and outer sulcus regions. This spatiotemporal profile of TRPC3 expression was consistent with this ion channel contributing to development of sensory, neural and epithelial cochlear tissues, as well as hair cell Ca(2+) homeostasis and regulation of auditory neurotransmission via GPCR signaling.
Collapse
Affiliation(s)
- Patrick A B Phan
- Translational Neuroscience Facility, Department of Physiology, School of Medical Sciences, University of New South Wales, Wallace Wurth Building, UNSW Kensington Campus, Sydney, NSW, 2052, Australia
| | | | | | | | | |
Collapse
|
59
|
Leuner K, Heiser JH, Derksen S, Mladenov MI, Fehske CJ, Schubert R, Gollasch M, Schneider G, Harteneck C, Chatterjee SS, Müller WE. Simple 2,4-diacylphloroglucinols as classic transient receptor potential-6 activators--identification of a novel pharmacophore. Mol Pharmacol 2010; 77:368-77. [PMID: 20008516 DOI: 10.1124/mol.109.057513] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The naturally occurring acylated phloroglucinol derivative hyperforin was recently identified as the first specific canonical transient receptor potential-6 (TRPC6) activator. Hyperforin is the major antidepressant component of St. John's wort, which mediates its antidepressant-like properties via TRPC6 channel activation. However, its pharmacophore moiety for activating TRPC6 channels is unknown. We hypothesized that the phloroglucinol moiety could be the essential pharmacophore of hyperforin and that its activity profile could be due to structural similarities with diacylglycerol (DAG), an endogenous nonselective activator of TRPC3, TRPC6, and TRPC7. Accordingly, a few 2-acyl and 2,4-diacylphloroglucinols were tested for their hyperforin-like activity profiles. We used a battery of experimental models to investigate all functional aspects of TRPC6 activation, including ion channel recordings, Ca(2+) imaging, neurite outgrowth, and inhibition of synaptosomal uptake. Phloroglucinol itself was inactive in all of our assays, which was also the case for 2-acylphloroglucinols. For TRPC6 activation, the presence of two symmetrically acyl-substitutions with appropriate alkyl chains in the phloroglucinol moiety seems to be an essential prerequisite. Potencies of these compounds in all assays were comparable with that of hyperforin for activating the TRPC6 channel. Finally, using structure-based modeling techniques, we suggest a binding mode for hyperforin to TRPC6. Based on this modeling approach, we propose that DAG is able to activate TRPC3, TRPC6, and TRPC7 because of higher flexibility within the chemical structure of DAG compared with the rather rigid structures of hyperforin and the 2,4-diacylphloroglucinol derivatives.
Collapse
Affiliation(s)
- K Leuner
- Institute of Pharmacology, Goethe University, Biocenter N260, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Nishida M, Watanabe K, Sato Y, Nakaya M, Kitajima N, Ide T, Inoue R, Kurose H. Phosphorylation of TRPC6 channels at Thr69 is required for anti-hypertrophic effects of phosphodiesterase 5 inhibition. J Biol Chem 2010; 285:13244-53. [PMID: 20177073 DOI: 10.1074/jbc.m109.074104] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Activation of Ca(2+) signaling induced by receptor stimulation and mechanical stress plays a critical role in the development of cardiac hypertrophy. A canonical transient receptor potential protein subfamily member, TRPC6, which is activated by diacylglycerol and mechanical stretch, works as an upstream regulator of the Ca(2+) signaling pathway. Although activation of protein kinase G (PKG) inhibits TRPC6 channel activity and cardiac hypertrophy, respectively, it is unclear whether PKG suppresses cardiac hypertrophy through inhibition of TRPC6. Here, we show that inhibition of cGMP-selective PDE5 (phosphodiesterase 5) suppresses endothelin-1-, diacylglycerol analog-, and mechanical stretch-induced hypertrophy through inhibition of Ca(2+) influx in rat neonatal cardiomyocytes. Inhibition of PDE5 suppressed the increase in frequency of Ca(2+) spikes induced by agonists or mechanical stretch. However, PDE5 inhibition did not suppress the hypertrophic responses induced by high KCl or the activation of protein kinase C, suggesting that PDE5 inhibition suppresses Ca(2+) influx itself or molecule(s) upstream of Ca(2+) influx. PKG activated by PDE5 inhibition phosphorylated TRPC6 proteins at Thr(69) and prevented TRPC6-mediated Ca(2+) influx. Substitution of Ala for Thr(69) in TRPC6 abolished the anti-hypertrophic effects of PDE5 inhibition. In addition, chronic PDE5 inhibition by oral sildenafil treatment actually induced TRPC6 phosphorylation in mouse hearts. Knockdown of RGS2 (regulator of G protein signaling 2) and RGS4, both of which are activated by PKG to reduce G alpha(q)-mediated signaling, did not affect the suppression of receptor-activated Ca(2+) influx by PDE5 inhibition. These results suggest that phosphorylation and functional suppression of TRPC6 underlie prevention of pathological hypertrophy by PDE5 inhibition.
Collapse
Affiliation(s)
- Motohiro Nishida
- Department of Pharmacology and Toxicology, Graduate School of Pharmaceutical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Introduction to TRP channels: structure, function, and regulation. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 661:99-108. [PMID: 20204725 DOI: 10.1007/978-1-60761-500-2_6] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Transient receptor potential or TRP families of ion channels demonstrate great diversity in activation and inhibition, and they are diverse in selectivity of ion conductance. TRP ion channels function as signal integrators through their ion conductance properties, and in some cases kinase activity. They mediate processes such as vision, taste, olfaction, hearing, touch, and thermo- and osmosensation. TRP cation channels function by mediating the flux of Na(+) and Ca(2+) across the plasma membrane and into the cytoplasm. The influx of cations into the cytoplasm depolarizes cells and is necessary for action potentials in excitable cells such as neurons. In non-excitable cells, membrane depolarization by TRP ) and-channels stimulates voltage- dependent channels (Ca(2+), K(+), Cl(-) influences many cellular events, such as transcription, translation, contraction, and migration. TRP channels are important in human physiology, and mutations in TRP genes are associated with at least four diseases. Furthermore, altered expression, function, and/or regulation of TRP channels have been implicated in diseases such as pulmonary hypertension.
Collapse
|
62
|
Sanchez-Miranda E, Ibarra-Sanchez A, Gonzalez-Espinosa C. Fyn kinase controls FcepsilonRI receptor-operated calcium entry necessary for full degranulation in mast cells. Biochem Biophys Res Commun 2009; 391:1714-20. [PMID: 20043875 DOI: 10.1016/j.bbrc.2009.12.139] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 12/22/2009] [Indexed: 12/11/2022]
Abstract
IgE-antigen-dependent crosslinking of the high affinity IgE receptor (FcepsilonRI) on mast cells leads to degranulation, leukotriene synthesis and cytokine production. Calcium (Ca(2+)) mobilization is a sine qua non requisite for degranulation, allowing the rapid secretion of stored pro-inflammatory mediators responsible for allergy symptoms. Fyn is a Src-family kinase that positively controls FcepsilonRI-induced mast cell degranulation. However, our understanding of the mechanism connecting Fyn activation to secretion of pre-synthesized mediators is very limited. We analyzed FcepsilonRI-dependent Ca(2+) mobilization in bone marrow-derived mast cells (BMMCs) differentiated from WT and Fyn -/- knock out mice. Fyn -/- BMMCs showed a marked defect in extracellular Ca(2+) influx after FcepsilonRI crosslinking but not after thapsigargin addition. High concentrations of Gadolinium (Gd(3+)) partially blocked FcepsilonRI-induced Ca(2+) influx in WT cells but, in contrast, completely inhibited Ca(2+) mobilization in Fyn -/- cells. Low concentrations of an inhibitor of the canonical transient receptor potential (TRPC) Ca(2+) channels (2-aminoethoxyphenyl-borane, 2-APB) blocked FcepsilonRI-induced maximal Ca(2+) rise in WT but not in Fyn -/- cells. Ca(2+) entry through Fyn-controlled, 2-APB sensitive channels was found to be important for full degranulation and IL-2 mRNA accumulation in WT cells. Immunoprecipitation assays showed that Fyn kinase interacts with TRPC 3/6/7 channels after IgE-antigen stimulation, but its association is not related to protein tyrosine phosphorylation. Results indicate Fyn kinase mediates the receptor-dependent activation of TRPC channels that contribute to degranulation in FcepsilonRI-stimulated mast cells.
