51
|
Davis RT, Blake K, Ma D, Gabra MBI, Hernandez GA, Phung AT, Yang Y, Maurer D, Lefebvre AEYT, Alshetaiwi H, Xiao Z, Liu J, Locasale JW, Digman MA, Mjolsness E, Kong M, Werb Z, Lawson DA. Transcriptional diversity and bioenergetic shift in human breast cancer metastasis revealed by single-cell RNA sequencing. Nat Cell Biol 2020; 22:310-320. [PMID: 32144411 DOI: 10.1038/s41556-020-0477-0] [Citation(s) in RCA: 205] [Impact Index Per Article: 41.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2018] [Accepted: 02/04/2020] [Indexed: 12/24/2022]
Abstract
Although metastasis remains the cause of most cancer-related mortality, mechanisms governing seeding in distal tissues are poorly understood. Here, we establish a robust method for the identification of global transcriptomic changes in rare metastatic cells during seeding using single-cell RNA sequencing and patient-derived-xenograft models of breast cancer. We find that both primary tumours and micrometastases display transcriptional heterogeneity but micrometastases harbour a distinct transcriptome program conserved across patient-derived-xenograft models that is highly predictive of poor survival of patients. Pathway analysis revealed mitochondrial oxidative phosphorylation as the top pathway upregulated in micrometastases, in contrast to higher levels of glycolytic enzymes in primary tumour cells, which we corroborated by flow cytometric and metabolomic analyses. Pharmacological inhibition of oxidative phosphorylation dramatically attenuated metastatic seeding in the lungs, which demonstrates the functional importance of oxidative phosphorylation in metastasis and highlights its potential as a therapeutic target to prevent metastatic spread in patients with breast cancer.
Collapse
Affiliation(s)
- Ryan T Davis
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Kerrigan Blake
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Dennis Ma
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
| | - Mari B Ishak Gabra
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Grace A Hernandez
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Anh T Phung
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Dustin Maurer
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
| | - Austin E Y T Lefebvre
- Biomedical Engineering Department, University of California, Irvine, Irvine, CA, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, USA
| | - Hamad Alshetaiwi
- Department of Biological Chemistry, University of California, Irvine, Irvine, CA, USA
- Department of Pathology, University of Hail, Hail, Saudi Arabia
| | - Zhengtao Xiao
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - Michelle A Digman
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, USA
- Biomedical Engineering Department, University of California, Irvine, Irvine, CA, USA
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, CA, USA
| | - Eric Mjolsness
- Department of Computer Science, University of California, Irvine, Irvine, CA, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Zena Werb
- Department of Anatomy, University of California, San Francisco, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
52
|
Schöttl T, Pachl F, Giesbertz P, Daniel H, Kuster B, Fromme T, Klingenspor M. Proteomic and Metabolite Profiling Reveals Profound Structural and Metabolic Reorganization of Adipocyte Mitochondria in Obesity. Obesity (Silver Spring) 2020; 28:590-600. [PMID: 32034895 DOI: 10.1002/oby.22737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/26/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE Previous studies have revealed decreased mitochondrial respiration in adipocytes of obese mice. This study aimed to identify the molecular underpinnings of altered mitochondrial metabolism in adipocytes. METHODS Untargeted proteomics of mitochondria isolated from adipocytes and metabolite profiling of adipose tissues were conducted in diet-induced obese (DIO) and lean mice. Subcutaneous and intra-abdominal adipose tissues were studied to depict depot-specific alterations. RESULTS In subcutaneous adipocytes of DIO mice, changes in proteins related to mitochondrial structure and function were observed. Mitochondrial proteins of the inner and outer membrane were strongly reduced, whereas proteins of key matrix metabolic pathways were increased in the obese versus lean state, as further substantiated by metabolite profiling. A pronounced decrease in the oxidative phosphorylation (OXPHOS) enzymatic equipment and cristae density of the inner membrane was identified. In intra-abdominal adipocytes, similar systematic downregulation of the OXPHOS machinery in obesity occurred, but there was no regulation of outer membrane or matrix proteins. CONCLUSIONS Protein components of the OXPHOS machinery are systematically downregulated in adipose tissues of DIO mice compared with lean mice. Loss of the mitochondrial OXPHOS capacity in adipocytes may aggravate the development of metabolic disease.
Collapse
Affiliation(s)
- Theresa Schöttl
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Zentrum for Nutritional Medicine, Technical Universtiy of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Fiona Pachl
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Pieter Giesbertz
- Chair of Nutritional Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Hannelore Daniel
- Chair of Nutritional Physiology, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Bernhard Kuster
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
- Chair of Proteomics and Bioanalytics, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Zentrum for Nutritional Medicine, Technical Universtiy of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- EKFZ-Else Kröner Fresenius Zentrum for Nutritional Medicine, Technical Universtiy of Munich, Freising, Germany
- ZIEL-Institute for Food & Health, Technical University of Munich, Freising, Germany
| |
Collapse
|
53
|
Assiri MA, Ali HR, Marentette JO, Yun Y, Liu J, Hirschey MD, Saba LM, Harris PS, Fritz KS. Investigating RNA expression profiles altered by nicotinamide mononucleotide therapy in a chronic model of alcoholic liver disease. Hum Genomics 2019; 13:65. [PMID: 31823815 PMCID: PMC6902345 DOI: 10.1186/s40246-019-0251-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/19/2019] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Chronic alcohol consumption is a significant cause of liver disease worldwide. Several biochemical mechanisms have been linked to the initiation and progression of alcoholic liver disease (ALD) such as oxidative stress, inflammation, and metabolic dysregulation, including the disruption of NAD+/NADH. Indeed, an ethanol-mediated reduction in hepatic NAD+ levels is thought to be one factor underlying ethanol-induced steatosis, oxidative stress, steatohepatitis, insulin resistance, and inhibition of gluconeogenesis. Therefore, we applied a NAD+ boosting supplement to investigate alterations in the pathogenesis of early-stage ALD. METHODS To examine the impact of NAD+ therapy on the early stages of ALD, we utilized nicotinamide mononucleotide (NMN) at 500 mg/kg intraperitoneal injection every other day, for the duration of a Lieber-DeCarli 6-week chronic ethanol model in mice. Numerous strategies were employed to characterize the effect of NMN therapy, including the integration of RNA-seq, immunoblotting, and metabolomics analysis. RESULTS Our findings reveal that NMN therapy increased hepatic NAD+ levels, prevented an ethanol-induced increase in plasma ALT and AST, and changed the expression of 25% of the genes that were modulated by ethanol metabolism. These genes were associated with a number of pathways including the MAPK pathway. Interestingly, our analysis revealed that NMN treatment normalized Erk1/2 signaling and prevented an induction of Atf3 overexpression. CONCLUSIONS These findings reveal previously unreported mechanisms by which NMN supplementation alters hepatic gene expression and protein pathways to impact ethanol hepatotoxicity in an early-stage murine model of ALD. Overall, our data suggest further research is needed to fully characterize treatment paradigms and biochemical implications of NAD+-based interventions.
Collapse
Affiliation(s)
- Mohammed A Assiri
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Hadi R Ali
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - John O Marentette
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Youngho Yun
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Matthew D Hirschey
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27710, USA.,Department of Medicine, Division of Endocrinology, Metabolism, and Nutrition, Duke University Medical Center, Durham, NC, 27710, USA
| | - Laura M Saba
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Peter S Harris
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Kristofer S Fritz
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
54
|
Galmozzi A, Kok BP, Kim AS, Montenegro-Burke JR, Lee JY, Spreafico R, Mosure S, Albert V, Cintron-Colon R, Godio C, Webb WR, Conti B, Solt LA, Kojetin D, Parker CG, Peluso JJ, Pru JK, Siuzdak G, Cravatt BF, Saez E. PGRMC2 is an intracellular haem chaperone critical for adipocyte function. Nature 2019; 576:138-142. [PMID: 31748741 PMCID: PMC6895438 DOI: 10.1038/s41586-019-1774-2] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/01/2019] [Indexed: 12/16/2022]
Abstract
Heme is an essential prosthetic group of numerous proteins and a central signaling molecule in many physiologic processes1,2. The chemical reactivity of heme requires that a network of intracellular chaperone proteins exist to avert the cytotoxic effects of free heme, but the constituents of such trafficking pathways are unknown3,4. Heme synthesis is completed in mitochondria, with ferrochelatase (FECH) adding iron to protoporphyrin IX. How this vital but highly reactive metabolite is delivered from mitochondria to hemoproteins throughout the cell remains poorly defined3,4. Here, we show that PGRMC2 is required for delivery of labile, or signaling heme, to the nucleus. Deletion of PGMRC2 in brown fat, which has a high demand for heme, reduced labile heme in the nucleus and increased stability of the heme-responsive transcriptional repressors Rev-Erbα and BACH1. Ensuing alterations in gene expression spawn severe mitochondrial defects that rendered adipose-specific PGRMC2-null mice unable to activate adaptive thermogenesis and prone to greater metabolic deterioration when fed a high-fat diet. In contrast, obese-diabetic mice treated with a small-molecule PGRMC2 activator showed substantial improvement of diabetic features. These studies uncover a role for PGRMC2 in intracellular heme transport, reveal the impact of adipose tissue heme dynamics on physiology, and suggest that modulation of PGRMC2 may revert obesity-linked defects in adipocytes.
