51
|
Timofeev YS, Kiselev AR, Dzhioeva ON, Drapkina OM. Heat Shock Proteins (HSPs) and Cardiovascular Complications of Obesity: Searching for Potential Biomarkers. Curr Issues Mol Biol 2023; 45:9378-9389. [PMID: 38132434 PMCID: PMC10742314 DOI: 10.3390/cimb45120588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/21/2023] [Indexed: 12/23/2023] Open
Abstract
Heat shock proteins (HSPs), a family of proteins that support cellular proteostasis and perform a protective function under various stress conditions, such as high temperature, intoxication, inflammation, or tissue hypoxia, constitute a promising group of possible biochemical markers for obesity and cardiovascular diseases. HSP27 is involved in essential cellular processes occurring in conditions of obesity and its cardiometabolic complications; it has protective properties, and its secretion may indicate a cellular response to stress. HSP40 plays a controversial role in the pathogenesis of obesity. HSP60 is involved in various pathological processes of the cardiovascular, immune, excretory, and nervous systems and is associated with obesity and concomitant diseases. The hypersecretion of HSP60 is associated with poor prognosis; hence, this protein may become a target for further research on obesity and its cardiovascular complications. According to most studies, intracellular HSP70 is an obesity-promoting factor, whereas extracellular HSP70 exhibited inconsistent dynamics across different patient groups and diagnoses. HSPs are involved in the pathogenesis of cardiovascular pathology. However, in the context of cardiovascular and metabolic pathology, these proteins require further investigation.
Collapse
Affiliation(s)
| | - Anton R. Kiselev
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| | | | - Oxana M. Drapkina
- National Medical Research Center for Therapy and Preventive Medicine, 101990 Moscow, Russia
| |
Collapse
|
52
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21, and SLN regulate the accumulation and mobility of MBD6 to silence genes and transposable elements. SCIENCE ADVANCES 2023; 9:eadi9036. [PMID: 37967186 PMCID: PMC10651127 DOI: 10.1126/sciadv.adi9036] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 10/13/2023] [Indexed: 11/17/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here, we characterize two additional complex members: α-crystalline domain (ACD) containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher-order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of MBD5/6 complexes regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive a massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of the gene-silencing MBD5/6 complex and act to drive the formation of higher-order, dynamic assemblies at CG methylation (meCG) sites.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
53
|
Czaja AJ. Introducing Molecular Chaperones into the Causality and Prospective Management of Autoimmune Hepatitis. Dig Dis Sci 2023; 68:4098-4116. [PMID: 37755606 PMCID: PMC10570239 DOI: 10.1007/s10620-023-08118-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 09/18/2023] [Indexed: 09/28/2023]
Abstract
Molecular chaperones influence the immunogenicity of peptides and the activation of effector T cells, and their pathogenic roles in autoimmune hepatitis are unclear. Heat shock proteins are pivotal in the processing and presentation of peptides that activate CD8+ T cells. They can also induce regulatory B and T cells and promote immune tolerance. Tapasin and the transporter associated with antigen processing-binding protein influence the editing and loading of high-affinity peptides for presentation by class I molecules of the major histocompatibility complex. Their over-expression could enhance the autoimmune response, and their deficiency could weaken it. The lysosome-associated membrane protein-2a isoform in conjunction with heat shock cognate 70 supports the importation of cytosolic proteins into lysosomes. Chaperone-mediated autophagy can then process the peptides for activation of CD4+ T cells. Over-expression of autophagy in T cells may also eliminate negative regulators of their activity. The human leukocyte antigen B-associated transcript three facilitates the expression of class II peptide receptors, inhibits T cell apoptosis, prevents T cell exhaustion, and sustains the immune response. Immunization with heat shock proteins has induced immune tolerance in experimental models and humans with autoimmune disease by inducing regulatory T cells. Therapeutic manipulation of other molecular chaperones may promote T cell exhaustion and induce tolerogenic dendritic cells. In conclusion, molecular chaperones constitute an under-evaluated family of ancillary proteins that could affect the occurrence, severity, and outcome of autoimmune hepatitis. Clarification of their contributions to the immune mechanisms and clinical activity of autoimmune hepatitis could have therapeutic implications.
Collapse
Affiliation(s)
- Albert J Czaja
- Mayo Clinic College of Medicine and Science, 200 First Street S.W., Rochester, MN, 55905, USA.
| |
Collapse
|
54
|
Azaharuddin M, Pal A, Mitra S, Dasgupta R, Basu T. A review on oligomeric polydispersity and oligomers-dependent holding chaperone activity of the small heat-shock protein IbpB of Escherichia coli. Cell Stress Chaperones 2023; 28:689-696. [PMID: 37910345 PMCID: PMC10746692 DOI: 10.1007/s12192-023-01392-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/03/2023] Open
Abstract
Inclusion body-associated proteins IbpA and IbpB of MW 16 KDa are the two small heat-shock proteins (sHSPs) of Escherichia coli, and they have only holding, but not folding, chaperone activity. In vitro holdase activity of IbpB is more than that of IbpA, and in combination, they synergise. Both IbpA and IbpB monomers first form homodimers, which as building blocks subsequently oligomerize to make heavy oligomers with MW of MDa range; for IbpB, the MW range of heavy oligomers is 2.0-3.0 MDa, whereas for IbpA oligomers, the values in MDa are not so specified/reported. By temperature upshift, such large oligomers of IbpB, but not of IbpA, dissociate to make relatively small oligomeric assemblies of MW around 600-700KDa. The larger oligomers of IbpB are assumed to be inactive storage form, which on facing heat or oxidative stress dissociate into smaller oligomers of ATP-independent holding chaperone activity. These smaller oligomers bind with stress-induced partially denatured/unfolded and thereby going to be aggregated proteins, to give them protection against permanent damage and aggregation. On withdrawal of stress, IbpB transfers the bound substrate protein to the ATP-dependent bi-chaperone system DnaKJE-ClpB, having both holdase and foldase properties, to finally refold the protein. Of the two sHSPs IbpA and IbpB of E. coli, this review covers the recent advances in research on IbpB only.
Collapse
Affiliation(s)
- Md Azaharuddin
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Anabadya Pal
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Sangeeta Mitra
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Rakhi Dasgupta
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India
| | - Tarakdas Basu
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani, 741235, West Bengal, India.
| |
Collapse
|
55
|
Wang Y, Liu Y, Cao T, Shi C, Ren Z, Zhao Y. Quantitative proteomics analysis reveals the key proteins related to semen quality in Niangya yaks. Proteome Sci 2023; 21:20. [PMID: 37875878 PMCID: PMC10594827 DOI: 10.1186/s12953-023-00222-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 10/14/2023] [Indexed: 10/26/2023] Open
Abstract
BACKGROUND Proteins related to sperm motility and sperm morphology have an important impact on sperm function such as metabolism, motility and fertilisation etc. An understanding of the key proteins related to semen quality in Niangya yaks would help to provide support for breeding. However, the key proteins that affect semen quality in Niangya yaks remain unclear. METHODS Herein, we applied tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry (LC‒MS/MS) to analyze the expression levels of sperm proteins in groups of high- and low-quality semen from Niangya yaks. And fifteen differentially expressed proteins (DEPs) were randomly selected for expression level validation by parallel reaction monitoring (PRM). RESULTS Of the 2,092 quantified proteins, 280 were identified as DEPs in the high-quality group versus the low-quality group. Gene Ontology (GO) analysis revealed that in terms of biological pathways, the DEPs were mainly involved in metabolic processes, cell transformation processes, and single organism metabolic processes. In terms of cell composition, the DEPs were mainly located in the cell membrane, organelle, molecular complex. In terms of molecular functions, the most abundant functions of the DEPs were catalytic activity, binding activity, transport activity, and enzyme regulation activity. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that the DEPs were mainly involved in the cytokine and cytokine receptor interaction, notch signaling pathway, lysine biosynthesis, renal function-related protein and proteasome pathway. From protein-protein interaction (PPI) analysis of DEPs involved in important pathways, 6 related proteins affecting the semen quality of Niangya yaks were identified. And the results of the PRM and TMT analysis were consistent. CONCLUSIONS The differential sperm proteomic analysis of high- and low-quality semen from Niangya yaks, revealed 6 proteins (PSMC5, PSMD8, PSMB3, HSP90AA1, UGP2 and HSPB1), were mainly concentrated in energy production and metabolism, might play important roles in semen quality, which could serve as candidates for the selection and breeding of Niangya yaks.
Collapse
Affiliation(s)
- Yaomei Wang
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Yuchao Liu
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Tingting Cao
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Chunyuan Shi
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Zili Ren
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China
| | - Yanling Zhao
- Tibet Agricultural and Animal Husbandry University, Linzhi, Tibet, 860000, P.R. China.
| |
Collapse
|
56
|
Chernova LS, Vishnyakov IE, Börner J, Bogachev MI, Thormann KM, Kayumov AR. The Functionality of IbpA from Acholeplasma laidlawii Is Governed by Dynamic Rearrangement of Its Globular-Fibrillar Quaternary Structure. Int J Mol Sci 2023; 24:15445. [PMID: 37895124 PMCID: PMC10607609 DOI: 10.3390/ijms242015445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Small heat shock proteins (sHSPs) represent a first line of stress defense in many bacteria. The primary function of these molecular chaperones involves preventing irreversible protein denaturation and aggregation. In Escherichia coli, fibrillar EcIbpA binds unfolded proteins and keeps them in a folding-competent state. Further, its structural homologue EcIbpB induces the transition of EcIbpA to globules, thereby facilitating the substrate transfer to the HSP70-HSP100 system for refolding. The phytopathogenic Acholeplasma laidlawii possesses only a single sHSP, AlIbpA. Here, we demonstrate non-trivial features of the function and regulation of the chaperone-like activity of AlIbpA according to its interaction with other components of the mycoplasma multi-chaperone network. Our results show that the efficiency of the A. laidlawii multi-chaperone system is driven with the ability of AlIbpA to form both globular and fibrillar structures, thus combining functions of both IbpA and IbpB when transferring the substrate proteins to the HSP70-HSP100 system. In contrast to EcIbpA and EcIbpB, AlIbpA appears as an sHSP, in which the competition between the N- and C-terminal domains regulates the shift of the protein quaternary structure between a fibrillar and globular form, thus representing a molecular mechanism of its functional regulation. While the C-terminus of AlIbpA is responsible for fibrils formation and substrate capture, the N-terminus seems to have a similar function to EcIbpB through facilitating further substrate protein disaggregation using HSP70. Moreover, our results indicate that prior to the final disaggregation process, AlIbpA can directly transfer the substrate to HSP100, thereby representing an alternative mechanism in the HSP interaction network.
