51
|
Yau A, Jogdand A, Chen Y. Blood-brain-barrier modeling with tissue chips for research applications in space and on Earth. FRONTIERS IN SPACE TECHNOLOGIES 2023; 4:1176943. [PMID: 38915909 PMCID: PMC11195916 DOI: 10.3389/frspt.2023.1176943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Tissue chip technology has revolutionized biomedical applications and the medical science field for the past few decades. Currently, tissue chips are one of the most powerful research tools aiding in in vitro work to accurately predict the outcome of studies when compared to monolayer two-dimensional (2D) cell cultures. While 2D cell cultures held prominence for a long time, their lack of biomimicry has resulted in a transition to 3D cell cultures, including tissue chips technology, to overcome the discrepancies often seen in in vitro studies. Due to their wide range of applications, different organ systems have been studied over the years, one of which is the blood brain barrier (BBB) which is discussed in this review. The BBB is an incredible protective unit of the body, keeping out pathogens from entering the brain through vasculature. However, there are some microbes and certain diseases that disrupt the function of this barrier which can lead to detrimental outcomes. Over the past few years, various designs of the BBB have been proposed and modeled to study drug delivery and disease modeling on Earth. More recently, researchers have started to utilize tissue chips in space to study the effects of microgravity on human health. BBB tissue chips in space can be a tool to understand function mechanisms and therapeutics. This review addresses the limitations of monolayer cell culture which could be overcome with utilizing tissue chips technology. Current BBB models on Earth and how they are fabricated as well as what influences the BBB cell culture in tissue chips are discussed. Then, this article reviews how application of these technologies together with incorporating biosensors in space would be beneficial to help in predicting a more accurate physiological response in specific tissue or organ chips. Finally, the current platforms used in space and some solutions to overcome some shortcomings for future BBB tissue chip research are also discussed.
Collapse
Affiliation(s)
| | | | - Yupeng Chen
- Nanomedicine Lab, Department of Biomedical Engineering, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
52
|
Luo Y, Li X, Zhao Y, Zhong W, Xing M, Lyu G. Development of Organs-on-Chips and Their Impact on Precision Medicine and Advanced System Simulation. Pharmaceutics 2023; 15:2094. [PMID: 37631308 PMCID: PMC10460056 DOI: 10.3390/pharmaceutics15082094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 07/28/2023] [Accepted: 08/02/2023] [Indexed: 08/27/2023] Open
Abstract
Drugs may undergo costly preclinical studies but still fail to demonstrate their efficacy in clinical trials, which makes it challenging to discover new drugs. Both in vitro and in vivo models are essential for disease research and therapeutic development. However, these models cannot simulate the physiological and pathological environment in the human body, resulting in limited drug detection and inaccurate disease modelling, failing to provide valid guidance for clinical application. Organs-on-chips (OCs) are devices that serve as a micro-physiological system or a tissue-on-a-chip; they provide accurate insights into certain functions and the pathophysiology of organs to precisely predict the safety and efficiency of drugs in the body. OCs are faster, more economical, and more precise. Thus, they are projected to become a crucial addition to, and a long-term replacement for, traditional preclinical cell cultures, animal studies, and even human clinical trials. This paper first outlines the nature of OCs and their significance, and then details their manufacturing-related materials and methodology. It also discusses applications of OCs in drug screening and disease modelling and treatment, and presents the future perspective of OCs.
Collapse
Affiliation(s)
- Ying Luo
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
| | - Xiaoxiao Li
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- Department of General Surgery, Huai’an 82 Hospital, Huai’an 223003, China
| | - Yawei Zhao
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (Y.Z.); (W.Z.)
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Wen Zhong
- Department of Biosystems Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; (Y.Z.); (W.Z.)
| | - Malcolm Xing
- Department of Mechanical Engineering, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Guozhong Lyu
- Burn & Trauma Treatment Center, The Affiliated Hospital of Jiangnan University, Wuxi 214000, China; (Y.L.); (X.L.)