Collapse
Affiliation(s)
- Andrea Galmozzi
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Bernard P Kok
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Arthur S Kim
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | | | - Jae Y Lee
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Spreafico
- Institute for Quantitative and Computational Biology, University of California, Los Angeles, CA, USA
| | - Sarah Mosure
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA.,Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Verena Albert
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Rigo Cintron-Colon
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Cristina Godio
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - William R Webb
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Bruno Conti
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA
| | - Laura A Solt
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, FL, USA
| | - Douglas Kojetin
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, Jupiter, FL, USA
| | - Christopher G Parker
- Department of Chemistry, The Scripps Research Institute, Jupiter, FL, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - John J Peluso
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT, USA
| | - James K Pru
- Center for Reproductive Biology, Department of Animal Sciences, Washington State University, Pullman, WA, USA
| | - Gary Siuzdak
- Scripps Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA.,Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Benjamin F Cravatt
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Enrique Saez
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
55
|
Gao X, Sanderson SM, Dai Z, Reid MA, Cooper DE, Lu M, Richie JP, Ciccarella A, Calcagnotto A, Mikhael PG, Mentch SJ, Liu J, Ables G, Kirsch DG, Hsu DS, Nichenametla SN, Locasale JW. Dietary methionine influences therapy in mouse cancer models and alters human metabolism. Nature 2019; 572:397-401. [PMID: 31367041 PMCID: PMC6951023 DOI: 10.1038/s41586-019-1437-3] [Citation(s) in RCA: 437] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 06/26/2019] [Indexed: 02/07/2023]
Abstract
Nutrition exerts considerable effects on health, and dietary interventions are commonly used to treat diseases of metabolic aetiology. Although cancer has a substantial metabolic component1, the principles that define whether nutrition may be used to influence outcomes of cancer are unclear2. Nevertheless, it is established that targeting metabolic pathways with pharmacological agents or radiation can sometimes lead to controlled therapeutic outcomes. By contrast, whether specific dietary interventions can influence the metabolic pathways that are targeted in standard cancer therapies is not known. Here we show that dietary restriction of the essential amino acid methionine-the reduction of which has anti-ageing and anti-obesogenic properties-influences cancer outcome, through controlled and reproducible changes to one-carbon metabolism. This pathway metabolizes methionine and is the target of a variety of cancer interventions that involve chemotherapy and radiation. Methionine restriction produced therapeutic responses in two patient-derived xenograft models of chemotherapy-resistant RAS-driven colorectal cancer, and in a mouse model of autochthonous soft-tissue sarcoma driven by a G12D mutation in KRAS and knockout of p53 (KrasG12D/+;Trp53-/-) that is resistant to radiation. Metabolomics revealed that the therapeutic mechanisms operate via tumour-cell-autonomous effects on flux through one-carbon metabolism that affects redox and nucleotide metabolism-and thus interact with the antimetabolite or radiation intervention. In a controlled and tolerated feeding study in humans, methionine restriction resulted in effects on systemic metabolism that were similar to those obtained in mice. These findings provide evidence that a targeted dietary manipulation can specifically affect tumour-cell metabolism to mediate broad aspects of cancer outcome.
Collapse
Affiliation(s)
- Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Ziwei Dai
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Daniel E Cooper
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - Min Lu
- Center for Genomics and Computational Biology, Duke University, Durham, NC, USA
- Department of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | - John P Richie
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Amy Ciccarella
- Penn State University Clinical Research Center, State College, PA, USA
| | - Ana Calcagnotto
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Peter G Mikhael
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Samantha J Mentch
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
| | - Gene Ables
- Orentreich Foundation for the Advancement of Science, Cold Spring, NY, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC, USA
| | - David S Hsu
- Center for Genomics and Computational Biology, Duke University, Durham, NC, USA
- Department of Medical Oncology, Duke University Medical Center, Durham, NC, USA
| | | | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
56
|
O’Kane PT, Dudley QM, McMillan AK, Jewett MC, Mrksich M. High-throughput mapping of CoA metabolites by SAMDI-MS to optimize the cell-free biosynthesis of HMG-CoA. SCIENCE ADVANCES 2019; 5:eaaw9180. [PMID: 31183410 PMCID: PMC6551189 DOI: 10.1126/sciadv.aaw9180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/02/2019] [Indexed: 05/30/2023]
Abstract
Metabolic engineering uses enzymes to produce small molecules with industrial, pharmaceutical, and energy applications. However, efforts to optimize enzymatic pathways for commercial production are limited by the throughput of assays for quantifying metabolic intermediates and end products. We developed a multiplexed method for profiling CoA-dependent pathways that uses a cysteine-terminated peptide to covalently capture CoA-bound metabolites. Captured metabolites are then rapidly separated from the complex mixture by immobilization onto arrays of self-assembled monolayers and directly quantified by SAMDI mass spectrometry. We demonstrate the throughput of the assay by characterizing the cell-free synthesis of HMG-CoA, a key intermediate in the biosynthesis of isoprenoids, collecting over 10,000 individual spectra to map more than 800 unique reaction conditions. We anticipate that our rapid and robust analytical method will accelerate efforts to engineer metabolic pathways.
Collapse
Affiliation(s)
- Patrick T. O’Kane
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Quentin M. Dudley
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Aislinn K. McMillan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Michael C. Jewett
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Milan Mrksich
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
57
|
Sinclair LV, Howden AJM, Brenes A, Spinelli L, Hukelmann JL, Macintyre AN, Liu X, Thomson S, Taylor PM, Rathmell JC, Locasale JW, Lamond AI, Cantrell DA. Antigen receptor control of methionine metabolism in T cells. eLife 2019; 8:e44210. [PMID: 30916644 PMCID: PMC6497464 DOI: 10.7554/elife.44210] [Citation(s) in RCA: 147] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 03/26/2019] [Indexed: 12/15/2022] Open
Abstract
Immune activated T lymphocytes modulate the activity of key metabolic pathways to support the transcriptional reprograming and reshaping of cell proteomes that permits effector T cell differentiation. The present study uses high resolution mass spectrometry and metabolic labelling to explore how murine T cells control the methionine cycle to produce methyl donors for protein and nucleotide methylations. We show that antigen receptor engagement controls flux through the methionine cycle and RNA and histone methylations. We establish that the main rate limiting step for protein synthesis and the methionine cycle is control of methionine transporter expression. Only T cells that respond to antigen to upregulate and sustain methionine transport are supplied with methyl donors that permit the dynamic nucleotide methylations and epigenetic reprogramming that drives T cell differentiation. These data highlight how the regulation of methionine transport licenses use of methionine for multiple fundamental processes that drive T lymphocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Linda V Sinclair
- Cell Signalling and ImmunologyUniversity of DundeeDundeeUnited Kingdom
| | - Andrew JM Howden
- Cell Signalling and ImmunologyUniversity of DundeeDundeeUnited Kingdom
| | - Alejandro Brenes
- Centre for Gene Regulation and ExpressionUniversity of DundeeDundeeUnited Kingdom
| | - Laura Spinelli
- Cell Signalling and ImmunologyUniversity of DundeeDundeeUnited Kingdom
| | - Jens L Hukelmann
- Centre for Gene Regulation and ExpressionUniversity of DundeeDundeeUnited Kingdom
| | | | - Xiaojing Liu
- Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| | - Sarah Thomson
- Cell Signalling and ImmunologyUniversity of DundeeDundeeUnited Kingdom
| | - Peter M Taylor
- Cell Signalling and ImmunologyUniversity of DundeeDundeeUnited Kingdom
| | - Jeffrey C Rathmell
- Center for ImmunobiologyVanderbilt University Medical CenterNashvilleUnited States
| | - Jason W Locasale
- Pharmacology and Cancer BiologyDuke UniversityDurhamUnited States
| | - Angus I Lamond
- Centre for Gene Regulation and ExpressionUniversity of DundeeDundeeUnited Kingdom
| | - Doreen A Cantrell
- Cell Signalling and ImmunologyUniversity of DundeeDundeeUnited Kingdom
| |
Collapse
|
58
|
Lowman XH, Hanse EA, Yang Y, Ishak Gabra MB, Tran TQ, Li H, Kong M. p53 Promotes Cancer Cell Adaptation to Glutamine Deprivation by Upregulating Slc7a3 to Increase Arginine Uptake. Cell Rep 2019; 26:3051-3060.e4. [PMID: 30865893 PMCID: PMC6510239 DOI: 10.1016/j.celrep.2019.02.037] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/13/2018] [Accepted: 02/11/2019] [Indexed: 12/25/2022] Open
Abstract
Cancer cells heavily depend on the amino acid glutamine to meet the demands associated with growth and proliferation. Due to the rapid consumption of glutamine, cancer cells frequently undergo glutamine starvation in vivo. We and others have shown that p53 is a critical regulator in metabolic stress resistance. To better understand the molecular mechanisms by which p53 activation promotes cancer cell adaptation to glutamine deprivation, we identified p53-dependent genes that are induced upon glutamine deprivation by using RNA-seq analysis. We show that Slc7a3, an arginine transporter, is significantly induced by p53. We also show that increased intracellular arginine levels following glutamine deprivation are dependent on p53. The influx of arginine has minimal effects on known metabolic pathways upon glutamine deprivation. Instead, we found arginine serves as an effector for mTORC1 activation to promote cell growth in response to glutamine starvation. Therefore, we identify a p53-inducible gene that contributes to the metabolic stress response.