Collapse
Affiliation(s)
- Liliya S. Chernova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Innokentii E. Vishnyakov
- Institute of Cytology, Russian Academy of Sciences, Tikhoretsky Ave. 4, 194064 St. Petersburg, Russia;
| | - Janek Börner
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Mikhail I. Bogachev
- Centre for Digital Telecommunication Technologies, St. Petersburg Electrotechnical University, Professora Popova 5, 197376 St. Petersburg, Russia;
| | - Kai M. Thormann
- Institute of Microbiology and Molecular Biology, Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany; (J.B.); (K.M.T.)
| | - Airat R. Kayumov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kremlevskaya 18, 420008 Kazan, Russia;
| |
Collapse
|
57
|
Boone BA, Ichino L, Wang S, Gardiner J, Yun J, Jami-Alahmadi Y, Sha J, Mendoza CP, Steelman BJ, van Aardenne A, Kira-Lucas S, Trentchev I, Wohlschlegel JA, Jacobsen SE. ACD15, ACD21 and SLN regulate accumulation and mobility of MBD6 to silence genes and transposable elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.23.554494. [PMID: 37662299 PMCID: PMC10473691 DOI: 10.1101/2023.08.23.554494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
DNA methylation mediates silencing of transposable elements and genes in part via recruitment of the Arabidopsis MBD5/6 complex, which contains the methyl-CpG-binding domain (MBD) proteins MBD5 and MBD6, and the J-domain containing protein SILENZIO (SLN). Here we characterize two additional complex members: α-crystalline domain containing proteins ACD15 and ACD21. We show that they are necessary for gene silencing, bridge SLN to the complex, and promote higher order multimerization of MBD5/6 complexes within heterochromatin. These complexes are also highly dynamic, with the mobility of complex components regulated by the activity of SLN. Using a dCas9 system, we demonstrate that tethering the ACDs to an ectopic site outside of heterochromatin can drive massive accumulation of MBD5/6 complexes into large nuclear bodies. These results demonstrate that ACD15 and ACD21 are critical components of gene silencing complexes that act to drive the formation of higher order, dynamic assemblies.
Collapse
Affiliation(s)
- Brandon A. Boone
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Lucia Ichino
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- These authors contributed equally
| | - Shuya Wang
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jason Gardiner
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Translational Plant Biology, Department of Biology, Utrecht University, 3584CH, Utrecht, The Netherlands
| | - Jaewon Yun
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jihui Sha
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Cristy P. Mendoza
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Bailey J. Steelman
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Aliya van Aardenne
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Sophia Kira-Lucas
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Isabelle Trentchev
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - James A. Wohlschlegel
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Steven E. Jacobsen
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edyth Broad Center of Regenerative Medicine and Stem Cell Research, University of California Los Angeles, Los Angeles, CA 90095, USA
- Howard Hughes Medical Institute (HHMI), UCLA; Los Angeles, CA 90095, USA
| |
Collapse
|
58
|
Marquez-Acevedo AS, Hood WR, Collier RJ, Skibiel AL. Graduate Student Literature Review: Mitochondrial response to heat stress and its implications on dairy cattle bioenergetics, metabolism, and production. J Dairy Sci 2023; 106:7295-7309. [PMID: 37210354 DOI: 10.3168/jds.2023-23340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/03/2023] [Indexed: 05/22/2023]
Abstract
The dairy industry depends upon the cow's successful lactation for economic profitability. Heat stress compromises the economic sustainability of the dairy industry by reducing milk production and increasing the risk of metabolic and pathogenic disease. Heat stress alters metabolic adaptations, such as nutrient mobilization and partitioning, that support the energetic demands of lactation. Metabolically inflexible cows are unable to enlist the necessary homeorhetic shifts that provide the needed nutrients and energy for milk synthesis, thereby impairing lactation performance. Mitochondria provide the energetic foundation that enable a myriad of metabolically demanding processes, such as lactation. Changes in an animal's energy requirements are met at the cellular level through alterations in mitochondrial density and bioenergetic capacity. Mitochondria also act as central stress modulators and coordinate tissues' energetic responses to stress by integrating endocrine signals, through mito-nuclear communication, into the cellular stress response. In vitro heat insults affect mitochondria through a compromise in mitochondrial integrity, which is linked to a decrease in mitochondrial function. However, limited evidence exists linking the in vivo metabolic effects of heat stress with parameters of mitochondrial behavior and function in lactating animals. This review summarizes the literature describing the cellular and subcellular effects of heat stress, with a focus on the effect of heat stress on mitochondrial bioenergetics and cellular dysfunction in livestock. Implications for lactation performance and metabolic health are also discussed.
Collapse
Affiliation(s)
- A S Marquez-Acevedo
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844.
| | - W R Hood
- Department of Biological Sciences, Auburn University, Auburn, AL 36849
| | - R J Collier
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| | - A L Skibiel
- Department of Animal, Veterinary and Food Sciences, University of Idaho, Moscow, ID 83844
| |
Collapse
|
59
|
Ciesielski SJ, Young C, Ciesielska EJ, Ciesielski GL. The Hsp70 and JDP proteins: Structure-function perspective on molecular chaperone activity. Enzymes 2023; 54:221-245. [PMID: 37945173 DOI: 10.1016/bs.enz.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Proteins are the most structurally diverse cellular biomolecules that act as molecular machines driving essential activities of all living organisms. To be functional, most of the proteins need to fold into a specific three-dimensional structure, which on one hand should be stable enough to oppose disruptive conditions and on the other hand flexible enough to allow conformational dynamics necessary for their biological functions. This compromise between stability and dynamics makes proteins susceptible to stress-induced misfolding and aggregation. Moreover, the folding process itself is intrinsically prone to conformational errors. Molecular chaperones are proteins that mitigate folding defects and maintain the structural integrity of the cellular proteome. Promiscuous Hsp70 chaperones are central to these processes and their activity depends on the interaction with obligatory J-domain protein (JDP) partners. In this review, we discuss structural aspects of Hsp70s, JDPs, and their interaction in the context of biological activities.
Collapse
Affiliation(s)
- Szymon J Ciesielski
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States.
| | - Cameron Young
- Department of Chemistry and Biochemistry, University of North Florida, Jacksonville, FL, United States
| | - Elena J Ciesielska
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| | - Grzegorz L Ciesielski
- Department of Chemistry, Auburn University at Montgomery, Montgomery, AL, United States; Department of Biology, University of North Florida, Jacksonville, FL, United States
| |
Collapse
|
60
|
Velasco-Carneros L, Cuéllar J, Dublang L, Santiago C, Maréchal JD, Martín-Benito J, Maestro M, Fernández-Higuero JÁ, Orozco N, Moro F, Valpuesta JM, Muga A. The self-association equilibrium of DNAJA2 regulates its interaction with unfolded substrate proteins and with Hsc70. Nat Commun 2023; 14:5436. [PMID: 37670029 PMCID: PMC10480186 DOI: 10.1038/s41467-023-41150-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 08/24/2023] [Indexed: 09/07/2023] Open
Abstract
J-domain proteins tune the specificity of Hsp70s, engaging them in precise functions. Despite their essential role, the structure and function of many J-domain proteins remain largely unknown. We explore human DNAJA2, finding that it reversibly forms highly-ordered, tubular structures that can be dissociated by Hsc70, the constitutively expressed Hsp70 isoform. Cryoelectron microscopy and mutational studies reveal that different domains are involved in self-association. Oligomer dissociation into dimers potentiates its interaction with unfolded client proteins. The J-domains are accessible to Hsc70 within the tubular structure. They allow binding of closely spaced Hsc70 molecules that could be transferred to the unfolded substrate for its cooperative remodelling, explaining the efficient recovery of DNAJA2-bound clients. The disordered C-terminal domain, comprising the last 52 residues, regulates its holding activity and productive interaction with Hsc70. These in vitro findings suggest that the association equilibrium of DNAJA2 could regulate its interaction with client proteins and Hsc70.
Collapse
Affiliation(s)
- Lorea Velasco-Carneros
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Jorge Cuéllar
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Leire Dublang
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - César Santiago
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Jean-Didier Maréchal
- Insilichem, Departament de Química, Universitat Autònoma de Barcelona, (UAB), 08193, Bellaterra (Barcelona), Spain
| | - Jaime Martín-Benito
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - Moisés Maestro
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain
| | - José Ángel Fernández-Higuero
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - Natalia Orozco
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
| | - Fernando Moro
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain
| | - José María Valpuesta
- Department of Macromolecular Structure, National Centre for Biotechnology (CNB-CSIC), 28049, Madrid, Spain.
| | - Arturo Muga
- Biofisika Institute (CSIC, UPV/EHU), University of the Basque Country, 48940, Leioa, Spain.
- Department of Biochemistry and Molecular Biology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), 48940, Leioa, Spain.
| |
Collapse
|
61
|
Cheng Y, Miwa T, Taguchi H. The mRNA binding-mediated self-regulatory function of small heat shock protein IbpA in γ-proteobacteria is conferred by a conserved arginine. J Biol Chem 2023; 299:105108. [PMID: 37517700 PMCID: PMC10474464 DOI: 10.1016/j.jbc.2023.105108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/18/2023] [Accepted: 07/21/2023] [Indexed: 08/01/2023] Open
Abstract
Bacterial small heat shock proteins, such as inclusion body-associated protein A (IbpA) and IbpB, coaggregate with denatured proteins and recruit other chaperones for the processing of aggregates thereby assisting in protein refolding. In addition, as a recently revealed uncommon feature, Escherichia coli IbpA self-represses its own translation through interaction with the 5'-untranslated region of the ibpA mRNA, enabling IbpA to act as a mediator of negative feedback regulation. Although IbpA also suppresses the expression of IbpB, IbpB does not have this self-repression activity despite the two Ibps being highly homologous. In this study, we demonstrate that the self-repression function of IbpA is conserved in other γ-proteobacterial IbpAs. Moreover, we show a cationic residue-rich region in the α-crystallin domain of IbpA, which is not conserved in IbpB, is critical for the self-suppression activity. Notably, we found arginine 93 (R93) located within the α-crystallin domain is an essential residue that cannot be replaced by any of the other 19 amino acids including lysine. We observed that IbpA-R93 mutants completely lost the interaction with the 5' untranslated region of the ibpA mRNA, but retained almost all chaperone activity and were able to sequester denatured proteins. Taken together, we propose the conserved Arg93-mediated translational control of IbpA through RNA binding would be beneficial for a rapid and massive supply of the chaperone on demand.
Collapse
Affiliation(s)
- Yajie Cheng
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan
| | - Tsukumi Miwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Hideki Taguchi
- School of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Japan; Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan.
| |
Collapse
|
62
|
Muranov KO, Poliansky NB, Borzova VA, Kleimenov SY. Refolding Increases the Chaperone-like Activity of α H-Crystallin and Reduces Its Hydrodynamic Diameter to That of α-Crystallin. Int J Mol Sci 2023; 24:13473. [PMID: 37686274 PMCID: PMC10487585 DOI: 10.3390/ijms241713473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/25/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
αH-Crystallin, a high molecular weight form of α-crystallin, is one of the major proteins in the lens nucleus. This high molecular weight aggregate (HMWA) plays an important role in the pathogenesis of cataracts. We have shown that the chaperone-like activity of HMWA is 40% of that of α-crystallin from the lens cortex. Refolding with urea significantly increased-up to 260%-the chaperone-like activity of α-crystallin and slightly reduced its hydrodynamic diameter (Dh). HMWA refolding resulted in an increase in chaperone-like activity up to 120% and a significant reduction of Dh of protein particles compared with that of α-crystallin. It was shown that the chaperone-like activity of HMWA, α-crystallin, and refolded α-crystallin but not refolded HMWA was strongly correlated with the denaturation enthalpy measured with differential scanning calorimetry (DSC). The DSC data demonstrated a significant increase in the native protein portion of refolded α-crystallin in comparison with authentic α-crystallin; however, the denaturation enthalpy of refolded HMWA was significantly decreased in comparison with authentic HMWA. The authors suggested that the increase in the chaperone-like activity of both α-crystallin and HMWA could be the result of the correction of misfolded proteins during renaturation and the rearrangement of protein supramolecular structures.