Collapse
Affiliation(s)
- Elizabeth Sanchez-Miranda
- Departamento de Farmacobiología, Centro de Investigación y de Estudios Avanzados, Sede Sur, Calzada de los Tenorios 235, Col Granjas Coapa, CP 14330 Mexico City, Mexico
| | | | | |
Collapse
|
63
|
Mechanotransduction by TRP Channels: General Concepts and Specific Role in the Vasculature. Cell Biochem Biophys 2009; 56:1-18. [DOI: 10.1007/s12013-009-9067-2] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
64
|
McElroy SP, Drummond RM, Gurney AM. Regulation of store-operated Ca2+ entry in pulmonary artery smooth muscle cells. Cell Calcium 2009; 46:99-106. [DOI: 10.1016/j.ceca.2009.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2008] [Revised: 05/05/2009] [Accepted: 05/31/2009] [Indexed: 11/25/2022]
|
65
|
Dynamic interaction of hTRPC6 with the Orai1-STIM1 complex or hTRPC3 mediates its role in capacitative or non-capacitative Ca(2+) entry pathways. Biochem J 2009; 420:267-76. [PMID: 19260825 DOI: 10.1042/bj20082179] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
TRPC (canonical transient receptor potential) channel subunits have been shown to assemble into homo- or hetero-meric channel complexes, including different Ca2+-handling proteins, required for the activation of CCE (capacitative Ca2+ entry) or NCCE (non-CCE) pathways. In the present study we found evidence for the dynamic interaction between endogenously expressed hTRPC6 (human TRPC6) with either both Orai1 and STIM1 (stromal interaction molecule 1) or hTRPC3 to participate in CCE or NCCE. Electrotransjection of cells with an anti-hTRPC6 antibody, directed towards the C-terminal region, reduces CCE induced by TPEN [N,N,N',N'-tetrakis-(2-pyridylmethyl)-ethylenediamine], which reduces the intraluminal free Ca2+ concentration. Cell stimulation with thrombin or extensive Ca2+-store depletion by TG (thapsigargin)+ionomycin enhanced the interaction between hTRPC6 and the CCE proteins Orai1 and STIM1. In contrast, stimulation with the diacylglycerol analogue OAG (1-oleoyl-2-acetyl-sn-glycerol) displaces hTRPC6 from Orai1 and STIM1 and enhances the association between hTRPC6 and hTRPC3. The interaction between hTRPC6 and hTRPC3 was abolished by dimethyl-BAPTA [1,2-bis-(o-aminophenoxy)ethane-N,N,N',N'-tetra-acetic acid] loading, which indicates that this phenomenon is Ca2+-dependent. These findings support the hypothesis that hTRPC6 participates both in CCE and NCCE through its interaction with the Orai1-STIM1 complex or hTRPC3 respectively.
Collapse
|
66
|
Evans JF, Lee JH, Ragolia L. Ang-II-induced Ca(2+) influx is mediated by the 1/4/5 subgroup of the transient receptor potential proteins in cultured aortic smooth muscle cells from diabetic Goto-Kakizaki rats. Mol Cell Endocrinol 2009; 302:49-57. [PMID: 19135126 DOI: 10.1016/j.mce.2008.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2008] [Revised: 12/03/2008] [Accepted: 12/04/2008] [Indexed: 01/04/2023]
Abstract
Angiotensin-II (Ang-II) exerts many of its vascular effects, including the pathophysiological changes associated with type 2 diabetes, through changes in intracellular calcium concentration [Ca(2+)](i). We sought to clarify the mechanism responsible for Ang-II-induced Ca(2+) influx in cultured aortic VSMC using the Goto-Kakizaki (GK) rat model of type 2 diabetes. Ang-II-induced Ca(2+) influx was blocked by neither VDCC nor c-src inhibition but was sensitive to inositol 1,4,5-trisphosphate receptor inhibition, lanthanide and the diacylglycerol analogue, oleoyl-2-acetyl-sn-glycerol. Since transient receptor potential canonical (TRPC)-3 gene expression was undetectable in both WKY and GK VSMCs and TRPC6 gene and protein expression were significantly down-regulated in GK, we believe the 1/4/5 subgroup of TRPC proteins plays a significant role. Furthermore, in GK VSMC the elevated calcium influx observed was not attributable to increased TRPC expression, but rather an alteration of TRPC activity.
Collapse
MESH Headings
- Angiotensin II/metabolism
- Angiotensin II/pharmacology
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Blotting, Western
- Calcium/metabolism
- Calcium Signaling/drug effects
- Cells, Cultured
- Diabetes Mellitus, Type 2/metabolism
- Disease Models, Animal
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Polymerase Chain Reaction
- RNA, Messenger/metabolism
- Rats
- Rats, Inbred WKY
- TRPC Cation Channels/genetics
- TRPC Cation Channels/metabolism
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/metabolism
Collapse
Affiliation(s)
- Jodi F Evans
- Vascular Biology Institute, Department of Medicine, Winthrop University Hospital, Mineola, NY 11501, United States
| | | | | |
Collapse
|
67
|
DeHaven WI, Jones BF, Petranka JG, Smyth JT, Tomita T, Bird GS, Putney JW. TRPC channels function independently of STIM1 and Orai1. J Physiol 2009; 587:2275-98. [PMID: 19332491 DOI: 10.1113/jphysiol.2009.170431] [Citation(s) in RCA: 184] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Recent studies have defined roles for STIM1 and Orai1 as calcium sensor and calcium channel, respectively, for Ca(2+)-release activated Ca(2+) (CRAC) channels, channels underlying store-operated Ca(2+) entry (SOCE). In addition, these proteins have been suggested to function in signalling and constructing other channels with biophysical properties distinct from the CRAC channels. Using the human kidney cell line, HEK293, we examined the hypothesis that STIM1 can interact with and regulate members of a family of non-selective cation channels (TRPC) which have been suggested to also function in SOCE pathways under certain conditions. Our data reveal no role for either STIM1 or Orai1 in signalling of TRPC channels. Specifically, Ca(2+) entry seen after carbachol treatment in cells transiently expressing TRPC1, TRPC3, TRPC5 or TRPC6 was not enhanced by the co-expression of STIM1. Further, knockdown of STIM1 in cells expressing TRPC5 did not reduce TRPC5 activity, in contrast to one published report. We previously reported in stable TRPC7 cells a Ca(2+) entry which was dependent on TRPC7 and appeared store-operated. However, we show here that this TRPC7-mediated entry was also not dependent on either STIM1 or Orai1, as determined by RNA interference (RNAi) and expression of a constitutively active mutant of STIM1. Further, we determined that this entry was not actually store-operated, but instead TRPC7 activity which appears to be regulated by SERCA. Importantly, endogenous TRPC activity was also not regulated by STIM1. In vascular smooth muscle cells, arginine-vasopressin (AVP) activated non-selective cation currents associated with TRPC6 activity were not affected by RNAi knockdown of STIM1, while SOCE was largely inhibited. Finally, disruption of lipid rafts significantly attenuated TRPC3 activity, while having no effect on STIM1 localization or the development of I(CRAC). Also, STIM1 punctae were found to localize in regions distinct from lipid rafts. This suggests that TRPC signalling and STIM1/Orai1 signalling occur in distinct plasma membrane domains. Thus, TRPC channels appear to be activated by mechanisms dependent on phospholipase C which do not involve the Ca(2+) sensor, STIM1.
Collapse
Affiliation(s)
- Wayne I DeHaven
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences-NIH, Department of Health and Human Services, PO Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | | | | | |
Collapse
|
68
|
Smedlund K, Vazquez G. Involvement of native TRPC3 proteins in ATP-dependent expression of VCAM-1 and monocyte adherence in coronary artery endothelial cells. Arterioscler Thromb Vasc Biol 2008; 28:2049-55. [PMID: 18787184 DOI: 10.1161/atvbaha.108.175356] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
UNLABELLED Background- Vascular cell adhesion molecule-1 (VCAM-1) is critical in monocyte recruitment to the endothelium, a key event in development of atherosclerotic lesions. Stimulation of human coronary artery endothelial cells (HCAECs) with ATP positively modulates VCAM-1 expression and function through a mechanism involving Ca(2+) signaling. We here examined the role of Ca(2+) influx and native TRPC3 channels in that mechanism. METHODS AND RESULTS Omission of extracellular Ca(2+) or pretreatment of cells with channel blockers markedly reduced ATP-induced VCAM-1 and monocyte adhesion. Using a siRNA strategy and real-time fluorescence, we found that native TRPC3 proteins contribute to constitutive and ATP-regulated Ca(2+) influx. ATP-dependent upregulation of VCAM-1 was accompanied by an increase in basal cation entry and TRPC3 expression. Notably, TRPC3 knock-down resulted in a dramatic reduction of ATP-induced VCAM-1 and monocyte adhesion. CONCLUSIONS These findings indicate that in HCAECs, native TRPC3 proteins form channels that contribute to constitutive and ATP-dependent Ca(2+) influx, and that TRPC3 expression and function are fundamental to support VCAM-1 expression and monocyte binding. This is the first evidence to date relating native TRPC3 proteins with regulated expression of cell adhesion molecules in coronary endothelium, and suggests a potential pathophysiological role of TRPC3 in coronary artery disease.