Collapse
Affiliation(s)
- Xazmin H Lowman
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Eric A Hanse
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Ying Yang
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Mari B Ishak Gabra
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Thai Q Tran
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA
| | - Haiqing Li
- Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA; Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope National Medical Center, Duarte, CA 91010, USA
| | - Mei Kong
- Department of Molecular Biology and Biochemistry; University of California, Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
59
|
Gao S, Wan Y, Li W, Huang C. Visualized Networking of Co-Regulated Lipids in Human Blood Based on High-Throughput Screening Data: Implications for Exposure Assessment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:2862-2872. [PMID: 30739451 DOI: 10.1021/acs.est.8b06289] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Exposure to environmental chemicals could disturb lipidome homeostasis in biotas. Comprehensive identification and interpretation of lipid molecules in biological samples are of great importance to elucidate the potential changes in lipid homeostasis upon exposure to various environmental stimuli. In this study, a total of 156 human blood samples were collected including 108 general citizens (control group) and 48 employees in a municipal solid waste incineration (MSWI) plant (occupational exposure group). More than 1500 lipid molecules, belonging to five lipid classes, were screened in the blood samples by UPLC-QTOF-MS in the MSE acquisition mode. All of the coupled compounds with correlation coefficients ( R) of 0.7 or higher were selected for automated network correlation analysis. A global visual network was automatically produced from thousands of coregulated lipid species in the blood samples. In the automatically produced molecular network, the distributions of the major correlated lipids were in accordance with their metabolic pathways in the KEGG map. Different lipidomic profiles in the blood samples from the two groups of people were easily observed by this visualization technique. Among the intrinsic lipid classes, glycererides and sterol lipids might represent the most sensitively affected lipids upon exposure to various pollutants emitted from the MSWI plant. The visualized network of coregulated lipids identified in human blood presents a new approach for interpreting the metabolic relationships among the thousands of metabolites identified in toxicological and epidemiological studies.
Collapse
Affiliation(s)
- Shixiong Gao
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Yi Wan
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Wenjuan Li
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| | - Chong Huang
- Laboratory for Earth Surface Processes, College of Urban and Environmental Sciences , Peking University , Beijing 100871 , China
| |
Collapse
|
60
|
MiR-135 suppresses glycolysis and promotes pancreatic cancer cell adaptation to metabolic stress by targeting phosphofructokinase-1. Nat Commun 2019; 10:809. [PMID: 30778058 PMCID: PMC6379428 DOI: 10.1038/s41467-019-08759-0] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Accepted: 01/29/2019] [Indexed: 12/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal human cancers. It thrives in a nutrient-poor environment; however, the mechanisms by which PDAC cells undergo metabolic reprogramming to adapt to metabolic stress are still poorly understood. Here, we show that microRNA-135 is significantly increased in PDAC patient samples compared to adjacent normal tissue. Mechanistically, miR-135 accumulates specifically in response to glutamine deprivation and requires ROS-dependent activation of mutant p53, which directly promotes miR-135 expression. Functionally, we found miR-135 targets phosphofructokinase-1 (PFK1) and inhibits aerobic glycolysis, thereby promoting the utilization of glucose to support the tricarboxylic acid (TCA) cycle. Consistently, miR-135 silencing sensitizes PDAC cells to glutamine deprivation and represses tumor growth in vivo. Together, these results identify a mechanism used by PDAC cells to survive the nutrient-poor tumor microenvironment, and also provide insight regarding the role of mutant p53 and miRNA in pancreatic cancer cell adaptation to metabolic stresses.
Collapse
|
61
|
Freemerman AJ, Zhao L, Pingili AK, Teng B, Cozzo AJ, Fuller AM, Johnson AR, Milner JJ, Lim MF, Galanko JA, Beck MA, Bear JE, Rotty JD, Bezavada L, Smallwood HS, Puchowicz MA, Liu J, Locasale JW, Lee DP, Bennett BJ, Abel ED, Rathmell JC, Makowski L. Myeloid Slc2a1-Deficient Murine Model Revealed Macrophage Activation and Metabolic Phenotype Are Fueled by GLUT1. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2019; 202:1265-1286. [PMID: 30659108 PMCID: PMC6360258 DOI: 10.4049/jimmunol.1800002] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 12/03/2018] [Indexed: 12/15/2022]
Abstract
Macrophages (MΦs) are heterogeneous and metabolically flexible, with metabolism strongly affecting immune activation. A classic response to proinflammatory activation is increased flux through glycolysis with a downregulation of oxidative metabolism, whereas alternative activation is primarily oxidative, which begs the question of whether targeting glucose metabolism is a viable approach to control MΦ activation. We created a murine model of myeloid-specific glucose transporter GLUT1 (Slc2a1) deletion. Bone marrow-derived MΦs (BMDM) from Slc2a1M-/- mice failed to uptake glucose and demonstrated reduced glycolysis and pentose phosphate pathway activity. Activated BMDMs displayed elevated metabolism of oleate and glutamine, yet maximal respiratory capacity was blunted in MΦ lacking GLUT1, demonstrating an incomplete metabolic reprogramming. Slc2a1M-/- BMDMs displayed a mixed inflammatory phenotype with reductions of the classically activated pro- and anti-inflammatory markers, yet less oxidative stress. Slc2a1M-/- BMDMs had reduced proinflammatory metabolites, whereas metabolites indicative of alternative activation-such as ornithine and polyamines-were greatly elevated in the absence of GLUT1. Adipose tissue MΦs of lean Slc2a1M-/- mice had increased alternative M2-like activation marker mannose receptor CD206, yet lack of GLUT1 was not a critical mediator in the development of obesity-associated metabolic dysregulation. However, Ldlr-/- mice lacking myeloid GLUT1 developed unstable atherosclerotic lesions. Defective phagocytic capacity in Slc2a1M-/- BMDMs may have contributed to unstable atheroma formation. Together, our findings suggest that although lack of GLUT1 blunted glycolysis and the pentose phosphate pathway, MΦ were metabolically flexible enough that inflammatory cytokine release was not dramatically regulated, yet phagocytic defects hindered MΦ function in chronic diseases.
Collapse
Affiliation(s)
- Alex J Freemerman
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Liyang Zhao
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Ajeeth K Pingili
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Bin Teng
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Alyssa J Cozzo
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Ashley M Fuller
- Department of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Amy R Johnson
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - J Justin Milner
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Maili F Lim
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - Joseph A Galanko
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Melinda A Beck
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799
| | - James E Bear
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Jeremy D Rotty
- Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Lavanya Bezavada
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Heather S Smallwood
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Michelle A Puchowicz
- Department of Pediatrics, University of Tennessee Health Science Center, Memphis, TN 38163
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710
| | | | - Brian J Bennett
- U.S. Department of Agriculture Western Human Nutrition Research Center, Davis, CA 95616
| | - E Dale Abel
- Division of Endocrinology and Metabolism, University of Iowa Carver College of Medicine, Iowa City, IA 52242
- Fraternal Order of Eagles Diabetes Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52242; and
| | - Jeff C Rathmell
- Department of Pathology, Microbiology, and Immunology, Vanderbilt Center for Immunobiology, Vanderbilt University, Nashville, TN 37232
| | - Liza Makowski
- Department of Nutrition, University of North Carolina at Chapel Hill, Chapel Hill, NC 25799;
- Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163
| |
Collapse
|
62
|
Analytical Methods for Mass Spectrometry-Based Metabolomics Studies. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1140:635-647. [DOI: 10.1007/978-3-030-15950-4_38] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
63
|
Metabolic Signaling into Chromatin Modifications in the Regulation of Gene Expression. Int J Mol Sci 2018; 19:ijms19124108. [PMID: 30567372 PMCID: PMC6321258 DOI: 10.3390/ijms19124108] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/11/2018] [Accepted: 12/14/2018] [Indexed: 12/20/2022] Open
Abstract
The regulation of cellular metabolism is coordinated through a tissue cross-talk by hormonal control. This leads to the establishment of specific transcriptional gene programs which adapt to environmental stimuli. On the other hand, recent advances suggest that metabolic pathways could directly signal into chromatin modifications and impact on specific gene programs. The key metabolites acetyl-CoA or S-adenosyl-methionine (SAM) are examples of important metabolic hubs which play in addition a role in chromatin acetylation and methylation. In this review, we will discuss how intermediary metabolism impacts on transcription regulation and the epigenome with a particular focus in metabolic disorders.
Collapse
|
64
|
Ding Y, Gong C, Huang D, Chen R, Sui P, Lin KH, Liang G, Yuan L, Xiang H, Chen J, Yin T, Alexander PB, Wang QF, Song EW, Li QJ, Wood KC, Wang XF. Synthetic lethality between HER2 and transaldolase in intrinsically resistant HER2-positive breast cancers. Nat Commun 2018; 9:4274. [PMID: 30323337 PMCID: PMC6189078 DOI: 10.1038/s41467-018-06651-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 09/13/2018] [Indexed: 12/13/2022] Open
Abstract
Intrinsic resistance to anti-HER2 therapy in breast cancer remains an obstacle in the clinic, limiting its efficacy. However, the biological basis for intrinsic resistance is poorly understood. Here we performed a CRISPR/Cas9-mediated loss-of-function genetic profiling and identified TALDO1, which encodes the rate-limiting transaldolase (TA) enzyme in the non-oxidative pentose phosphate pathway, as essential for cellular survival following pharmacological HER2 blockade. Suppression of TA increases cell susceptibility to HER2 inhibition in two intrinsically resistant breast cancer cell lines with HER2 amplification. Mechanistically, TA depletion combined with HER2 inhibition significantly reduces cellular NADPH levels, resulting in excessive ROS production and deficient lipid and nucleotide synthesis. Importantly, higher TA expression correlates with poor response to HER2 inhibition in a breast cancer patient cohort. Together, these results pinpoint TA as a novel metabolic enzyme possessing synthetic lethality with HER2 inhibition that can potentially be exploited as a biomarker or target for combination therapy. Resistance to anti-HER2 therapy in breast cancer remains a major obstacle in the clinic. Here the authors performed a CRISPR-selective vulnerability screen to identify transaldoloase as a target that is synthetically lethal with HER2 inhibition in breast cancer cells.