Collapse
Affiliation(s)
- Konstantin O. Muranov
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Nicolay B. Poliansky
- Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, Moscow 119334, Russia;
| | - Vera A. Borzova
- Federal Research Centre “Fundamentals of Biotechnology” of Russian Academy of Sciences, Bach Institute of Biochemistry, Moscow 119334, Russia;
| | - Sergey Y. Kleimenov
- Koltzov Institute of Developmental Biology of Russian Academy of Sciences, Moscow 119334, Russia;
| |
Collapse
|
63
|
Moon S, Wang B, Ahn BS, Ryu AH, Hard ER, Javed A, Pratt MR. O-GlcNAc Modification Alters the Chaperone Activity of HSP27 Charcot-Marie-Tooth Type 2 (CMT2) Variants in a Mutation-Selective Fashion. ACS Chem Biol 2023; 18:1705-1712. [PMID: 37540114 PMCID: PMC10442854 DOI: 10.1021/acschembio.3c00292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/31/2023] [Indexed: 08/05/2023]
Abstract
Increased O-GlcNAc is a common feature of cellular stress, and the upregulation of this dynamic modification is associated with improved survival under these conditions. Likewise, the heat shock proteins are also increased under stress and prevent protein misfolding and aggregation. We previously linked these two phenomena by demonstrating that O-GlcNAc directly increases the chaperone of certain small heat shock proteins, including HSP27. Here, we examine this linkage further by exploring the potential function of O-GlcNAc on mutants of HSP27 that cause a heritable neuropathy called Charcot-Marie-Tooth type 2 (CMT2) disease. Using synthetic protein chemistry, we prepared five of these mutants bearing an O-GlcNAc at the major site of modification. Upon subsequent biochemical analysis of these proteins, we found that O-GlcNAc has different effects, depending on the location of the individual mutants. We believe that this has important implications for O-GlcNAc and other PTMs in the context of polymorphisms or diseases with high levels of protein mutation.
Collapse
Affiliation(s)
- Stuart
P. Moon
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Binyou Wang
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Benjamin S. Ahn
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrew H. Ryu
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Eldon R. Hard
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
64
|
Wang B, Moon SP, Cutolo G, Javed A, Ahn BS, Ryu AH, Pratt MR. HSP27 Inhibitory Activity against Caspase-3 Cleavage and Activation by Caspase-9 Is Enhanced by Chaperone O-GlcNAc Modification in Vitro. ACS Chem Biol 2023; 18:1698-1704. [PMID: 37450938 PMCID: PMC10442853 DOI: 10.1021/acschembio.3c00270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/07/2023] [Indexed: 07/18/2023]
Abstract
One of the O-GlcNAc modifications is the protection of cells against a variety of stressors that result in cell death. Previous experiments have focused on the overall ability of O-GlcNAc to prevent protein aggregation under stress as well as its ability to affect stress-response signaling pathways. Less attention has been paid to the potential role for O-GlcNAc in the direct inhibition of a major cell-death pathway, apoptosis. Apoptosis involves the sequential activation of caspase proteases, including the transfer of cell-stress information from initiator caspase-9 to effector caspase-3. Cells have multiple mechanisms to slow the apoptotic cascade, including heat shock protein HSP27, which can directly inhibit the activation of caspase-3 by caspase-9. We have previously shown that O-GlcNAc modification increases the chaperone activity of HSP27 against amyloid aggregation, raising the question as to whether this modification may play important roles in other facets of HSP27 biology. Here, we use protein chemistry to generate different versions of O-GlcNAc modified HSP27 and demonstrate that the modification enhances this antiapoptotic function of the chaperone, at least in an in vitro context. These results provide additional molecular insight into how O-GlcNAc functions as a mediator of cellular stress with important implications for human diseases like cancer and neurodegeneration.
Collapse
Affiliation(s)
- Binyou Wang
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Stuart P. Moon
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Giuliano Cutolo
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Benjamin S. Ahn
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Andrew H. Ryu
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Department
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
65
|
Miller AP, O'Neill SE, Lampi KJ, Reichow SL. The α-crystallin chaperones undergo a quasi-ordered co-aggregation process in response to saturating client interaction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.15.553435. [PMID: 37645910 PMCID: PMC10462102 DOI: 10.1101/2023.08.15.553435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Small heat shock proteins (sHSPs) are ATP-independent chaperones vital to cellular proteostasis, preventing protein aggregation events linked to various human diseases including cataract. The α-crystallins, αA-crystallin (αAc) and αB-crystallin (αBc), represent archetypal sHSPs that exhibit complex polydispersed oligomeric assemblies and rapid subunit exchange dynamics. Yet, our understanding of how this plasticity contributes to chaperone function remains poorly understood. This study investigates structural changes in αAc and αBc during client sequestration under varying degree of chaperone saturation. Using biochemical and biophysical analyses combined with single-particle electron microscopy (EM), we examined αAc and αBc in their apo-states and at various stages of client-induced co-aggregation, using lysozyme as a model client. Quantitative single-particle analysis unveiled a continuous spectrum of oligomeric states formed during the co-aggregation process, marked by significant client-triggered expansion and quasi-ordered elongation of the sHSP scaffold. These structural modifications culminated in an apparent amorphous collapse of chaperone-client complexes, resulting in the creation of co-aggregates capable of scattering visible light. Intriguingly, these co-aggregates maintain internal morphological features of highly elongated sHSP scaffolding with striking resemblance to polymeric α-crystallin species isolated from aged lens tissue. This mechanism appears consistent across both αAc and αBc, albeit with varying degrees of susceptibility to client-induced co-aggregation. Importantly, our findings suggest that client-induced co-aggregation follows a distinctive mechanistic and quasi-ordered trajectory, distinct from a purely amorphous process. These insights reshape our understanding of the physiological and pathophysiological co-aggregation processes of sHSPs, carrying potential implications for a pathway toward cataract formation.
Collapse
Affiliation(s)
- Adam P Miller
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Susan E O'Neill
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| | - Kirsten J Lampi
- Integrative Biosciences, Oregon Health & Science University, Portland, Oregon 97239, USA
| | - Steve L Reichow
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, Oregon 97239, USA
- Vollum Institute, Oregon Health & Science University, Portland, Oregon 97239, USA
- Department of Chemistry, Portland State University, Portland, Oregon 97201, USA
| |
Collapse
|
66
|
Miwa T, Taguchi H. Escherichia coli small heat shock protein IbpA plays a role in regulating the heat shock response by controlling the translation of σ 32. Proc Natl Acad Sci U S A 2023; 120:e2304841120. [PMID: 37523569 PMCID: PMC10410725 DOI: 10.1073/pnas.2304841120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 06/23/2023] [Indexed: 08/02/2023] Open
Abstract
Small heat shock proteins (sHsps) act as ATP-independent chaperones that prevent irreversible aggregate formation by sequestering denatured proteins. IbpA, an Escherichia coli sHsp, functions not only as a chaperone but also as a suppressor of its own expression through posttranscriptional regulation, contributing to negative feedback regulation. IbpA also regulates the expression of its paralog, IbpB, in a similar manner, but the extent to which IbpA regulates other protein expressions is unclear. We have identified that IbpA down-regulates the expression of many Hsps by repressing the translation of the heat shock transcription factor σ32. The IbpA regulation not only controls the σ32 level but also contributes to the shutoff of the heat shock response. These results revealed an unexplored role of IbpA to regulate heat shock response at a translational level, which adds an alternative layer for tightly controlled and rapid expression of σ32 on demand.
Collapse
Affiliation(s)
- Tsukumi Miwa
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
| | - Hideki Taguchi
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Midori-ku, Yokohama226-8503, Japan
| |
Collapse
|
67
|
Kim M, Serwa RA, Samluk L, Suppanz I, Kodroń A, Stępkowski TM, Elancheliyan P, Tsegaye B, Oeljeklaus S, Wasilewski M, Warscheid B, Chacinska A. Immunoproteasome-specific subunit PSMB9 induction is required to regulate cellular proteostasis upon mitochondrial dysfunction. Nat Commun 2023; 14:4092. [PMID: 37433777 DOI: 10.1038/s41467-023-39642-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/21/2023] [Indexed: 07/13/2023] Open
Abstract
Perturbed cellular protein homeostasis (proteostasis) and mitochondrial dysfunction play an important role in neurodegenerative diseases, however, the interplay between these two phenomena remains unclear. Mitochondrial dysfunction leads to a delay in mitochondrial protein import, causing accumulation of non-imported mitochondrial proteins in the cytosol and challenging proteostasis. Cells respond by increasing proteasome activity and molecular chaperones in yeast and C. elegans. Here, we demonstrate that in human cells mitochondrial dysfunction leads to the upregulation of a chaperone HSPB1 and, interestingly, an immunoproteasome-specific subunit PSMB9. Moreover, PSMB9 expression is dependent on the translation elongation factor EEF1A2. These mechanisms constitute a defense response to preserve cellular proteostasis under mitochondrial stress. Our findings define a mode of proteasomal activation through the change in proteasome composition driven by EEF1A2 and its spatial regulation, and are useful to formulate therapies to prevent neurodegenerative diseases.
Collapse
Affiliation(s)
- Minji Kim
- IMol Polish Academy of Sciences, Warsaw, Poland
| | - Remigiusz A Serwa
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Lukasz Samluk
- Centre of New Technologies, University of Warsaw, Warsaw, Poland
| | - Ida Suppanz
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Agata Kodroń
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | - Tomasz M Stępkowski
- IMol Polish Academy of Sciences, Warsaw, Poland
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland
| | | | | | - Silke Oeljeklaus
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | | | - Bettina Warscheid
- CIBSS Centre for Integrative Biological Signalling Studies, University of Freiburg, Freiburg, Germany
- Department of Biochemistry, Theodor Boveri-Institute, Biocenter, University of Würzburg, Würzburg, Germany
| | - Agnieszka Chacinska
- IMol Polish Academy of Sciences, Warsaw, Poland.
- ReMedy International Research Agenda Unit, IMol Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
68
|
Choudhary D, Mediani L, Avellaneda MJ, Bjarnason S, Alberti S, Boczek EE, Heidarsson PO, Mossa A, Carra S, Tans SJ, Cecconi C. Human Small Heat Shock Protein B8 Inhibits Protein Aggregation without Affecting the Native Folding Process. J Am Chem Soc 2023. [PMID: 37411010 PMCID: PMC10360156 DOI: 10.1021/jacs.3c02022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Small Heat Shock Proteins (sHSPs) are key components of our Protein Quality Control system and are thought to act as reservoirs that neutralize irreversible protein aggregation. Yet, sHSPs can also act as sequestrases, promoting protein sequestration into aggregates, thus challenging our understanding of their exact mechanisms of action. Here, we employ optical tweezers to explore the mechanisms of action of the human small heat shock protein HSPB8 and its pathogenic mutant K141E, which is associated with neuromuscular disease. Through single-molecule manipulation experiments, we studied how HSPB8 and its K141E mutant affect the refolding and aggregation processes of the maltose binding protein. Our data show that HSPB8 selectively suppresses protein aggregation without affecting the native folding process. This anti-aggregation mechanism is distinct from previous models that rely on the stabilization of unfolded polypeptide chains or partially folded structures, as has been reported for other chaperones. Rather, it appears that HSPB8 selectively recognizes and binds to aggregated species formed at the early stages of aggregation, preventing them from growing into larger aggregated structures. Consistently, the K141E mutation specifically targets the affinity for aggregated structures without impacting native folding, and hence impairs its anti-aggregation activity.