Collapse
Affiliation(s)
- Kathryn Smedlund
- Department of Physiology and Pharmacology, Center for Diabetes and Endocrine Research, University of Toledo College of Medicine, Health Science Campus, Ohio 43614, USA
| | | |
Collapse
|
69
|
Takahashi S, Lin H, Geshi N, Mori Y, Kawarabayashi Y, Takami N, Mori MX, Honda A, Inoue R. Nitric oxide-cGMP-protein kinase G pathway negatively regulates vascular transient receptor potential channel TRPC6. J Physiol 2008; 586:4209-23. [PMID: 18617565 DOI: 10.1113/jphysiol.2008.156083] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
We investigated the inhibitory role of the nitric oxide (NO)-cGMP-protein kinase G (PKG) pathway on receptor-activated TRPC6 channels in both a heterologous expression system (HEK293 cells) and A7r5 vascular myocytes. Cationic currents due to TRPC6 expression were strongly suppressed (by approximately 70%) by a NO donor SNAP (100 microm) whether it was applied prior to muscarinic receptor stimulation with carbachol (CCh; 100 microm) or after G-protein activation with intracellular perfusion of GTPgammaS (100 microm). A similar extent of suppression was also observed with a membrane-permeable analogue of cGMP, 8Br-cGMP (100 microm). The inhibitory effects of SNAP and 8Br-cGMP on TRPC6 channel currents were strongly attenuated by the presence of inhibitors for guanylyl cyclase and PKG such as ODQ, KT5823 and DT3. Alanine substitution for the PKG phosphorylation candidate site at T69 but not at other sites (T14A, S28A, T193A, S321A) of TRPC6 similarly attenuated the inhibitory effects of SNAP and 8Br-cGMP. SNAP also significantly reduced single TRPC6 channel activity recorded in the inside-out configuration in a PKG-dependent manner. SNAP-induced PKG activation stimulated the incorporation of (32)P into wild-type and S321A-mutant TRPC6 proteins immunoprecipitated by TRPC6-specific antibody, but this was greatly attenuated in the T69A mutant. SNAP or 8Br-cGMP strongly suppressed TRPC6-like cation currents and membrane depolarization evoked by Arg(8)-vasopressin in A7r5 myocytes. These results strongly suggest that TRPC6 channels can be negatively regulated by the NO-cGMP-PKG pathway, probably via T69 phosphorylation of the N-terminal. This mechanism may be physiologically important in vascular tissues where NO is constantly released from vascular endothelial cells or nitrergic nerves.
Collapse
Affiliation(s)
- Shinichi Takahashi
- Department of Physiology, Graduate School of Medical Sciences, Fukuoka University, Fukuoka 814 0180, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Gervásio OL, Whitehead NP, Yeung EW, Phillips WD, Allen DG. TRPC1 binds to caveolin-3 and is regulated by Src kinase - role in Duchenne muscular dystrophy. J Cell Sci 2008; 121:2246-55. [PMID: 18544631 DOI: 10.1242/jcs.032003] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transient receptor potential canonical 1 (TRPC1), a widely expressed calcium (Ca(2+))-permeable channel, is potentially involved in the pathogenesis of Duchenne muscular dystrophy (DMD). Ca(2+) influx through stretch-activated channels, possibly formed by TRPC1, induces muscle-cell damage in the mdx mouse, an animal model of DMD. In this study, we showed that TRPC1, caveolin-3 and Src-kinase protein levels are increased in mdx muscle compared with wild type. TRPC1 and caveolin-3 colocalised and co-immunoprecipitated. Direct binding of TRPC1-CFP to caveolin-3-YFP was confirmed in C2 myoblasts by fluorescence energy resonance transfer (FRET). Caveolin-3-YFP targeted TRPC1-CFP to the plasma membrane. Hydrogen peroxide, a reactive oxygen species (ROS), increased Src activity and enhanced Ca(2+) influx, but only in C2 myoblasts co-expressing TRPC1 and caveolin-3. In mdx muscle, Tiron, a ROS scavenger, and PP2, a Src inhibitor, reduced stretch-induced Ca(2+) entry and increased force recovery. Because ROS production is increased in mdx/DMD, these results suggest that a ROS-Src-TRPC1/caveolin-3 pathway contributes to the pathogenesis of mdx/DMD.
Collapse
Affiliation(s)
- Othon L Gervásio
- School of Medical Sciences, Discipline of Physiology (F13), Bosch Institute, The University of Sydney, NSW 2006, Australia
| | | | | | | | | |
Collapse
|
71
|
Pedersen SF, Owsianik G, Nilius B. TRP channels: an overview. Cell Calcium 2008; 38:233-52. [PMID: 16098585 DOI: 10.1016/j.ceca.2005.06.028] [Citation(s) in RCA: 559] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2005] [Accepted: 06/28/2005] [Indexed: 12/12/2022]
Abstract
The TRP ("transient receptor potential") family of ion channels now comprises more than 30 cation channels, most of which are permeable for Ca2+, and some also for Mg2+. On the basis of sequence homology, the TRP family can be divided in seven main subfamilies: the TRPC ('Canonical') family, the TRPV ('Vanilloid') family, the TRPM ('Melastatin') family, the TRPP ('Polycystin') family, the TRPML ('Mucolipin') family, the TRPA ('Ankyrin') family, and the TRPN ('NOMPC') family. The cloning and characterization of members of this cation channel family has exploded during recent years, leading to a plethora of data on the roles of TRPs in a variety of tissues and species, including mammals, insects, and yeast. The present review summarizes the most pertinent recent evidence regarding the structural and functional properties of TRP channels, focusing on the regulation and physiology of mammalian TRPs.
Collapse
Affiliation(s)
- Stine Falsig Pedersen
- Department of Biochemistry, Institute for Molecular Biology and Physiology, University of Copenhagen, Denmark
| | | | | |
Collapse
|
72
|
Gul R, Kim SY, Park KH, Kim BJ, Kim SJ, Im MJ, Kim UH. A novel signaling pathway of ADP-ribosyl cyclase activation by angiotensin II in adult rat cardiomyocytes. Am J Physiol Heart Circ Physiol 2008; 295:H77-88. [PMID: 18456728 DOI: 10.1152/ajpheart.01355.2007] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
ADP-ribosyl cyclase (ADPR-cyclase) produces a Ca(2+)-mobilizing second messenger, cADP-ribose (cADPR), from NAD(+). In this study, we investigated the molecular basis of ADPR-cyclase activation in the ANG II signaling pathway and cellular responses in adult rat cardiomyocytes. The results showed that ANG II generated biphasic intracellular Ca(2+) concentration increases that include a rapid transient Ca(2+) elevation via inositol trisphosphate (IP(3)) receptor and sustained Ca(2+) rise via the activation of L-type Ca(2+) channel and opening of ryanodine receptor. ANG II-induced sustained Ca(2+) rise was blocked by a cADPR antagonistic analog, 8-bromo-cADPR, indicating that sustained Ca(2+) rise is mediated by cADPR. Supporting the notion, ADPR-cyclase activity and cADPR production by ANG II were increased in a time-dependent manner. Application of pharmacological inhibitors and immunological analyses revealed that cADPR formation was activated by sequential activation of Src, phosphatidylinositol 3-kinase (PI 3-kinase)/protein kinase B (Akt), phospholipase C (PLC)-gamma1, and IP(3)-mediated Ca(2+) signal. Inhibitors of these signaling molecules not only completely abolished the ANG II-induced Ca(2+) signals but also inhibited cADPR formation. Application of the cADPR antagonist and inhibitors of upstream signaling molecules of ADPR-cyclase inhibited ANG II-stimulated hypertrophic responses, which include nuclear translocation of Ca(2+)/calcineurin-dependent nuclear factor of activated T cells 3, protein expression of transforming growth factor-beta1, and incorporation of [(3)H]leucine in cardiomyocytes. Taken together, these findings suggest that activation of ADPR-cyclase by ANG II entails a novel signaling pathway involving sequential activation of Src, PI 3-kinase/Akt, and PLC-gamma1/IP(3) and that the activation of ADPR-cyclase can lead to cardiac hypertrophy.