Collapse
Affiliation(s)
- Yi Ding
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Chang Gong
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - De Huang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Rui Chen
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Pinpin Sui
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kevin H Lin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Gehao Liang
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Lifeng Yuan
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Handan Xiang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Junying Chen
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Tao Yin
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Peter B Alexander
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Qian-Fei Wang
- Key Laboratory of Genomic and Precision Medicine, Collaborative Innovation Center of Genetics and Development, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Er-Wei Song
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Qi-Jing Li
- Department of Immunology, Duke University Medical Center, Durham, NC, 27705, USA
| | - Kris C Wood
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA.
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, NC, 27705, USA.
| |
Collapse
|
65
|
Liu X, Cooper DE, Cluntun AA, Warmoes MO, Zhao S, Reid MA, Liu J, Lund PJ, Lopes M, Garcia BA, Wellen KE, Kirsch DG, Locasale JW. Acetate Production from Glucose and Coupling to Mitochondrial Metabolism in Mammals. Cell 2018; 175:502-513.e13. [PMID: 30245009 PMCID: PMC6173642 DOI: 10.1016/j.cell.2018.08.040] [Citation(s) in RCA: 276] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 06/22/2018] [Accepted: 08/17/2018] [Indexed: 12/17/2022]
Abstract
Acetate is a major nutrient that supports acetyl-coenzyme A (Ac-CoA) metabolism and thus lipogenesis and protein acetylation. However, its source is unclear. Here, we report that pyruvate, the end product of glycolysis and key node in central carbon metabolism, quantitatively generates acetate in mammals. This phenomenon becomes more pronounced in the context of nutritional excess, such as during hyperactive glucose metabolism. Conversion of pyruvate to acetate occurs through two mechanisms: (1) coupling to reactive oxygen species (ROS) and (2) neomorphic enzyme activity from keto acid dehydrogenases that enable function as pyruvate decarboxylases. Further, we demonstrate that de novo acetate production sustains Ac-CoA pools and cell proliferation in limited metabolic environments, such as during mitochondrial dysfunction or ATP citrate lyase (ACLY) deficiency. By virtue of de novo acetate production being coupled to mitochondrial metabolism, there are numerous possible regulatory mechanisms and links to pathophysiology.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Daniel E Cooper
- Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ahmad A Cluntun
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Marc O Warmoes
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Steven Zhao
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA
| | - Peder J Lund
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mariana Lopes
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin A Garcia
- Department of Biochemistry and Biophysics, Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kathryn E Wellen
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - David G Kirsch
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA; Department of Radiation Oncology, Duke University Medical Center, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
66
|
Huang H, Zhang D, Wang Y, Perez-Neut M, Han Z, Zheng YG, Hao Q, Zhao Y. Lysine benzoylation is a histone mark regulated by SIRT2. Nat Commun 2018; 9:3374. [PMID: 30154464 PMCID: PMC6113264 DOI: 10.1038/s41467-018-05567-w] [Citation(s) in RCA: 160] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 07/11/2018] [Indexed: 02/06/2023] Open
Abstract
Metabolic regulation of histone marks is associated with diverse biological processes through dynamically modulating chromatin structure and functions. Here we report the identification and characterization of a histone mark, lysine benzoylation (Kbz). Our study identifies 22 Kbz sites on histones from HepG2 and RAW cells. This type of histone mark can be stimulated by sodium benzoate (SB), an FDA-approved drug and a widely used chemical food preservative, via generation of benzoyl CoA. By ChIP-seq and RNA-seq analysis, we demonstrate that histone Kbz marks are associated with gene expression and have physiological relevance distinct from histone acetylation. In addition, we demonstrate that SIRT2, a NAD+-dependent protein deacetylase, removes histone Kbz both in vitro and in vivo. This study therefore reveals a new type of histone marks with potential physiological relevance and identifies possible non-canonical functions of a widely used chemical food preservative. Histone marks regulate chromatin structure and function. Here the authors identify and characterize lysine benzoylation, a histone mark that can be modulated by sodium benzoate, a widely used chemical food preservative, associated with specific regulation of gene expression.
Collapse
Affiliation(s)
- He Huang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Di Zhang
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Yi Wang
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Mathew Perez-Neut
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, USA
| | - Zhen Han
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Y George Zheng
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, Athens, GA, 30602, USA
| | - Quan Hao
- School of Biomedical Sciences, University of Hong Kong, Hong Kong, China
| | - Yingming Zhao
- Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
67
|
Shao X, Ji F, Wang Y, Zhu L, Zhang Z, Du X, Chung ACK, Hong Y, Zhao Q, Cai Z. Integrative Chemical Proteomics-Metabolomics Approach Reveals Acaca/Acacb as Direct Molecular Targets of PFOA. Anal Chem 2018; 90:11092-11098. [DOI: 10.1021/acs.analchem.8b02995] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaojian Shao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Fenfen Ji
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yawei Wang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Lin Zhu
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Zhen Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Xiubo Du
- College of Life Sciences, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Arthur Chi Kong Chung
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| | - Qian Zhao
- State Key Laboratory of Chirosciences, Department of Applied Biology and Chemical Technology, Hong Kong Polytechnic University, Hong Kong, China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
68
|
Coenzyme A, protein CoAlation and redox regulation in mammalian cells. Biochem Soc Trans 2018; 46:721-728. [PMID: 29802218 PMCID: PMC6008590 DOI: 10.1042/bst20170506] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Revised: 03/19/2018] [Accepted: 03/21/2018] [Indexed: 12/16/2022]
Abstract
In a diverse family of cellular cofactors, coenzyme A (CoA) has a unique design to function in various biochemical processes. The presence of a highly reactive thiol group and a nucleotide moiety offers a diversity of chemical reactions and regulatory interactions. CoA employs them to activate carbonyl-containing molecules and to produce various thioester derivatives (e.g. acetyl CoA, malonyl CoA and 3-hydroxy-3-methylglutaryl CoA), which have well-established roles in cellular metabolism, production of neurotransmitters and the regulation of gene expression. A novel unconventional function of CoA in redox regulation, involving covalent attachment of this coenzyme to cellular proteins in response to oxidative and metabolic stress, has been recently discovered and termed protein CoAlation (S-thiolation by CoA or CoAthiolation). A diverse range of proteins was found to be CoAlated in mammalian cells and tissues under various experimental conditions. Protein CoAlation alters the molecular mass, charge and activity of modified proteins, and prevents them from irreversible sulfhydryl overoxidation. This review highlights the role of a key metabolic integrator CoA in redox regulation in mammalian cells and provides a perspective of the current status and future directions of the emerging field of protein CoAlation.
Collapse
|
69
|
Gao X, Lee K, Reid MA, Sanderson SM, Qiu C, Li S, Liu J, Locasale JW. Serine Availability Influences Mitochondrial Dynamics and Function through Lipid Metabolism. Cell Rep 2018; 22:3507-3520. [PMID: 29590619 PMCID: PMC6054483 DOI: 10.1016/j.celrep.2018.03.017] [Citation(s) in RCA: 167] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 11/16/2022] Open
Abstract
Cell proliferation can be dependent on the non-essential amino acid serine, and dietary restriction of serine inhibits tumor growth, but the underlying mechanisms remain incompletely understood. Using a metabolomics approach, we found that serine deprivation most predominantly impacts cellular acylcarnitine levels, a signature of altered mitochondrial function. Fuel utilization from fatty acid, glucose, and glutamine is affected by serine deprivation, as are mitochondrial morphological dynamics leading to increased fragmentation. Interestingly, these changes can occur independently of nucleotide and redox metabolism, two known major functions of serine. A lipidomics analysis revealed an overall decrease in ceramide levels. Importantly, supplementation of the lipid component of bovine serum or C16:0-ceramide could partially restore defects in cell proliferation and mitochondrial fragmentation induced by serine deprivation. Together, these data define a role for serine in supporting mitochondrial function and cell proliferation through ceramide metabolism.
Collapse
Affiliation(s)
- Xia Gao
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Katie Lee
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Michael A Reid
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Sydney M Sanderson
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Chuping Qiu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Siqi Li
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Juan Liu
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
70
|
Abstract
The temporal activation of kinases and timely ubiquitin-mediated degradation is central to faithful mitosis. Here we present evidence that acetylation controlled by Coenzyme A synthase (COASY) and acetyltransferase CBP constitutes a novel mechanism that ensures faithful mitosis. We found that COASY knockdown triggers prolonged mitosis and multinucleation. Acetylome analysis reveals that COASY inactivation leads to hyper-acetylation of proteins associated with mitosis, including CBP and an Aurora A kinase activator, TPX2. During early mitosis, a transient CBP-mediated TPX2 acetylation is associated with TPX2 accumulation and Aurora A activation. The recruitment of COASY inhibits CBP-mediated TPX2 acetylation, promoting TPX2 degradation for mitotic exit. Consistently, we detected a stage-specific COASY-CBP-TPX2 association during mitosis. Remarkably, pharmacological and genetic inactivation of CBP effectively rescued the mitotic defects caused by COASY knockdown. Together, our findings uncover a novel mitotic regulation wherein COASY and CBP coordinate an acetylation network to enforce productive mitosis.
Collapse
|
71
|
Speziale R, Montesano C, De Leonibus ML, Bonelli F, Fezzardi P, Beconi MG, Monteagudo E, Elbaum D, Orsatti L. Determination of acetyl coenzyme A in human whole blood by ultra-performance liquid chromatography-mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2018. [PMID: 29524693 DOI: 10.1016/j.jchromb.2018.02.039] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Acetyl coenzyme A is involved in several key metabolic pathways. Its concentration can vary considerably in response to physiological or pathological conditions making it a potentially valuable biomarker. However, little information about the measurement and concentration of acetyl CoA in human whole blood is found in the literature. The aim of this study was the development of an accurate method for the determination of acetyl CoA in human whole blood by LC-MS/MS. The method, involving extraction from whole blood by a rapid protein precipitation procedure was thoroughly validated: limit of quantitation was 3.91 ng mL-1. Accuracy and precision were calculated at five concentrations and were within ±15%. The average endogenous level of acetyl CoA in human whole blood was determined in 17 healthy individuals to be 220.9 ng mL-1 (ranging from 124.0 to 308.0 ng mL-1). This represents, to our knowledge, the first report of acetyl CoA levels in human whole blood, and the first practical and reliable method for its determination.
