51
|
Multi-Omics Analysis Reveals Up-Regulation of APR Signaling, LXR/RXR and FXR/RXR Activation Pathways in Holstein Dairy Cows Exposed to High-Altitude Hypoxia. Animals (Basel) 2019; 9:ani9070406. [PMID: 31266191 PMCID: PMC6680605 DOI: 10.3390/ani9070406] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Blood has been widely collected and analyzed for diagnosing and monitoring diseases in human beings and animals. A range of plasma proteins and peptides were set as biomarkers for pathological and physiological status. Previous researchers have explored how humans, pigs, dogs, and horses adapt to hypoxia at high altitudes. Additionally, the mechanism of hypoxia adaptation in human, mice, and shrimp was studied by proteomics. However, information on the adaptation mechanism of Holstein cows introduced to high altitudes is limited. The present study was conducted to the adaptation mechanism of Holstein dairy cows to high-altitude hypoxia by miRNA microarray analysis and the isobaric tags for relative and absolute quantitation (iTRAQ) iTRAQ technology. Based on the obtained results, Holstein dairy cows transported to Nyingchi may adapt to the high-altitude hypoxia through regulation of inflammatory homeostasis by up-regulating the acute phase response (APR) APR and activation of the liver X receptor/retinoid X receptor (LXR/RXR)LXR/RXR and farnesoid X receptor/ retinoid X receptor (FXR/RXR) FXR/RXR pathways. Abstract Changes in the environment such as high-altitude hypoxia (HAH) high-altitude hypoxia can lead to adaptive changes in the blood system of mammals. However, there is limited information about the adaptation of Holstein dairy cows introduced to high-altitude areas. This study used 12 multiparous Holstein dairy cows (600 ± 55 kg, average three years old) exposed to HAH conditions in Nyingchi of Tibet (altitude 3000 m) and HAH-free conditions in Shenyang (altitude 50 m). The miRNA microarray analysis and iTRAQ proteomics approach (accepted as more suitable for accurate and comprehensive prediction of miRNA targets) were applied to explore the differences in the plasma proteomic and miRNA profiles in Holstein dairy cows. A total of 70 differential miRNAs (54 up-regulated, Fold change (FC) FC > 2, and 16 down-regulated, FC < 0.5) and 226 differential proteins (132 up-regulated, FC > 1.2, and 94 down-regulated, FC < 0.8) were found in the HAH-stressed group compared with the HAH-free group. Integrative analysis of proteomic and miRNA profiles demonstrated the biological processes associated with differential proteins were the immune response, complement activation, protein activation, and lipid transport. The integrative analysis of canonical pathways were most prominently associated with the APR signaling (z = 1.604), and LXR/RXR activation (z = 0.365), and FXR/RXR activation (z = 0.446) pathways. The current results indicated that Holstein dairy cows exposed to HAH could adapt to high-altitude hypoxia by up-regulating the APR, activating the LXR/RXR and FXE/RXR pathways.
Collapse
|
52
|
Sacco F, Seelig A, Humphrey SJ, Krahmer N, Volta F, Reggio A, Marchetti P, Gerdes J, Mann M. Phosphoproteomics Reveals the GSK3-PDX1 Axis as a Key Pathogenic Signaling Node in Diabetic Islets. Cell Metab 2019; 29:1422-1432.e3. [PMID: 30879985 DOI: 10.1016/j.cmet.2019.02.012] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 12/03/2018] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Progressive decline of pancreatic beta cell function is central to the pathogenesis of type 2 diabetes. Protein phosphorylation regulates glucose-stimulated insulin secretion from beta cells, but how signaling networks are remodeled in diabetic islets in vivo remains unknown. Using high-sensitivity mass spectrometry-based proteomics, we quantified 6,500 proteins and 13,000 phosphopeptides in islets of obese diabetic mice and matched controls, revealing drastic remodeling of key kinase hubs and signaling pathways. Integration with a literature-derived signaling network implicated GSK3 kinase in the control of the beta cell-specific transcription factor PDX1. Deep phosphoproteomic analysis of human islets chronically treated with high glucose demonstrated a conserved glucotoxicity-dependent role of GSK3 kinase in regulating insulin secretion. Remarkably, the ability of beta cells to secrete insulin in response to glucose was rescued almost completely by pharmacological inhibition of GSK3. Thus, our resource enables investigation of mechanisms and drug targets in type 2 diabetes.
Collapse
Affiliation(s)
- Francesca Sacco
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany; Department of Biology, University of Rome Tor Vergata, 00100 Rome, Italy.
| | - Anett Seelig
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), 85748 Garching, Munich, Germany
| | - Sean J Humphrey
- School of Life and Environmental Sciences, Charles Perkins Centre, The University of Sydney, Sydney, NSW 2006, Australia
| | - Natalie Krahmer
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany
| | - Francesco Volta
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), 85748 Garching, Munich, Germany
| | - Alessio Reggio
- Department of Biology, University of Rome Tor Vergata, 00100 Rome, Italy
| | - Piero Marchetti
- Department of Clinical and Experimental Medicine, University of Pisa, 56126 Pisa, Italy
| | - Jantje Gerdes
- Helmholtz Diabetes Center (HMGU) and German Center for Diabetes Research (DZD), 85748 Garching, Munich, Germany
| | - Matthias Mann
- Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, 82152 Martinsried, Germany.
| |
Collapse
|
53
|
Bysani M, Agren R, Davegårdh C, Volkov P, Rönn T, Unneberg P, Bacos K, Ling C. ATAC-seq reveals alterations in open chromatin in pancreatic islets from subjects with type 2 diabetes. Sci Rep 2019; 9:7785. [PMID: 31123324 PMCID: PMC6533306 DOI: 10.1038/s41598-019-44076-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 05/08/2019] [Indexed: 01/08/2023] Open
Abstract
Impaired insulin secretion from pancreatic islets is a hallmark of type 2 diabetes (T2D). Altered chromatin structure may contribute to the disease. We therefore studied the impact of T2D on open chromatin in human pancreatic islets. We used assay for transposase-accessible chromatin using sequencing (ATAC-seq) to profile open chromatin in islets from T2D and non-diabetic donors. We identified 57,105 and 53,284 ATAC-seq peaks representing open chromatin regions in islets of non-diabetic and diabetic donors, respectively. The majority of ATAC-seq peaks mapped near transcription start sites. Additionally, peaks were enriched in enhancer regions and in regions where islet-specific transcription factors (TFs), e.g. FOXA2, MAFB, NKX2.2, NKX6.1 and PDX1, bind. Islet ATAC-seq peaks overlap with 13 SNPs associated with T2D (e.g. rs7903146, rs2237897, rs757209, rs11708067 and rs878521 near TCF7L2, KCNQ1, HNF1B, ADCY5 and GCK, respectively) and with additional 67 SNPs in LD with known T2D SNPs (e.g. SNPs annotated to GIPR, KCNJ11, GLIS3, IGF2BP2, FTO and PPARG). There was enrichment of open chromatin regions near highly expressed genes in human islets. Moreover, 1,078 open chromatin peaks, annotated to 898 genes, differed in prevalence between diabetic and non-diabetic islet donors. Some of these peaks are annotated to candidate genes for T2D and islet dysfunction (e.g. HHEX, HMGA2, GLIS3, MTNR1B and PARK2) and some overlap with SNPs associated with T2D (e.g. rs3821943 near WFS1 and rs508419 near ANK1). Enhancer regions and motifs specific to key TFs including BACH2, FOXO1, FOXA2, NEUROD1, MAFA and PDX1 were enriched in differential islet ATAC-seq peaks of T2D versus non-diabetic donors. Our study provides new understanding into how T2D alters the chromatin landscape, and thereby accessibility for TFs and gene expression, in human pancreatic islets.
Collapse
Affiliation(s)
- Madhusudhan Bysani
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Rasmus Agren
- Department of Biology and Biological Engineering, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Chalmers University of Technology, Göteborg, Sweden
| | - Cajsa Davegårdh
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Petr Volkov
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Tina Rönn
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Per Unneberg
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Karl Bacos
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden
| | - Charlotte Ling
- Epigenetics and Diabetes Unit, Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Scania University Hospital, Malmö, Sweden.
| |
Collapse
|
54
|
Xie Z, Fang Z, Pan Z. Ufl1/RCAD, a Ufm1 E3 ligase, has an intricate connection with ER stress. Int J Biol Macromol 2019; 135:760-767. [PMID: 31129212 DOI: 10.1016/j.ijbiomac.2019.05.170] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 12/11/2022]
Abstract
Ufmylation is a type of post-translational modification that deals with complex and fine-tuned cellular activities. This modification proceeds mainly through a three-step enzymatic reaction with ubiquitin-fold modifier 1 (Ufm1), ubiquitin-like modifier-activating enzyme 5 (Uba5), Ufm1-conjugating enzyme 1 (Ufc1) and Ufm1-specific ligase 1 (Ufl1). Ufl1 has previously been reported to function as a Ufm1 E3 ligase in the ufmylation system, but knowledge of its physiological functions remains poor. At the subcellular level, Ufl1 is enriched in the endoplasmic reticulum (ER), implying that it may regulate events closely associated with the ER and ER functions, such as protein synthesis, folding, and secretion, compounding lipids or sterols, and maintaining calcium homeostasis. Different physiological or pathological stress circumstances can, however, disrupt ER homeostasis, giving rise to an incongruous condition that is harmful to cellular activity and ultimately causes ER stress. Understanding the relationship between Ufl1 and ER stress in physiology and pathology may reveal the pathogenesis of some diseases and provide new guidance to create a therapeutic method. Herein, we review the current literature and discuss the relationship between Ufl1 and ER stress (in hematopoietic disease, heart disease, etc.), thus providing insight into additional diseases.
Collapse
Affiliation(s)
- Zheng Xie
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zhi Fang
- Jiangxi Medical College, Nanchang University, Nanchang 330006, China
| | - Zezheng Pan
- Faculty of Basic Medical Science, Jiangxi Medical College, Nanchang University, Nanchang 330006, China.
| |
Collapse
|
55
|
Kong Z, Zhou C, Li B, Jiao J, Chen L, Ren A, Jie H, Tan Z. Integrative plasma proteomic and microRNA analysis of Jersey cattle in response to high-altitude hypoxia. J Dairy Sci 2019; 102:4606-4618. [PMID: 30879823 DOI: 10.3168/jds.2018-15515] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/02/2019] [Indexed: 12/15/2022]
Abstract
Blood has been widely collected and analyzed for diagnosing and monitoring diseases in humans and animals; a range of plasma proteins and peptide can be used as biomarkers to describe pathological or physiological status. Changes in the environment such as high-altitude hypoxia (HAH) can lead to adaptive changes in the blood system of mammals. However, the adaptation mechanism induced by HAH remains unclear. In this study, we used 12 multiparous Jersey cattle (400 ± 35 kg, average 3 yr old, dry period). We applied an iTRAQ (isobaric tags for relative and absolute quantitation) proteomics approach and microRNA (miRNA) microarray to explore differences in the plasma proteomic and miRNA profiles of Jersey cattle exposed to HAH conditions in Nyingchi, Tibet (altitude 3,000 m) and HAH-free conditions in Shenyang, China (altitude 50 m). Such quantitative proteomic strategies are suitable for accurate and comprehensive prediction of miRNA targets. In total, 264 differentially expressed proteins (127 upregulated, fold-change >1.2; 137 downregulated, fold-change <0.8) and 47 differential miRNAs (25 upregulated, fold-change >2; 22 downregulated, fold-change <0.5) were observed in the HAH-stressed group compared with the HAH-free group. Integrative analysis of proteomic and miRNA profiles demonstrated that the biological processes associated with differentially expressed proteins were immune response, complement system, and conjugation system. Integrative analysis of canonical pathways showed that most were associated with acute phase response signaling (z-score = -0.125), liver X receptor/retinoid X receptor (LXR/RXR) activation pathway (z-score = 1.134), coagulation system (z-score = -0.943), and complement system (z-score = -0.632). The current results indicated that Jersey cattle exposed to HAH could adapt to that condition through regulation of inflammatory homeostasis by inhibiting the acute phase response, coagulation system, and complement system and promoting LXR/RXR activation.