Collapse
Affiliation(s)
- Rukhsana Gul
- Dept. of Biochemistry, Chonbuk National Univ. Medical School, Keum-am dong, Jeonju, 561-182, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
73
|
Mucolipin 1 channel activity is regulated by protein kinase A-mediated phosphorylation. Biochem J 2008; 410:417-25. [PMID: 17988215 DOI: 10.1042/bj20070713] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Mucolipins constitute a family of cation channels with homology with the transient receptor potential family. Mutations in MCOLN1 (mucolipin 1) have been linked to mucolipidosis type IV, a recessive lysosomal storage disease characterized by severe neurological and ophthalmologic abnormalities. At present, little is known about the mechanisms that regulate MCOLN1 activity. In the present paper, we addressed whether MCOLN1 activity is regulated by phosphorylation. We identified two PKA (protein kinase A) consensus motifs in the C-terminal tail of MCOLN1, containing Ser(557) and Ser(559). Ser(557) was the principal phosphorylation site, as mutation of this residue to alanine caused a greater than 75% reduction in the total levels of phosphorylated MCOLN1 C-terminal tail. Activation of PKA with forskolin promoted MCOLN1 phosphorylation, both in vitro and in vivo. In contrast, addition of the PKA inhibitor H89 abolished MCOLN1 phosphorylation. We also found that PKA-mediated phosphorylation regulates MCOLN1 channel activity. Forskolin treatment decreased MCOLN1 channel activity, whereas treatment with H89 increased MCOLN1 channel activity. The stimulatory effect of H89 on MCOLN1 function was not observed when Ser(557) and Ser(559) were mutated to alanine residues, indicating that these two residues are essential for PKA-mediated negative regulation of MCOLN1. This paper presents the first example of regulation of a member of the mucolipin family by phosphorylation.
Collapse
|
74
|
Rivera J, Fierro NA, Olivera A, Suzuki R. New insights on mast cell activation via the high affinity receptor for IgE. Adv Immunol 2008; 98:85-120. [PMID: 18772004 PMCID: PMC2761150 DOI: 10.1016/s0065-2776(08)00403-3] [Citation(s) in RCA: 162] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mast cells are innate immune cells that function as regulatory or effector cells and serve to amplify adaptive immunity. In adaptive immunity these cells function primarily through cell surface Fc receptors that bind immunoglobulin antibodies. The dysregulation of their adaptive role makes them central players in allergy and asthma. Upon encountering an allergen (antigen), which is recognized by immunoglobulin E (IgE) antibodies bound to the high affinity IgE receptor (FcepsilonRI) expressed on their cell surface, mast cells secrete both preformed and newly synthesized mediators of the allergic response. Blocking of these responses is an objective in therapeutic intervention of allergic diseases. Thus, understanding the mechanisms by which antigens elicit mast cell activation (via FcepsilonRI) holds promise toward identifying therapeutic targets. Here we review the most recent advances in understanding antigen-dependent mast cell activation. Specifically, we focus on the requirements for FcepsilonRI activation, the regulation of calcium responses, co-stimulatory signals in FcepsilonRI-mediated mast cell activation and function, and how genetics influences mast cell signaling and responses. These recent discoveries open new avenues of investigation with therapeutic potential.
Collapse
Affiliation(s)
- Juan Rivera
- Laboratory of Immune Cell Signaling, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | |
Collapse
|
75
|
Löf C, Blom T, Törnquist K. Overexpression of TRPC3 reduces the content of intracellular calcium stores in HEK-293 cells. J Cell Physiol 2008; 216:245-52. [DOI: 10.1002/jcp.21396] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
76
|
Redondo PC, Harper AGS, Harper MT, Brownlow SL, Rosado JA, Sage SO. hTRPC1-associated alpha-actinin, and not hTRPC1 itself, is tyrosine phosphorylated during human platelet activation. J Thromb Haemost 2007; 5:2476-83. [PMID: 17892531 DOI: 10.1111/j.1538-7836.2007.02773.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
BACKGROUND Canonical transient receptor potential channels (TRPCs), which are regulated by several processes, including tyrosine phosphorylation, are candidates for the conduction of store-operated Ca(2+) entry (SOCE). OBJECTIVES To assess hTRPC phosphotyrosine content upon platelet stimulation. METHODS A new protein complex immunological separation assay (ProCISA) was developed to allow assessment of isolated hTRPC tyrosine phosphorylation by Western blotting. RESULTS Classical immunoprecipitation suggested that thrombin (Thr) evoked an initial decrease in hTRPC1 phosphotyrosine content, which reached a minimum at 1 s, and then increased again, exceeding basal levels after 3 min. However, TRPC isolation from protein complexes using ProCISA revealed that hTRPC1, 4 and 5 were not tyrosine phosphorylated at rest or after Thr stimulation. Stimulation with Thr for 3 min increased the phosphotyrosine content of alpha-actinin, which shows similar electrophoretic properties to hTRPCs and coimmunoprecipitates with hTRPC1. Thr-evoked alpha-actinin tyrosine phosphorylation was increased by inhibiting the alpha-actinin phosphatase, SHP-1, which enhanced phosphorylation of the TRPC complex and SOCE. Inhibition of tyrosine phosphorylation impaired the interaction between hTRPC1 and the intracellular Ca(2+) sensor STIM1. CONCLUSIONS hTRPC1, 4 and 5 are not tyrosine phosphorylated during SOCE in human platelets although tyrosine phosphorylation is important for SOCE. The results obtained using ProCISA caution the use of classical immunoprecipitation for the determination of the tyrosine phosphorylation state of a given protein, where the presence of other proteins with similar electrophoretic mobilities may give misleading results.
Collapse
Affiliation(s)
- P C Redondo
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | | | | | | | | | | |
Collapse
|
77
|
Kiryushko D, Bock E, Berezin V. Pharmacology of cell adhesion molecules of the nervous system. Curr Neuropharmacol 2007; 5:253-67. [PMID: 19305742 PMCID: PMC2644493 DOI: 10.2174/157015907782793658] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Revised: 04/27/2007] [Accepted: 07/17/2007] [Indexed: 12/15/2022] Open
Abstract
Cell adhesion molecules (CAMs) play a pivotal role in the development and maintenance of the nervous system under normal conditions. They also are involved in numerous pathological processes such as inflammation, degenerative disorders, and cancer, making them attractive targets for drug development. The majority of CAMs are signal transducing receptors. CAM-induced intracellular signalling is triggered via homophilic (CAM-CAM) and heterophilic (CAM - other counter-receptors) interactions, which both can be targeted pharmacologically. We here describe the progress in the CAM pharmacology focusing on cadherins and CAMs of the immunoglobulin (Ig) superfamily, such as NCAM and L1. Structural basis of CAM-mediated cell adhesion and CAM-induced signalling are outlined. Different pharmacological approaches to study functions of CAMs are presented including the use of specific antibodies, recombinant proteins, and synthetic peptides. We also discuss how unravelling of the 3D structure of CAMs provides novel pharmacological tools for dissection of CAM-induced signalling pathways and offers therapeutic opportunities for a range of neurological disorders.
Collapse
Affiliation(s)
- Darya Kiryushko
- Protein Laboratory, Department of Neuroscience and Pharmacology, Panum Institute Bld. 6.2, Blegdamsvej 3C, DK-2200, Copenhagen N, Denmark.
| | | | | |
Collapse
|
78
|
Cohen DM. The transient receptor potential vanilloid-responsive 1 and 4 cation channels: role in neuronal osmosensing and renal physiology. Curr Opin Nephrol Hypertens 2007; 16:451-8. [PMID: 17693761 DOI: 10.1097/mnh.0b013e32821f6060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW To provide an overview of recent developments in the field of systemic osmoregulation, with attention to the brain and kidney. RECENT FINDINGS A number of pivotal observations underscore the primary importance of transient receptor potential channels in systemic osmoregulation and their involvement constitutes the focus of this review. Recent data suggest that transient receptor potential vanilloid-responsive 4 is a central sensor or effector of systemic hypotonicity, whereas an unidentified variant of transient receptor potential vanilloid-responsive 1 potentially serves an analogous role in systemic hypertonicity. SUMMARY Members of the transient receptor potential vanilloid-responsive subfamily of transient receptor potential channels are likely to serve as central sensors of systemic anisotonicity.