- Engineering Research Center of the Ministry of Education for Wound Repair Technology, Jiangnan University, Wuxi 214000, China
- Wuxi School of Medicine, Jiangnan University, Wuxi 214000, China
- National Research Center for Emergency Medicine, Beijing 100000, China
| |
Collapse
|
53
|
Kruger L, Lapehn S, Paquette A, Singh DK, MacDonald J, Bammler TK, Enquobahrie DA, Zhao Q, Mozhui K, Sathyanarayana S, Prasad B. Characterization of Xenobiotic and Steroid Disposition Potential of Human Placental Tissue and Cell Lines (BeWo, JEG-3, JAR, and HTR-8/SVneo) by Quantitative Proteomics. Drug Metab Dispos 2023; 51:1053-1063. [PMID: 37164652 PMCID: PMC10353074 DOI: 10.1124/dmd.123.001345] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
The placenta is a fetal organ that performs critical functions to maintain pregnancy and support fetal development, including metabolism and transport of xenobiotics and steroids between the maternal-fetal unit. In vitro placenta models are used to study xenobiotic and steroid disposition, but how well these models recapitulate the human placenta is not well understood. We first characterized the abundance of proteins involved in xenobiotic and steroid disposition in human placental tissue. In pooled human placenta, the following xenobiotic and steroid disposition proteins were detected (highest to lowest), 1) enzymes: glutathione S-transferase P, carbonyl reductase 1, aldo-keto reductase 1B1, hydroxysteroid dehydrogenases (HSD3B1 and HSD11B1), aromatase, epoxide hydrolase 1 (EPHX1) and steryl-sulfatase, and 2) transporters: monocarboxylate transporters (MCT1 and 4), organic anion transporting polypeptide 2B1, organic anion transporter 4, and breast cancer resistance protein (BCRP). Then, the tissue proteomics data were compared with four placental cell lines (BeWo, JEG-3, JAR, and HTR-8/SVneo). The differential global proteomics analysis revealed that the tissue and cell lines shared 1420 cytosolic and 1186 membrane proteins. Although extravillous trophoblast and cytotrophoblast marker proteins were detected in all cell lines, only BeWo and JEG-3 cells expressed the syncytiotrophoblast marker, chorionic somatomammotropin hormone 1. BeWo and JEG-3 cells expressed most target proteins including aromatase, HSDs, EPHX1, MCT1, and BCRP. JEG-3 cells treated with commonly detected phthalates in human biofluids showed dysregulation of steroid pathways. The data presented here show that BeWo and JEG-3 cells are closer to the placental tissue for studying xenobiotic and steroid disposition. SIGNIFICANCE STATEMENT: This is the first study to compare proteomics data of human placental tissue and cell lines (BeWo, JAR, JEG-3, and HTR-8/SVneo). The placental cell line and tissue proteomes are vastly different, but BeWo and JEG-3 cells showed greater resemblance to the tissue in the expression of xenobiotic and steroid disposition proteins. These data will assist researchers to select an optimum cell model for mechanistic investigations on xenobiotic and steroid disposition in the placenta.
Collapse
Affiliation(s)
- Laken Kruger
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Samantha Lapehn
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Alison Paquette
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Dilip Kumar Singh
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - James MacDonald
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Theo K Bammler
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Daniel A Enquobahrie
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Qi Zhao
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Khyobeni Mozhui
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Sheela Sathyanarayana
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, Washington (L.K., D.K.S., B.P.); Centers for Developmental Biology and Regenerative Medicine (S.L., A.P.) and Child Health, Behavior and Development (S.S.), Seattle Children's Research Institute, Seattle, Washington; Departments of Pediatrics (A.P., S.S.), Environmental and Occupational Health Sciences (J.M., T.K.B., S.S.), and Epidemiology (D.A.E.), University of Washington, Seattle, Washington; and Department of Preventative Medicine, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee (K.M., Q.Z.)