Collapse
Affiliation(s)
- Zhiwei Kong
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanshe Zhou
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China; Hunan Co-Innovation Center of Safety Animal Production (CICSAP), Changsha, Hunan 410128, China.
| | - Bin Li
- Institute of Animal Husbandry and Veterinary, Tibet Autonomous Regional Academy of Agricultural Sciences, State Key Laboratory of Hulless Barley and Yak Germplasm Resources and Genetic Improvement, Lhasa, Tibet 850000, China.
| | - Jinzhen Jiao
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China; Hunan Co-Innovation Center of Safety Animal Production (CICSAP), Changsha, Hunan 410128, China
| | - Liang Chen
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Ao Ren
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China; College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Hongdong Jie
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China
| | - Zhiliang Tan
- CAS Key Laboratory for Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, South-Central Experimental Station of Animal Nutrition and Feed Science in Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, Hunan 410125, China; Hunan Co-Innovation Center of Safety Animal Production (CICSAP), Changsha, Hunan 410128, China
| |
Collapse
|
56
|
Culture in 10% O 2 enhances the production of active hormones in neuro-endocrine cells by up-regulating the expression of processing enzymes. Biochem J 2019; 476:827-842. [PMID: 30787050 DOI: 10.1042/bcj20180832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 02/17/2019] [Accepted: 02/19/2019] [Indexed: 12/22/2022]
Abstract
To closely mimic physiological conditions, low oxygen cultures have been employed in stem cell and cancer research. Although in vivo oxygen concentrations in tissues are often much lower than ambient 21% O2 (ranging from 3.6 to 12.8% O2), most cell cultures are maintained at 21% O2 To clarify the effects of the O2 culture concentration on the regulated secretion of peptide hormones in neuro-endocrine cells, we examined the changes in the storage and release of peptide hormones in neuro-endocrine cell lines and endocrine tissues cultured in a relatively lower O2 concentration. In both AtT-20 cells derived from the mouse anterior pituitary and freshly prepared mouse pituitaries cultured in 10% O2 for 24 h, the storage and regulated secretion of the mature peptide hormone adrenocorticotropic hormone were significantly increased compared with those in cells and pituitaries cultured in ambient 21% O2, whereas its precursor proopiomelanocortin was not increased in the cells and tissues after being cultured in 10% O2 Simultaneously, the prohormone-processing enzymes PC1/3 and carboxypeptidase E were up-regulated in cells cultured in 10% O2, thus facilitating the conversion of prohormones to their active form. Similarly, culturing the mouse β-cell line MIN6 and islet tissue in 10% O2 also significantly increased the conversion of proinsulin into mature insulin, which was secreted in a regulated manner. These results suggest that culture under 10% O2 is more optimal for endocrine tissues/cells to efficiently generate and secrete active peptide hormones than ambient 21% O2.
Collapse
|
57
|
Garneau L, Aguer C. Role of myokines in the development of skeletal muscle insulin resistance and related metabolic defects in type 2 diabetes. DIABETES & METABOLISM 2019; 45:505-516. [PMID: 30844447 DOI: 10.1016/j.diabet.2019.02.006] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/04/2019] [Accepted: 02/25/2019] [Indexed: 12/20/2022]
Abstract
Due to its mass, skeletal muscle is the major site of glucose uptake and an important tissue in the development of type 2 diabetes (T2D). Muscles of patients with T2D are affected with insulin resistance and mitochondrial dysfunction, which result in impaired glucose and fatty acid metabolism. A well-established method of managing the muscle metabolic defects occurring in T2D is physical exercise. During exercise, muscles contract and secrete factors called myokines which can act in an autocrine/paracrine fashion to improve muscle energy metabolism. In patients with T2D, plasma levels as well as muscle levels (mRNA and protein) of some myokines are upregulated, while others are downregulated. The signalling pathways of certain myokines are also altered in skeletal muscle of patients with T2D. Taken together, these findings suggest that myokine secretion is an important factor contributing to the development of muscle metabolic defects during T2D. It is also of interest considering that lack of physical activity is closely linked to the occurrence of this disease. The causal relationships between sedentary behavior, factors secreted by skeletal muscle at rest and during contraction and the development of T2D remain to be elucidated. Many myokines shown to influence muscle energy metabolism still have not been characterized in the context of T2D in skeletal muscle specifically. The purpose of this review is to highlight what is known and what remains to be determined regarding myokine secretion in patients with T2D to uncover potential therapeutic targets for the management of this disease.
Collapse
Affiliation(s)
- L Garneau
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada
| | - C Aguer
- University of Ottawa, Faculty of Medicine, Department of Biochemistry, Microbiology and Immunology, Ottawa, ON, K1H 8M5, Canada; Institut du Savoir Montfort - recherche, Ottawa, ON, K1K 0T2, Canada.
| |
Collapse
|
58
|
Indispensable role of the Ubiquitin-fold modifier 1-specific E3 ligase in maintaining intestinal homeostasis and controlling gut inflammation. Cell Discov 2019; 5:7. [PMID: 30701081 PMCID: PMC6349939 DOI: 10.1038/s41421-018-0070-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 12/21/2022] Open
Abstract
Intestinal exocrine secretory cells, including Paneth and goblet cells, have a pivotal role in intestinal barrier function and mucosal immunity. Dysfunction of these cells may lead to the pathogenesis of human diseases such as inflammatory bowel disease (IBD). Therefore, identification and elucidation of key molecular mechanisms that regulate the development and function of these exocrine cells would be crucial for understanding of disease pathogenesis and discovery of new therapeutic targets. The Ufm1 conjugation system is a novel ubiquitin-like modification system that consists of Ufm1 (Ubiquitin modifier 1), Uba5 (Ufm1-activating enzyme, E1), Ufc1 (Ufm1-conjugating enzyme, E2) and poorly characterized Ufm1 E3 ligase(s). Recent mouse genetic studies have demonstrated its indispensable role in embryonic development and hematopoiesis. Yet its role in other tissues and organs remains poorly defined. In this study, we found that both Ufl1 and Ufbp1, two key components of the Ufm1 E3 ligase, were highly expressed in the intestinal exocrine cells. Ablation of either Ufl1 and Ufbp1 led to significant loss of both Paneth and goblet cells, which in turn resulted in dysbiotic microbiota and increased susceptibility to experimentally induced colitis. At the cellular and molecular levels, Ufbp1 deficiency caused elevation of endoplasmic reticulum stress and activation of the Unfolded Protein Response (UPR) and cell death program. Administration of small molecular chaperone partially prevented loss of Paneth cells caused by acute Ufbp1 deletion. Taken together, our results have provided unambiguous evidence for the crucial role of the Ufm1 E3 ligase in maintenance of intestinal homeostasis and protection from inflammatory diseases.
Collapse
|
59
|
Liang R, Liu Z, Chen Z, Yang Y, Li Y, Cui Z, Chen A, Long Z, Chen J, Lu J, Huang B, Li Q. Long noncoding RNA DNAJC3-AS1 promotes osteosarcoma progression via its sense-cognate gene DNAJC3. Cancer Med 2019; 8:761-772. [PMID: 30652414 PMCID: PMC6382712 DOI: 10.1002/cam4.1955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/19/2022] Open
Abstract
Long noncoding RNAs have been proved to play essential roles in tumor development and progression. In this study, we focused on DNAJC3-AS1 and investigated its biological function and clinical significance in osteosarcoma. We detected the expression of DNAJC3-AS1 in 30 pairs of matched osteosarcoma and adjacent nontumorous specimens and osteosarcoma cell lines and analyzed association between DNAJC3-AS1 levels and clinicopathological factors. We found that DNAJC3-AS1 expression was up-regulated in osteosarcoma. High level of DNAJC3-AS1 was correlated with high differentiated degree (P = 0.018) and advanced Enneking stage (P = 0.016). Mechanistically, DNAJC3-AS1 enhanced cell proliferation, migration, and invasion in vitro and in vivo and reduced sensitivity of osteosarcoma to cisplatin. These effects of DNAJC3-AS1 were reversed by down-regulation of its sense-cognate gene DNAJC3. Thus, DNAJC3-AS1 promotes osteosarcoma development and progression by regulating DNAJC3 and might be a biomarker and therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Ridong Liang
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zezheng Liu
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zhixu Chen
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Yang Yang
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Yuejun Li
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zhifei Cui
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Ajuan Chen
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Zhenxue Long
- Department of Orthopedics, The People's Hospital of Baise, Baise, China
| | - Jinbin Chen
- The First Affiliated Hospital, The School of Public Health, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Jiachun Lu
- The First Affiliated Hospital, The School of Public Health, The Institute for Chemical Carcinogenesis, Guangzhou Medical University, Guangzhou, China
| | - Bin Huang
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| | - Qingchu Li
- Department of Orthopedics, The Third Affiliated Hospital, Academy of Orthopedics, Southern Medical University, Guangzhou, China
| |
Collapse
|
60
|
Wang X, Cui X, Zhu C, Li M, Zhao J, Shen Z, Shan X, Wang L, Wu H, Shen Y, Ni Y, Zhang D, Zhou G. FKBP11 protects intestinal epithelial cells against inflammation‑induced apoptosis via the JNK‑caspase pathway in Crohn's disease. Mol Med Rep 2018; 18:4428-4438. [PMID: 30221722 PMCID: PMC6172375 DOI: 10.3892/mmr.2018.9485] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 07/31/2018] [Indexed: 12/12/2022] Open
Abstract
Endoplasmic reticulum (ER) stress in intestinal epithelial cells (IECs) has an important role in the pathogenesis of Crohn's disease (CD). FK506 binding protein 11 (FKBP11), a member of the peptidyl‑prolyl cis‑trans isomerase family, is involved in the unfolded protein response (UPR) and is closely associated with inflammation. Previous bioinformatics analysis revealed a potential association between FKBP11 and human CD. Thus, the present study aimed to investigate the potential significance of FKBP11 in IEC homeostasis and CD. In the present study, increased expression of FKBP11 was detected in the intestinal inflammatory tissues of patients with CD. Furthermore, the results of the present study revealed that overexpression of FKBP11 was accompanied by increased expression levels of the ER stress marker 78 kDa glucose‑regulated protein in the colon tissues of a 2, 4, 6‑trinitrobenzenesulphonic acid‑induced mouse colitis model. Using interferon‑γ (IFN‑γ)/tumor necrosis factor‑α (TNF‑α)‑stimulated IECs as an ER stress and apoptosis cell model, the associated of FKBP11 with ER stress and apoptosis levels was confirmed in IECs. Overexpression of FKBP11 was revealed to significantly attenuate the elevated expression of pro‑apoptotic proteins (Bcl2 associated X apoptosis regulator, caspase‑12 and active caspase‑3), suppress the phosphorylation of c‑Jun N‑terminal kinase (JNK), and decrease apoptosis of IFN‑γ/TNF‑α stimulated IECs. Knockdown of FKBP11 by transfection with small interfering RNA further validated the aforementioned results. In conclusion, these results suggest that the UPR protein FKBP11 may protect IECs against IFN‑γ/TNF‑α induced apoptosis by inhibiting the ER stress‑associated JNK/caspase apoptotic pathway in CD.
Collapse
Affiliation(s)
- Xiaotong Wang
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Xiaopeng Cui
- Department of General Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Chuanwu Zhu
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Ming Li
- Department of Hepatology and Gastroenterology, The Fifth's People's Hospital of Suzhou, Suzhou, Jiangsu 215000, P.R. China
| | - Juan Zhao
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Zhongyi Shen
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiaohang Shan
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Liang Wang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Han Wu
- Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, Jiangsu 210000, P.R. China
| | - Yanting Shen
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - You Ni
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Dongmei Zhang
- Clinical Medical Research Center, The Second Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Guoxiong Zhou
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
61
|
Witting KF, van der Heden van Noort GJ, Kofoed C, Talavera Ormeño C, el Atmioui D, Mulder MPC, Ovaa H. Generation of the UFM1 Toolkit for Profiling UFM1-Specific Proteases and Ligases. Angew Chem Int Ed Engl 2018; 57:14164-14168. [PMID: 30188611 PMCID: PMC6220884 DOI: 10.1002/anie.201809232] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 09/04/2018] [Indexed: 12/15/2022]
Abstract
Ubiquitin-fold modifier 1 (UFM1) is a reversible post-translational modifier that is covalently attached to target proteins through an enzymatic cascade and removed by designated proteases. Abnormalities in this process, referred to as Ufmylation, have been associated with a variety of human diseases. Given this, the UFM1-specific enzymes represent potential therapeutic targets; however, understanding of their biological function has been hampered by the lack of chemical tools for activity profiling. To address this unmet need, a diversifiable platform for UFM1 activity-based probes (ABPs) utilizing a native chemical ligation (NCL) strategy was developed, enabling the generation of a variety of tools to profile both UFM1 conjugating and deconjugating enzymes. The use of the probes is demonstrated in vitro and in vivo for monitoring UFM1 enzyme reactivity, opening new research avenues.