Collapse
Affiliation(s)
- Roberto Speziale
- IRBM Science Park, Via Pontina km 30,600, 00040 Pomezia, Roma, Italy.
| | - Camilla Montesano
- IRBM Science Park, Via Pontina km 30,600, 00040 Pomezia, Roma, Italy.
| | | | - Fabio Bonelli
- IRBM Science Park, Via Pontina km 30,600, 00040 Pomezia, Roma, Italy.
| | - Paola Fezzardi
- IRBM Science Park, Via Pontina km 30,600, 00040 Pomezia, Roma, Italy.
| | - Maria G Beconi
- Retrophin Inc (RTRX), 3721 Valley Centre Drive, San Diego, CA 90213, USA.
| | - Edith Monteagudo
- IRBM Science Park, Via Pontina km 30,600, 00040 Pomezia, Roma, Italy.
| | - Daniel Elbaum
- Retrophin Inc (RTRX), 3721 Valley Centre Drive, San Diego, CA 90213, USA.
| | - Laura Orsatti
- IRBM Science Park, Via Pontina km 30,600, 00040 Pomezia, Roma, Italy.
| |
Collapse
|
72
|
Abrankó L, Williamson G, Gardner S, Kerimi A. Comprehensive quantitative analysis of fatty-acyl-Coenzyme A species in biological samples by ultra-high performance liquid chromatography-tandem mass spectrometry harmonizing hydrophilic interaction and reversed phase chromatography. J Chromatogr A 2017; 1534:111-122. [PMID: 29290399 DOI: 10.1016/j.chroma.2017.12.052] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 12/18/2017] [Accepted: 12/19/2017] [Indexed: 02/07/2023]
Abstract
Fatty acyl-Coenzyme A species (acyl-CoAs) are key biomarkers in studies focusing on cellular energy metabolism. Existing analytical approaches are unable to simultaneously detect the full range of short-, medium-, and long-chain acyl-CoAs, while chromatographic limitations encountered in the analysis of limited amounts of biological samples are an often overlooked problem. We report the systematic development of a UHPLC-ESI-MS/MS method which incorporates reversed phase (RP) and hydrophilic interaction liquid chromatography (HILIC) separations in series, in an automated mode. The protocol outlined encompasses quantification of acyl-CoAs of varying hydrophobicity from C2 to C20 with recoveries in the range of 90-111 % and limit of detection (LOD) 1-5 fmol, which is substantially lower than previously published methods. We demonstrate that the poor chromatographic performance and signal losses in MS detection, typically observed for phosphorylated organic molecules, can be avoided by the incorporation of a 0.1% phosphoric acid wash step between injections. The methodological approach presented here permits a highly reliable, sensitive and precise analysis of small amounts of tissues and cell samples as demonstrated in mouse liver, human hepatic (HepG2) and skeletal muscle (LHCNM2) cells. The considerable improvements discussed pave the way for acyl-CoAs to be incorporated in routine targeted lipid biomarker profile studies.
Collapse
Affiliation(s)
- László Abrankó
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK
| | - Gary Williamson
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK
| | - Samantha Gardner
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK
| | - Asimina Kerimi
- University of Leeds, School of Food Science and Nutrition, Leeds, LS2 9JT, UK.
| |
Collapse
|
73
|
Wang S, Wang Z, Zhou L, Shi X, Xu G. Comprehensive Analysis of Short-, Medium-, and Long-Chain Acyl-Coenzyme A by Online Two-Dimensional Liquid Chromatography/Mass Spectrometry. Anal Chem 2017; 89:12902-12908. [PMID: 29098853 DOI: 10.1021/acs.analchem.7b03659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Acyl-coenzyme A (CoA) is a pivotal metabolic intermediate in numerous biological processes. However, comprehensive analysis of acyl-CoAs is still challenging as the properties of acyl-CoAs greatly vary with different carbon chains. Here, we designed a two-dimensional liquid chromatography method coupled with high-resolution mass spectrometry (2D LC/HRMS) to cover all short-, medium-, and long-chain acyl-CoAs within one analytical run. Complex acyl-CoAs were separated into two fractions according to their acyl chains by the first dimensional prefractionation. Then, two fractions containing short-chain acyl-CoAs or medium- and long-chain acyl-CoAs were further separated by the two parallel columns in the second dimension. Nineteen representative standards were chosen to optimize the analytical conditions of the 2D LC/HRMS method. Resolution and sensitivity were demonstrated to be improved greatly, and lowly abundant acyl-CoAs and acyl-CoA isomers could be detected and distinguished. By using the 2D LC/HRMS method, 90 acyl-CoAs (including 21 acyl-dephospho-CoAs) were identified from liver extracts, which indicated that our method was one of the most powerful approaches for obtaining comprehensive profiling of acyl-CoAs so far. The method was further employed in the metabolomics study of malignant glioma cells with an isocitrate dehydrogenase 1 (IDH1) mutation to explore their metabolic differences. A total of 46 acyl-CoAs (including 2 acyl-dephospho-CoAs) were detected, and 12 of them were dysregulated in glioma cells with the IDH1 mutation. These results demonstrated the practicability and the superiority of the established method. Therefore, the 2D LC/HRMS method provides a robust and reproducible approach to the comprehensive analysis of acyl-CoAs in tissues, cells, and other biological samples.
Collapse
Affiliation(s)
- Shuangyuan Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Zhichao Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China.,University of Chinese Academy of Sciences , Beijing 100049, China
| | - Lina Zhou
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| | - Guowang Xu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences , Dalian 116023, China
| |
Collapse
|
74
|
Schriewer A, Cadenas C, Hayen H. Hydrophilic interaction liquid chromatography tandem mass spectrometry analysis of malonyl-coenzyme A in breast cancer cell cultures applying online solid-phase extraction. J Sep Sci 2017; 40:4303-4310. [PMID: 28877409 DOI: 10.1002/jssc.201700617] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 11/09/2022]
Abstract
Cofactors such as coenzyme A and its derivatives acetyl-coenzyme A and malonyl-coenzyme A are involved in many metabolic pathways. Due to trace level concentrations in biological samples and the high reactivity of cofactors, a fast, sensitive, and selective method for quantification is mandatory. In this study, online solid-phase extraction was coupled successfully to hydrophilic interaction liquid chromatography with tandem mass spectrometry for isolation of analytes in complex matrix and quantification by external calibration. Online solid-phase extraction was carried out by application of a weak anion-exchange column, whereas hydrophilic interaction liquid chromatography separation was performed on an amide modified stationary phase. Sample preparation of the extracts before the analysis was reduced to a centrifugation and dilution step. Moreover, the applied online solid-phase extraction significantly reduced matrix effects and increased the signal-to-noise ratio. The limit of detection and the limit of quantification were in the lower nanomolar range. Finally, the applicability of this method was demonstrated on MCF-7 breast cancer cell cultures, a commonly used model system, where acetyl-coenzyme A and malonyl-coenzyme A were determined using standard addition procedure in concentrations of 1.98 μM and 41 nM, respectively.
Collapse
Affiliation(s)
- Alexander Schriewer
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| | - Cristina Cadenas
- Leibniz-Research Centre for Working Environment and Human Factors, University of Dortmund, Dortmund, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Münster, Germany
| |
Collapse
|
75
|
Glass OK, Bowie M, Fuller J, Darr D, Usary J, Boss K, Choudhury KR, Liu X, Zhang Z, Locasale JW, Williams C, Dewhirst MW, Jones LW, Seewaldt V. Differential response to exercise in claudin-low breast cancer. Oncotarget 2017; 8:100989-101004. [PMID: 29254140 PMCID: PMC5731850 DOI: 10.18632/oncotarget.21054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 08/23/2017] [Indexed: 11/25/2022] Open
Abstract
Exposure to exercise following a breast cancer diagnosis is associated with reductions in the risk of recurrence. However, it is not known whether breast cancers within the same molecular-intrinsic subtype respond differently to exercise. Syngeneic mouse models of claudin-low breast cancer (i.e., EO771, 4TO7, and C3(1)SV40Tag-p16-luc) were allocated to a uniform endurance exercise treatment dose (forced treadmill exercise) or sham-exercise (stationary treadmill). Compared to sham-controls, endurance exercise treatment differentially affected tumor growth rate: 1- slowed (EO771), 2- accelerated (C3(1)SV40Tag-p16-luc), or 3- was not affected (4TO7). Differential sensitivity of the three tumor lines to exercise was paralleled by effects on intratumoral Ki-67, Hif1-α, and metabolic programming. Inhibition of Hif1-α synthesis by the cardiac glycoside, digoxin, completely abrogated exercise-accelerated tumor growth in C3(1)SV40Tag-p16-luc. These results suggest that intratumoral Hif1-α expression is an important determinant of claudin-low breast cancer adaptation to exercise treatment.