| |
Collapse
|
54
|
Roberts MD, Ruple BA, Godwin JS, McIntosh MC, Chen SY, Kontos NJ, Agyin-Birikorang A, Max Michel J, Plotkin DL, Mattingly ML, Brooks Mobley C, Ziegenfuss TN, Fruge AD, Kavazis AN. A novel deep proteomic approach in human skeletal muscle unveils distinct molecular signatures affected by aging and resistance training. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543459. [PMID: 37333259 PMCID: PMC10274632 DOI: 10.1101/2023.06.02.543459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
We examined the myofibrillar (MyoF) and non-myofibrillar (non-MyoF) proteomic profiles of the vastus lateralis (VL) muscle of younger (Y, 22±2 years old; n=5) and middle-aged participants (MA, 56±8 years old; n=6), and MA following eight weeks of knee extensor resistance training (RT, 2d/week). Shotgun/bottom-up proteomics in skeletal muscle typically yields wide protein abundance ranges that mask lowly expressed proteins. Thus, we adopted a novel approach whereby the MyoF and non-MyoF fractions were separately subjected to protein corona nanoparticle complex formation prior to digestion and Liquid Chromatography Mass Spectrometry (LC-MS) analysis. A total of 10,866 proteins (4,421 MyoF and 6,445 non-MyoF) were identified. Across all participants, the number of non-MyoF proteins detected averaged to be 5,645±266 (range: 4,888-5,987) and the number of MyoF proteins detected averaged to be 2,611±326 (range: 1,944-3,101). Differences in the non-MyoF (8.4%) and MyoF (2.5%) proteome were evident between age cohorts. Further, most of these age-related non-MyoF proteins (447/543) were more enriched in MA versus Y. Several biological processes in the non-MyoF fraction were predicted to be operative in MA versus Y including (but not limited to) increased cellular stress, mRNA splicing, translation elongation, and ubiquitin-mediated proteolysis. Non-MyoF proteins associated with splicing and proteostasis were further interrogated, and in agreement with bioinformatics, alternative protein variants, spliceosome-associated proteins (snRNPs), and proteolysis-related targets were more abundant in MA versus Y. RT in MA non-significantly increased VL muscle cross-sectional area (+6.5%, p=0.066) and significantly increased knee extensor strength (+8.7%, p=0.048). However, RT modestly altered the MyoF (~0.3%, 11 upregulated and two downregulated proteins) and non-MyoF proteomes (~1.0%, 56 upregulated and eight downregulated proteins, p<0.01). Further, RT did not affect predicted biological processes in either fraction. Although participant numbers were limited, these preliminary results using a novel deep proteomic approach in skeletal muscle suggest that aging and RT predominantly affects protein abundances in the non-contractile protein pool. However, the marginal proteome adaptations occurring with RT suggest either: a) this may be an aging-associated phenomenon, b) more rigorous RT may stimulate more robust effects, or c) RT, regardless of age, subtly affects skeletal muscle protein abundances in the basal state.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - J. Max Michel
- School of Kinesiology, Auburn University, Auburn, AL USA
| | | | | | | | | | | | | |
Collapse
|
55
|
Nimer RM, Abdel Rahman AM. Recent advances in proteomic-based diagnostics of cystic fibrosis. Expert Rev Proteomics 2023; 20:151-169. [PMID: 37766616 DOI: 10.1080/14789450.2023.2258282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 07/06/2023] [Indexed: 09/29/2023]
Abstract
INTRODUCTION Cystic fibrosis (CF) is a genetic disease characterized by thick and sticky mucus accumulation, which may harm numerous internal organs. Various variables such as gene modifiers, environmental factors, age of diagnosis, and CF transmembrane conductance regulator (CFTR) gene mutations influence phenotypic disease diversity. Biomarkers that are based on genomic information may not accurately represent the underlying mechanism of the disease as well as its lethal complications. Therefore, recent advancements in mass spectrometry (MS)-based proteomics may provide deep insights into CF mechanisms and cellular functions by examining alterations in the protein expression patterns from various samples of individuals with CF. AREAS COVERED We present current developments in MS-based proteomics, its application, and findings in CF. In addition, the future roles of proteomics in finding diagnostic and prognostic novel biomarkers. EXPERT OPINION Despite significant advances in MS-based proteomics, extensive research in a large cohort for identifying and validating diagnostic, prognostic, predictive, and therapeutic biomarkers for CF disease is highly needed.
Collapse
Affiliation(s)
- Refat M Nimer
- Department of Medical Laboratory Sciences, Jordan University of Science and Technology, Irbid, Jordan
| | - Anas M Abdel Rahman
- Metabolomics Section, Department of Clinical Genomics, Center for Genome Medicine, King Faisal Specialist Hospital and Research Centre (KFSHRC), Riyadh, Saudi Arabia
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
56
|
Grandy C, Port F, Radzinski M, Singh K, Erz D, Pfeil J, Reichmann D, Gottschalk KE. Remodeling of the focal adhesion complex by hydrogen-peroxide-induced senescence. Sci Rep 2023; 13:9735. [PMID: 37322076 PMCID: PMC10272183 DOI: 10.1038/s41598-023-36347-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Cellular senescence is a phenotype characterized by cessation of cell division, which can be caused by exhaustive replication or environmental stress. It is involved in age-related pathophysiological conditions and affects both the cellular cytoskeleton and the prime cellular mechanosensors, focal adhesion complexes. While the size of focal adhesions increases during senescence, it is unknown if and how this is accompanied by a remodeling of the internal focal adhesion structure. Our study uses metal-induced energy transfer to study the axial dimension of focal adhesion proteins from oxidative-stress-induced senescent cells with nanometer precision, and compares these to unstressed cells. We influenced cytoskeletal tension and the functioning of mechanosensitive ion channels using drugs and studied the combined effect of senescence and drug intervention on the focal adhesion structure. We found that H2O2-induced restructuring of the focal adhesion complex indicates a loss of tension and altered talin complexation. Mass spectroscopy-based proteomics confirmed the differential regulation of several cytoskeletal proteins induced by H2O2 treatment.