Collapse
Affiliation(s)
- Dhawal Choudhary
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Mario J Avellaneda
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Sveinn Bjarnason
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Simon Alberti
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Edgar E Boczek
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | - Pétur O Heidarsson
- Department of Biochemistry, Science Institute, University of Iceland, Sturlugata 7, 102 Reykjavík, Iceland
| | - Alessandro Mossa
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
- INFN Firenze, Via Sansone 1, 50019 Sesto Fiorentino, Italy
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, and Centre for Neuroscience and Neurotechnology, University of Modena and Reggio Emilia, Via G. Campi 287, 41125 Modena, Italy
| | - Sander J Tans
- FOM Institute AMOLF, Science Park 104, 1098 XG Amsterdam, The Netherlands
| | - Ciro Cecconi
- Department of Physics, Informatics and Mathematics, University of Modena and Reggio Emilia, 41125 Modena, Italy
- Center S3, CNR Institute Nanoscience, Via Campi 213/A, 41125 Modena, Italy
| |
Collapse
|
69
|
Müller MBD, Kasturi P, Jayaraj GG, Hartl FU. Mechanisms of readthrough mitigation reveal principles of GCN1-mediated translational quality control. Cell 2023:S0092-8674(23)00587-1. [PMID: 37339632 PMCID: PMC10364623 DOI: 10.1016/j.cell.2023.05.035] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/22/2023]
Abstract
Readthrough into the 3' untranslated region (3' UTR) of the mRNA results in the production of aberrant proteins. Metazoans efficiently clear readthrough proteins, but the underlying mechanisms remain unknown. Here, we show in Caenorhabditis elegans and mammalian cells that readthrough proteins are targeted by a coupled, two-level quality control pathway involving the BAG6 chaperone complex and the ribosome-collision-sensing protein GCN1. Readthrough proteins with hydrophobic C-terminal extensions (CTEs) are recognized by SGTA-BAG6 and ubiquitylated by RNF126 for proteasomal degradation. Additionally, cotranslational mRNA decay initiated by GCN1 and CCR4/NOT limits the accumulation of readthrough products. Unexpectedly, selective ribosome profiling uncovered a general role of GCN1 in regulating translation dynamics when ribosomes collide at nonoptimal codons, enriched in 3' UTRs, transmembrane proteins, and collagens. GCN1 dysfunction increasingly perturbs these protein classes during aging, resulting in mRNA and proteome imbalance. Our results define GCN1 as a key factor acting during translation in maintaining protein homeostasis.
Collapse
Affiliation(s)
- Martin B D Müller
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Prasad Kasturi
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany
| | - Gopal G Jayaraj
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | - F Ulrich Hartl
- Department of Cellular Biochemistry, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152 Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany.
| |
Collapse
|
70
|
Chen G, Leppert A, Poska H, Nilsson HE, Alvira CP, Zhong X, Koeck P, Jegerschöld C, Abelein A, Hebert H, Johansson J. Short hydrophobic loop motifs in BRICHOS domains determine chaperone activity against amorphous protein aggregation but not against amyloid formation. Commun Biol 2023; 6:497. [PMID: 37156997 PMCID: PMC10167226 DOI: 10.1038/s42003-023-04883-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 04/27/2023] [Indexed: 05/10/2023] Open
Abstract
ATP-independent molecular chaperones are important for maintaining cellular fitness but the molecular determinants for preventing aggregation of partly unfolded protein substrates remain unclear, particularly regarding assembly state and basis for substrate recognition. The BRICHOS domain can perform small heat shock (sHSP)-like chaperone functions to widely different degrees depending on its assembly state and sequence. Here, we observed three hydrophobic sequence motifs in chaperone-active domains, and found that they get surface-exposed when the BRICHOS domain assembles into larger oligomers. Studies of loop-swap variants and site-specific mutants further revealed that the biological hydrophobicities of the three short motifs linearly correlate with the efficiency to prevent amorphous protein aggregation. At the same time, they do not at all correlate with the ability to prevent ordered amyloid fibril formation. The linear correlations also accurately predict activities of chimeras containing short hydrophobic sequence motifs from a sHSP that is unrelated to BRICHOS. Our data indicate that short, exposed hydrophobic motifs brought together by oligomerisation are sufficient and necessary for efficient chaperone activity against amorphous protein aggregation.
Collapse
Affiliation(s)
- Gefei Chen
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| | - Axel Leppert
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- Department of Microbiology, Tumour and Cell Biology, Karolinska Institutet, 171 65, Solna, Sweden
| | - Helen Poska
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
- School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| | - Harriet E Nilsson
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | | | - Xueying Zhong
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Philip Koeck
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Caroline Jegerschöld
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Axel Abelein
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden
| | - Hans Hebert
- School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, 141 52, Huddinge, Sweden
| | - Jan Johansson
- Department of Biosciences and Nutrition, Karolinska Institutet, 141 83, Huddinge, Sweden.
| |
Collapse
|
71
|
Joosten J, van Sluijs B, Vree Egberts W, Emmaneel M, W T C Jansen P, Vermeulen M, Boelens W, Bonger KM, Spruijt E. Dynamics and composition of small heat shock protein condensates and aggregates. J Mol Biol 2023; 435:168139. [PMID: 37146746 DOI: 10.1016/j.jmb.2023.168139] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/07/2023]
Abstract
Small heat shock proteins (sHSPs) are essential ATP-independent chaperones that protect the cellular proteome. These proteins assemble into polydisperse oligomeric structures, the composition of which dramatically affects their chaperone activity. The biomolecular consequences of variations in sHSP ratios, especially inside living cells, remain elusive. Here, we study the consequences of altering the relative expression levels of HspB2 and HspB3 in HEK293T cells. These chaperones are partners in a hetero-oligomeric complex, and genetic mutations that abolish their mutual interaction are associated with myopathic disorders. HspB2 displays three distinct phenotypes when co-expressed with HspB3 at varying ratios. Expression of HspB2 alone leads to formation of liquid nuclear condensates, while shifting the stoichiometry towards HspB3 resulted in the formation of large solid-like aggregates. Only cells co-expressing HspB2 with a limited amount of HspB3 formed fully soluble complexes that were distributed homogeneously throughout the nucleus. Strikingly, both condensates and aggregates were reversible, as shifting the HspB2:HspB3 balance in situ resulted in dissolution of these structures. To uncover the molecular composition of HspB2 condensates and aggregates, we used APEX-mediated proximity labelling. Most proteins interact transiently with the condensates and were neither enriched nor depleted in these cells. In contrast, we found that HspB2:HspB3 aggregates sequestered several disordered proteins and autophagy factors, suggesting that the cell is actively attempting to clear these aggregates. This study presents a striking example of how changes in the relative expression levels of interacting proteins affects their phase behavior. Our approach could be applied to study the role of protein stoichiometry and the influence of client binding on phase behavior in other biomolecular condensates and aggregates.
Collapse
Affiliation(s)
- Joep Joosten
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands; Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands.
| | - Bob van Sluijs
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Wilma Vree Egberts
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Martin Emmaneel
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Pascal W T C Jansen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Michiel Vermeulen
- Molecular Biology, Radboud University Institute for Molecular Life Sciences, Nijmegen, the Netherlands
| | - Wilbert Boelens
- Biomolecular Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| | - Kimberly M Bonger
- Synthetic Organic Chemistry, Radboud University Institute for Molecular and Materials, the Netherlands
| | - Evan Spruijt
- Physical Organic Chemistry, Radboud University Institute for Molecular and Materials, Nijmegen, the Netherlands
| |
Collapse
|
72
|
Zhang X, Zhang X, Yuan J, Li F. ACD-containing chaperones reveal the divergent thermo-tolerance in penaeid shrimp. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 880:163239. [PMID: 37023801 DOI: 10.1016/j.scitotenv.2023.163239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 03/29/2023] [Accepted: 03/29/2023] [Indexed: 04/14/2023]
Abstract
The α-crystallin domain-containing (ACD-containing) gene family, which includes typical small heat shock proteins (sHSPs), is the most ubiquitous and diverse family of putative chaperones in all organisms, including eukaryotes and prokaryotes. In the present study, approximately 54-117 ACD-containing genes were identified in five penaeid shrimp species, yielding a significant expansion in comparison with other crustaceans (generally 6-20 ACD-containing genes). Unlike typical sHSPs, which contain a single ACD domain, the ACD-containing genes of penaeid shrimp contain additional ACD domains (3-7 domains, in general), thus having a larger molecular weight and a more complex 3D structure. As indicated by the RNA-seq and qRT-PCR results, the ACD-containing genes of penaeid shrimp showed a strong response to high temperatures. Furthermore, heterologous expression and citrate synthase assays of three representative ACD-containing genes confirmed that their chaperone activity could enhance the thermo-tolerance of E. coli and prevent the aggregation of substrate proteins at high temperatures. Compared with penaeid shrimp species with a relatively low thermo-tolerance (Fenneropenaeus chinensis and Marsupenaeus japonicus), the species with high thermo-tolerance (Litopenaeus vannamei and Fenneropenaeus indicus) contained more ACD-containing genes due to tandem duplication and exhibited biased expression levels under high temperatures. This can explain the divergent thermo-tolerance of different penaeid shrimp species. In conclusion, the ACD-containing genes in penaeid shrimp could be assigned as new chaperones and contribute to their divergent thermo-tolerance phenotypes and adaptations to the ecological environment.
Collapse
Affiliation(s)
- Xiaoxi Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Xiaojun Zhang
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jianbo Yuan
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Fuhua Li
- Chinese Academy of Sciences (CAS) and Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
73
|
Kohler V, Andréasson C. Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci 2023; 10:1155521. [PMID: 37021114 PMCID: PMC10067754 DOI: 10.3389/fmolb.2023.1155521] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 03/09/2023] [Indexed: 04/07/2023] Open
Abstract
While proteins populating their native conformations constitute the functional entities of cells, protein aggregates are traditionally associated with cellular dysfunction, stress and disease. During recent years, it has become clear that large aggregate-like protein condensates formed via liquid-liquid phase separation age into more solid aggregate-like particles that harbor misfolded proteins and are decorated by protein quality control factors. The constituent proteins of the condensates/aggregates are disentangled by protein disaggregation systems mainly based on Hsp70 and AAA ATPase Hsp100 chaperones prior to their handover to refolding and degradation systems. Here, we discuss the functional roles that condensate formation/aggregation and disaggregation play in protein quality control to maintain proteostasis and why it matters for understanding health and disease.