Collapse
Affiliation(s)
- Katharina F. Witting
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Gerbrand J. van der Heden van Noort
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Christian Kofoed
- Department of ChemistryCenter for Evolutionary Chemical BiologyUniversity of CopenhagenUniversitetsparken 52100CopenhagenDenmark
| | - Cami Talavera Ormeño
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Dris el Atmioui
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Monique P. C. Mulder
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical BiologyLeiden University Medical Center (LUMC)Einthovenweg 202333 ZCLeidenThe Netherlands
| |
Collapse
|
62
|
Witting KF, van der Heden van Noort GJ, Kofoed C, Talavera Ormeño C, el Atmioui D, Mulder MPC, Ovaa H. Generation of the UFM1 Toolkit for Profiling UFM1-Specific Proteases and Ligases. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201809232] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Katharina F. Witting
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Gerbrand J. van der Heden van Noort
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Christian Kofoed
- Department of Chemistry; Center for Evolutionary Chemical Biology; University of Copenhagen; Universitetsparken 5 2100 Copenhagen Denmark
| | - Cami Talavera Ormeño
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Dris el Atmioui
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Monique P. C. Mulder
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| | - Huib Ovaa
- Oncode Institute & Department of Cell and Chemical Biology; Leiden University Medical Center (LUMC); Einthovenweg 20 2333 ZC Leiden The Netherlands
| |
Collapse
|
63
|
A mitochondrial proteome profile indicative of type 2 diabetes mellitus in skeletal muscles. Exp Mol Med 2018; 50:1-14. [PMID: 30266947 PMCID: PMC6162255 DOI: 10.1038/s12276-018-0154-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 05/14/2018] [Accepted: 06/04/2018] [Indexed: 01/07/2023] Open
Abstract
The pathogenesis of type 2 diabetes mellitus (T2DM) is closely associated with mitochondrial functions in insulin-responsive tissues. The mitochondrial proteome, compared with the mitochondrial genome, which only contains 37 genes in humans, can provide more comprehensive information for thousands of mitochondrial proteins regarding T2DM-associated mitochondrial functions. However, T2DM-associated protein signatures in insulin-responsive tissues are still unclear. Here, we performed extensive proteome profiling of mitochondria from skeletal muscles in nine T2DM patients and nine nondiabetic controls. A comparison of the mitochondrial proteomes identified 335 differentially expressed proteins (DEPs) between T2DM and nondiabetic samples. Functional and network analyses of the DEPs showed that mitochondrial metabolic processes were downregulated and mitochondria-associated ER membrane (MAM) processes were upregulated. Of the DEPs, we selected two (NDUFS3 and COX2) for downregulated oxidative phosphorylation and three (CALR, SORT, and RAB1A) for upregulated calcium and protein transport as representative mitochondrial and MAM processes, respectively, and then confirmed their differential expression in independent mouse and human samples. Therefore, we propose that these five proteins be used as a potential protein profile that is indicative of the dysregulation of mitochondrial functions in T2DM, representing downregulated oxidative phosphorylation and upregulated MAM functions. Diabetes alters the mitochondrial proteins in insulin-responsive tissues. Sehyun Chae from the Daegu Gyeongbuk Institute of Science and Technology, South Korea, and coworkers characterized the proteins found within the mitochondria of skeletal muscle tissues isolated from nine people with type 2 diabetes and nine non-diabetic controls. They identified 335 proteins that were expressed at significantly different levels in tissues from the two groups. Of these, several involved in energy metabolism were at lower levels in the diabetic cohort, while several involved in communication between the mitochondria and the endoplasmic reticulum, a neighboring celllular organelle, were at higher levels. The researchers confirmed this pattern for five specific proteins in mouse models of diabetes and in human samples. These proteins could form the basis of a diagnostic test for diabetes-associated mitochondrial dysfunction.
Collapse
|
64
|
O-GlcNAcylation on Rab3A attenuates its effects on mitochondrial oxidative phosphorylation and metastasis in hepatocellular carcinoma. Cell Death Dis 2018; 9:970. [PMID: 30237463 PMCID: PMC6148238 DOI: 10.1038/s41419-018-0961-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 08/07/2018] [Accepted: 08/20/2018] [Indexed: 12/13/2022]
Abstract
Rab3A is a small Ras-like GTPase critical for membrane traffic. Although the functions of Rab3A have been reported in several cancers, the roles of Rab3A in hepatocellular carcinoma (HCC) have never been determined. To investigate the potential roles of Rab3A in HCC progression, we first determined Rab3A levels in HCC tissues and observed upregulated mRNA and protein levels of Rab3A in most tumor tissues. However, in vitro data showed that decreasing Rab3A in most HCC cell lines conferred no significant effects and overexpressing Rab3A in PLC/PRF/5 cells even inhibited migration and invasion. Meanwhile, the upregulation of Rab3A in HCC patients did not correlate with metastasis or overall survival of HCC patients. These contradict data suggested that Rab3A might act as metastatic suppressor and its effects might be attenuated in most HCC cells. Further experiments revealed that O-GlcNAcylation on Rab3A was key for attenuating Rab3A-mediated effects by regulating its GTP-binding activity, and verified the effects of Rab3A and its aberrant O-GlcNAcylation on HCC metastasis in vitro and in vivo. We also found that Rab3A and its O-GlcNAcylation had opposite roles in mitochondria oxidative phosphorylation (mtOXPHOS), and their functions on HCC metastasis were partially depended on their effects on metabolic reprogramming.
Collapse
|
65
|
Liu M, Weiss MA, Arunagiri A, Yong J, Rege N, Sun J, Haataja L, Kaufman RJ, Arvan P. Biosynthesis, structure, and folding of the insulin precursor protein. Diabetes Obes Metab 2018; 20 Suppl 2:28-50. [PMID: 30230185 PMCID: PMC6463291 DOI: 10.1111/dom.13378] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 02/06/2023]
Abstract
Insulin synthesis in pancreatic β-cells is initiated as preproinsulin. Prevailing glucose concentrations, which oscillate pre- and postprandially, exert major dynamic variation in preproinsulin biosynthesis. Accompanying upregulated translation of the insulin precursor includes elements of the endoplasmic reticulum (ER) translocation apparatus linked to successful orientation of the signal peptide, translocation and signal peptide cleavage of preproinsulin-all of which are necessary to initiate the pathway of proper proinsulin folding. Evolutionary pressures on the primary structure of proinsulin itself have preserved the efficiency of folding ("foldability"), and remarkably, these evolutionary pressures are distinct from those protecting the ultimate biological activity of insulin. Proinsulin foldability is manifest in the ER, in which the local environment is designed to assist in the overall load of proinsulin folding and to favour its disulphide bond formation (while limiting misfolding), all of which is closely tuned to ER stress response pathways that have complex (beneficial, as well as potentially damaging) effects on pancreatic β-cells. Proinsulin misfolding may occur as a consequence of exuberant proinsulin biosynthetic load in the ER, proinsulin coding sequence mutations, or genetic predispositions that lead to an altered ER folding environment. Proinsulin misfolding is a phenotype that is very much linked to deficient insulin production and diabetes, as is seen in a variety of contexts: rodent models bearing proinsulin-misfolding mutants, human patients with Mutant INS-gene-induced Diabetes of Youth (MIDY), animal models and human patients bearing mutations in critical ER resident proteins, and, quite possibly, in more common variety type 2 diabetes.
Collapse
Affiliation(s)
- Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Michael A. Weiss
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis 46202 IN USA
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Anoop Arunagiri
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Jing Yong
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Nischay Rege
- Department of Biochemistry, Case-Western Reserve University, Cleveland 44016 OH USA
| | - Jinhong Sun
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China 300052
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Leena Haataja
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| | - Randal J. Kaufman
- Degenerative Diseases Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA 92307 USA
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor 48105 MI USA
| |
Collapse
|
66
|
Mains RE, Blaby-Haas C, Rheaume BA, Eipper BA. Changes in Corticotrope Gene Expression Upon Increased Expression of Peptidylglycine α-Amidating Monooxygenase. Endocrinology 2018; 159:2621-2639. [PMID: 29788427 PMCID: PMC6287594 DOI: 10.1210/en.2018-00235] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 05/09/2018] [Indexed: 11/19/2022]
Abstract
Throughout evolution, secretion has played an essential role in the ability of organisms and single cells to survive in the face of a changing environment. Peptidylglycine α-amidating monooxygenase (PAM) is an integral membrane monooxygenase, first identified for its role in the biosynthesis of neuroendocrine peptides released by the regulated secretory pathway. PAM was subsequently identified in Chlamydomonas reinhardtii, a unicellular green alga, where it plays an essential role in constitutive secretion and in ciliogenesis. Reduced expression of C. reinhardtii PAM resulted in significant changes in secretion and ciliogenesis. Hence, a screen was performed for transcripts and proteins whose expression responded to changes in PAM levels in a mammalian corticotrope tumor cell line. The goal was to identify genes not previously known to play a role in secretion. The screen identified transcription factors, peptidyl prolyl isomerases, endosomal/lysosomal proteins, and proteins involved in tissue-specific responses to glucose and amino acid availability that had not previously been recognized as relevant to the secretory pathway. Perhaps reflecting the dependence of PAM on molecular oxygen, many PAM-responsive genes are known to be hypoxia responsive. The data highlight the extent to which the performance of the secretory pathway may be integrated into a wide diversity of signaling pathways.
Collapse
Affiliation(s)
- Richard E Mains
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Correspondence: Richard E. Mains, PhD, University of Connecticut Health Center, 263 Farmington
Avenue, Farmington, Connecticut 06030. E-mail:
| | | | - Bruce A Rheaume
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
| | - Betty A Eipper
- Neuroscience, University of Connecticut Health Center, Farmington,
Connecticut
- Molecular Biology & Biophysics, University of Connecticut, Farmington,
Connecticut
| |
Collapse
|
67
|
Bensellam M, Jonas JC, Laybutt DR. Mechanisms of β-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2018; 236:R109-R143. [PMID: 29203573 DOI: 10.1530/joe-17-0516] [Citation(s) in RCA: 168] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 12/04/2017] [Indexed: 12/13/2022]
Abstract
Like all the cells of an organism, pancreatic β-cells originate from embryonic stem cells through a complex cellular process termed differentiation. Differentiation involves the coordinated and tightly controlled activation/repression of specific effectors and gene clusters in a time-dependent fashion thereby giving rise to particular morphological and functional cellular features. Interestingly, cellular differentiation is not a unidirectional process. Indeed, growing evidence suggests that under certain conditions, mature β-cells can lose, to various degrees, their differentiated phenotype and cellular identity and regress to a less differentiated or a precursor-like state. This concept is termed dedifferentiation and has been proposed, besides cell death, as a contributing factor to the loss of functional β-cell mass in diabetes. β-cell dedifferentiation involves: (1) the downregulation of β-cell-enriched genes, including key transcription factors, insulin, glucose metabolism genes, protein processing and secretory pathway genes; (2) the concomitant upregulation of genes suppressed or expressed at very low levels in normal β-cells, the β-cell forbidden genes; and (3) the likely upregulation of progenitor cell genes. These alterations lead to phenotypic reconfiguration of β-cells and ultimately defective insulin secretion. While the major role of glucotoxicity in β-cell dedifferentiation is well established, the precise mechanisms involved are still under investigation. This review highlights the identified molecular mechanisms implicated in β-cell dedifferentiation including oxidative stress, endoplasmic reticulum (ER) stress, inflammation and hypoxia. It discusses the role of Foxo1, Myc and inhibitor of differentiation proteins and underscores the emerging role of non-coding RNAs. Finally, it proposes a novel hypothesis of β-cell dedifferentiation as a potential adaptive mechanism to escape cell death under stress conditions.
Collapse
Affiliation(s)
- Mohammed Bensellam
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - Jean-Christophe Jonas
- Université Catholique de LouvainInstitut de Recherche Expérimentale et Clinique, Pôle d'Endocrinologie, Diabète et Nutrition, Brussels, Belgium
| | - D Ross Laybutt
- Garvan Institute of Medical ResearchSydney, New South Wales, Australia
- St Vincent's Clinical SchoolUNSW Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
68
|
Lu ZX, Xu WJ, Wu YS, Li CY, Chen YT. Identification of Potential Therapeutic Targets in the Liver of Pioglitazone-Treated Type 2 Diabetes Sprague-Dawley Rats via Expression Profile Chip and iTRAQ Assay. J Diabetes Res 2018; 2018:8120847. [PMID: 29744368 PMCID: PMC5878868 DOI: 10.1155/2018/8120847] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/14/2018] [Indexed: 11/18/2022] Open
Abstract
The aim of the present study was to identify key antidiabetic nodes in the livers of pioglitazone-treated type 2 diabetes mellitus Sprague-Dawley rats by transcriptomic and proteomic analysis. Rats were randomly divided into the control, the diabetes model, and the pioglitazone-treated groups. After treatment with pioglitazone for 11 weeks, the effects on fasting blood glucose, body weight, and blood biochemistry parameters were evaluated. Microarray and iTRAQ analysis were used to determine the differentially expressed genes/proteins in rat livers. 1.5-fold changes in gene expression and 1.2-fold changes in protein were set as the screening criteria. After treatment with pioglitazone for 11 weeks, fasting blood glucose in pioglitazone-treated rats was significantly lower than that in the model group. There was a tendency for pioglitazone to reduce TC, TG, TP, ALB, BUN, and HDL-c levels. Kyoto Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) were applied to analyze differentially expressed genes/proteins. Furthermore, Western blotting and RT-qPCR were used to validate the results of microarray and iTRAQ. In conclusion, Cyp7a1, Cp, and RT1-EC2 are differentially expressed genes/proteins since they showed a similar trend in rats in the model group and the pioglitazone-treated group.