Collapse
Affiliation(s)
- David M Cohen
- Nephrology Section, Portland Veterans Affairs Medical Center and Division of Nephrology and Hypertension, Department of Medicine, Oregon Health & Science University, Portland, Oregon 97239, USA.
| |
Collapse
|
79
|
Lemonnier L, Trebak M, Putney JW. Complex regulation of the TRPC3, 6 and 7 channel subfamily by diacylglycerol and phosphatidylinositol-4,5-bisphosphate. Cell Calcium 2007; 43:506-14. [PMID: 17942152 DOI: 10.1016/j.ceca.2007.09.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2007] [Revised: 08/06/2007] [Accepted: 09/05/2007] [Indexed: 10/22/2022]
Abstract
TRPC3, 6 and 7 channels constitute a subgroup of non-selective, calcium-permeable cation channels within the TRP superfamily that are activated by products of phospholipase C-mediated breakdown of phosphatidylinositol-4,5-bisphosphate (PIP(2)). A number of ion channels, including other members of the TRP superfamily, are regulated directly by PIP(2). However, there is little information on the regulation of the TRPC channel subfamily by PIP(2). Pretreatment of TRPC7-expressing cells with a drug that blocks the synthesis of polyphosphoinositides inhibited the ability of the synthetic diacylglycerol, oleyl-acetyl glycerol, to activate TRPC7. In excised patches, TRPC7 channels were robustly activated by application of PIP(2) or ATP, but not by inositol 1,4,5-trisphosphate. Similar results were obtained with TRPC6 and TRPC3, although the effects of PIP(2) were somewhat less and with TRPC3 there was no significant effect of ATP. In the cell-attached configuration, TRPC7 channels could be activated by the synthetic diacylglycerol analog, oleyl-acetyl glycerol. However, this lipid mediator did not activate TRPC7 channels in excised patches. In addition, channel activation by PIP(2) in excised patches was significantly greater than that observed with oleyl-acetyl glycerol in the cell-attached configuration. These findings reveal complex regulation of TRPC channels by lipid mediators. The results also reveal for the first time direct activation by PIP(2) of members of the TRPC ion channel subfamily.
Collapse
Affiliation(s)
- Loïc Lemonnier
- Laboratory of Signal Transduction, National Institute of Environmental Health Sciences-NIH, Research Triangle Park, NC 27709, United States.
| | | | | |
Collapse
|
80
|
Abstract
Reactive oxygen species (ROS) are generated in response to a number of physiologic or pathologic conditions. In addition to ROS produced extrinsically, a cell may produce ROS as a result of normal metabolism and signaling processes. When sufficient quantities of ROS are present within the cell, this oxidative stress may have profound effects on the cell, including the induction of cell death. Various signaling pathways are initiated in response to oxidative stress, through which the cell's demise is assured. Many of these signaling pathways involve cholesterol-enriched domains of the cell membrane known as lipid rafts. These lipid rafts are platforms for initiation or transduction of the signal and may modulate protein activity through a direct change in local membrane structure or by allowing protein-protein interactions to occur with higher affinity/specificity or both. Among the examples discussed in this review are death-receptor signaling, induction of membrane-associated tyrosine kinase activation, and activation of transient receptor protein (TRP) channels. Special attention also is given to the RIP1/TRAF2 pathway, which involves the downstream activation of the stress-activated protein kinase JNK. The activation of the JNK pathway plays a key role in the induction of cellular death in response to ROS.
Collapse
Affiliation(s)
- Michael J Morgan
- Cell and Cancer Biology Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, Maryland 20892, USA
| | | | | |
Collapse
|
81
|
Murphy TV. I don't need this pressure on; src-family kinases, ERK 1/2 kinase and mechanotransduction in arteries. J Hypertens 2007; 25:1791-3. [PMID: 17762640 DOI: 10.1097/hjh.0b013e3282ef45f9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
82
|
Goel M, Sinkins WG, Zuo CD, Hopfer U, Schilling WP. Vasopressin-induced membrane trafficking of TRPC3 and AQP2 channels in cells of the rat renal collecting duct. Am J Physiol Renal Physiol 2007; 293:F1476-88. [PMID: 17699554 DOI: 10.1152/ajprenal.00186.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The canonical transient receptor potential channels TRPC3 and TRPC6 are abundantly expressed along with the water channel aquaporin-2 (AQP2) in principal cells of the cortical and medullary collecting duct. Although TRPC3 is selectively localized to the apical membrane and TRPC6 is found in both the apical and basolateral domains, immunofluorescence is often observed in the cytoplasm, suggesting that TRPC3 and TRPC6 may exist in intracellular vesicles and may shuttle to and from the membrane in response to receptor stimulation. To test this hypothesis, the effect of arginine-vasopressin (AVP) on the subcellular distribution of TRPC3, TRPC6, and AQP2 was examined in the rat kidney and in cultured cell lines from the cortical (M1) and inner medullary (IMCD-3) collecting duct. Immunofluorescence analysis revealed that TRPC3, but not TRPC6, colocalized with AQP2 in intracellular vesicles. AVP caused the insertion and accumulation of TRPC3 and AQP2 in the apical membrane but had no effect on the subcellular distribution of TRPC6. TRPC3, but not TRPC6, coimmunoprecipitated with AQP2 from both medulla and M1 and IMCD-3 cell lysates. Apical-to-basolateral transepithelial 45Ca2+ flux in polarized IMCD-3 cell monolayers was stimulated by diacylglycerol analogs or by the purinergic receptor agonist ATP but not by thapsigargin. Stimulated 45Ca2+ flux was increased by overexpression of TRPC3 and attenuated by a dominant-negative TRPC3 construct. Furthermore, 45Ca2+ flux was greatly reduced by the pyrazole-derivative BTP2, a known inhibitor of TRPC3 channels. These results demonstrate that 1) TRPC3 and TRPC6 exist in different vesicle populations, 2) TRPC3 physically associates with APQ2 and shuttles to the apical membrane in response to AVP, and 3) TRPC3 is responsible for transepithelial Ca2+ flux in principal cells of the renal collecting duct.
Collapse
Affiliation(s)
- Monu Goel
- Rammelkamp Center for Education and Research, Rm. R-322, MetroHealth Medical Center, 2500 MetroHealth Dr., Cleveland, OH 44109-1998, USA
| | | | | | | | | |
Collapse
|
83
|
Aires V, Hichami A, Boulay G, Khan NA. Activation of TRPC6 calcium channels by diacylglycerol (DAG)-containing arachidonic acid: A comparative study with DAG-containing docosahexaenoic acid. Biochimie 2007; 89:926-37. [PMID: 17532549 DOI: 10.1016/j.biochi.2006.10.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2006] [Accepted: 10/27/2006] [Indexed: 11/29/2022]
Abstract
We synthesized a diacylglycerol (DAG)-containing arachidonic acid, i.e., 1-stearoyl-2-arachidonyl-sn-glycerol (SAG), and studied its implication in the modulation of canonical transient receptor potential sub-type 6 (TRPC6) channels in stably-transfected HEK-293 cells. SAG induced the influx of Ca(2+), and also of other bivalent cations like Ba(2+) and Sr(2+), in these cells. SAG-evoked Ca(2+) influx was not due to its metabolites as inhibitors of DAG-lipase (RHC80267) and DAG-kinase (R50922) failed to inhibit the response of the same. To emphasise that SAG exerts its action via its DAG configuration, but not due to the presence of stearic acid at sn-1 position, we synthesized 1-palmitoyl-2-arachidonyl-sn-glycerol (PAG). PAG-induced increases in [Ca(2+)](i) were not significantly different from those induced by SAG. For the comparative studies, we also synthesized the DAG-containing docosahexaenoic acid, i.e., 1-stearoyl-2-docosahexaenoyl-sn-glycerol (SDG). We observed that SDG and 1,2-dioctanoyl-sn-glycerol (DOG), a DAG analogue, also evoked increases in [Ca(2+)](i), which were lesser than those evoked by SAG. However, activation of TRPC6 channels by all the DAG molecular species (SAG, DOG and SDG) required Src kinases as the tyrosine kinase inhibitors, PP2 and SU6656, significantly attenuated the increases in [Ca(2+)](i) evoked by these agents. Moreover, disruption of lipid rafts with methyl-beta-cyclodextrin completely abolished SAG-, DOG- and SDG-induced increases in [Ca(2+)](i). The present study shows that SAG as well as SDG and DOG stimulate Ca(2+) influx through the activation of TRPC6 calcium channels which are regulated by Src kinases and intact lipid raft domains.