Collapse
Affiliation(s)
- Verena Kohler
- Institute of Molecular Biosciences, University of Graz, Graz, Austria
| | - Claes Andréasson
- Department of Molecular Biosciences, Stockholm University, Stockholm, Sweden
| |
Collapse
|
74
|
Small heat shock proteins operate as molecular chaperones in the mitochondrial intermembrane space. Nat Cell Biol 2023; 25:467-480. [PMID: 36690850 PMCID: PMC10014586 DOI: 10.1038/s41556-022-01074-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/12/2022] [Indexed: 01/24/2023]
Abstract
Mitochondria are complex organelles with different compartments, each harbouring their own protein quality control factors. While chaperones of the mitochondrial matrix are well characterized, it is poorly understood which chaperones protect the mitochondrial intermembrane space. Here we show that cytosolic small heat shock proteins are imported under basal conditions into the mitochondrial intermembrane space, where they operate as molecular chaperones. Protein misfolding in the mitochondrial intermembrane space leads to increased recruitment of small heat shock proteins. Depletion of small heat shock proteins leads to mitochondrial swelling and reduced respiration, while aggregation of aggregation-prone substrates is countered in their presence. Charcot-Marie-Tooth disease-causing mutations disturb the mitochondrial function of HSPB1, potentially linking previously observed mitochondrial dysfunction in Charcot-Marie-Tooth type 2F to its role in the mitochondrial intermembrane space. Our results reveal that small heat shock proteins form a chaperone system that operates in the mitochondrial intermembrane space.
Collapse
|
75
|
Woods CN, Ulmer LD, Guttman M, Bush MF, Klevit RE. Disordered region encodes α-crystallin chaperone activity toward lens client γD-crystallin. Proc Natl Acad Sci U S A 2023; 120:e2213765120. [PMID: 36719917 PMCID: PMC9963673 DOI: 10.1073/pnas.2213765120] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 12/30/2022] [Indexed: 02/01/2023] Open
Abstract
Small heat-shock proteins (sHSPs) are a widely expressed family of ATP-independent molecular chaperones that are among the first responders to cellular stress. Mechanisms by which sHSPs delay aggregation of client proteins remain undefined. sHSPs have high intrinsic disorder content of up to ~60% and assemble into large, polydisperse homo- and hetero-oligomers, making them challenging structural and biochemical targets. Two sHSPs, HSPB4 and HSPB5, are present at millimolar concentrations in eye lens, where they are responsible for maintaining lens transparency over the lifetime of an organism. Together, HSPB4 and HSPB5 compose the hetero-oligomeric chaperone known as α-crystallin. To identify the determinants of sHSP function, we compared the effectiveness of HSPB4 and HSPB5 homo-oligomers and HSPB4/HSPB5 hetero-oligomers in delaying the aggregation of the lens protein γD-crystallin. In chimeric versions of HSPB4 and HSPB5, chaperone activity tracked with the identity of the 60-residue disordered N-terminal regions (NTR). A short 10-residue stretch in the middle of the NTR ("Critical sequence") contains three residues that are responsible for high HSPB5 chaperone activity toward γD-crystallin. These residues affect structure and dynamics throughout the NTR. Abundant interactions involving the NTR Critical sequence reveal it to be a hub for a network of interactions within oligomers. We propose a model whereby the NTR critical sequence influences local structure and NTR dynamics that modulate accessibility of the NTR, which in turn modulates chaperone activity.
Collapse
Affiliation(s)
| | - Lindsey D. Ulmer
- Department of Chemistry, University of Washington, 98195-1700Seattle, WA
| | - Miklos Guttman
- Department of Medicinal Chemistry, University of Washington, 98195-7610Seattle, WA
| | - Matthew F. Bush
- Department of Chemistry, University of Washington, 98195-1700Seattle, WA
| | - Rachel E. Klevit
- Department of Biochemistry, University of Washington, 98195-7350Seattle, WA
| |
Collapse
|
76
|
Li J, Satyshur KA, Guo LW, Ruoho AE. Sphingoid Bases Regulate the Sigma-1 Receptor-Sphingosine and N, N'-Dimethylsphingosine Are Endogenous Agonists. Int J Mol Sci 2023; 24:3103. [PMID: 36834510 PMCID: PMC9962145 DOI: 10.3390/ijms24043103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/28/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Both bioactive sphingolipids and Sigma-1 receptor (S1R) chaperones occur ubiquitously in mammalian cell membranes. Endogenous compounds that regulate the S1R are important for controlling S1R responses to cellular stress. Herein, we interrogated the S1R in intact Retinal Pigment Epithelial cells (ARPE-19) with the bioactive sphingoid base, sphingosine (SPH), or the pain-provoking dimethylated SPH derivative, N,N'-dimethylsphingosine (DMS). As informed by a modified native gel approach, the basal and antagonist (BD-1047)-stabilized S1R oligomers dissociated to protomeric forms in the presence of SPH or DMS (PRE-084 as control). We, thus, posited that SPH and DMS are endogenous S1R agonists. Consistently, in silico docking of SPH and DMS to the S1R protomer showed strong associations with Asp126 and Glu172 in the cupin beta barrel and extensive van der Waals interactions of the C18 alkyl chains with the binding site including residues in helices 4 and 5. Mean docking free energies were 8.73-8.93 kcal/mol for SPH and 8.56-8.15 kcal/mol for DMS, and calculated binding constants were ~40 nM for SPH and ~120 nM for DMS. We hypothesize that SPH, DMS, and similar sphingoid bases access the S1R beta barrel via a membrane bilayer pathway. We further propose that the enzymatic control of ceramide concentrations in intracellular membranes as the primary sources of SPH dictates availability of endogenous SPH and DMS to the S1R and the subsequent control of S1R activity within the same cell and/or in cellular environments.
Collapse
Affiliation(s)
- Jing Li
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Kenneth A. Satyshur
- Small Molecule Screening Facility, Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
- Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA 22908, USA
| | - Arnold E. Ruoho
- Department of Neuroscience, School of Medicine and Public Health, University of Wisconsin, Madison, WI 53705, USA
| |
Collapse
|
77
|
Bagree G, Srivastava T, Mahasivam S, Sinha M, Bansal V, Ramanathan R, Priya S, Sharma SK. Differential interactions of α-synuclein conformers affect refolding and activity of proteins. J Biochem 2023; 173:107-114. [PMID: 36368019 DOI: 10.1093/jb/mvac095] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/13/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022] Open
Abstract
The accumulation of protein aggregates as intracellular inclusions interferes with cellular protein homeostasis leading to protein aggregation diseases. Protein aggregation results in the formation of several protein conformers including oligomers and fibrils, where each conformer has its own structural characteristic and proteotoxic potential. The present study explores the effect of alpha-synuclein (α-syn) conformers on the activity and spontaneous refolding of firefly luciferase. Of the different conformers, α-syn monomers delayed the inactivation of luciferase under thermal stress conditions and enhanced the spontaneous refolding of luciferase. In contrast, the α-syn oligomers and fibrils adversely affected luciferase activity and refolding, where the oligomers inhibited spontaneous refolding, whereas a pronounced effect on the inactivation of native luciferase was observed in the case of fibrils. These results indicate that the oligomers and fibrils of α-syn interfere with the refolding of luciferase and promote its misfolding and aggregation. The study reveals the differential propensities of various conformers of a pathologically relevant protein in causing inactivation, structural modifications and misfolding of other proteins, consequently resulting in altered protein homeostasis.
Collapse
Affiliation(s)
- Gayatri Bagree
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Tulika Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sanje Mahasivam
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Meetali Sinha
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Computational Toxicology Facility, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Vipul Bansal
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Rajesh Ramanathan
- Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory (NBRL), RMIT University School of Science, GPO Box 2476, Melbourne, VIC 3001, Australia
| | - Smriti Priya
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
- Systems Toxicology and Health Risk Assessment Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
| | - Sandeep K Sharma
- Food, Drug & Chemical Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow, Uttar Pradesh 226001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
78
|
Hibshman JD, Carra S, Goldstein B. Tardigrade small heat shock proteins can limit desiccation-induced protein aggregation. Commun Biol 2023; 6:121. [PMID: 36717706 PMCID: PMC9887055 DOI: 10.1038/s42003-023-04512-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/20/2023] [Indexed: 01/31/2023] Open
Abstract
Small heat shock proteins (sHSPs) are chaperones with well-characterized roles in heat stress, but potential roles for sHSPs in desiccation tolerance have not been as thoroughly explored. We identified nine sHSPs from the tardigrade Hypsibius exemplaris, each containing a conserved alpha-crystallin domain flanked by disordered regions. Many of these sHSPs are highly expressed. Multiple tardigrade and human sHSPs could improve desiccation tolerance of E. coli, suggesting that the capacity to contribute to desicco-protection is a conserved property of some sHSPs. Purification and subsequent analysis of two tardigrade sHSPs, HSP21 and HSP24.6, revealed that these proteins can oligomerize in vitro. These proteins limited heat-induced aggregation of the model enzyme citrate synthase. Heterologous expression of HSP24.6 improved bacterial heat shock survival, and the protein significantly reduced heat-induced aggregation of soluble bacterial protein. Thus, HSP24.6 likely chaperones against protein aggregation to promote heat tolerance. Furthermore, HSP21 and HSP24.6 limited desiccation-induced aggregation and loss of function of citrate synthase. This suggests a mechanism by which tardigrade sHSPs promote desiccation tolerance, by limiting desiccation-induced protein aggregation, thereby maintaining proteostasis and supporting survival. These results suggest that sHSPs provide a mechanism of general stress resistance that can also be deployed to support survival during anhydrobiosis.
Collapse
Affiliation(s)
- Jonathan D Hibshman
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic, and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Bob Goldstein
- Biology Department, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
79
|
Johnson LG, Zhai C, Reever LM, Prusa KJ, Nair MN, Huff-Lonergan E, Lonergan SM. Characterizing the sarcoplasmic proteome of aged pork chops classified by purge loss. J Anim Sci 2023; 101:7031059. [PMID: 36751720 PMCID: PMC9994594 DOI: 10.1093/jas/skad046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023] Open
Abstract
Unpredictable variation in quality, including fresh pork water-holding capacity, remains challenging to pork processors and customers. Defining the diverse factors that influence fresh pork water-holding capacity is necessary to make progress in refining pork quality prediction methods. The objective was to utilize liquid chromatography and mass spectrometry coupled with tandem mass tag (TMT) multiplexing to evaluate the sarcoplasmic proteome of aged pork loins classified by purge loss. Fresh commercial pork loins were collected, aged 12 or 14 d postmortem, and pork quality and sensory attributes were evaluated. Chops were classified into Low (N = 27, average purge = 0.33%), Intermediate (N = 27, average purge = 0.72%), or High (N = 27, average purge = 1.19%) chop purge groups. Proteins soluble in a low-ionic strength buffer were extracted, digested with trypsin, labeled with 11-plex isobaric TMT reagents, and detected using a Q-Exactive Mass Spectrometer. Between the Low and High purge groups, 40 proteins were differentially (P < 0.05) abundant. The Low purge group had a greater abundance of proteins classified as structural and contractile, sarcoplasmic reticulum and calcium regulating, chaperone, and citric acid cycle enzymes than the High purge group. The presence of myofibrillar proteins in the aged sarcoplasmic proteome is likely due to postmortem degradation. These observations support our hypothesis that pork chops with low purge have a greater abundance of structural proteins in the soluble protein fraction. Together, these and other proteins in the aged sarcoplasmic proteome may be biomarkers of pork water-holding capacity. Additional research should establish the utility of these proteins as biomarkers early postmortem and over subsequent aging periods.