Collapse
Affiliation(s)
| | | | | | - David Darr
- University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Keara Boss
- North Carolina State University, Raleigh, NC, USA
| | | | | | - Zoe Zhang
- Duke University Medical Center, Durham, NC, USA
| | | | | | | | - Lee W Jones
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.,Weill Cornell Medical College, New York, NY, USA
| | | |
Collapse
|
76
|
Xiang L, Wei J, Tian XY, Wang B, Chan W, Li S, Tang Z, Zhang H, Cheang WS, Zhao Q, Zhao H, Yang Z, Hong Y, Huang Y, Cai Z. Comprehensive Analysis of Acylcarnitine Species in db/db Mouse Using a Novel Method of High-Resolution Parallel Reaction Monitoring Reveals Widespread Metabolic Dysfunction Induced by Diabetes. Anal Chem 2017; 89:10368-10375. [PMID: 28859482 DOI: 10.1021/acs.analchem.7b02283] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Acylcarnitines are exerting a variety of biological functions depending on the differences in lengths, saturation levels, and conjugation groups, which to a great extent contribute to the challenges of acylcarnitines quantifications due to various kinds of isomers. Here, we describe a novel method by using high-resolution parallel reaction monitoring (PRM) liquid chromatography-tandem mass spectrometry (LC-MS/MS). Both reversed-phase and normal-phase column were used in order to get accurate, reliable, widespread quantification of acylcarnitines, and without tedious sample preparation procedure. The method provided the most comprehensive acylcarnitine profile with high-resolution MS and MS/MS confirmation to date. A total of 117 acylcarnitines were detected from plasma and urine samples. The application of targeted profiling of acylcarnitines in db/m+ control and db/db diabetic mice indicated incomplete amino acid and fatty acid oxidation on diabetic mice. Interestingly, the reduction of medium odd-numbered chain acylcarnitines in urine samples was first observed between db/m+ and db/db mice. The high-resolution PRM method makes it possible to monitor the widespread metabolic changes of the acylcarnitines in response to stimuli. Besides, the accurate MS and MS/MS spectra data of the 117 acylcarnitines could be used as mass spectrometric resources for the identification of acylcarnitines.
Collapse
Affiliation(s)
- Li Xiang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Juntong Wei
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Xiao Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong 999077, P. R. China
| | - Bei Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Wan Chan
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Shangfu Li
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Zhi Tang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Hongsong Zhang
- School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong 999077, P. R. China
| | - Wai San Cheang
- School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong 999077, P. R. China
| | - Qian Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Hongzhi Zhao
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Zhiyi Yang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Yanjun Hong
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| | - Yu Huang
- School of Biomedical Sciences, Chinese University of Hong Kong , Hong Kong 999077, P. R. China
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University , Hong Kong 999077, P. R. China
| |
Collapse
|
77
|
Martin AS, Abraham DM, Hershberger KA, Bhatt DP, Mao L, Cui H, Liu J, Liu X, Muehlbauer MJ, Grimsrud PA, Locasale JW, Payne RM, Hirschey MD. Nicotinamide mononucleotide requires SIRT3 to improve cardiac function and bioenergetics in a Friedreich's ataxia cardiomyopathy model. JCI Insight 2017; 2:93885. [PMID: 28724806 DOI: 10.1172/jci.insight.93885] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 06/06/2017] [Indexed: 12/23/2022] Open
Abstract
Increasing NAD+ levels by supplementing with the precursor nicotinamide mononucleotide (NMN) improves cardiac function in multiple mouse models of disease. While NMN influences several aspects of mitochondrial metabolism, the molecular mechanisms by which increased NAD+ enhances cardiac function are poorly understood. A putative mechanism of NAD+ therapeutic action exists via activation of the mitochondrial NAD+-dependent protein deacetylase sirtuin 3 (SIRT3). We assessed the therapeutic efficacy of NMN and the role of SIRT3 in the Friedreich's ataxia cardiomyopathy mouse model (FXN-KO). At baseline, the FXN-KO heart has mitochondrial protein hyperacetylation, reduced Sirt3 mRNA expression, and evidence of increased NAD+ salvage. Remarkably, NMN administered to FXN-KO mice restores cardiac function to near-normal levels. To determine whether SIRT3 is required for NMN therapeutic efficacy, we generated SIRT3-KO and SIRT3-KO/FXN-KO (double KO [dKO]) models. The improvement in cardiac function upon NMN treatment in the FXN-KO is lost in the dKO model, demonstrating that the effects of NMN are dependent upon cardiac SIRT3. Coupled with cardio-protection, SIRT3 mediates NMN-induced improvements in both cardiac and extracardiac metabolic function and energy metabolism. Taken together, these results serve as important preclinical data for NMN supplementation or SIRT3 activator therapy in Friedreich's ataxia patients.
Collapse
Affiliation(s)
- Angelical S Martin
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology
| | - Dennis M Abraham
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University Medical Center, Durham, North Carolina, USA
| | - Kathleen A Hershberger
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology
| | - Dhaval P Bhatt
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Lan Mao
- Department of Medicine, Division of Cardiology and Duke Cardiovascular Physiology Core, Duke University Medical Center, Durham, North Carolina, USA
| | - Huaxia Cui
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Juan Liu
- Department of Pharmacology and Cancer Biology
| | | | - Michael J Muehlbauer
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Paul A Grimsrud
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center
| | - Jason W Locasale
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology
| | - R Mark Payne
- Department of Medicine, Division of Pediatrics, Indiana University, Indianapolis, Indiana, USA
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute and Sarah W. Stedman Nutrition and Metabolism Center.,Department of Pharmacology and Cancer Biology.,Department of Medicine, Division of Endocrinology, Metabolism, & Nutrition, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
78
|
Carrer A, Parris JLD, Trefely S, Henry RA, Montgomery DC, Torres A, Viola JM, Kuo YM, Blair IA, Meier JL, Andrews AJ, Snyder NW, Wellen KE. Impact of a High-fat Diet on Tissue Acyl-CoA and Histone Acetylation Levels. J Biol Chem 2017; 292:3312-3322. [PMID: 28077572 PMCID: PMC5336165 DOI: 10.1074/jbc.m116.750620] [Citation(s) in RCA: 111] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/06/2017] [Indexed: 11/06/2022] Open
Abstract
Cellular metabolism dynamically regulates the epigenome via availability of the metabolite substrates of chromatin-modifying enzymes. The impact of diet on the metabolism-epigenome axis is poorly understood but could alter gene expression and influence metabolic health. ATP citrate-lyase produces acetyl-CoA in the nucleus and cytosol and regulates histone acetylation levels in many cell types. Consumption of a high-fat diet (HFD) results in suppression of ATP citrate-lyase levels in tissues such as adipose and liver, but the impact of diet on acetyl-CoA and histone acetylation in these tissues remains unknown. Here we examined the effects of HFD on levels of acyl-CoAs and histone acetylation in mouse white adipose tissue (WAT), liver, and pancreas. We report that mice consuming a HFD have reduced levels of acetyl-CoA and/or acetyl-CoA:CoA ratio in these tissues. In WAT and the pancreas, HFD also impacted the levels of histone acetylation; in particular, histone H3 lysine 23 acetylation was lower in HFD-fed mice. Genetic deletion of Acly in cultured adipocytes also suppressed acetyl-CoA and histone acetylation levels. In the liver, no significant effects on histone acetylation were observed with a HFD despite lower acetyl-CoA levels. Intriguingly, acetylation of several histone lysines correlated with the acetyl-CoA: (iso)butyryl-CoA ratio in liver. Butyryl-CoA and isobutyryl-CoA interacted with the acetyltransferase P300/CBP-associated factor (PCAF) in liver lysates and inhibited its activity in vitro This study thus provides evidence that diet can impact tissue acyl-CoA and histone acetylation levels and that acetyl-CoA abundance correlates with acetylation of specific histone lysines in WAT but not in the liver.
Collapse
Affiliation(s)
- Alessandro Carrer
- Department of Cancer Biology, Abramson Family Cancer Research Institute
| | - Joshua L D Parris
- Department of Cancer Biology, Abramson Family Cancer Research Institute
| | - Sophie Trefely
- Department of Cancer Biology, Abramson Family Cancer Research Institute; A. J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania 19104
| | - Ryan A Henry
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - David C Montgomery
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702
| | - AnnMarie Torres
- Department of Cancer Biology, Abramson Family Cancer Research Institute
| | - John M Viola
- Department of Cancer Biology, Abramson Family Cancer Research Institute
| | - Yin-Ming Kuo
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Ian A Blair
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Jordan L Meier
- Chemical Biology Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, Maryland 21702
| | - Andrew J Andrews
- Department of Cancer Biology, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111
| | - Nathaniel W Snyder
- A. J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania 19104
| | - Kathryn E Wellen
- Department of Cancer Biology, Abramson Family Cancer Research Institute.
| |
Collapse
|
79
|
Metabolomics: A Primer. Trends Biochem Sci 2017; 42:274-284. [PMID: 28196646 DOI: 10.1016/j.tibs.2017.01.004] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 11/13/2016] [Accepted: 01/12/2017] [Indexed: 02/08/2023]
Abstract
Metabolomics generates a profile of small molecules that are derived from cellular metabolism and can directly reflect the outcome of complex networks of biochemical reactions, thus providing insights into multiple aspects of cellular physiology. Technological advances have enabled rapid and increasingly expansive data acquisition with samples as small as single cells; however, substantial challenges in the field remain. In this primer we provide an overview of metabolomics, especially mass spectrometry (MS)-based metabolomics, which uses liquid chromatography (LC) for separation, and discuss its utilities and limitations. We identify and discuss several areas at the frontier of metabolomics. Our goal is to give the reader a sense of what might be accomplished when conducting a metabolomics experiment, now and in the near future.