Collapse
Affiliation(s)
- Virginie Aires
- Département de Physiologie, UPRES Lipides and Nutrition, Université de Bourgogne, Faculté des Sciences de la Vie, 6 Boulevard Gabriel, 2100 Dijon, France
| | | | | | | |
Collapse
|
84
|
Firth AL, Remillard CV, Yuan JXJ. TRP channels in hypertension. BIOCHIMICA ET BIOPHYSICA ACTA 2007; 1772:895-906. [PMID: 17399958 PMCID: PMC2025589 DOI: 10.1016/j.bbadis.2007.02.009] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 02/08/2007] [Accepted: 02/08/2007] [Indexed: 01/05/2023]
Abstract
Pulmonary and systemic arterial hypertension are associated with profound alterations in Ca(2+) homeostasis and smooth muscle cell proliferation. A novel class of non-selective cation channels, the transient receptor potential (TRP) channels, have emerged at the forefront of research into hypertensive disease states. TRP channels are identified as molecular correlates for receptor-operated and store-operated cation channels in the vasculature. Over 10 TRP isoforms are identified at the mRNA and protein expression levels in the vasculature. Current research implicates upregulation of specific TRP isoforms to be associated with increased Ca(2+) influx, characteristic of vasoconstriction and vascular smooth muscle cell proliferation. TRP channels are implicated as Ca(2+) entry pathways in pulmonary hypertension and essential hypertension. Caveolae have recently emerged as membrane microdomains in which TRP channels may be co-localized with the endoplasmic reticulum in both smooth muscle and endothelial cells. Such enhanced expression and function of TRP channels and their localization in caveolae in pathophysiological hypertensive disease states highlights their importance as potential targets for pharmacological intervention.
Collapse
MESH Headings
- Animals
- Caveolae/metabolism
- Cell Proliferation/drug effects
- Cytoskeleton/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Gene Expression Regulation
- Humans
- Hypertension/etiology
- Hypertension/genetics
- Hypertension/physiopathology
- Hypertension/therapy
- Hypertension, Pulmonary/etiology
- Hypertension, Pulmonary/genetics
- Hypertension, Pulmonary/therapy
- Models, Biological
- Muscle Contraction/drug effects
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/physiology
- Pulmonary Artery/physiology
- Transient Receptor Potential Channels/agonists
- Transient Receptor Potential Channels/genetics
- Transient Receptor Potential Channels/metabolism
- Transient Receptor Potential Channels/physiology
Collapse
Affiliation(s)
- Amy L Firth
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, San Diego, 9500 Gilman Drive, MC 0725, La Jolla, CA 92093-0725, USA
| | | | | |
Collapse
|
85
|
Sternfeld L, Anderie I, Schmid A, Al-Shaldi H, Krause E, Magg T, Schreiner D, Hofer HW, Schulz I. Identification of tyrosines in the putative regulatory site of the Ca2+ channel TRPV6. Cell Calcium 2007; 42:91-102. [PMID: 17197020 DOI: 10.1016/j.ceca.2006.11.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 10/12/2006] [Indexed: 11/26/2022]
Abstract
In HEK293 cells, transfected with the Ca2+ channel protein TRPV6, Ca2+ influx is increased and TRPV6 is tyrosine phosphorylated following addition of the tyrosine phosphatase inhibitor N,N-dimethyl-hydroxamido hydroxovanadate to cells. This effect of DMHV is enhanced by co-transfection of cells with the tyrosine kinase Src and the tyrosine phosphatase 1B. It is abolished when cells had been treated with PP1, an inhibitor of Src family tyrosine kinases. PTP1B interacts with the N-terminal domain of TRPV6 within a region of amino acids 1-191 as shown by co-immunoprecipitation, bimolecular fluorescence complementation and the yeast 2-hybrid system. Point mutation of both tyrosines 161 and 162 in the TRPV6 protein abolishes the DMHV-effect on Ca2+ influx and tyrosine phosphorylation by Src. Single mutations of Y161 or Y162 shows that each of both tyrosines alone is sufficient for the DMHV-effect. We conclude that phosphorylation/dephosphorylation of tyrosines in position 161 and 162 is essential for regulation of Ca2+ influx through TRPV6 Ca2+ channels in HEK293 cells.
Collapse
Affiliation(s)
- Lutz Sternfeld
- Physiological Institute, University of Saarland, 66421 Homburg (Saar), Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
86
|
Abstract
This chapter reviews recent evidence indicating that canonical or classical transient receptor potential (TRPC) channels are directly or indirectly mechanosensitive (MS) and can therefore be designated as mechano-operated channels (MOCs). The MS functions of TRPCs may be mechanistically related to their better known functions as store-operated and receptor-operated channels (SOCs and ROCs). Mechanical forces may be conveyed to TRPC channels through the "conformational coupling" mechanism that transmits information regarding the status of internal Ca(2+) stores. All TRPCs are regulated by receptors coupled to phospholipases that are themselves MS and can regulate channels via lipidic second messengers. Accordingly, there may be several nonexclusive mechanisms by which mechanical forces may regulate TRPC channels, including direct sensitivity to bilayer mechanics, physical coupling to internal membranes and/or cytoskeletal proteins, and sensitivity to lipidic second messengers generated by MS enzymes. Various strategies that can be used for separating out different MS-gating mechanisms and their possible role in specific TRPCs are discussed.
Collapse
Affiliation(s)
- Owen P Hamill
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| | - Rosario Maroto
- Department of Neuroscience and Cell Biology, University of Texas Medical Branch, Galveston, Texas 77555
| |
Collapse
|
87
|
Zhang W, Tong Q, Conrad K, Wozney J, Cheung JY, Miller BA. Regulation of TRP channel TRPM2 by the tyrosine phosphatase PTPL1. Am J Physiol Cell Physiol 2007; 292:C1746-58. [PMID: 17251321 DOI: 10.1152/ajpcell.00569.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
TRPM2, a member of the transient receptor potential (TRP) superfamily, is a Ca(2+)-permeable channel, which mediates susceptibility to cell death following activation by oxidative stress, TNFalpha, or beta-amyloid peptide. We determined that TRPM2 is rapidly tyrosine phosphorylated after stimulation with H(2)O(2) or TNFalpha. Inhibition of tyrosine phosphorylation with the tyrosine kinase inhibitors genistein or PP2 significantly reduced the increase in [Ca(2+)](i) observed after H(2)O(2) or TNFalpha treatment in TRPM2-expressing cells, suggesting that phosphorylation is important in TRPM2 activation. Utilizing a TransSignal PDZ domain array blot to identify proteins which interact with TRPM2, we identified PTPL1 as a potential binding protein. PTPL1 is a widely expressed tyrosine phosphatase, which has a role in cell survival and tumorigenesis. Immunoprecipitation and glutathione-S-transferase pull-down assays confirmed that TRPM2 and PTPL1 interact. To examine the ability of PTPL1 to modulate phosphorylation or activation of TRPM2, PTPL1 was coexpressed with TRPM2 in human embryonic kidney-293T cells. This resulted in significantly reduced TRPM2 tyrosine phosphorylation, and inhibited the rise in [Ca(2+)](i) and the loss of cell viability, which follow H(2)O(2) or TNFalpha treatment. Consistent with these findings, reduction in endogenous PTPL1 expression with small interfering RNA resulted in increased TRPM2 tyrosine phosphorylation, a significantly greater rise in [Ca(2+)](i) following H(2)O(2) treatment, and enhanced susceptibility to H(2)O(2)-induced cell death. Endogenous TRPM2 and PTPL1 was associated in U937-ecoR cells, confirming the physiological relevance of this interaction. These data demonstrate that tyrosine phosphorylation of TRPM2 is important in its activation and function and that inhibition of TRPM2 tyrosine phosphorylation reduces Ca(2+) influx and protects cell viability. They also suggest that modulation of TRPM2 tyrosine phosphorylation is a mechanism through which PTPL1 may mediate resistance to cell death.
Collapse
Affiliation(s)
- Wenyi Zhang
- Department of Pediatrics, The Pennsylvania State University College of Medicine, Milton S. Hershey Medical Center, PO Box 850, Hershey, PA 17033, USA
| | | | | | | | | | | |
Collapse
|
88
|
Chakrabarti R, Chakrabarti R. Calcium signaling in non-excitable cells: Ca2+ release and influx are independent events linked to two plasma membrane Ca2+ entry channels. J Cell Biochem 2007; 99:1503-16. [PMID: 17031847 DOI: 10.1002/jcb.21102] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).