Collapse
Affiliation(s)
- Logan G Johnson
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| | - Chaoyu Zhai
- Department of Animal Science, University of Connecticut, Storrs, Connecticut 06269-4040, USA
| | - Leah M Reever
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Kenneth J Prusa
- Department of Food Science and Human Nutrition, Iowa State University, Ames, Iowa 50011, USA
| | - Mahesh N Nair
- Department of Animal Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | - Steven M Lonergan
- Department of Animal Science, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
80
|
Guo H, Yi J, Wang F, Lei T, Du H. Potential application of heat shock proteins as therapeutic targets in Parkinson's disease. Neurochem Int 2023; 162:105453. [PMID: 36402293 DOI: 10.1016/j.neuint.2022.105453] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/08/2022] [Accepted: 11/15/2022] [Indexed: 11/18/2022]
Abstract
Parkinson's disease (PD) is a common chronic neurodegenerative disease, and the heat shock proteins (HSPs) are proved to be of great value for PD. In addition, HSPs can maintain protein homeostasis, degrade and inhibit protein aggregation by properly folding and activating intracellular proteins in PD. This study mainly summarizes the important roles of HSPs in PD and explores their feasibility as targets. We introduced the structural and functional characteristics of HSPs and the physiological functions of HSPs in PD. HSPs can protect neurons from damage by degrading aggregates with three mechanisms, including the aggregation and removing α-Synuclein (α-Syn) aggregates, promotion the autophagy of abnormal proteins, and inhibition the apoptosis of degenerated neurons. This study underscores the importance of HSPs as targets in PD and helps to expand new mechanisms in PD treatment strategies.
Collapse
Affiliation(s)
- Haodong Guo
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Jingsong Yi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
81
|
Rocchetti MT, Bellanger T, Trecca MI, Weidmann S, Scrima R, Spano G, Russo P, Capozzi V, Fiocco D. Molecular chaperone function of three small heat-shock proteins from a model probiotic species. Cell Stress Chaperones 2023; 28:79-89. [PMID: 36417097 PMCID: PMC9877261 DOI: 10.1007/s12192-022-01309-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/05/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Small heat-shock proteins (sHSP) are ubiquitous ATP-independent chaperones that prevent irreversible aggregation of heat-damaged denaturing proteins. Lactiplantibacillus plantarum is a widespread Gram-positive bacterium with probiotic claims and vast potential for agro-food, biotechnological and biomedical applications. L. plantarum possesses a family of three sHSP, which were previously demonstrated to be involved in its stress tolerance mechanisms. Here, the three L. plantarum sHSP were heterologously expressed, purified and shown to have a chaperone activity in vitro, measuring their capacity to suppress protein aggregation, as assayed spectrophotometrically by light scattering. Their anti-aggregative capacity was found to be differently influenced by pH. Differences were also found relative to their holdase function and their capacity to modulate liposome membrane fluidity, suggesting interplays between them and indicating diversified activities. This is the first study assessing the chaperone action of sHSP from a probiotic model. The different roles of the three sHSP can increase L. plantarum's capabilities to survive the various types of stress characterising the diverse habitats of this highly adaptable species. Reported evidence supports the interest in L. plantarum as one of the model species for bacteria that have three different sHSP-encoding genes in their genomes.
Collapse
Affiliation(s)
- Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Tiffany Bellanger
- Univ. Bourgogne, Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Maria Incoronata Trecca
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Stephanie Weidmann
- Univ. Bourgogne, Franche-Comté, AgroSup Dijon, PAM UMR A 02.102, Dijon, France
| | - Rosella Scrima
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
| | - Pasquale Russo
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Via Napoli 25, 71122, Foggia, Italy
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Via Luigi Mangiagalli 25, 20133, Milano, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Via Michele Protano, 71122, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122, Foggia, Italy.
| |
Collapse
|
82
|
Lewkowski O, Poehlein A, Daniel R, Erler S. In the battle of the disease: a transcriptomic analysis of European foulbrood-diseased larvae of the Western honey bee (Apis mellifera). BMC Genomics 2022; 23:837. [PMID: 36536278 PMCID: PMC9764631 DOI: 10.1186/s12864-022-09075-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 12/06/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND European foulbrood is a significant bacterial brood disease of Apis sp. and can cause severe and devastating damages in beekeeping operations. Nevertheless, the epidemiology of its causative agent Melissococcus plutonius has been begun to uncover but the underlying mechanisms of infection and cause of disease still is not well understood. Here, we sought to provide insight into the infection mechanism of EFB employing RNAseq in in vitro reared Apis mellifera larvae of two developmental stages to trace transcriptional changes in the course of the disease, including Paenibacillus alvei secondary infected individuals. RESULTS In consideration of the progressing development of the larva, we show that infected individuals incur a shift in metabolic and structural protein-encoding genes, which are involved in metabolism of crucial compounds including all branches of macronutrient metabolism, transport protein genes and most strikingly chitin and cuticle associated genes. These changes underpin the frequently observed developmental retardation in EFB disease. Further, sets of expressed genes markedly differ in different stages of infection with almost no overlap. In an earlier stage of infection, a group of regulators of the melanization response cascade and complement component-like genes, predominantly C-type lectin genes, are up-regulated while a differential expression of immune effector genes is completely missing. In contrast, late-stage infected larvae up-regulated the expression of antimicrobial peptides, lysozymes and prominent bacteria-binding haemocyte receptor genes compared to controls. While we clearly show a significant effect of infection on expressed genes, these changes may partly result from a shift in expression timing due to developmental alterations of infection. A secondary infection with P. alvei elicits a specific response with most of the M. plutonius associated differential immune effector gene expression missing and several immune pathway genes even down-regulated. CONCLUSION We conclude that with progressing infection diseased individuals undergo a systemic response with a change of metabolism and their activated immune defence repertoire. Moreover, larvae are capable of adjusting their response to a secondary invasion in late stage infections.
Collapse
Affiliation(s)
- Oleg Lewkowski
- Molecular Ecology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06099, Halle (Saale), Germany.
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, 37077, Göttingen, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University of Göttingen, 37077, Göttingen, Germany
| | - Silvio Erler
- Molecular Ecology, Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06099, Halle (Saale), Germany.
- Institute for Bee Protection, Julius Kühn-Institute (JKI) - Federal Research Centre for Cultivated Plants, 38104, Braunschweig, Germany.
- Zoological Institute, Technische Universität Braunschweig, 38106, Braunschweig, Germany.
| |
Collapse
|
83
|
Emerging therapeutic roles of small heat shock protein-derived mini-chaperones and their delivery strategies. Biochimie 2022; 208:56-65. [PMID: 36521577 DOI: 10.1016/j.biochi.2022.12.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The small heat shock protein (sHsp) family is a group of proteins in which some are induced in response to external stimuli, such as environmental and pathological stresses, while others are constitutively expressed. They show chaperone-like activity, protect cells from apoptosis, and maintain cytoskeletal architecture. Short sequences or fragments ranging from approximately 19-20 residues in sHsps were shown to display chaperone activity in vitro. These sequences are termed sHsp-derived mini-peptides/mini-chaperones. These peptides offer an advantage in providing protective and therapeutic effects over full-length proteins owing to their small molecular weight and easy uptake into the cells. Research on sHsp mini-chaperone therapy has recently received attention and advanced tremendously. sHsp mini-chaperones have shown a wide range of therapeutic effects, such as anti-aggregation of proteins, anti-apoptotic, anti-inflammatory, anti-oxidant, senolytic, and anti-platelet activity. The administration of mini-chaperones into the several disease animal models, including experimental autoimmune encephalomyelitis, cataract, age-related macular degeneration, glaucoma, and thrombosis through various routes reduced symptoms or prevented the progression of the disease. However, it was found that the therapeutic potential of sHsp mini-chaperones is limited by their short turnover and enzymatic degradation in circulation. Nonetheless, carrier molecules approach such as nanoparticles, cell penetration peptides, and extracellular vesicles increased their efficacy by enhancing the uptake, retention time, protection from enzymatic degradation, and site-specific delivery without altering their biological activity. In this context, this review highlights the recent advances in the therapeutic potential of sHsp-derived mini-chaperones, their effect in experimental animal models, and approaches for increasing their efficacy.
Collapse
|
84
|
The Common Bean Small Heat Shock Protein Nodulin 22 from Phaseolus vulgaris L. Assembles into Functional High-Molecular-Weight Oligomers. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27248681. [PMID: 36557819 PMCID: PMC9783675 DOI: 10.3390/molecules27248681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/23/2022] [Accepted: 12/01/2022] [Indexed: 12/13/2022]
Abstract
Small heat shock proteins (sHsps) are present in all domains of life. These proteins are responsible for binding unfolded proteins to prevent their aggregation. sHsps form dynamic oligomers of different sizes and constitute transient reservoirs for folding competent proteins that are subsequently refolded by ATP-dependent chaperone systems. In plants, the sHsp family is rather diverse and has been associated with the ability of plants to survive diverse environmental stresses. Nodulin 22 (PvNod22) is an sHsp of the common bean (Phaseolus vulgaris L.) located in the endoplasmic reticulum. This protein is expressed in response to stress (heat or oxidative) or in plant roots during mycorrhizal and rhizobial symbiosis. In this work, we study its oligomeric state using a combination of in silico and experimental approaches. We found that recombinant PvNod22 was able to protect a target protein from heat unfolding in vitro. We also demonstrated that PvNod22 assembles into high-molecular-weight oligomers with diameters of ~15 nm under stress-free conditions. These oligomers can cluster together to form high-weight polydisperse agglomerates with temperature-dependent interactions; in contrast, the oligomers are stable regarding temperature.
Collapse
|
85
|
Lei T, Xiao Z, Bi W, Cai S, Yang Y, Du H. Targeting small heat shock proteins to degrade aggregates as a potential strategy in neurodegenerative diseases. Ageing Res Rev 2022; 82:101769. [PMID: 36283618 DOI: 10.1016/j.arr.2022.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/18/2022] [Accepted: 10/21/2022] [Indexed: 01/31/2023]
Abstract
Neurodegenerative diseases (NDs) are aging-related diseases that involve the death of neurons in the brain. Dysregulation of protein homeostasis leads to the production of toxic proteins or the formation of aggregates, which is the pathological basis of NDs. Small heat shock proteins (HSPB) is involved in the establishment of a protein quality control (PQC) system to maintain cellular homeostasis. HSPB can be secreted into the extracellular space and delivered by various routes, especially extracellular vehicles (EVs). HSPB plays an important role in influencing the aggregation phase of toxic proteins involved in heat shock transcription factor (HSF) regulation, oxidative stress, autophagy and apoptosis pathways. HSPB conferred neuroprotective effects by resisting toxic protein aggregation, reducing autophagy and reducing neuronal apoptosis. The HSPB treatment strategies, including targeted PQC system therapy and delivery of EVs-HSPB, can improve disease manifestations for NDs. This review aims to provide a comprehensive insight into the impact of HSPB in NDs and the feasibility of new technology to enhance HSPB expression and EVs-HSPB delivery for neurodegenerative disease.