Collapse
Affiliation(s)
- Carolin Grandy
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Fabian Port
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Meytal Radzinski
- Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, 9190401, Jerusalem, Israel
| | - Karmveer Singh
- Department of Dermatology and Allergic Diseases, Ulm University, 89081, Ulm,, Baden-Württemberg, Germany
| | - Dorothee Erz
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Jonas Pfeil
- Institute of Experimental Physics, Ulm University, 89081, Ulm, Baden-Württemberg, Germany
| | - Dana Reichmann
- Alexander Silberman Institute of Life Science, The Hebrew University of Jerusalem, Edmond J. Safra Campus-Givat Ram, 9190401, Jerusalem, Israel
| | | |
Collapse
|
57
|
Tang Q, Hu Z, Zhao J, Zhou T, Tang S, Wang P, Xiao R, Chen Y, Wu L, Zhou M, Liang D. CRISPR-Mediated In Situ Introduction or Integration of F9-Padua in Human iPSCs for Gene Therapy of Hemophilia B. Int J Mol Sci 2023; 24:ijms24109013. [PMID: 37240366 DOI: 10.3390/ijms24109013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/10/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Hemophilia B (HB) is an X-linked recessive disease caused by F9 gene mutation and functional coagulation factor IX (FIX) deficiency. Patients suffer from chronic arthritis and death threats owing to excessive bleeding. Compared with traditional treatments, gene therapy for HB has obvious advantages, especially when the hyperactive FIX mutant (FIX-Padua) is used. However, the mechanism by which FIX-Padua works remains ambiguous due to a lack of research models. Here, in situ introduction of F9-Padua mutation was performed in human induced pluripotent stem cells (hiPSCs) via CRISPR/Cas9 and single-stranded oligodeoxynucleotides (ssODNs). The hyperactivity of FIX-Padua was confirmed to be 364% of the normal level in edited hiPSCs-derived hepatocytes, providing a reliable model for exploring the mechanism of the hyperactivity of FIX-Padua. Moreover, the F9 cDNA containing F9-Padua was integrated before the F9 initiation codon by CRISPR/Cas9 in iPSCs from an HB patient (HB-hiPSCs). Integrated HB-hiPSCs after off-target screening were differentiated into hepatocytes. The FIX activity in the supernatant of integrated hepatocytes showed a 4.2-fold increase and reached 63.64% of the normal level, suggesting a universal treatment for HB patients with various mutations in F9 exons. Overall, our study provides new approaches for the exploration and development of cell-based gene therapy for HB.
Collapse
Affiliation(s)
- Qiyu Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Zhiqing Hu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Junya Zhao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Tao Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Shuqing Tang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Peiyun Wang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Rou Xiao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Yan Chen
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Miaojin Zhou
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| | - Desheng Liang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha 410078, China
| |
Collapse
|
58
|
Venkatesan M, Zhang N, Marteau B, Yajima Y, De Zarate Garcia NO, Fang Z, Hu T, Cai S, Ford A, Olszewski H, Borst A, Coskun AF. Spatial subcellular organelle networks in single cells. Sci Rep 2023; 13:5374. [PMID: 37005468 PMCID: PMC10067843 DOI: 10.1038/s41598-023-32474-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
Organelles play important roles in human health and disease, such as maintaining homeostasis, regulating growth and aging, and generating energy. Organelle diversity in cells not only exists between cell types but also between individual cells. Therefore, studying the distribution of organelles at the single-cell level is important to understand cellular function. Mesenchymal stem cells are multipotent cells that have been explored as a therapeutic method for treating a variety of diseases. Studying how organelles are structured in these cells can answer questions about their characteristics and potential. Herein, rapid multiplexed immunofluorescence (RapMIF) was performed to understand the spatial organization of 10 organelle proteins and the interactions between them in the bone marrow (BM) and umbilical cord (UC) mesenchymal stem cells (MSCs). Spatial correlations, colocalization, clustering, statistical tests, texture, and morphological analyses were conducted at the single cell level, shedding light onto the interrelations between the organelles and comparisons of the two MSC subtypes. Such analytics toolsets indicated that UC MSCs exhibited higher organelle expression and spatially spread distribution of mitochondria accompanied by several other organelles compared to BM MSCs. This data-driven single-cell approach provided by rapid subcellular proteomic imaging enables personalized stem cell therapeutics.