Collapse
Affiliation(s)
- Zhong-Xia Lu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Wen-Jun Xu
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yang-Sheng Wu
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Chang-Yu Li
- College of Pharmacy, Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Yi-Tao Chen
- College of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China
| |
Collapse
|
69
|
Hastoy B, Clark A, Rorsman P, Lang J. Fusion pore in exocytosis: More than an exit gate? A β-cell perspective. Cell Calcium 2017; 68:45-61. [PMID: 29129207 DOI: 10.1016/j.ceca.2017.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 10/17/2017] [Accepted: 10/24/2017] [Indexed: 12/14/2022]
Abstract
Secretory vesicle exocytosis is a fundamental biological event and the process by which hormones (like insulin) are released into the blood. Considerable progress has been made in understanding this precisely orchestrated sequence of events from secretory vesicle docked at the cell membrane, hemifusion, to the opening of a membrane fusion pore. The exact biophysical and physiological regulation of these events implies a close interaction between membrane proteins and lipids in a confined space and constrained geometry to ensure appropriate delivery of cargo. We consider some of the still open questions such as the nature of the initiation of the fusion pore, the structure and the role of the Soluble N-ethylmaleimide-sensitive-factor Attachment protein REceptor (SNARE) transmembrane domains and their influence on the dynamics and regulation of exocytosis. We discuss how the membrane composition and protein-lipid interactions influence the likelihood of the nascent fusion pore forming. We relate these factors to the hypothesis that fusion pore expansion could be affected in type-2 diabetes via changes in disease-related gene transcription and alterations in the circulating lipid profile. Detailed characterisation of the dynamics of the fusion pore in vitro will contribute to understanding the larger issue of insulin secretory defects in diabetes.
Collapse
Affiliation(s)
- Benoit Hastoy
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK.
| | - Anne Clark
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK
| | - Patrik Rorsman
- Oxford Centre for Diabetes, Endocrinology and Metabolism, University of Oxford, Churchill Hospital, Oxford OX3 7LE, UK; Metabolic Research, Institute of Neuroscience and Physiology, University of Goteborg, Medicinaregatan 11, S-41309 Göteborg, Sweden
| | - Jochen Lang
- Laboratoire de Chimie et Biologie des Membranes et Nano-objets (CBMN), CNRS UMR 5248, Université de Bordeaux, Allée de Geoffrey St Hilaire, 33600 Pessac, France.
| |
Collapse
|
70
|
Cai D, Li Y, Zhou C, Jiang Y, Jiao J, Wu L. Comparative proteomics analysis of primary cutaneous amyloidosis. Exp Ther Med 2017; 14:3004-3012. [PMID: 28912854 PMCID: PMC5585729 DOI: 10.3892/etm.2017.4852] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 05/25/2017] [Indexed: 01/02/2023] Open
Abstract
Primary cutaneous amyloidosis (PCA) is a localized skin disorder that is characterized by the abnormal deposition of amyloid in the extracellular matrix (ECM) of the dermis. The pathogenesis of PCA is poorly understood. The objective of the present study was to survey proteome changes in PCA lesions in order to gain insight into the molecular basis and pathogenesis of PCA. Total protein from PCA lesions and normal skin tissue samples were extracted and analyzed using the isobaric tags for relative and absolute quantitation technique. The function of differentially expressed proteins in PCA were analyzed by gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and protein-protein interaction analysis. The proteins that were most upregulated in PCA lesions were further analyzed by immunohistochemistry. A total of 1,032 proteins were identified in PCA lesions and control skin samples, with 51 proteins differentially expressed in PCA lesions, of which 27 were upregulated. In PCA lesions, the upregulated proteins were primarily extracellulary located. In addition, GO analysis indicated that the upregulated proteins were significantly enriched in the biological processes of epidermal development, collagen fiber organization and response to wounding (adjusted P<0.001). KEGG analysis indicated that the upregulated proteins were significantly enriched in the signaling pathways of cell communication, ECM receptor interaction and focal adhesion (adjusted P<0.001). Furthermore, the upregulated proteins were enriched in the molecular function of calcium ion binding, and the calcium binding proteins calmodulin-like protein 5, S100 calcium-binding protein A7 (S100A7)/fatty-acid binding protein and S100A8/A9 exhibited the highest levels of upregulation in PCA. This analysis of differentially expressed proteins in PCA suggests that increased focal adhesion, differentiation and wound healing is associated with the pathogenesis of PCA.
Collapse
Affiliation(s)
- Daxing Cai
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yang Li
- Beijing Protein Innovation Co. Ltd., Beijing 101318, P.R. China
| | - Chunlei Zhou
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yulin Jiang
- Beijing Protein Innovation Co. Ltd., Beijing 101318, P.R. China
| | - Jian Jiao
- Department of Dermatology, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Lin Wu
- Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, P.R. China
| |
Collapse
|
71
|
Sun T, Liu L, Wu A, Zhang Y, Jia X, Yin L, Lu H, Zhang L. iTRAQ based investigation of plasma proteins in HIV infected and HIV/HBV coinfected patients - C9 and KLK are related to HIV/HBV coinfection. Int J Infect Dis 2017; 63:64-71. [PMID: 28823846 DOI: 10.1016/j.ijid.2017.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 08/07/2017] [Accepted: 08/09/2017] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVES Human immunodeficiency virus (HIV) and hepatitis B virus (HBV) share similar routes of transmission, and rapid progression of hepatic and immunodeficiency diseases has been observed in coinfected individuals. Our main objective was to investigate the molecular mechanism of HIV/HBV coinfections. METHODS We selected HIV infected and HIV/HBV coinfected patients with and without Highly Active Antiretroviral Therapy (HAART). Low abundance proteins enriched using a multiple affinity removal system (MARS) were labeled with isobaric tags for relative and absolute quantitation (iTRAQ) kits and analyzed using liquid chromatography-mass spectrometry (LC-MS). The differential proteins were analyzed by Gene Ontology (GO) database. RESULTS A total of 41 differential proteins were found in HIV/HBV coinfected patients as compared to HIV mono-infected patients with or without HAART treatment, including 7 common HBV-regulated proteins. The proteins involved in complement and coagulation pathways were significantly enriched, including plasma kallikrein (KLK) and complement component C9 (C9). C9 and KLK were verified to be down-regulated in HIV/HBV coinfected patients through ELISA analysis. CONCLUSION The present iTRAQ based proteomic analyses identified 7 proteins that are related to HIV/HBV coinfection. HBV might influence hepatic and immune functions by deregulating complement and coagulation pathways. C9 and KLK could potentially be used as targets for the treatment of HIV/HBV coinfections.
Collapse
Affiliation(s)
- Tao Sun
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Li Liu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Ao Wu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Yujiao Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Xiaofang Jia
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Lin Yin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China
| | - Hongzhou Lu
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| | - Lijun Zhang
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China.
| |
Collapse
|
72
|
Zhang L, Hao C, Li J, Qu Y, Bao L, Li Y, Yue Z, Zhang M, Yu X, Chen H, Zhang J, Wang D, Yao W. Bioinformatics methods for identifying differentially expressed genes and signaling pathways in nano-silica stimulated macrophages. Tumour Biol 2017; 39:1010428317709284. [PMID: 28653889 DOI: 10.1177/1010428317709284] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The incidence of disease relating to nanoparticle exposure has been rising rapidly in recent years, for which there is no effective treatment. Macrophage is suggested to play a crucial role in the development of pulmonary disease. To investigate the changes in macrophage after being stimulated by nanometer silica dust and to explore potential biomarkers and signaling pathways, the gene chip GSE13005 was downloaded from Gene Expression Omnibus database, which contained 21 samples: 3 samples per group and 7 groups in total. Macrophages in the control group were cultured in serum-free medium, while the experimental groups were treated with nanometer silica dust in different sizes and concentrations, respectively. To identify the differentially expressed genes and explore their potential functions, we adopted the gene ontology analysis and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analysis and also constructed protein-protein interaction network. As a result, 1972 differentially expressed genes were identified from 22,690 microarray data in the gene chip, 1069 genes were upregulated and 903 genes were downregulated. Results of the gene ontology analysis indicated that the differentially expressed genes were widely distributed in intracellular and extracellular regions, regulating macrophage apoptosis, inflammatory response, and cell differentiation. The Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that the majority of differentially expressed genes were enriched in cytokine-cytokine receptor interaction, cancer or phagosome transcriptional misregulation. The top 10 hub genes, S100a9, Nos3, Psmd14, Psmd4, Lck, Atp6v1h, Jun, Foxh1, Pex14, and Fadd were identified from protein-protein interaction network. In addition, Nos3, Psmd14, Atp6v1h, and Jun were clustered into module M2 (rc = 0.74, p < 0.01), which mainly regulates cell carcinogenesis and antivirus process. In conclusion, differentially expressed genes screened from this study may provide new insights into the exploration of mechanisms, biomarkers, and therapeutic targets for diseases relating to nanoparticle exposure.
Collapse
Affiliation(s)
- Lin Zhang
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China.,2 Center for Reproductive Medicine, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China.,3 Key Laboratory of Reproductive Endocrinology, Ministry of Education, Shandong University, Jinan, China.,4 National Research Center for Assisted Reproductive Technology and Reproductive Genetics, Jinan, China
| | - Changfu Hao
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Juan Li
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yaqian Qu
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Lei Bao
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yiping Li
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Zhongzheng Yue
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Miao Zhang
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Xinghao Yu
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Huiting Chen
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jianhui Zhang
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Di Wang
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Wu Yao
- 1 Department of Occupational and Environmental Health, College of Public Health, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
73
|
Wollam J, Mahata S, Riopel M, Hernandez-Carretero A, Biswas A, Bandyopadhyay GK, Chi NW, Eiden LE, Mahapatra NR, Corti A, Webster NJG, Mahata SK. Chromogranin A regulates vesicle storage and mitochondrial dynamics to influence insulin secretion. Cell Tissue Res 2017; 368:487-501. [PMID: 28220294 PMCID: PMC10843982 DOI: 10.1007/s00441-017-2580-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 01/16/2017] [Indexed: 01/01/2023]
Abstract
Chromogranin A (CgA) is a prohormone and a granulogenic factor that regulates secretory pathways in neuroendocrine tissues. In β-cells of the endocrine pancreas, CgA is a major cargo in insulin secretory vesicles. The impact of CgA deficiency on the formation and exocytosis of insulin vesicles is yet to be investigated. In addition, no literature exists on the impact of CgA on mitochondrial function in β-cells. Using three different antibodies, we demonstrate that CgA is processed to vasostatin- and catestatin-containing fragments in pancreatic islet cells. CgA deficiency in Chga-KO islets leads to compensatory overexpression of chromogranin B, secretogranin II, SNARE proteins and insulin genes, as well as increased insulin protein content. Ultrastructural studies of pancreatic islets revealed that Chga-KO β-cells contain fewer immature secretory granules than wild-type (WT) control but increased numbers of mature secretory granules and plasma membrane-docked vesicles. Compared to WT control, CgA-deficient β-cells exhibited increases in mitochondrial volume, numerical densities and fusion, as well as increased expression of nuclear encoded genes (Ndufa9, Ndufs8, Cyc1 and Atp5o). These changes in secretory vesicles and the mitochondria likely contribute to the increased glucose-stimulated insulin secretion observed in Chga-KO mice. We conclude that CgA is an important regulator for coordination of mitochondrial dynamics, secretory vesicular quanta and GSIS for optimal secretory functioning of β-cells, suggesting a strong, CgA-dependent positive link between mitochondrial fusion and GSIS.
Collapse
Affiliation(s)
- Joshua Wollam
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Sumana Mahata
- Division of Biology & Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Matthew Riopel
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Angshuman Biswas
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | | | - Nai-Wen Chi
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Lee E Eiden
- Section on Molecular Neuroscience, NIMH-IRP, Bethesda, MD, USA
| | - Nitish R Mahapatra
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Angelo Corti
- IRCCS San Raffaele Scientific Institute, San Raffaele Vita-Salute University, Milan, Italy
| | - Nicholas J G Webster
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
- VA San Diego Healthcare System, San Diego, CA, USA
| | - Sushil K Mahata
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA.