Collapse
Affiliation(s)
- Tong Lei
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangzhuang Xiao
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Wangyu Bi
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Shanglin Cai
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Yanjie Yang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing 100083, China; Daxing Research Institute, University of Science and Technology Beijing, Beijing 100083, China.
| |
Collapse
|
86
|
Strauch A, Rossa B, Köhler F, Haeussler S, Mühlhofer M, Rührnößl F, Körösy C, Bushman Y, Conradt B, Haslbeck M, Weinkauf S, Buchner J. The permanently chaperone-active small heat shock protein Hsp17 from Caenorhabditis elegans exhibits topological separation of its N-terminal regions. J Biol Chem 2022; 299:102753. [PMID: 36442512 PMCID: PMC9800568 DOI: 10.1016/j.jbc.2022.102753] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 11/27/2022] Open
Abstract
Small Heat shock proteins (sHsps) are a family of molecular chaperones that bind nonnative proteins in an ATP-independent manner. Caenorhabditis elegans encodes 16 different sHsps, among them Hsp17, which is evolutionarily distinct from other sHsps in the nematode. The structure and mechanism of Hsp17 and how these may differ from other sHsps remain unclear. Here, we find that Hsp17 has a distinct expression pattern, structural organization, and chaperone function. Consistent with its presence under nonstress conditions, and in contrast to many other sHsps, we determined that Hsp17 is a mono-disperse, permanently active chaperone in vitro, which interacts with hundreds of different C. elegans proteins under physiological conditions. Additionally, our cryo-EM structure of Hsp17 reveals that in the 24-mer complex, 12 N-terminal regions are involved in its chaperone function. These flexible regions are located on the outside of the spherical oligomer, whereas the other 12 N-terminal regions are engaged in stabilizing interactions in its interior. This allows the same region in Hsp17 to perform different functions depending on the topological context. Taken together, our results reveal structural and functional features that further define the structural basis of permanently active sHsps.
Collapse
Affiliation(s)
- Annika Strauch
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Benjamin Rossa
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Fabian Köhler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Simon Haeussler
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Moritz Mühlhofer
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Florian Rührnößl
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Caroline Körösy
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany; Debye Institute for Nanomaterials Science, Utrecht University, Utrecht, Netherlands
| | - Yevheniia Bushman
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Barbara Conradt
- Faculty of Biology, Ludwig-Maximilians-University Munich, Planegg-Martinsried, Germany
| | - Martin Haslbeck
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Sevil Weinkauf
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany
| | - Johannes Buchner
- Center for Protein Assemblies and Department of Chemistry, Technische Universität München, Garching, Germany.
| |
Collapse
|
87
|
Li M, Tang T, Yuan F, Zhang Y, Li F, Liu F. Protective effects of small heat shock proteins in Daphnia magna against heavy metal exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157565. [PMID: 35907523 DOI: 10.1016/j.scitotenv.2022.157565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/08/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Daphnia magna is one of the most commonly used model organisms to assess toxicity of heavy metal and other xenobiotics. However, the lack of knowledge about important stress-resistant molecules limits our understanding of the alteration of phenotypic and physiological traits of D. magna upon stress exposures. In this study, we focused on a chaperone family of small heat shock protein (sHSP) that has been found in archaea, bacteria and eukaryotes and plays an important role in stress tolerance. A total of eleven sHSP genes (termed DmsHSP1 - DmsHSP11) were identified from the D. magna genome, whose expression profiles during exposure to heavy metal (Cd2+, Cu2+ and Zn2+) and a few other potential pollutants were evaluated via qRT-PCR and RNA-Seq analysis. The results highlighted the predominant role of DmsHSP1 with the highest basal expression level in adults and robust upregulation upon exposure to heavy metals (Cu2+ > Cd2+ > Zn2+). In vivo, recombinant protein rDmsHSP1-21 and rDmsHSP11-12.8 could not only prevent model substrates agglutination induced by heavy metals or reducer dithiotreitol (DTT), but also protect tissue proteins and enzymes from denaturation and inactivation caused by heavy metals or high temperature. Ectopically expression of DmsHSP1-21 or DmsHSP11-12.8 in E. coli conferred host enhanced resistance against various abiotic stresses including Cd2+, Cu2+ and phenazine methosulfate (PMS). Knockdown of DmsHSP1-21 by RNAi, but not for DmsHSP11-12.8, significantly increased the vulnerability of D. magna to heavy metal exposure. Our work provides systematic information on the evolution and function of sHSPs in D. magna and leads to important insights into the mechanisms by which D. magna survive in adverse environments.
Collapse
Affiliation(s)
- Muyi Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Ting Tang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengyu Yuan
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Yuming Zhang
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengchao Li
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China
| | - Fengsong Liu
- Key Laboratory of Zoological Systematics and Application, College of Life Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
88
|
Peptains block retinal ganglion cell death in animal models of ocular hypertension: implications for neuroprotection in glaucoma. Cell Death Dis 2022; 13:958. [PMID: 36379926 PMCID: PMC9666629 DOI: 10.1038/s41419-022-05407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/01/2022] [Accepted: 11/04/2022] [Indexed: 11/16/2022]
Abstract
Ocular hypertension is a significant risk factor for vision loss in glaucoma due to the death of retinal ganglion cells (RGCs). This study investigated the effects of the antiapoptotic peptides peptain-1 and peptain-3a on RGC death in vitro in rat primary RGCs and in mouse models of ocular hypertension. Apoptosis was induced in primary rat RGCs by trophic factor deprivation for 48 h in the presence or absence of peptains. The effects of intravitreally injected peptains on RGC death were investigated in mice subjected to retinal ischemic/reperfusion (I/R) injury and elevated intraocular pressure (IOP). I/R injury was induced in mice by elevating the IOP to 120 mm Hg for 1 h, followed by rapid reperfusion. Ocular hypertension was induced in mice by injecting microbeads (MB) or silicone oil (SO) into the anterior chamber of the eye. Retinal flatmounts were immunostained with RGC and activated glial markers. Effects on anterograde axonal transport were determined by intravitreal injection of cholera toxin-B. Peptain-1 and peptain-3a inhibited neurotrophic factor deprivation-mediated RGC apoptosis by 29% and 35%, respectively. I/R injury caused 52% RGC loss, but peptain-1 and peptain-3a restricted RGC loss to 13% and 16%, respectively. MB and SO injections resulted in 31% and 36% loss in RGCs following 6 weeks and 4 weeks of IOP elevation, respectively. Peptain-1 and peptain-3a inhibited RGC death; the loss was only 4% and 12% in MB-injected eyes and 16% and 15% in SO-injected eyes, respectively. Anterograde transport was defective in eyes with ocular hypertension, but this defect was substantially ameliorated in peptain-injected eyes. Peptains suppressed ocular hypertension-mediated retinal glial activation. In summary, our results showed that peptains block RGC somal and axonal damage and neuroinflammation in animal models of glaucoma. We propose that peptains have the potential to be developed as therapeutics against neurodegeneration in glaucoma.
Collapse
|
89
|
Correlation between the complex of small heat shock proteins (HSPBs) and the progression in patients with hepatocellular carcinoma. Arch Biochem Biophys 2022; 732:109461. [DOI: 10.1016/j.abb.2022.109461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 11/06/2022]
|
90
|
Jung M, Ahn YJ. Growth-enhancing effect of bacterial and plant heat shock proteins in Escherichia coli. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
91
|
Campbell JA, Cianciotto NP. Legionella pneumophila Cas2 Promotes the Expression of Small Heat Shock Protein C2 That Is Required for Thermal Tolerance and Optimal Intracellular Infection. Infect Immun 2022; 90:e0036922. [PMID: 36073935 PMCID: PMC9584283 DOI: 10.1128/iai.00369-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/20/2022] Open
Abstract
Previously, we demonstrated that Cas2 encoded within the CRISPR-Cas locus of Legionella pneumophila strain 130b promotes the ability of the Legionella pathogen to infect amoebal hosts. Given that L. pneumophila Cas2 has RNase activity, we posited that the cytoplasmic protein is regulating the expression of another Legionella gene(s) that fosters intracellular infection. Proteomics revealed 10 proteins at diminished levels in the cas2 mutant, and reverse transcription-quantitative (qRT-PCR) confirmed the reduced expression of a gene encoding putative small heat shock protein C2 (HspC2), among several others. As predicted, the gene was expressed more highly at 37°C to 50°C than that at 30°C, and an hspC2 mutant, but not its complemented derivative, displayed ~100-fold reduced CFU following heat shock at 55°C. Compatible with the effect of Cas2 on hspC2 expression, strains lacking Cas2 also had impaired thermal tolerance. The hspC2 mutant, like the cas2 mutant before it, was greatly impaired for infection of Acanthamoeba castellanii, a frequent host for legionellae in waters. HspC2 and Cas2 were not required for entry into these host cells but promoted the replicative phase of intracellular infection. Finally, the hspC2 mutant exhibited an additional defect during the infection of macrophages, which are the primary host for legionellae during lung infection. In summary, hspC2 is upregulated by the presence of Cas2, and HspC2 uniquely promotes both L. pneumophila extracellular survival at high temperatures and infection of amoebal and human host cells. To our knowledge, these findings also represent the first genetic proof linking Cas2 to thermotolerance, expanding the repertoire of noncanonical functions associated with CRISPR-Cas proteins.
Collapse
Affiliation(s)
- Jackson A. Campbell
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, USA
| |
Collapse
|
92
|
Shrivastava A, Sandhof CA, Reinle K, Jawed A, Ruger-Herreros C, Schwarz D, Creamer D, Nussbaum-Krammer C, Mogk A, Bukau B. The cytoprotective sequestration activity of small heat shock proteins is evolutionarily conserved. J Cell Biol 2022; 221:213447. [PMID: 36069810 PMCID: PMC9458469 DOI: 10.1083/jcb.202202149] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 07/21/2022] [Accepted: 08/16/2022] [Indexed: 11/22/2022] Open
Abstract
The chaperone-mediated sequestration of misfolded proteins into inclusions is a pivotal cellular strategy to maintain proteostasis in Saccharomyces cerevisiae, executed by small heat shock proteins (sHsps) Hsp42 and Btn2. Direct homologs of Hsp42 and Btn2 are absent in other organisms, questioning whether sequestration represents a conserved proteostasis strategy and, if so, which factors are involved. We examined sHsps from Escherchia coli, Caenorhabditis elegans, and humans for their ability to complement the defects of yeast sequestrase mutants. We show that sequestration of misfolded proteins is an original and widespread activity among sHsps executed by specific family members. Sequestrase positive C. elegans' sHsps harbor specific sequence features, including a high content of aromatic and methionine residues in disordered N-terminal extensions. Those sHsps buffer limitations in Hsp70 capacity in C. elegans WT animals and are upregulated in long-lived daf-2 mutants, contributing to lifespan extension. Cellular protection by sequestration of misfolded proteins is, therefore, an evolutionarily conserved activity of the sHsp family.