Collapse
Affiliation(s)
- Ranjana Chakrabarti
- Department of Laboratory Medicine, St. Michael's Hospital, 30 Bond Street, Toronto, Ontario, Canada M6N 4C5
| | | |
Collapse
|
89
|
Abstract
TRPC3 represents one of the first identified mammalian relatives of the Drosophila trp gene product. Despite intensive biochemical and biophysical characterization as well as numerous attempts to uncover its physiological role in native cell systems, this channel protein still represents one of the most enigmatic members of the transient receptor potential (TRP) superfamily. TRPC3 is significantly expressed in brain and heart and likely to play a role in both non-excitable as well as excitable cells, being potentially involved in a wide spectrum of Ca2+ signalling mechanisms. Its ability to associate with a variety of partner proteins apparently enables TRPC3 to form different cation channels in native cells. TRPC3 cation channels display unique gating and regulatory properties that allow for recognition and integration of multiple input stimuli including lipid mediators and cellular Ca2+ gradients as well as redox signals. The physiological/pathophysiological functions of this highly versatile cation channel protein are as yet barely delineated. Here we summarize current knowledge on properties and possible signalling functions of TRPC3 and discuss the potential biological relevance of this signalling molecule.
Collapse
Affiliation(s)
- P Eder
- Institute of Pharmaceutical Sciences, Pharmacology and Toxicology, Karl-Franzens-University of Graz, Universitaetsplatz 2, 8010 Graz, Austria
| | | | | |
Collapse
|
90
|
Organizing Committee:. Platelets 2007. [DOI: 10.1080/09537100601087027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
91
|
Abstract
Ca2+, nitric oxide (NO), and protein kinase G (PKG) are important signaling molecules that play pivotal roles in many physiological processes such as vascular tone control, platelet activation, and synaptic plasticity. TRPC channels allow Ca2+ influx, thus contributing to the production of NO, which subsequently stimulates PKG. It has been demonstrated that PKG can phosphorylate human TRPC3 at Thr-11 and Ser-263 and that this phosphorylation inactivates TRPC3. These two PKG phosphorylation sites, Thr-11 and Ser-263 in human TRPC3, are conserved in other members of the TRPC3/6/7 subfamily, suggesting that PKG may also phosphorylate TRPC6 and TRPC7. In addition, protein kinase C (PKC) also inactivates TRPC3, partly through activating PKG. The PKG-mediated inhibition of TRPC channels may provide a feedback control for the fine tuning of [Ca2+]i levels and protect the cells from the detrimental effects of excessive [Ca2+]i and/or NO.
Collapse
Affiliation(s)
- X Yao
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China.
| |
Collapse
|
92
|
Schwarz EC, Wolfs MJ, Tonner S, Wenning AS, Quintana A, Griesemer D, Hoth M. TRP channels in lymphocytes. Handb Exp Pharmacol 2007:445-56. [PMID: 17217072 DOI: 10.1007/978-3-540-34891-7_26] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
TRP proteins form ion channels that are activated following receptor stimulation. Several members of the TRP family are likely to be expressed in lymphocytes. However, in many studies, messenger RNA (mRNA) but not protein expression was analyzed and cell lines but not primary human or murine lymphocytes were used. Among the expressed TRP mRNAs are TRPC1, TRPC3, TRPM2, TRPM4, TRPM7, TRPV1, and TRPV2. Regulation of Ca2+ entry is a key process for lymphocyte activation, and TRP channels may both increase Ca2+ influx (such as TRPC3) or decrease Ca2+ influx through membrane depolarization (such as TRPM4). In the future, linking endogenous Ca2+/cation channels in lymphocytes with TRP proteins should lead to a better molecular understanding of lymphocyte activation.
Collapse
Affiliation(s)
- E C Schwarz
- Institut für Physiologie, Universität des Saarlandes, Gebäude 58, 66421 Homburg/Saar, Germany
| | | | | | | | | | | | | |
Collapse
|
93
|
Soboloff J, Spassova M, Hewavitharana T, He LP, Luncsford P, Xu W, Venkatachalam K, van Rossum D, Patterson RL, Gill DL. TRPC channels: integrators of multiple cellular signals. Handb Exp Pharmacol 2007:575-91. [PMID: 17217080 DOI: 10.1007/978-3-540-34891-7_34] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
TRPC channels are ubiquitously expressed among cell types and mediate signals in response to phospholipase C (PLC)-coupled receptors. TRPC channels function as integrators of multiple signals resulting from receptor-induced PLC activation, which catalyzes the breakdown of phosphatidylinositol 4,5-bisphosphate (PIP2) to produce inositol 1,4,5-trisphosphate (InsP3) and diacylglycerol (DAG). InsP3 depletes Ca2+ stores and TRPC3 channels can be activated by store-depletion. InsP3 also activates the InsP3 receptor, which may undergo direct interactions with the TRPC3 channel, perhaps mediating store-dependence. The other PLC product, DAG, has a direct non-PKC-dependent activating role on TRPC3 channels likely by direct binding. DAG also has profound effects on the TRPC3 channel through PKC. Thus PKC is a powerful inhibitor of most TRPC channels and DAG is a dual regulator of the TRPC3 channel. PLC-mediated DAG results in rapid channel opening followed later by a slower DAG-induced PKC-mediated deactivation of the channel. The decreased level of PIP2 from PLC activation also has an important modifying action on TRPC3 channels. Thus, the TRPC3 channel and PLCgamma form an intermolecular PH domain that has high specificity for binding PIP2. This interaction allows the channel to be retained within the plasma membrane, a further operational control factor for TRPC3. As nonselective cation channels, TRPC channel opening results in the entry of both Na+ and Ca2+ ions. Thus, while they may mediate Ca2+ entry signals, TRPC channels are also powerful modifiers of membrane potential.
Collapse
Affiliation(s)
- J Soboloff
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, 108 North Greene Street, Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
94
|
Raybould NP, Jagger DJ, Kanjhan R, Greenwood D, Laslo P, Hoya N, Soeller C, Cannell MB, Housley GD. TRPC-like conductance mediates restoration of intracellular Ca2+ in cochlear outer hair cells in the guinea pig and rat. J Physiol 2006; 579:101-13. [PMID: 17158171 PMCID: PMC2075380 DOI: 10.1113/jphysiol.2006.122929] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Ca2+ signalling is central to cochlear sensory hair cell physiology through its influence on sound transduction, membrane filter properties and neurotransmission. However, the mechanism for establishing Ca2+ homeostasis in these cells remains unresolved. Canonical transient receptor potential (TRPC) Ca2+ entry channels provide an important pathway for maintaining intracellular Ca2+ levels. TRPC3 subunit expression was detected in guinea pig and rat organ of Corti by RT-PCR, and localized to the sensory and neural poles of the inner and outer hair cells (OHCs) by confocal immunofluorescence imaging. A cation entry current with a TRPC-like phenotype was identified in guinea pig and rat OHCs by whole-cell voltage clamp. This slowly activating current was induced by the lowering of cytosolic Ca2+ levels ([Ca2+]i) following a period in nominally Ca2+-free solution. Activation was dependent upon the [Ca2+]o and was sustained until [Ca(2+)]i was restored. Ca2+ entry was confirmed by confocal fluorescence imaging, and rapidly recruited secondary charybdotoxin- and apamin-sensitive K(Ca) currents. Dual activation by the G protein-coupled receptor (GPCR)-phospholipase C-diacylglycerol (DAG) second messenger pathway was confirmed using the analogue 1-oleoyl-2-acetyl-sn-glycerol (OAG). Ion substitution experiments showed that the putative TRPC Ca2+ entry current was selective for Na+ > K+ with a ratio of 1: 0.6. The Ca2+ entry current was inhibited by the TRPC channel blocker 2-aminoethyl diphenylborate (2APB) and the tyrosine kinase inhibitor, erbstatin analogue. We conclude that TRPC Ca2+ entry channels, most likely incorporating TRPC3 subunits, support cochlear hair cell Ca2+ homeostasis and GPCR signalling.