Collapse
|
80
|
Yang X, Ma Y, Li N, Cai H, Bartlett MG. Development of a Method for the Determination of Acyl-CoA Compounds by Liquid Chromatography Mass Spectrometry to Probe the Metabolism of Fatty Acids. Anal Chem 2017; 89:813-821. [PMID: 27990799 PMCID: PMC5679003 DOI: 10.1021/acs.analchem.6b03623] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acyl-Coenzyme As (acyl-CoAs) are a group of activated fatty acid molecules participating in multiple cellular processes including lipid synthesis, oxidative metabolism of fatty acids to produce ATP, transcriptional regulation, and protein post-translational modification. Quantification of cellular acyl-CoAs is challenging due to their instability in aqueous solutions and lack of blank matrices. Here we demonstrate an LC-MS/MS analytical method which allows for absolute quantitation with broad coverage of cellular acyl-CoAs. This assay was applied to profile endogenous acyl-CoAs under the challenge of a variety of dietary fatty acids in prostate and hepatic cells. Additionally, this approach allowed for detection of multiple fatty acid metabolic processes including the biogenesis of acyl-CoAs, and their elongation, degradation, and desaturation. Hierarchical clustering in the remodeling of acyl-CoA profiles revealed a fatty-acid-specific pattern across all tested cell lines, which provides a valuable reference for making predictions in other cell models. Individual acyl-CoAs were identified which were altered differentially by exogenous fatty acids in divergent tumorigenicity states of cells. These findings demonstrate the power of acyl-CoA profiling toward understanding the mechanisms for the progression of tumors or other diseases in response to fatty acids.
Collapse
Affiliation(s)
- Xiangkun Yang
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 W. Green Street, Athens, Georgia, 30602, United States
| | - Yongjie Ma
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 W. Green Street, Athens, Georgia, 30602, United States
| | - Ning Li
- Department of Analytical Chemistry, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, 110016, China
| | - Houjian Cai
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 W. Green Street, Athens, Georgia, 30602, United States
| | - Michael G. Bartlett
- Department of Pharmaceutical and Biomedical Sciences, University of Georgia, 250 W. Green Street, Athens, Georgia, 30602, United States
| |
Collapse
|
81
|
Metabolic regulation of gene expression through histone acylations. Nat Rev Mol Cell Biol 2016; 18:90-101. [PMID: 27924077 DOI: 10.1038/nrm.2016.140] [Citation(s) in RCA: 736] [Impact Index Per Article: 81.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Eight types of short-chain Lys acylations have recently been identified on histones: propionylation, butyrylation, 2-hydroxyisobutyrylation, succinylation, malonylation, glutarylation, crotonylation and β-hydroxybutyrylation. Emerging evidence suggests that these histone modifications affect gene expression and are structurally and functionally different from the widely studied histone Lys acetylation. In this Review, we discuss the regulation of non-acetyl histone acylation by enzymatic and metabolic mechanisms, the acylation 'reader' proteins that mediate the effects of different acylations and their physiological functions, which include signal-dependent gene activation, spermatogenesis, tissue injury and metabolic stress. We propose a model to explain our present understanding of how differential histone acylation is regulated by the metabolism of the different acyl-CoA forms, which in turn modulates the regulation of gene expression.
Collapse
|
82
|
Liu X, Romero IL, Litchfield LM, Lengyel E, Locasale JW. Metformin Targets Central Carbon Metabolism and Reveals Mitochondrial Requirements in Human Cancers. Cell Metab 2016; 24:728-739. [PMID: 27746051 PMCID: PMC5889952 DOI: 10.1016/j.cmet.2016.09.005] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/26/2016] [Accepted: 09/14/2016] [Indexed: 12/21/2022]
Abstract
Repurposing metformin for cancer therapy is attractive due to its safety profile, epidemiological evidence, and encouraging data from human clinical trials. Although it is known to systemically affect glucose metabolism in liver, muscle, gut, and other tissues, the molecular determinants that predict a patient response in cancer remain unknown. Here, we carry out an integrative metabolomics analysis of metformin action in ovarian cancer. Metformin accumulated in patient biopsies, and pathways involving nucleotide metabolism, redox, and energy status, all related to mitochondrial metabolism, were affected in treated tumors. Strikingly, a metabolic signature obtained from a patient with an exceptional clinical outcome mirrored that of a responsive animal tumor. Mechanistically, we demonstrate with stable isotope tracing that these metabolic signatures are due to an inability to adapt nutrient utilization in the mitochondria. This analysis provides new insights into mitochondrial metabolism and may lead to more precise indications of metformin in cancer.
Collapse
Affiliation(s)
- Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA
| | - Iris L Romero
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA
| | - Lacey M Litchfield
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA
| | - Ernst Lengyel
- Section of Gynecologic Oncology, Department of Obstetrics and Gynecology, Center for Integrative Science, University of Chicago, Chicago, IL 60637, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, NC 27710, USA.
| |
Collapse
|
83
|
Reid MA, Lowman XH, Pan M, Tran TQ, Warmoes MO, Ishak Gabra MB, Yang Y, Locasale JW, Kong M. IKKβ promotes metabolic adaptation to glutamine deprivation via phosphorylation and inhibition of PFKFB3. Genes Dev 2016; 30:1837-51. [PMID: 27585591 PMCID: PMC5024682 DOI: 10.1101/gad.287235.116] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 07/28/2016] [Indexed: 02/06/2023]
Abstract
In this study, Reid et al. investigate how cancer cells adapt to low glutamine conditions, which is needed for cancer cell proliferation and survival. They show that IKKβ directly interacts with and phosphorylates PFKFB3, a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low and thus providing new insights into cancer cell adaptation. Glutamine is an essential nutrient for cancer cell survival and proliferation. Enhanced utilization of glutamine often depletes its local supply, yet how cancer cells adapt to low glutamine conditions is largely unknown. Here, we report that IκB kinase β (IKKβ) is activated upon glutamine deprivation and is required for cell survival independently of NF-κB transcription. We demonstrate that IKKβ directly interacts with and phosphorylates 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase isoform 3 (PFKFB3), a major driver of aerobic glycolysis, at Ser269 upon glutamine deprivation to inhibit its activity, thereby down-regulating aerobic glycolysis when glutamine levels are low. Thus, due to lack of inhibition of PFKFB3, IKKβ-deficient cells exhibit elevated aerobic glycolysis and lactate production, leading to less glucose carbons contributing to tricarboxylic acid (TCA) cycle intermediates and the pentose phosphate pathway, which results in increased glutamine dependence for both TCA cycle intermediates and reactive oxygen species suppression. Therefore, coinhibition of IKKβ and glutamine metabolism results in dramatic synergistic killing of cancer cells both in vitro and in vivo. In all, our results uncover a previously unidentified role of IKKβ in regulating glycolysis, sensing low-glutamine-induced metabolic stress, and promoting cellular adaptation to nutrient availability.
Collapse
Affiliation(s)
- Michael A Reid
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California 91010, USA
| | - Xazmin H Lowman
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California 91010, USA
| | - Min Pan
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California 91010, USA
| | - Thai Q Tran
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California 91010, USA
| | - Marc O Warmoes
- Division of Nutritional Sciences, Cornell University, Ithaca, New York 14853, USA
| | - Mari B Ishak Gabra
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California 91010, USA
| | - Ying Yang
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California 91010, USA
| | - Jason W Locasale
- Department of Pharmacology and Cancer Biology, Duke University School of Medicine, Durham, North Carolina 27708, USA
| | - Mei Kong
- Department of Cancer Biology, Beckman Research Institute of City of Hope Cancer Center, Duarte, California 91010, USA
| |
Collapse
|
84
|
Luz AL, Godebo TR, Bhatt DP, Ilkayeva OR, Maurer LL, Hirschey MD, Meyer JN. From the Cover: Arsenite Uncouples Mitochondrial Respiration and Induces a Warburg-like Effect in Caenorhabditis elegans. Toxicol Sci 2016; 152:349-62. [PMID: 27208080 PMCID: PMC4960910 DOI: 10.1093/toxsci/kfw093] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Millions of people worldwide are chronically exposed to arsenic through contaminated drinking water. Despite decades of research studying the carcinogenic potential of arsenic, the mechanisms by which arsenic causes cancer and other diseases remain poorly understood. Mitochondria appear to be an important target of arsenic toxicity. The trivalent arsenical, arsenite, can induce mitochondrial reactive oxygen species production, inhibit enzymes involved in energy metabolism, and induce aerobic glycolysis in vitro, suggesting that metabolic dysfunction may be important in arsenic-induced disease. Here, using the model organism Caenorhabditis elegans and a novel metabolic inhibition assay, we report an in vivo induction of aerobic glycolysis following arsenite exposure. Furthermore, arsenite exposure induced severe mitochondrial dysfunction, including altered pyruvate metabolism; reduced steady-state ATP levels, ATP-linked respiration and spare respiratory capacity; and increased proton leak. We also found evidence that induction of autophagy is an important protective response to arsenite exposure. Because these results demonstrate that mitochondria are an important in vivo target of arsenite toxicity, we hypothesized that deficiencies in mitochondrial electron transport chain genes, which cause mitochondrial disease in humans, would sensitize nematodes to arsenite. In agreement with this, nematodes deficient in electron transport chain complexes I, II, and III, but not ATP synthase, were sensitive to arsenite exposure, thus identifying a novel class of gene-environment interactions that warrant further investigation in the human populace.