- VA San Diego Healthcare System, San Diego, CA, USA.
- Metabolic Physiology & Ultrastructural Biology Laboratory, Department of Medicine, University of California, San Diego (0732), 9500 Gilman Drive, La Jolla, CA, 92093-0732, USA.
| |
Collapse
|
74
|
Li YY, Zhang GY, He JP, Zhang DD, Kong XX, Yuan HM, Chen FL. Ufm1 inhibits LPS-induced endothelial cell inflammatory responses through the NF-κB signaling pathway. Int J Mol Med 2017; 39:1119-1126. [PMID: 28393202 PMCID: PMC5403479 DOI: 10.3892/ijmm.2017.2947] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 03/15/2017] [Indexed: 12/31/2022] Open
Abstract
Endothelial cell dysfunction and inflammatory responses are important early contributors to the occurrence and development of atherosclerosis (AS), which still remains to be decoded. Ubiquitin-fold modifier 1 (Ufm1) is a new member of the ubiquitin-like protein family, and its biological function remains largely unknown, particularly in endothelial cell injury and inflammatory responses. In the present study, we showed that Ufm1 was highly expressed in both the nucleus and cytoplasm of human umbilical vein endothelial cells (HUVECs). We also demonstrated that the Ufm1 expression level was increased following lipopolysaccharide (LPS)-induced inflammation in HUVECs. Moreover, overexpression of Ufm1 in HUVECs alleviated the inflammatory responses induced by LPS treatment. Additionally, we found that Ufm1 overexpression inhibited the nuclear translocation of nuclear factor-κB (NF-κB) after LPS treatment, suggesting its implication in the LPS/Toll-like receptor 4 (TLR4)/NF-κB pathway. Taken together, in addition to decoding its expression pattern in endothelial cells, we showed for the first time that Ufm1 is upregulated in LPS-induced inflammation and Ufm1 plays an inhibitory role in inflammatory responses by targeting NF-κB nuclear translocation. Thus, Ufm1 may be a novel gene that protects against inflammatory responses.
Collapse
Affiliation(s)
- Yuan-Yuan Li
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Guang-Ya Zhang
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Jiang-Ping He
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Dan-Dan Zhang
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Xiang-Xin Kong
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Hui-Min Yuan
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| | - Feng-Ling Chen
- Department of Endocrinology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 201999, P.R. China
| |
Collapse
|
75
|
Miller C, Cai Y, Patton T, Graves SH, Li H, Sabbatini ME. RCAD/BiP pathway is necessary for the proper synthesis of digestive enzymes and secretory function of the exocrine pancreas. Am J Physiol Gastrointest Liver Physiol 2017; 312:G314-G326. [PMID: 28104585 PMCID: PMC11964389 DOI: 10.1152/ajpgi.00176.2016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 01/11/2017] [Accepted: 01/16/2017] [Indexed: 02/07/2023]
Abstract
Alcoholism causes an imbalance of endoplasmic reticulum (ER) homeostasis in pancreatic acini. In those cells, the ER is involved in the synthesis and folding of pancreatic enzymes. Ubiquitin-fold modifier 1 (Ufm1) is part of a novel ubiquitin-like modification system involved in maintaining ER homeostasis. Among the components of the Ufm1 system, Regulator of C53 and DDRGK1 (RCAD) has recently been identified as a Ufm1-specific E3 ligase that promotes ufmylation of DDRGK1, an RCAD-interacting protein. We determined the importance of RCAD in the proper synthesis and secretion of pancreatic enzymes using mice with genetically deleted RCAD. The pancreas of RCAD-deficient mice was of normal size and histology. Using quantitative PCR and Western blotting, we found that amylase was upregulated in pancreas organs from RCAD-knockout (KO) mice. Constitutive amylase secretion was much higher in isolated pancreatic acini from RCAD KO mice, whereas CCK-stimulated amylase secretion was disturbed. RCAD deficiency caused a downregulation in expression of ER chaperone BiP, which affected ER homeostasis and activated both apoptosis and trypsin. We also found that both RCAD and DDRGK1 transcript levels were upregulated in pancreatic acini from alcohol-preferring rats. Elevated expression of RCAD and DDRGK1 was associated with increased ER stress and UPR activation. Because of the lack of BiP expression, caspase 3 and trypsin activation we enhanced in RCAD-deficient pancreatic acini upon treatment with ethanol and CCK. In conclusion, the RCAD/BiP pathway is required for proper synthesis and secretion of pancreatic enzymes. In alcoholism, increased levels of components of the Ufm1 system could prevent the deleterious effects of alcohol in the pancreas by regulating BiP levels.NEW & NOTEWORTHY RCAD/BiP pathway is required for the proper synthesis and secretion of amylase from pancreatic acini, as well as for the maintenance of the ER homeostasis. In alcoholism, the exocrine pancreas could increase the levels of components of the Ufm1 system to protect itself from alcohol's deleterious effects by regulating the expression of ER chaperone BiP.
Collapse
Affiliation(s)
- Camille Miller
- Department of Biological Sciences, Augusta University, Augusta, Georgia
| | - Yafei Cai
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Cancer Center, Augusta University, Augusta, Georgia; and
| | - Tadd Patton
- Department of Psychological Sciences, Augusta University, Augusta, Georgia
| | | | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Cancer Center, Augusta University, Augusta, Georgia; and
| | | |
Collapse
|
76
|
Kim KH, Yeo SG, Yoo BC, Myung JK. Identification of calgranulin B interacting proteins and network analysis in gastrointestinal cancer cells. PLoS One 2017; 12:e0171232. [PMID: 28152021 PMCID: PMC5289589 DOI: 10.1371/journal.pone.0171232] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 01/17/2017] [Indexed: 01/14/2023] Open
Abstract
Calgranulin B is known to be involved in tumor development, but the underlying molecular mechanism is not clear. To gain insight into possible roles of calgranulin B, we screened for calgranulin B-interacting molecules in the SNU-484 gastric cancer and the SNU-81 colon cancer cells. Calgranulin B-interacting partners were identified by yeast two-hybrid and functional information was obtained by computational analysis. Most of the calgranulin B-interacting partners were involved in metabolic and cellular processes, and found to have molecular function of binding and catalytic activities. Interestingly, 46 molecules in the network of the calgranulin B-interacting proteins are known to be associated with cancer and FKBP2 was found to interact with calgranulin B in both SNU-484 and SNU-81 cells. Polyubiquitin-C encoded by UBC, which exhibited an interaction with calgranulin B, has been associated with various molecules of the extracellular space and plasma membrane identified in our screening, including Na-K-Cl cotransporter 1 and dystonin in SNU-484 cells, and ATPase subunit beta-1 in SNU-81 cells. Our data provide novel insight into the roles of calgranulin B of gastrointestinal cancer cells, and offer new clues suggesting calgranulin B acts as an effector molecule through which the cell can communicate with the tumor microenvironment via polyubiquitin-C.
Collapse
Affiliation(s)
- Kyung-Hee Kim
- Omics Core Laboratory, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Seung-Gu Yeo
- Department of Radiation Oncology, Soonchunhyang University College of Medicine, Cheonan, Chungnam, Republic of Korea
| | - Byong Chul Yoo
- Colorectal Cancer Branch, Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| | - Jae Kyung Myung
- Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang-si, Gyeonggi-do, Republic of Korea
| |
Collapse
|
77
|
A critical role of DDRGK1 in endoplasmic reticulum homoeostasis via regulation of IRE1α stability. Nat Commun 2017; 8:14186. [PMID: 28128204 PMCID: PMC5290148 DOI: 10.1038/ncomms14186] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 12/07/2016] [Indexed: 12/30/2022] Open
Abstract
Disturbance of endoplasmic reticulum (ER) homoeostasis induces ER stress and leads to activation of the unfolded protein response (UPR), which is an adaptive reaction that promotes cell survival or triggers apoptosis, when homoeostasis is not restored. DDRGK1 is an ER membrane protein and a critical component of the ubiquitin-fold modifier 1 (Ufm1) system. However, the functions and mechanisms of DDRGK1 in ER homoeostasis are largely unknown. Here, we show that depletion of DDRGK1 induces ER stress and enhances ER stress-induced apoptosis in both cancer cells and hematopoietic stem cells (HSCs). Depletion of DDRGK1 represses IRE1α-XBP1 signalling and activates the PERK-eIF2α-CHOP apoptotic pathway by targeting the ER-stress sensor IRE1α. We further demonstrate that DDRGK1 regulates IRE1α protein stability via its interaction with the kinase domain of IRE1α, which is dependent on its ufmylation modification. Altogether, our results provide evidence that DDRGK1 is essential for ER homoeostasis regulation. DDRGK1 is an ER membrane protein that is subject to Ufm1 modification, but its function in ER homeostasis is unknown. Here, the authors show that ufmylated DDRGK1 interacts with and stabilizes the ER-stress sensor protein IRE1a, in turn repressing ER stress and apoptosis.
Collapse
|
78
|
Schmudlach A, Felton J, Kennedy RT, Dovichi NJ. Bottom-up proteomics analysis of the secretome of murine islets of Langerhans in elevated glucose levels. Analyst 2017; 142:284-291. [PMID: 27966681 DOI: 10.1039/c6an02268e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glucotoxicity is a causative agent of type-2 diabetes, where high glucose levels damage the islets of Langerhans resulting in oxidative damage and endoplasmic reticulum stress. We evaluated the secretomes of healthy CD-1 murine islets. Three experimental conditions were investigated in biological triplicate: a control incubated with 11 mM glucose, 1-day incubation with 25 mM glucose, and 2-day incubation with 25 mM glucose. An SDS-based, filter-aided sample preparation protocol was used to prepare secretomes for analysis. A total of 428 protein groups were identified across the nine samples. Each condition generated between 328-349 protein IDs and intracondition protein overlap was between 66-90% for the biological triplicates. 232 protein groups were identified in all three conditions with 184 quantified at least once in each condition. Significant expression changes were observed for proteins associated with the unfolded protein response, such as proteases, chaperones, and elongation factors, as well as proteins associated with peptide hormone processing and small molecule metabolism.
Collapse
Affiliation(s)
- Andrew Schmudlach
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Jeremy Felton
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert T Kennedy
- Departments of Chemistry and Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Norman J Dovichi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
79
|
Wang BG, Wu Y, Qiu L, Shah NP, Xu F, Wei H. Integration of genomic and proteomic data to identify candidate genes in HT-29 cells after incubation with Bifidobacterium bifidum ATCC 29521. J Dairy Sci 2016; 99:6874-6888. [PMID: 27372578 DOI: 10.3168/jds.2015-10577] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/31/2016] [Indexed: 11/19/2022]
Abstract
As the predominant group inhabiting the human gastrointestinal tract, bifidobacteria play a vital role in human nutrition, therapeutics, and health by shaping and maintaining the gut ecosystem, reducing blood cholesterol, and promoting the supply of nutrients. The interaction between bacterial cells and human intestinal epithelial cell lines has been studied for decades in an attempt to understand the mechanisms of action. These studies, however, have been limited by lack of genomic and proteomic database to aid in achieving comprehensive understanding of these mechanisms at molecular levels. Microarray data (GSE: 74119) coupled with isobaric tags for relative and absolute quantitation (iTRAQ) were performed to detect differentially expressed genes and proteins in HT-29 cells after incubation with Bifidobacterium bifidum. Real-time quantitative PCR, gene ontology, and Kyoto Encyclopedia of Genes and Genomes analyses were further conducted for mRNA validation, functional annotation, and pathway identification, respectively. According to the results of microarray, 1,717 differentially expressed genes, including 1,693 upregulated and 24 downregulated genes, were selected and classified by the gene ontology database. The iTRAQ analysis identified 43 differentially expressed proteins, where 29 proteins were upregulated and 14 proteins were downregulated. Eighty-two candidate genes showing consistent differences with microarray and iTRAQ were further validated in HT-29 and Caco-2 cells by real-time quantitative PCR. Nine of the top genes showing interesting results with high confidence were further investigated in vivo in mice intestine samples. Integration of genomic and proteomic data provides an approach to identify candidate genes that are more likely to function in ubiquitin-mediated proteolysis, positive regulation of apoptosis, membrane proteins, and transferase catalysis. These findings might contribute to our understanding of molecular mechanisms regulating the interaction between probiotics and intestinal epithelial cell lines.