Collapse
Affiliation(s)
- Nicholas P Raybould
- Department of Physiology, University of Auckland, Private Bag 92019, Auckland, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Bush EW, Hood DB, Papst PJ, Chapo JA, Minobe W, Bristow MR, Olson EN, McKinsey TA. Canonical Transient Receptor Potential Channels Promote Cardiomyocyte Hypertrophy through Activation of Calcineurin Signaling. J Biol Chem 2006; 281:33487-96. [PMID: 16950785 DOI: 10.1074/jbc.m605536200] [Citation(s) in RCA: 213] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The calcium/calmodulin-dependent phosphatase calcineurin plays a central role in the control of cardiomyocyte hypertrophy in response to pathological stimuli. Although calcineurin is present at high levels in normal heart, its activity appears to be unaffected by calcium during the course of a cardiac cycle. The mechanism(s) whereby calcineurin is selectively activated by calcium under pathological conditions has remained unclear. Here, we demonstrate that diverse signals for cardiac hypertrophy stimulate expression of canonical transient receptor potential (TRPC) channels. TRPC consists of a family of seven membrane-spanning nonselective cation channels that have been implicated in the nonvoltage-gated influx of calcium in response to G protein-coupled receptor signaling, receptor tyrosine kinase signaling, and depletion of internal calcium stores. TRPC3 expression is up-regulated in multiple rodent models of pathological cardiac hypertrophy, whereas TRPC5 expression is induced in failing human heart. We demonstrate that TRPC promotes cardiomyocyte hypertrophy through activation of calcineurin and its downstream effector, the nuclear factor of activated T cells transcription factor. These results define a novel role for TRPC channels in the control of cardiac growth, and suggest that a TRPC-derived pool of calcium contributes to selective activation of calcineurin in diseased heart.
Collapse
Affiliation(s)
- Erik W Bush
- Myogen, Inc., Westminster, Colorado 80021, USA.
| | | | | | | | | | | | | | | |
Collapse
|
96
|
Abramowitz J, Yildirim E, Birnbaumer L. The TRPC Family of Ion Channels. TRP ION CHANNEL FUNCTION IN SENSORY TRANSDUCTION AND CELLULAR SIGNALING CASCADES 2006. [DOI: 10.1201/9781420005844.ch1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
97
|
Abstract
The transient receptor potential (TRP) ion channel family was the last major ion channel family to be discovered. The prototypical member (dTRP) was identified by a forward genetic approach in Drosophila, where it represents the transduction channel in the photoreceptors, activated downstream of a Gq-coupled PLC. In the meantime 29 vertebrate TRP isoforms are recognized, distributed amongst seven subfamilies (TRPC, TRPV, TRPM, TRPML, TRPP, TRPA, TRPN). They subserve a wide range of functions throughout the body, most notably, though by no means exclusively, in sensory transduction and in vascular smooth muscle. However, their precise physiological roles and mechanism of activation and regulation are still only gradually being revealed. Most TRP channels are subject to multiple modes of regulation, but a common theme amongst the TRPC/V/M subfamilies is their regulation by lipid messengers. Genetic evidence supports an excitatory role of diacylglycerol (DAG) for the dTRP's, although curiously only DAG metabolites (PUFAs) have been found to activate the Drosophila channels. TRPC2,3,6 and 7 are widely accepted as DAG-activated channels, although TRPC3 can also be regulated via a store-operated mechanism. More recently PIP2 has been shown to be required for activity of TRPV5, TRPM4,5,7 and 8, whilst it may inhibit TRPV1 and the dTRPs. Although compelling evidence for a direct interaction of DAG with the TRPC channels is lacking, mutagenesis studies have identified putative PIP2-interacting domains in the C-termini of several TRPV and TRPM channels.
Collapse
Affiliation(s)
- Roger C Hardie
- Department of Physiology Development and Neuroscience, Cambridge University, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
98
|
Yao X, Kwan HY, Huang Y. Regulation of TRP channels by phosphorylation. Neurosignals 2006; 14:273-80. [PMID: 16772730 DOI: 10.1159/000093042] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2005] [Accepted: 10/03/2005] [Indexed: 11/19/2022] Open
Abstract
The transient receptor potential (TRP) channels are a group of Ca2+-permeable cation channels (except TRPM4 and TRPM5) that function as cellular sensors of various internal and external stimuli. Most of these channels are expressed in the nervous system and they play a key role in sensory physiology. They may respond to temperature, pressure, inflammatory agents, pain, osmolarity, taste and many other stimuli. Recent development indicates that the activity of these channels is regulated by protein phosphorylation and dephosphorylation of serine, threonine, and tyrosine residues. In this review, we present a comprehensive summary of the literature regarding the TRP channel regulation by different protein kinases.
Collapse
Affiliation(s)
- Xiaoqiang Yao
- Department of Physiology, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, SAR, China.
| | | | | |
Collapse
|
99
|
Dietrich A, Chubanov V, Kalwa H, Rost BR, Gudermann T. Cation channels of the transient receptor potential superfamily: their role in physiological and pathophysiological processes of smooth muscle cells. Pharmacol Ther 2006; 112:744-60. [PMID: 16842858 DOI: 10.1016/j.pharmthera.2006.05.013] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2006] [Accepted: 05/30/2006] [Indexed: 10/24/2022]
Abstract
Smooth muscle cells (SMC) are essential components of many tissues of the body. Ion channels regulate their membrane potential, the intracellular Ca(2+) concentration ([Ca(2+)](i)) and their contractility. Among the ion channels expressed in SMC cation channels of the transient receptor potential (TRP) superfamily allow the entry of Na(+), Ca(2+) and Mg(2+). Members of the TRP superfamily are essential constituents of tonically active channels (TAC), receptor-operated channels (ROC), store-operated channels (SOC) and stretch-activated channels (SAC). This review focusses on TRP channels (TRPC1, TRPC3, TRPC4, TRPC5, TRPC6, TRPC7, TRPV2, TRPV4, TRPM4, TRPM7, TRPP2) whose physiological functions in SMC were dissected by downregulating channel activity in isolated tissues or by the analysis of gene-deficient mouse models. Their possible functional role and physiological regulation as homomeric or heteromeric channels in SMC are discussed. Moreover, TRP channels may also be responsible for pathophysiological processes involving SMC-like airway hyperresponsiveness and pulmonary hypertension. Therefore, they present important drug targets for future pharmacological interventions.
Collapse
Affiliation(s)
- Alexander Dietrich
- Institut für Pharmakologie und Toxikologie, Philipps-Universität Marburg, Karl-von-Frisch Str. 1, 35043 Marburg, Germany.
| | | | | | | | | |
Collapse
|
100
|
Kwan HY, Huang Y, Yao X. Protein kinase C can inhibit TRPC3 channels indirectly via stimulating protein kinase G. J Cell Physiol 2006; 207:315-21. [PMID: 16331690 DOI: 10.1002/jcp.20567] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
There are two known phosphorylation-mediated inactivation mechanisms for TRPC3 channels. Protein kinase G (PKG) inactivates TRPC3 by direct phosphorylation on Thr-11 and Ser-263 of the TRPC3 proteins, and protein kinase C (PKC) inactivates TRPC3 by phosphorylation on Ser-712. In the present study, we explored the relationship between these two inactivation mechanisms of TRPC3. HEK cells were first stably transfected with a PKG-expressing construct and then transiently transfected with a TRPC3-expressing construct. Addition of 1-oleoyl-2-acetyl-sn-glycerol (OAG), a membrane-permeant analog of diacylglycerol (DAG), elicited a TRPC3-mediated [Ca2+]i rise in these cells. This OAG-induced rise in [Ca2+]i could be inhibited by phorbol 12-myristate 13-acetate (PMA), an agonist for PKC, in a dose-dependent manner. Importantly, point mutations at two PKG phosphorylation sites (T11A-S263Q) of TRPC3 markedly reduced the PMA inhibition. Furthermore, inhibition of PKG activity by KT5823 (1 microM) or H8 (10 microM) greatly reduced the PMA inhibition of TRPC3. These data strongly suggest that the inhibitory action of PKC on TRPC3 is partly mediated through PKG in these PKG-overexpressing cells. The importance of this scheme was also tested in vascular endothelial cells, in which PKG plays a pivotal functional role. In these cells, OAG-induced [Ca2+]i rise was inhibited by PMA, which activates PKC, and by 8-BrcGMP and S-nitroso-N-acetylpenicillamine (SNAP), both of which activate PKG. Importantly, the PMA inhibition on OAG-induced [Ca2+]i rise was significantly reduced by PKG inhibitor KT5823 (1 microM) or DT-3 (500 nM), suggesting an important role of PKG in the PMA-induced inhibition of TRPC channels in native endothelial cells.
Collapse
Affiliation(s)
- Hiu-Yee Kwan
- Li Ka Shing Institute of Health Sciences, Faculty of Medicine, the Chinese University of Hong Kong, Hong Kong, China
| | | | | |
Collapse
|