Collapse
Affiliation(s)
- Anthony L Luz
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Tewodros R Godebo
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | | | - Olga R Ilkayeva
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center
| | - Laura L Maurer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| | - Matthew D Hirschey
- Duke Molecular Physiology Institute Sarah W. Stedman Nutrition and Metabolism Center Departments of Medicine and Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, North Carolina
| | - Joel N Meyer
- *Nicholas School of the Environment, Duke University, Durham, North Carolina
| |
Collapse
|
85
|
Torrano V, Valcarcel-Jimenez L, Cortazar AR, Liu X, Urosevic J, Castillo-Martin M, Fernández-Ruiz S, Morciano G, Caro-Maldonado A, Guiu M, Zúñiga-García P, Graupera M, Bellmunt A, Pandya P, Lorente M, Martín-Martín N, Sutherland JD, Sanchez-Mosquera P, Bozal-Basterra L, Zabala-Letona A, Arruabarrena-Aristorena A, Berenguer A, Embade N, Ugalde-Olano A, Lacasa-Viscasillas I, Loizaga-Iriarte A, Unda-Urzaiz M, Schultz N, Aransay AM, Sanz-Moreno V, Barrio R, Velasco G, Pinton P, Cordon-Cardo C, Locasale JW, Gomis RR, Carracedo A. The metabolic co-regulator PGC1α suppresses prostate cancer metastasis. Nat Cell Biol 2016; 18:645-656. [PMID: 27214280 PMCID: PMC4884178 DOI: 10.1038/ncb3357] [Citation(s) in RCA: 169] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/13/2016] [Indexed: 02/08/2023]
Abstract
Cellular transformation and cancer progression is accompanied by changes in the metabolic landscape. Master co-regulators of metabolism orchestrate the modulation of multiple metabolic pathways through transcriptional programs, and hence constitute a probabilistically parsimonious mechanism for general metabolic rewiring. Here we show that the transcriptional co-activator peroxisome proliferator-activated receptor gamma co-activator 1α (PGC1α) suppresses prostate cancer progression and metastasis. A metabolic co-regulator data mining analysis unveiled that PGC1α is downregulated in prostate cancer and associated with disease progression. Using genetically engineered mouse models and xenografts, we demonstrated that PGC1α opposes prostate cancer progression and metastasis. Mechanistically, the use of integrative metabolomics and transcriptomics revealed that PGC1α activates an oestrogen-related receptor alpha (ERRα)-dependent transcriptional program to elicit a catabolic state and metastasis suppression. Importantly, a signature based on the PGC1α-ERRα pathway exhibited prognostic potential in prostate cancer, thus uncovering the relevance of monitoring and manipulating this pathway for prostate cancer stratification and treatment.
Collapse
Affiliation(s)
- Veronica Torrano
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | | | - Ana Rosa Cortazar
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | - Xiaojing Liu
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Jelena Urosevic
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
| | - Mireia Castillo-Martin
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Fundação Champalimaud, Lisboa, Portugal
| | | | - Giampaolo Morciano
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Italy
| | | | - Marc Guiu
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
| | | | - Mariona Graupera
- Vascular Signalling Laboratory, Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), Gran Via de l'Hospitalet 199-203, 08907 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Anna Bellmunt
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
| | - Pahini Pandya
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Mar Lorente
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC) 28040 Madrid, Spain
| | | | | | | | | | | | | | - Antonio Berenguer
- Biostatistics / Bioinformatics Unit, - IRB Barcelona, Parc Científic de Barcelona, 08028 Barcelona, Spain
| | - Nieves Embade
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | | | | | | | | | - Nikolaus Schultz
- Computational Biology, Memorial Sloan-Kettering Cancer Center, NY, 10065, USA
| | - Ana Maria Aransay
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd)
| | - Victoria Sanz-Moreno
- Tumour Plasticity Team, Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London SE1 1UL, UK
| | - Rosa Barrio
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
| | - Guillermo Velasco
- Department of Biochemistry and Molecular Biology I, School of Biology, Complutense University and Instituto de Investigaciones Sanitarias San Carlos (IdISSC) 28040 Madrid, Spain
| | - Paolo Pinton
- Dept. of Morphology, Surgery and Experimental Medicine, Section of Pathology, Oncology and Experimental Biology, University of Ferrara, Italy
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jason W. Locasale
- Department of Pharmacology and Cancer Biology, Duke Cancer Institute, Duke Molecular Physiology Institute, Duke University School of Medicine, Durham, North Carolina 27710, USA
| | - Roger R. Gomis
- Oncology Programme, Institute for Research in Biomedicine (IRB-Barcelona), The Barcelona Institute of Science and Technology, Barcelona 08028, Catalonia, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| | - Arkaitz Carracedo
- CIC bioGUNE, Bizkaia Technology Park, 801 bld., 48160 Derio, Bizkaia, Spain
- Ikerbasque, Basque foundation for science, 48011 Bilbao, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), P. O. Box 644, E-48080 Bilbao, Spain
| |
Collapse
|
86
|
Worth AJ, Marchione DM, Parry RC, Wang Q, Gillespie KP, Saillant NN, Sims C, Mesaros C, Snyder NW, Blair IA. LC-MS Analysis of Human Platelets as a Platform for Studying Mitochondrial Metabolism. J Vis Exp 2016:e53941. [PMID: 27077278 DOI: 10.3791/53941] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Perturbed mitochondrial metabolism has received renewed interest as playing a causative role in a range of diseases. Probing alterations to metabolic pathways requires a model in which external factors can be well controlled, allowing for reproducible and meaningful results. Many studies employ transformed cellular models for these purposes; however, metabolic reprogramming that occurs in many cancer cell lines may introduce confounding variables. For this reason primary cells are desirable, though attaining adequate biomass for metabolic studies can be challenging. Here we show that human platelets can be utilized as a platform to carry out metabolic studies in combination with liquid chromatography-tandem mass spectrometry analysis. This approach is amenable to relative quantification and isotopic labeling to probe the activity of specific metabolic pathways. Availability of platelets from individual donors or from blood banks makes this model system applicable to clinical studies and feasible to scale up. Here we utilize isolated platelets to confirm previously identified compensatory metabolic shifts in response to the complex I inhibitor rotenone. More specifically, a decrease in glycolysis is accompanied by an increase in fatty acid oxidation to maintain acetyl-CoA levels. Our results show that platelets can be used as an easily accessible and medically relevant model to probe the effects of xenobiotics on cellular metabolism.
Collapse
Affiliation(s)
- Andrew J Worth
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania
| | - Dylan M Marchione
- Center for Excellence in Environmental Toxicology, University of Pennsylvania; Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Robert C Parry
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania
| | - Qingqing Wang
- Center for Excellence in Environmental Toxicology, University of Pennsylvania; Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Kevin P Gillespie
- Center for Excellence in Environmental Toxicology, University of Pennsylvania; Penn SRP and Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania
| | - Noelle N Saillant
- Division of Traumatology, Department of Surgery, Critical Care and Acute Care Surgery, University of Pennsylvania
| | - Carrie Sims
- Division of Traumatology, Department of Surgery, Critical Care and Acute Care Surgery, University of Pennsylvania
| | - Clementina Mesaros
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania
| | | | - Ian A Blair
- Center for Cancer Pharmacology, University of Pennsylvania; Center for Excellence in Environmental Toxicology, University of Pennsylvania;
| |
Collapse
|
87
|
LC-quadrupole/Orbitrap high-resolution mass spectrometry enables stable isotope-resolved simultaneous quantification and ¹³C-isotopic labeling of acyl-coenzyme A thioesters. Anal Bioanal Chem 2016; 408:3651-8. [PMID: 26968563 DOI: 10.1007/s00216-016-9448-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 02/19/2016] [Accepted: 02/25/2016] [Indexed: 01/13/2023]
Abstract
Acyl-coenzyme A (acyl-CoA) thioesters are evolutionarily conserved, compartmentalized, and energetically activated substrates for biochemical reactions. The ubiquitous involvement of acyl-CoA thioesters in metabolism, including the tricarboxylic acid cycle, fatty acid metabolism, amino acid degradation, and cholesterol metabolism highlights the broad applicability of applied measurements of acyl-CoA thioesters. However, quantitation of acyl-CoA levels provides only one dimension of metabolic information and a more complete description of metabolism requires the relative contribution of different precursors to individual substrates and pathways. Using two distinct stable isotope labeling approaches, acyl-CoA thioesters can be labeled with either a fixed [(13)C3(15)N1] label derived from pantothenate into the CoA moiety or via variable [(13)C] labeling into the acyl chain from metabolic precursors. Liquid chromatography-hybrid quadrupole/Orbitrap high-resolution mass spectrometry using parallel reaction monitoring, but not single ion monitoring, allowed the simultaneous quantitation of acyl-CoA thioesters by stable isotope dilution using the [(13)C3(15)N1] label and measurement of the incorporation of labeled carbon atoms derived from [(13)C6]-glucose, [(13)C5(15)N2]-glutamine, and [(13)C3]-propionate. As a proof of principle, we applied this method to human B cell lymphoma (WSU-DLCL2) cells in culture to precisely describe the relative pool size and enrichment of isotopic tracers into acetyl-, succinyl-, and propionyl-CoA. This method will allow highly precise, multiplexed, and stable isotope-resolved determination of metabolism to refine metabolic models, characterize novel metabolism, and test modulators of metabolic pathways involving acyl-CoA thioesters.
Collapse
|
88
|
Liang Q, Liu H, Xing H, Jiang Y, Zhang T, Zhang AH. High-resolution mass spectrometry for exploring metabolic signatures of sepsis-induced acute kidney injury. RSC Adv 2016. [DOI: 10.1039/c6ra01192f] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Sepsis is a commonly encountered scenario in an intensive care unit (ICU), and the kidney is one of the organs frequently affected.
Collapse
Affiliation(s)
- Qun Liang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Han Liu
- Simon Fraser University (SFU)
- Burnaby
- Canada
| | - Haitao Xing
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Yan Jiang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Tianyu Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| | - Ai-Hua Zhang
- ICU Center
- First Affiliated Hospital
- School of Pharmacy
- Heilongjiang University of Chinese Medicine
- Harbin 150040
| |
Collapse
|