Collapse
Affiliation(s)
- Bao-Gui Wang
- State Key Laboratory of Food Science and Engineering, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Yaoping Wu
- State Key Laboratory of Food Science and Engineering, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Liang Qiu
- State Key Laboratory of Food Science and Engineering, Nanchang University, Nanchang, Jiangxi 330047, P. R. China; Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, P.R. China
| | - Nagendra P Shah
- Food and Nutritional Science, School of Biological Sciences, The University of Hong Kong, Hong Kong
| | - Feng Xu
- State Key Laboratory of Food Science and Engineering, Nanchang University, Nanchang, Jiangxi 330047, P. R. China
| | - Hua Wei
- State Key Laboratory of Food Science and Engineering, Nanchang University, Nanchang, Jiangxi 330047, P. R. China.
| |
Collapse
|
80
|
Cai Y, Singh N, Li H. Essential role of Ufm1 conjugation in the hematopoietic system. Exp Hematol 2016; 44:442-6. [PMID: 27033164 DOI: 10.1016/j.exphem.2016.03.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/15/2016] [Accepted: 03/16/2016] [Indexed: 02/06/2023]
Abstract
Protein modification by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins plays a pivotal role in a wide range of cellular functions and signaling pathways. The Ufm1 conjugation system is a novel ubiquitin-like system that consists of Ufm1, Uba5 (E1), Ufc1 (E2), and less defined E3 ligase(s) and targets. Despite its discovery more than a decade ago, its biological functions and working mechanism remains poorly understood. Recent genetic studies using knockout mouse models provide unambiguous evidence for the indispensable role of the Ufm1 system in animal development and hematopoiesis, especially erythroid development. In this short review, we summarize the recent progress on this important protein modification system and highlight potential challenges ahead. Further elucidation of the function and working mechanism of the ufmylation pathway would provide insight into disease pathogenesis and novel therapeutic targets for blood-related diseases such as anemia.
Collapse
Affiliation(s)
- Yafei Cai
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China; Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Nagendra Singh
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA
| | - Honglin Li
- Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA; 10th People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
81
|
Wang H, Zhang H, Chen X, Zhao T, Kong Q, Yan M, Zhang B, Sun S, Lan HY, Li N, Li P. The decreased expression of electron transfer flavoprotein β is associated with tubular cell apoptosis in diabetic nephropathy. Int J Mol Med 2016; 37:1290-8. [PMID: 27035869 PMCID: PMC4829130 DOI: 10.3892/ijmm.2016.2533] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 03/08/2016] [Indexed: 01/25/2023] Open
Abstract
Tubular injury is closely correlated with the development of progressive diabetic nephropathy (DN), particularly in cases of type 2 diabetes. The apoptosis of tubular cells has been recognized as a major cause of tubular atrophy, followed by tubulointerstitial fibrosis. Electron transfer flavoprotein β (ETFβ) is known as an important electron acceptor in energy metabolism, but its role in DN was not fully understood. In the present study, we examined the expression pattern of ETFβ using diabetic kidney samples and further investigated ETFβ involvement in tubular epithelial cell (TEC) apoptosis. Human renal biopsy specimens from patients with DN as well as a spontaneous rat model of diabetes using Otsuka Long-Evans Tokushima fatty (OLETF) rats, were employed in order to examine the expression of ETFβ and cell apoptosis in kidneys during the development of DN (for the rats, at 36 and 56 weeks of age respectively). Moreover, ETFβ siRNA was used to investigate the role of ETFβ in the apoptosis of renal tubular cells. Our present results showed that the expression of ETFβ in the kidneys was progressively decreased both in patients with DN and OLETF rats, which coincided with progressive renal injury and TEC apoptosis. In addition, the in vitro study demonstrated that knockdown of ETFβ caused apoptosis in tubular cells, as proven by the increased expression of pro-apoptotic proteins and TUNEL assay. Therefore, the findings of our present study suggest that ETFβ plays an important role in renal tubular cell apoptosis during the progression of DN.
Collapse
Affiliation(s)
- Hua Wang
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Haojun Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Xiaohong Chen
- Department of Nephrology, Chinese Medicine Hospital of Shaanxi, Xi'an, Shaanxi, P.R. China
| | - Tingting Zhao
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Qin Kong
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Meihua Yan
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Bingxuan Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Sifan Sun
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| | - Hui-Yao Lan
- Li Ka Shing Institute of Health Sciences and Department of Medicine and Therapeutics, and Shenzhen Research Institute, Chinese University of Hong Kong, Hong Kong SAR, P.R. China
| | - Ning Li
- Institute of Basic Medical Science, Peking Union Medical College, Beijing, P.R. China
| | - Ping Li
- Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, P.R. China
| |
Collapse
|
82
|
Gallart-Palau X, Lee BST, Adav SS, Qian J, Serra A, Park JE, Lai MKP, Chen CP, Kalaria RN, Sze SK. Gender differences in white matter pathology and mitochondrial dysfunction in Alzheimer's disease with cerebrovascular disease. Mol Brain 2016; 9:27. [PMID: 26983404 PMCID: PMC4794845 DOI: 10.1186/s13041-016-0205-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Accepted: 02/22/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Dementia risk in women is higher than in men, but the molecular neuropathology of this gender difference remains poorly defined. In this study, we used unbiased, discovery-driven quantitative proteomics to assess the molecular basis of gender influences on risk of Alzheimer's disease with cerebrovascular disease (AD + CVD). RESULTS We detected modulation of several redox proteins in the temporal lobe of AD + CVD subjects, and we observed sex-specific alterations in the white matter (WM) and mitochondria proteomes of female patients. Functional proteomic analysis of AD + CVD brain tissues revealed increased citrullination of arginine and deamidation of glutamine residues of myelin basic protein (MBP) in female which impaired degradation of degenerated MBP and resulted in accumulation of non-functional MBP in WM. Female patients also displayed down-regulation of ATP sub-units and cytochromes, suggesting increased severity of mitochondria impairment in women. CONCLUSIONS Our study demonstrates that gender-linked modulation of white matter and mitochondria proteomes influences neuropathology of the temporal lobe in AD + CVD.
Collapse
Affiliation(s)
- Xavier Gallart-Palau
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Benjamin S. T. Lee
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Sunil S. Adav
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jingru Qian
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Aida Serra
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Jung Eun Park
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| | - Mitchell K. P. Lai
- />Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Christopher P. Chen
- />Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- />Memory, Aging and Cognition Centre, National University Health System, Singapore, Singapore
| | - Raj N. Kalaria
- />Institute for Ageing and Health, NIHR Biomedical Research Building, Newcastle University, Campus for Ageing and Vitality, Newcastle upon Tyne, NE4 5PL UK
| | - Siu Kwan Sze
- />Division of Chemical Biology & BioTechnology, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551 Singapore
| |
Collapse
|
83
|
Chu G, Li J, Zhao Y, Liu N, Zhu X, Liu Q, Wei D, Gao C. Identification and verification of PRDX1 as an inflammation marker for colorectal cancer progression. Am J Transl Res 2016; 8:842-859. [PMID: 27158373 PMCID: PMC4846930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 01/12/2016] [Indexed: 06/05/2023]
Abstract
Chronic inflammation contributes to high risk of colorectal cancer (CRC) development. Thus, discovering inflammation biomarkers for monitoring of CRC progression is necessary. In this study, we performed isobaric tags for relative and absolute quantitation-based proteomic assay on CRC tissues and paired normal mucosal tissues to identify key components in CRC pathogenesis. A total of 115 altered protein expressions were found with over twofold difference as compared with normal controls, which were associated with various molecular functions and biological processes. Here, we found that peroxiredoxin 1 (PRDX1) expression was higher in CRC tissues than that of matched controls and was determined as a tumor biomarker by receiver operating characteristic curve. PRDX1 expression was significantly upregulated in NCM460 cells challenged by H2O2 in a dose-dependent manner. PRDX1 depletion in SW480 cells enhanced reactive oxygen species (ROS), NO, and ONOO(-) production and increased the mRNA and protein expressions of pro-inflammatory cytokines [tumor necrosis factor-α, interleukin (IL)-1β, and IL-6] and chemokines (IL-8 and CXCL1), and partly activated nuclear factor-κB p65. Overall, our findings provide data on global alteration in the proteome of CRC tissues and reveal the potential of PRDX1 as an inflammation marker in CRC development, suggesting a novel therapy against inflammation-associated CRC.
Collapse
Affiliation(s)
- Guanghui Chu
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
- The 150th Clinical Medical College, The Second Military Medical UniversityShanghai 200433, China
| | - Juntang Li
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
- State Key Laboratory of Cancer Biology, Department of Immunology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
- State Key Laboratory of Cancer Biology, Department of Biochemistry and Molecular Biology, The Fourth Military Medical UniversityXi’an, Shaanxi 710032, China
| | - Yali Zhao
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
| | - Ningning Liu
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
| | - Xiaoshan Zhu
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
| | - Qinqin Liu
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
| | - Dong Wei
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
| | - Chunfang Gao
- Institute of Anal-Colorectal Surgery, The 150th Central Hospital of PLALuoyang, Henan 471031, China
| |
Collapse
|
84
|
Lampropoulou E, Lymperopoulou A, Charonis A. Reduced expression of ERp46 under diabetic conditions in β-cells and the effect of liraglutide. Metabolism 2016; 65:7-15. [PMID: 26683792 DOI: 10.1016/j.metabol.2015.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/11/2015] [Accepted: 09/12/2015] [Indexed: 10/23/2022]
Abstract
BACKGROUND Diabetes mellitus is characterized by peripheral insulin resistance, hyperglycemia and defective insulin secretion. Insulin producing pancreatic β-cells are equipped with a highly developed endoplasmic reticulum (ER) and thus are affected by ER stress under hyperglycemic conditions. We have previously studied the influence of high glucose on cultured β-cells in vitro. Proteomic analysis revealed a number of proteins involved in glucose toxicity, while further biochemical analysis identified the endoplasmic reticulum protein ERp46 as a molecule with a possible role in insulin production at the post-translational level. In addition, the involvement of incretin hormone glucagon-like peptide 1 (GLP-1) in diabetes proposes that incretin-mimetic compounds may be among the optimal choices in future therapeutic interventions; therefore their effects on various aspects of the pathogenesis of diabetes mellitus should be explored in detail. Based on the above, we examined the possible involvement of ERp46 in insulin production and the effect of the GLP-1 analogue liraglutide on the expression of ERp46 in vitro, in β-cells cultured under high glucose conditions and in vivo, in the mouse db/db diabetic model, where pronounced hyperglycemia is a key characteristic. RESULTS Confocal microscopy revealed areas of co-localization of ERp46 and pro-insulin in pancreatic islets. In order to explore the possible interaction between ERp46 and insulin immunoprecipitation was used. In extracts from cultured β-cells, antibodies against pro-insulin co-precipitated ERp46 and antibodies against ERp46 co-precipitated pro-insulin, as shown by Western blotting. Furthermore, data from a proximity ligation assay positioned these two molecules closer than 30nm in distance. When pancreatic β-cells were cultured in high glucose conditions they exhibited a decrease in ERp46 expression, while treatment with the GLP-1 analogue liraglutide restored ERp46 levels, leading to a significant increase of ERp46 in comparison to hyperglycemic conditions. In the diabetic mouse model db(-)/db, ERp46 expression was reduced in pancreatic islets, as documented by morphological and biochemical techniques. This decrease was abolished after treatment with the GLP-1 analogue in a dose-dependent manner. In an attempt to understand the underlying mechanism, we examined the sequence of the promoter of ERp46 and found consensus motifs that can be recognized by transcription factors ATF6 and XBP1. Subsequently, we performed chromatin immunoprecipitation assay and demonstrated that treatment of β-TC-6 cells with 25mmol/L glucose decreases gradually the binding enrichment of ATF6 and XBP1 in ERp46 gene promoter. CONCLUSIONS We propose that since ERp46 is a member of the disulfide isomerases family, it is likely to play a key role in insulin biosynthesis and its reduction under high glucose conditions may be a novel contributor to the glucotoxicity of β-cells. In addition, the GLP-1 analogue liraglutide seems to interfere in this process and may exert its beneficial effects in diabetes by affecting insulin production via restoration of ERp46 expression.