Collapse
Affiliation(s)
- Aseem Shrivastava
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carl Alexander Sandhof
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kevin Reinle
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Areeb Jawed
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Carmen Ruger-Herreros
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominic Schwarz
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Declan Creamer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Carmen Nussbaum-Krammer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Axel Mogk
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Heidelberg, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
93
|
Sharma P, Mondal K, Kumar S, Tamang S, Najar IN, Das S, Thakur N. RNA thermometers in bacteria: Role in thermoregulation. BIOCHIMICA ET BIOPHYSICA ACTA (BBA) - GENE REGULATORY MECHANISMS 2022; 1865:194871. [DOI: 10.1016/j.bbagrm.2022.194871] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/09/2022] [Accepted: 08/21/2022] [Indexed: 04/09/2023]
|
94
|
Gao Y, Li JN, Pu JJ, Tao KX, Zhao XX, Yang QQ. Genome-wide identification and characterization of the HSP gene superfamily in apple snails (Gastropoda: Ampullariidae) and expression analysis under temperature stress. Int J Biol Macromol 2022; 222:2545-2555. [DOI: 10.1016/j.ijbiomac.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
95
|
Hu C, Yang J, Qi Z, Wu H, Wang B, Zou F, Mei H, Liu J, Wang W, Liu Q. Heat shock proteins: Biological functions, pathological roles, and therapeutic opportunities. MedComm (Beijing) 2022; 3:e161. [PMID: 35928554 PMCID: PMC9345296 DOI: 10.1002/mco2.161] [Citation(s) in RCA: 222] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022] Open
Abstract
The heat shock proteins (HSPs) are ubiquitous and conserved protein families in both prokaryotic and eukaryotic organisms, and they maintain cellular proteostasis and protect cells from stresses. HSP protein families are classified based on their molecular weights, mainly including large HSPs, HSP90, HSP70, HSP60, HSP40, and small HSPs. They function as molecular chaperons in cells and work as an integrated network, participating in the folding of newly synthesized polypeptides, refolding metastable proteins, protein complex assembly, dissociating protein aggregate dissociation, and the degradation of misfolded proteins. In addition to their chaperone functions, they also play important roles in cell signaling transduction, cell cycle, and apoptosis regulation. Therefore, malfunction of HSPs is related with many diseases, including cancers, neurodegeneration, and other diseases. In this review, we describe the current understandings about the molecular mechanisms of the major HSP families including HSP90/HSP70/HSP60/HSP110 and small HSPs, how the HSPs keep the protein proteostasis and response to stresses, and we also discuss their roles in diseases and the recent exploration of HSP related therapy and diagnosis to modulate diseases. These research advances offer new prospects of HSPs as potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Chen Hu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Jing Yang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Ziping Qi
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Hong Wu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Beilei Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Fengming Zou
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
| | - Husheng Mei
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Jing Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Wenchao Wang
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
| | - Qingsong Liu
- Anhui Province Key Laboratory of Medical Physics and TechnologyInstitute of Health and Medical TechnologyHefei Institutes of Physical ScienceChinese Academy of SciencesHefeiAnhuiP. R. China
- Hefei Cancer HospitalChinese Academy of SciencesHefeiAnhuiP. R. China
- University of Science and Technology of ChinaHefeiAnhuiP. R. China
- Precision Medicine Research Laboratory of Anhui ProvinceHefeiAnhuiP. R. China
| |
Collapse
|
96
|
Moon SP, Pratt MR. Synthesis of O-GlcNAcylated small heat shock proteins. Methods Enzymol 2022; 675:63-82. [PMID: 36220281 PMCID: PMC9968497 DOI: 10.1016/bs.mie.2022.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A protein's structure and function often depend not only on its primary sequence, but also the presence or absence of any number of non-coded posttranslational modifications. Complicating their study is the fact that the physiological consequences of these modifications are context-, protein-, and site-dependent, and there exist no purely biological techniques to unambiguously study their effects. To this end, protein semisynthesis has become an invaluable chemical biology tool to specifically install non-coded or non-native moieties onto proteins in vitro using synthetic and/or recombinant polypeptides. Here, we describe two facets of protein semisynthesis (solid-phase peptide synthesis and expressed protein ligation) and their use in generating site-specifically glycosylated small heat shock proteins for functional studies. The procedures herein require limited specialized equipment, employ mild reaction conditions, and can be extended to myriad other proteins, modifications, and contexts.
Collapse
Affiliation(s)
- Stuart P Moon
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States
| | - Matthew R Pratt
- Department of Chemistry, University of Southern California, Los Angeles, CA, United States; Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States.
| |
Collapse
|
97
|
Caillet C, Stofberg ML, Muleya V, Shonhai A, Zininga T. Host cell stress response as a predictor of COVID-19 infectivity and disease progression. Front Mol Biosci 2022; 9:938099. [PMID: 36032680 PMCID: PMC9411049 DOI: 10.3389/fmolb.2022.938099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
The coronavirus disease (COVID-19) caused by a coronavirus identified in December 2019 has caused a global pandemic. COVID-19 was declared a pandemic in March 2020 and has led to more than 6.3 million deaths. The pandemic has disrupted world travel, economies, and lifestyles worldwide. Although vaccination has been an effective tool to reduce the severity and spread of the disease there is a need for more concerted approaches to fighting the disease. COVID-19 is characterised as a severe acute respiratory syndrome . The severity of the disease is associated with a battery of comorbidities such as cardiovascular diseases, cancer, chronic lung disease, and renal disease. These underlying diseases are associated with general cellular stress. Thus, COVID-19 exacerbates outcomes of the underlying conditions. Consequently, coronavirus infection and the various underlying conditions converge to present a combined strain on the cellular response. While the host response to the stress is primarily intended to be of benefit, the outcomes are occasionally unpredictable because the cellular stress response is a function of complex factors. This review discusses the role of the host stress response as a convergent point for COVID-19 and several non-communicable diseases. We further discuss the merits of targeting the host stress response to manage the clinical outcomes of COVID-19.
Collapse
Affiliation(s)
- Celine Caillet
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| | | | - Victor Muleya
- Department of Biochemistry, Midlands State University, Gweru, Zimbabwe
| | - Addmore Shonhai
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou, South Africa
| | - Tawanda Zininga
- Department of Biochemistry, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
98
|
Kudzhaev AM, Andrianova AG, Gustchina AE, Smirnov IV, Rotanova TV. ATP-Dependent Lon Proteases in the Cellular Protein Quality Control System. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2022. [DOI: 10.1134/s1068162022040136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
99
|
Leppert A, Chen G, Lianoudaki D, Williams C, Zhong X, Gilthorpe JD, Landreh M, Johansson J. ATP-independent molecular chaperone activity generated under reducing conditions. Protein Sci 2022; 31:e4378. [PMID: 35900025 PMCID: PMC9278091 DOI: 10.1002/pro.4378] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/06/2022] [Accepted: 05/30/2022] [Indexed: 11/16/2022]
Abstract
Molecular chaperones are essential to maintain proteostasis. While the functions of intracellular molecular chaperones that oversee protein synthesis, folding and aggregation, are established, those specialized to work in the extracellular environment are less understood. Extracellular proteins reside in a considerably more oxidizing milieu than cytoplasmic proteins and are stabilized by abundant disulfide bonds. Hence, extracellular proteins are potentially destabilized and sensitive to aggregation under reducing conditions. We combine biochemical and mass spectrometry experiments and elucidate that the molecular chaperone functions of the extracellular protein domain Bri2 BRICHOS only appear under reducing conditions, through the assembly of monomers into large polydisperse oligomers by an intra- to intermolecular disulfide bond relay mechanism. Chaperone-active assemblies of the Bri2 BRICHOS domain are efficiently generated by physiological thiol-containing compounds and proteins, and appear in parallel with reduction-induced aggregation of extracellular proteins. Our results give insights into how potent chaperone activity can be generated from inactive precursors under conditions that are destabilizing to most extracellular proteins and thereby support protein stability/folding in the extracellular space. SIGNIFICANCE: Chaperones are essential to cells as they counteract toxic consequences of protein misfolding particularly under stress conditions. Our work describes a novel activation mechanism of an extracellular molecular chaperone domain, called Bri2 BRICHOS. This mechanism is based on reducing conditions that initiate small subunits to assemble into large oligomers via a disulfide relay mechanism. Activated Bri2 BRICHOS inhibits reduction-induced aggregation of extracellular proteins and could be a means to boost proteostasis in the extracellular environment upon reductive stress.
Collapse
Affiliation(s)
- Axel Leppert
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Gefei Chen
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Danai Lianoudaki
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Chloe Williams
- Department of Integrative Medical BiologyUmeå UniversityUmeåSweden
| | - Xueying Zhong
- Division of Structural Biotechnology, Department of Biomedical Engineering and Health Systems, School of Engineering Sciences in Chemistry, Biotechnology and Health (CBH)KTH Royal Institute of TechnologyHuddingeSweden
| | | | - Michael Landreh
- Department of Microbiology, Tumour and Cell BiologyKarolinska InstitutetSolnaSweden
| | - Jan Johansson
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| |
Collapse
|
100
|
Drwesh L, Heim B, Graf M, Kehr L, Hansen-Palmus L, Franz-Wachtel M, Macek B, Kalbacher H, Buchner J, Rapaport D. A network of cytosolic (co)chaperones promotes the biogenesis of mitochondrial signal-anchored outer membrane proteins. eLife 2022; 11:77706. [PMID: 35876647 PMCID: PMC9355564 DOI: 10.7554/elife.77706] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 07/25/2022] [Indexed: 11/21/2022] Open
Abstract
Signal-anchored (SA) proteins are anchored into the mitochondrial outer membrane (OM) via a single transmembrane segment at their N-terminus while the bulk of the proteins is facing the cytosol. These proteins are encoded by nuclear DNA, translated on cytosolic ribosomes, and are then targeted to the organelle and inserted into its OM by import factors. Recently, research on the insertion mechanisms of these proteins into the mitochondrial OM have gained a lot of attention. In contrast, the early cytosolic steps of their biogenesis are unresolved. Using various proteins from this category and a broad set of in vivo, in organello, and in vitro assays, we reconstituted the early steps of their biogenesis. We identified a subset of molecular (co)chaperones that interact with newly synthesized SA proteins, namely, Hsp70 and Hsp90 chaperones and co-chaperones from the Hsp40 family like Ydj1 and Sis1. These interactions were mediated by the hydrophobic transmembrane segments of the SA proteins. We further demonstrate that interfering with these interactions inhibits the biogenesis of SA proteins to a various extent. Finally, we could demonstrate direct interaction of peptides corresponding to the transmembrane segments of SA proteins with the (co)chaperones and reconstitute in vitro the transfer of such peptides from the Hsp70 chaperone to the mitochondrial Tom70 receptor. Collectively, this study unravels an array of cytosolic chaperones and mitochondrial import factors that facilitates the targeting and membrane integration of mitochondrial SA proteins.
Collapse
Affiliation(s)
- Layla Drwesh
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Benjamin Heim
- Department of Chemistry, Technische Universität München, Munich, Germany
| | - Max Graf
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Linda Kehr
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Lea Hansen-Palmus
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Mirita Franz-Wachtel
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology,, University of Tübingen, Tübingen, Germany
| | - Boris Macek
- Proteome Center Tübingen, Interfaculty Institute for Cell Biology,, University of Tübingen, Tübingen, Germany
| | - Hubert Kalbacher
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| | - Johannes Buchner
- Department of Chemistry, Technische Universität München, Garching, Germany
| | - Doron Rapaport
- Interfaculty Institute of Biochemistry, University of Tübingen, Tuebingen, Germany
| |
Collapse
|