Collapse
Affiliation(s)
- Eugenia Lampropoulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, Athens 115 27, Greece.
| | - Anna Lymperopoulou
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, Athens 115 27, Greece.
| | - Aristidis Charonis
- Center for Clinical, Experimental Surgery and Translational Research, Biomedical Research Foundation of the Academy of Athens, Soranou Efessiou 4, Athens 115 27, Greece.
| |
Collapse
|
85
|
Rai A, Pawar AK, Jalan S. Prognostic interaction patterns in diabetes mellitus II: A random-matrix-theory relation. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2015; 92:022806. [PMID: 26382453 DOI: 10.1103/physreve.92.022806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Indexed: 05/11/2023]
Abstract
We analyze protein-protein interactions in diabetes mellitus II and its normal counterpart under the combined framework of random matrix theory and network biology. This disease is the fifth-leading cause of death in high-income countries and an epidemic in developing countries, affecting around 8% of the total adult population in the world. Treatment at the advanced stage is difficult and challenging, making early detection a high priority in the cure of the disease. Our investigation reveals specific structural patterns important for the occurrence of the disease. In addition to the structural parameters, the spectral properties reveal the top contributing nodes from localized eigenvectors, which turn out to be significant for the occurrence of the disease. Our analysis is time-efficient and cost-effective, bringing a new horizon in the field of medicine by highlighting major pathways involved in the disease. The analysis provides a direction for the development of novel drugs and therapies in curing the disease by targeting specific interaction patterns instead of a single protein.
Collapse
Affiliation(s)
- Aparna Rai
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 452017, India
| | - Amit Kumar Pawar
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 452017, India
| | - Sarika Jalan
- Centre for Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Indore 452017, India
- Complex Systems Lab, Discipline of Physics, Indian Institute of Technology Indore, Indore 452017, India
| |
Collapse
|
86
|
El Ouaamari A, Zhou JY, Liew CW, Shirakawa J, Dirice E, Gedeon N, Kahraman S, De Jesus DF, Bhatt S, Kim JS, Clauss TR, Camp DG, Smith RD, Qian WJ, Kulkarni RN. Compensatory Islet Response to Insulin Resistance Revealed by Quantitative Proteomics. J Proteome Res 2015; 14:3111-3122. [PMID: 26151086 DOI: 10.1021/acs.jproteome.5b00587] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compensatory islet response is a distinct feature of the prediabetic insulin-resistant state in humans and rodents. To identify alterations in the islet proteome that characterize the adaptive response, we analyzed islets from 5 month old male control, high-fat diet fed (HFD), or obese ob/ob mice by LC-MS/MS and quantified ~1100 islet proteins (at least two peptides) with a false discovery rate < 1%. Significant alterations in abundance were observed for ~350 proteins among groups. The majority of alterations were common to both models, and the changes of a subset of ~40 proteins and 12 proteins were verified by targeted quantification using selected reaction monitoring and western blots, respectively. The insulin-resistant islets in both groups exhibited reduced expression of proteins controlling energy metabolism, oxidative phosphorylation, hormone processing, and secretory pathways. Conversely, an increased expression of molecules involved in protein synthesis and folding suggested effects in endoplasmic reticulum stress response, cell survival, and proliferation in both insulin-resistant models. In summary, we report a unique comparison of the islet proteome that is focused on the compensatory response in two insulin-resistant rodent models that are not overtly diabetic. These data provide a valuable resource of candidate proteins to the scientific community to undertake further studies aimed at enhancing β-cell mass in patients with diabetes. The data are available via the MassIVE repository, under accession no. MSV000079093.
Collapse
Affiliation(s)
- Abdelfattah El Ouaamari
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jian-Ying Zhou
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Chong Wee Liew
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jun Shirakawa
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Ercument Dirice
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Nicholas Gedeon
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Sevim Kahraman
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Dario F De Jesus
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Shweta Bhatt
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| | - Jong-Seo Kim
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Therese Rw Clauss
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - David G Camp
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Richard D Smith
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Wei-Jun Qian
- Biological Sciences Division and Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352
| | - Rohit N Kulkarni
- Islet Cell & Regenerative Biology, Joslin Diabetes Center, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02215
| |
Collapse
|
87
|
Pang Q, Xiong J, Hu XL, He JP, Liu HF, Zhang GY, Li YY, Chen FL. UFM1 Protects Macrophages from oxLDL-Induced Foam Cell Formation Through a Liver X Receptor α Dependent Pathway. J Atheroscler Thromb 2015; 22:1124-40. [PMID: 26040753 DOI: 10.5551/jat.28829] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
AIM Macrophage foam cell formation is the most prominent characteristic of the early stages of atherosclerosis. Ubiquitin Fold Modifier 1 (UFM1) is a new member of the ubiquitin-like protein family, and its underlying mechanism of action in macrophage foam cell formation is poorly understood. Our current study focuses on UFM1 and investigates its role in macrophage foam cell formation. METHODS Using real-time quantitative PCR (qRT-PCR) and western blot analysis, we first analyzed the UFM1 expression in mouse peritoneal macrophages (MPMs) from ApoE-/- mice in vivo and in human macrophages treated with oxLDL in vitro. Subsequently, the effects of UFM1 on macrophages foam cell formation were determined by Nile Red staining and direct lipid analysis. We then examined whether UFM1 affects the process of lipid metabolism in macrophages. Lastly, with the method of small interfering RNA (siRNA), we delineated the mechanism of UFM1 to attenuate lipid accumulation in THP-1 macrophages. RESULTS UFM1 is dramatically upregulated under atherosclerosis conditions both in vivo and in vitro. Moreover, UFM1 markedly decreased macrophage foam cell formation. Mechanistic studies revealed that UFM1 increased the macrophage cholesterol efflux, which was due to the increased expression of ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1). Furthermore, the upregulation of ABCA1 and ABCG1 by UFM1 resulted from liver X receptor α (LXRα) activation, which was confirmed by the observation that LXRα siRNA prevented the expression of ABCA1 and ABCG1. Consistent with this, the UFM1-mediated attenuation of lipid accumulation was abolished by such inhibition. CONCLUSIONS Taken together, our results showed that UFM1 could suppress foam cell formation via the LXRα-dependent pathway.
Collapse
Affiliation(s)
- Qi Pang
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University
| | | | | | | | | | | | | | | |
Collapse
|
88
|
Calderón-González KG, Valero Rustarazo ML, Labra-Barrios ML, Bazán-Méndez CI, Tavera-Tapia A, Herrera-Aguirre ME, Sánchez del Pino MM, Gallegos-Pérez JL, González-Márquez H, Hernández-Hernández JM, León-Ávila G, Rodríguez-Cuevas S, Guisa-Hohenstein F, Luna-Arias JP. Determination of the protein expression profiles of breast cancer cell lines by quantitative proteomics using iTRAQ labelling and tandem mass spectrometry. J Proteomics 2015; 124:50-78. [PMID: 25918110 DOI: 10.1016/j.jprot.2015.04.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Revised: 04/11/2015] [Accepted: 04/13/2015] [Indexed: 02/06/2023]
Abstract
UNLABELLED Breast cancer is the principal cancer in women worldwide. Although there are serum tumor markers such as CEA and HER2, they are detected in advanced stages of the disease and used as progression and recurrence markers. Therefore, there is a necessity for the identification of new markers that might lead to an early detection and also provide evidence of an effective treatment. The aim of this work was to determine the differential protein expression profiles of four breast cancer cell lines in comparison to a normal control cell line by iTRAQ labelling and tandem mass spectrometry, in order to identify putative biomarkers of the disease. We identified 1,020 iTRAQ-labelled polypeptides with at least one peptide identified with more than 95% in confidence. Overexpressed polypeptides in all cancer cell lines were 78, whilst the subexpressed were 128. We categorised them with PANTHER program into biological processes, being the metabolic pathways the most affected. We detected six groups of proteins with the STRING program involved in DNA topology, glycolysis, translation initiation, splicing, pentose pathway, and proteasome degradation. The main subexpressed protein network included mitochondrial proteins involved in oxidative phosphorylation. We propose BAG6, DDX39, ANXA8 and COX4 as putative biomarkers in breast cancer. BIOLOGICAL SIGNIFICANCE We report a set of differentially expressed proteins in the MCF7 and T47D (Luminal A), MDA-MB-231 (Claudin low) and SK-BR-3 (HER2(+)) breast cancer cell lines that have not been previously reported in breast cancer disease. From these proteins, we propose BAG6, DDX39, ANXA8 and COX4 as putative biomarkers in breast cancer. On the other hand, we propose sets of unique polypeptides in each breast cancer cell line that can be useful in the classification of different subtypes of breast cancer.
Collapse
Affiliation(s)
- Karla Grisel Calderón-González
- Doctorado en Ciencias Biológicas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, C.P. 09340, México, D. F., México.
| | - Ma Luz Valero Rustarazo
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | - Maria Luisa Labra-Barrios
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, México, D. F., México.
| | - César Isaac Bazán-Méndez
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, México, D. F., México.
| | - Alejandra Tavera-Tapia
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, México, D. F., México.
| | - Maria Esther Herrera-Aguirre
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, México, D. F., México.
| | - Manuel M Sánchez del Pino
- Unidad de Proteómica, Centro de Investigación Príncipe Felipe, C/Rambla del Saler 16, 46012 Valencia, España.
| | | | - Humberto González-Márquez
- Doctorado en Ciencias Biológicas, División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Unidad Iztapalapa, Av. San Rafael Atlixco No. 186, Col. Vicentina, Iztapalapa, C.P. 09340, México, D. F., México.
| | - Jose Manuel Hernández-Hernández
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, México, D. F., México.
| | - Gloria León-Ávila
- Departamento de Zoología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Prolongación de Carpio y Plan de Ayala s/n, Col. Santo Tomás, Miguel Hidalgo, C.P. 11340, México, D. F., México.
| | - Sergio Rodríguez-Cuevas
- Instituto de Enfermedades de la Mama, Fundación del Cáncer de Mama (FUCAM A.C.), Av. Bordo No. 100, Col. Viejo Ejido de Santa Ursula Coapa, Coyoacán, C.P. 04980, México, D. F., México.
| | - Fernando Guisa-Hohenstein
- Instituto de Enfermedades de la Mama, Fundación del Cáncer de Mama (FUCAM A.C.), Av. Bordo No. 100, Col. Viejo Ejido de Santa Ursula Coapa, Coyoacán, C.P. 04980, México, D. F., México.
| | - Juan Pedro Luna-Arias
- Departmento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav-IPN), Av. Instituto Politécnico Nacional 2508, Col. San Pedro Zacatenco, Gustavo A. Madero, C.P. 07360, México, D. F., México.
| |
Collapse
|
89
|
Lin Y, Sun Z. In vivo pancreatic β-cell-specific expression of antiaging gene Klotho: a novel approach for preserving β-cells in type 2 diabetes. Diabetes 2015; 64:1444-58. [PMID: 25377875 PMCID: PMC4375073 DOI: 10.2337/db14-0632] [Citation(s) in RCA: 98] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Protein expression of an antiaging gene, Klotho, was depleted in pancreatic islets in patients with type 2 diabetes mellitus (T2DM) and in db/db mice, an animal model of T2DM. The objective of this study was to investigate whether in vivo expression of Klotho would preserve pancreatic β-cell function in db/db mice. We report for the first time that β-cell-specific expression of Klotho attenuated the development of diabetes in db/db mice. β-Cell-specific expression of Klotho decreased hyperglycemia and enhanced glucose tolerance. The beneficial effects of Klotho were associated with significant improvements in T2DM-induced decreases in number of β-cells, insulin storage levels in pancreatic islets, and glucose-stimulated insulin secretion from pancreatic islets, which led to increased blood insulin levels in diabetic mice. In addition, β-cell-specific expression of Klotho decreased intracellular superoxide levels, oxidative damage, apoptosis, and DNAJC3 (a marker for endoplasmic reticulum stress) in pancreatic islets. Furthermore, β-cell-specific expression of Klotho increased expression levels of Pdx-1 (insulin transcription factor), PCNA (a marker of cell proliferation), and LC3 (a marker of autophagy) in pancreatic islets in db/db mice. These results reveal that β-cell-specific expression of Klotho improves β-cell function and attenuates the development of T2DM. Therefore, in vivo expression of Klotho may offer a novel strategy for protecting β-cells in T2DM.
Collapse
Affiliation(s)
- Yi Lin
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Zhongjie Sun
- Department of Physiology, College of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| |
Collapse
|
90
|
Lenin R, Mohan V, Balasubramanyam M. SEAP activity serves for demonstrating ER stress induction by glucolipotoxicity as well as testing ER stress inhibitory potential of therapeutic agents. Mol Cell Biochem 2015; 404:271-9. [DOI: 10.1007/s11010-015-2387-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Accepted: 03/05/2015] [Indexed: 01/06/2023]
|
91
|
Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans. Genetics 2015; 200:167-84. [PMID: 25762526 DOI: 10.1534/genetics.115.174631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases.
Collapse
|
92
|
Yang SS, Tan JL, Liu DS, Loreni F, Peng X, Yang QQ, He WF, Yao ZH, Zhang XR, Dal Prà I, Luo GX, Wu J. eIF6 modulates myofibroblast differentiation at TGF-β1 transcription level via H2A.Z occupancy and Sp1 recruitment. J Cell Sci 2015; 128:3977-89. [PMID: 26395397 DOI: 10.1242/jcs.174870] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 09/13/2015] [Indexed: 12/20/2022] Open
Abstract
Eukaryotic initiation factor 6 (eIF6) is a pivotal regulator of ribosomal function, participating in translational control. Previously our data suggest that eIF6 acts as a key binding protein of P311 (a hypertrophic scar-related protein). However, a comprehensive investigation of its functional role and the underlying mechanisms in modulation myofibroblast (a key effector of hypertrophic scar formation) differentiation remains unclear. Here, we identified that eIF6 is a novel regulator of the TGF-β1 expression at transcription level, which has a key role in myofibroblast differentiation. Mechanistically, this effect is associated with eIF6 altering the occupancy of the TGF-β1 promoter by H2A.Z and Sp1. Accordingly, modulation of eIF6 expression in myofibroblasts significantly affects their differentiation via the TGF-β/Smad signaling pathway, which was verified in vivo by the observation that heterozygote eIF6+/− mice exhibited enhanced TGF-β1 production coupled with increased α-SMA+ myofibroblasts after skin injury. Overall, our data reveal that a novel transcriptional regulatory mechanism of eIF6 that acts on facilitating Sp1 recruitment to TGF-β1 promoter via H2A.Z depletion and thus results in increased TGF-β1 transcription, which contributes to myofibroblast differentiation.
Collapse
Affiliation(s)
- Si-si Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jiang-lin Tan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Dai-song Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Fabrizio Loreni
- Department of Biology, University ‘Tor Vergata’, Via Ricerca Scientifica, Roma 00133, Italy
| | - Xu Peng
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Qing-qing Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Wei-feng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Zhi-hui Yao
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Xiao-rong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
| | - Ilaria Dal Prà
- Histology and Embryology Section, Department of Life and Reproduction Sciences, University of Verona Medical School, Verona, Venetia, Italy
| | - Gao-xing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| | - Jun Wu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, the Third Military Medical University, Chongqing 400038, China
- Chongqing Key Laboratory for Disease Proteomics, Chongqing 400038, China
| |
Collapse
|
93
|
Yoo HM, Park JH, Jeon YJ, Chung CH. Ubiquitin-fold modifier 1 acts as a positive regulator of breast cancer. Front Endocrinol (Lausanne) 2015; 6:36. [PMID: 25852645 PMCID: PMC4367433 DOI: 10.3389/fendo.2015.00036] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Accepted: 03/03/2015] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptor-α (ERα) is a steroid hormone-sensitive transcription factor that plays a critical role in development of breast cancer. The binding of estrogen to ERα triggers the recruitment of transcriptional co-activators as well as chromatin remodeling factors to estrogen-responsive elements (ERE) of ERα target genes. This process is tightly associated with post-translational modifications (PTMs) of ERα and its co-activators for promotion of transcriptional activation, which leads to proliferation of a large subset of breast tumor cells. These PTMs include phosphorylation, acetylation, methylation, and conjugation by ubiquitin and ubiquitin-like proteins. Ubiquitin-fold modifier 1 (UFM1), one of ubiquitin-like proteins, has recently been shown to be ligated to activating signal co-integrator 1 (ASC1), which acts as a transcriptional co-activator of nuclear receptors. Here, we discuss the mechanistic connection between ASC1 modification by UFM1 and ERα transactivation, and highlight how the interplay of these processes is involved in development of breast cancer. We also discuss potential use of UFM1-conjugating system as therapeutic targets against not only breast cancer but also other nuclear receptor-mediated cancers.
Collapse
Affiliation(s)
- Hee Min Yoo
- Institute for Protein Metabolism, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Jong Ho Park
- Institute for Protein Metabolism, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Young Joo Jeon
- Institute for Protein Metabolism, School of Biological Sciences, Seoul National University, Seoul, South Korea
| | - Chin Ha Chung
- Institute for Protein Metabolism, School of Biological Sciences, Seoul National University, Seoul, South Korea
- *Correspondence: Chin Ha Chung, Institute for Protein Metabolism, School of Biological Sciences, Seoul National University, 56-1 Shillim-dong, Gwanak-gu, Seoul 151-742, South Korea e-mail:
| |
Collapse
|
94
|
Endoplasmic Reticulum Protein 29 Protects Axotomized Neurons from Apoptosis and Promotes Neuronal Regeneration Associated with Erk Signal. Mol Neurobiol 2014; 52:522-32. [DOI: 10.1007/s12035-014-8840-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
|
95
|
Multi-tissue computational modeling analyzes pathophysiology of type 2 diabetes in MKR mice. PLoS One 2014; 9:e102319. [PMID: 25029527 PMCID: PMC4100879 DOI: 10.1371/journal.pone.0102319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 06/18/2014] [Indexed: 12/25/2022] Open
Abstract
Computational models using metabolic reconstructions for in silico simulation of metabolic disorders such as type 2 diabetes mellitus (T2DM) can provide a better understanding of disease pathophysiology and avoid high experimentation costs. There is a limited amount of computational work, using metabolic reconstructions, performed in this field for the better understanding of T2DM. In this study, a new algorithm for generating tissue-specific metabolic models is presented, along with the resulting multi-confidence level (MCL) multi-tissue model. The effect of T2DM on liver, muscle, and fat in MKR mice was first studied by microarray analysis and subsequently the changes in gene expression of frank T2DM MKR mice versus healthy mice were applied to the multi-tissue model to test the effect. Using the first multi-tissue genome-scale model of all metabolic pathways in T2DM, we found out that branched-chain amino acids' degradation and fatty acids oxidation pathway is downregulated in T2DM MKR mice. Microarray data showed low expression of genes in MKR mice versus healthy mice in the degradation of branched-chain amino acids and fatty-acid oxidation pathways. In addition, the flux balance analysis using the MCL multi-tissue model showed that the degradation pathways of branched-chain amino acid and fatty acid oxidation were significantly downregulated in MKR mice versus healthy mice. Validation of the model was performed using data derived from the literature regarding T2DM. Microarray data was used in conjunction with the model to predict fluxes of various other metabolic pathways in the T2DM mouse model and alterations in a number of pathways were detected. The Type 2 Diabetes MCL multi-tissue model may explain the high level of branched-chain amino acids and free fatty acids in plasma of Type 2 Diabetic subjects from a metabolic fluxes perspective.
Collapse
|
96
|
Liu R, Zhao W, Zhao Q, Liu SJ, Liu J, He M, Xu Y, Wang W, Liu W, Xia QJ, Li CY, Wang TH. Endoplasmic Reticulum Protein 29 Protects Cortical Neurons From Apoptosis and Promoting Corticospinal Tract Regeneration to Improve Neural Behavior via Caspase and Erk Signal in Rats with Spinal Cord Transection. Mol Neurobiol 2014; 50:1035-48. [DOI: 10.1007/s12035-014-8681-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 03/11/2014] [Indexed: 12/18/2022]
|
97
|
Juang YM, Lai BH, Chien HJ, Ho M, Cheng TJ, Lai CC. Changes in protein expression in rat bronchoalveolar lavage fluid after exposure to zinc oxide nanoparticles: an iTRAQ proteomic approach. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2014; 28:974-980. [PMID: 24623703 DOI: 10.1002/rcm.6866] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/02/2014] [Accepted: 02/03/2014] [Indexed: 06/03/2023]
Abstract
RATIONALE Zinc oxide nanoparticles (ZnO NPs) are widely used in consumer products and various biomedical fields. As a result, humans are frequently exposed to these NPs. However, there is a lack of information about the proteins that are expressed in the airway in response to exposure to ZnO NPs. METHODS Bronchoalveolar lavage fluid (BALF) from Sprague-Dawley (SD) rats that had been exposed to high-dose 35 nm ZnO NPs (N = 6) and filtered air (N = 4) was collected and then labeled with isobaric tags for relative and absolute quantitation (iTRAQ). The differentially expressed proteins were identified by two-dimensional liquid chromatography/tandem mass spectrometry (2D-LC/MS/MS) and further classified by Gene Ontology (GO) annotation. RESULTS A total of 46 proteins displayed significant changes after exposure. GO annotation of these differentially expressed proteins indicated that exposure to ZnO NPs mainly affected immune and inflammatory processes. Furthermore, S100A8 and S100A9, candidate markers of idiopathic pulmonary fibrosis and lung cancer, were significantly up-regulated (2.78- and 2.87-fold, respectively) following exposure. CONCLUSIONS Our data are consistent with recent study results that exposure to ZnO NPs induces lung inflammation. These data contribute to a better understanding of how exposure to ZnO NPs leads to lung damage through the functional classification of these proteins.
Collapse
Affiliation(s)
- Yu-Min Juang
- Institute of Molecular Biology, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | |
Collapse
|
98
|
Hu X, Pang Q, Shen Q, Liu H, He J, Wang J, Xiong J, Zhang H, Chen F. Ubiquitin-fold modifier 1 inhibits apoptosis by suppressing the endoplasmic reticulum stress response in Raw264.7 cells. Int J Mol Med 2014; 33:1539-46. [PMID: 24714921 DOI: 10.3892/ijmm.2014.1728] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/21/2014] [Indexed: 11/06/2022] Open
Abstract
Ubiquitin-fold modifier 1 (Ufm1) is a new member of the ubiquitin-like protein family, and its biological function remains largely unknown, particularly in macrophages. In this study, we demonstrate that Ufm1 expression is increased in diabetic mouse resident peritoneal macrophages (RPMs) and in the mouse macrophage cell line, Raw264.7, subjected to endoplasmic reticulum (ER) stress. Following treatment of the cells with the ER stress inducers, thapsigargin (TG) or tunicamycin (TM), the lentiviral short hairpin RNA (shRNA)-mediated knockdown of Ufm1 increased the apoptosis of Raw264.7 cells. Furthermore, these cells had higher expression levels of immunoglobulin heavy chain-binding protein (BiP) and C/EBP homologous protein (CHOP), which are markers of the ER stress response. The overexpression of Ufm1 induced by lentiviral infection in the Raw264.7 cells treated with the ER stress inducers, TG or TM, resulted in the opposite effect. Taken together, our results suggest that Ufm1 is upregulated in diabetic mouse RPMs and in Raw264.7 cells in response to ER stress and that Ufm1 protects macrophages against apoptosis. Thus, Ufm1 may be a novel gene that protects against ER stress-induced apoptosis in macrophages.
Collapse
Affiliation(s)
- Xiaolei Hu
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Qi Pang
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Qiongna Shen
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Huifang Liu
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Jiangping He
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Jing Wang
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Jie Xiong
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Huijie Zhang
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| | - Fengling Chen
- Department of Endocrinology, Shanghai 3rd People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 201999, P.R. China
| |
Collapse
|
99
|
Al-Khalili L, de Castro Barbosa T, Östling J, Massart J, Katayama M, Nyström AC, Oscarsson J, Zierath JR. Profiling of human myotubes reveals an intrinsic proteomic signature associated with type 2 diabetes. TRANSLATIONAL PROTEOMICS 2014. [DOI: 10.1016/j.trprot.2013.12.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
100
|
Detection of type 2 diabetes related modules and genes based on epigenetic networks. BMC SYSTEMS BIOLOGY 2014; 8 Suppl 1:S5. [PMID: 24565181 PMCID: PMC4080446 DOI: 10.1186/1752-0509-8-s1-s5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Type 2 diabetes (T2D) is one of the most common chronic metabolic diseases characterized by insulin resistance and the decrease of insulin secretion. Genetic variation can only explain part of the heritability of T2D, so there need new methods to detect the susceptibility genes of the disease. Epigenetics could establish the interface between the environmental factor and the T2D Pathological mechanism. Results Based on the network theory and by combining epigenetic characteristics with human interactome, the weighted human DNA methylation network (WMPN) was constructed, and a T2D-related subnetwork (TMSN) was obtained through T2D-related differentially methylated genes. It is found that TMSN had a T2D specific network structure that non-fatal metabolic disease causing genes were often located in the topological and functional periphery of network. Combined with chromatin modifications, the weighted chromatin modification network (WCPN) was built, and a T2D-related chromatin modification pattern subnetwork was obtained by the TMSN gene set. TCSN had a densely connected network community, indicating that TMSN and TCSN could represent a collection of T2D-related epigenetic dysregulated sub-pathways. Using the cumulative hypergeometric test, 24 interplay modules of DNA methylation and chromatin modifications were identified. By the analysis of gene expression in human T2D islet tissue, it is found that there existed genes with the variant expression level caused by the aberrant DNA methylation and (or) chromatin modifications, which might affect and promote the development of T2D. Conclusions Here we have detected the potential interplay modules of DNA methylation and chromatin modifications for T2D. The study of T2D epigenetic networks provides a new way for understanding the pathogenic mechanism of T2D caused by epigenetic disorders.
Collapse
|