Collapse
Affiliation(s)
- Mythreye Venkatesan
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Nicholas Zhang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA
| | - Benoit Marteau
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Yukina Yajima
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Nerea Ortiz De Zarate Garcia
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- Departamento de Bioingenieria e Ingenieria Aeroespacial, Universidad Carlos III de Madrid, Getafe, Spain
| | - Zhou Fang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Thomas Hu
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Adam Ford
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Harrison Olszewski
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Andrew Borst
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
59
|
Claeys T, Menu M, Bouwmeester R, Gevaert K, Martens L. Machine Learning on Large-Scale Proteomics Data Identifies Tissue and Cell-Type Specific Proteins. J Proteome Res 2023; 22:1181-1192. [PMID: 36963412 PMCID: PMC10088018 DOI: 10.1021/acs.jproteome.2c00644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
Using data from 183 public human data sets from PRIDE, a machine learning model was trained to identify tissue and cell-type specific protein patterns. PRIDE projects were searched with ionbot and tissue/cell type annotation was manually added. Data from physiological samples were used to train a Random Forest model on protein abundances to classify samples into tissues and cell types. Subsequently, a one-vs-all classification and feature importance were used to analyze the most discriminating protein abundances per class. Based on protein abundance alone, the model was able to predict tissues with 98% accuracy, and cell types with 99% accuracy. The F-scores describe a clear view on tissue-specific proteins and tissue-specific protein expression patterns. In-depth feature analysis shows slight confusion between physiologically similar tissues, demonstrating the capacity of the algorithm to detect biologically relevant patterns. These results can in turn inform downstream uses, from identification of the tissue of origin of proteins in complex samples such as liquid biopsies, to studying the proteome of tissue-like samples such as organoids and cell lines.
Collapse
Affiliation(s)
- Tine Claeys
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Maxime Menu
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Robbin Bouwmeester
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Kris Gevaert
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| | - Lennart Martens
- VIB-UGent Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
60
|
Waduge P, Tian H, Webster KA, Li W. Profiling disease-selective drug targets: From proteomics to ligandomics. Drug Discov Today 2023; 28:103430. [PMID: 36343915 PMCID: PMC9974940 DOI: 10.1016/j.drudis.2022.103430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Despite advancements in omics technologies, including proteomics and transcriptomics, identification of therapeutic targets remains challenging. Ligandomics recently emerged as a unique technology of functional proteomics for global profiling of cell-binding protein ligands. When applied to diseased versus healthy vasculatures, comparative ligandomics systematically maps novel disease-restricted ligands that allow selective targeting of pathological but not physiological pathways, providing high efficacy with intrinsic safety. In this review, we discuss the potential of cellular ligands as therapeutic targets and summarize the development of ligandomics. We further compare the advantages and limitations of different omics technologies for drug target discovery and discuss target selection criteria to improve drug R&D success rates.
Collapse
Affiliation(s)
- Prabuddha Waduge
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hong Tian
- LigandomicsRx, LLC, Houston, TX 77098, USA; Everglades Biopharma, LLC, Houston, TX 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA; Vascular Biology Institute, Department of Pharmacology, University of Miami School of Medicine, Miami, FL 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
61
|
Salustri A, De Maio F, Palmieri V, Santarelli G, Palucci I, Mercedes Bianco D, Marchionni F, Bellesi S, Ciasca G, Perini G, Sanguinetti M, Sali M, Papi M, De Spirito M, Delogu G. Evaluation of the Toxic Activity of the Graphene Oxide in the Ex Vivo Model of Human PBMC Infection with Mycobacterium tuberculosis. Microorganisms 2023; 11:microorganisms11030554. [PMID: 36985128 PMCID: PMC10059016 DOI: 10.3390/microorganisms11030554] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/13/2023] [Accepted: 02/19/2023] [Indexed: 02/25/2023] Open
Abstract
Graphene Oxide has been proposed as a potential adjuvant to develop improved anti-TB treatment, thanks to its activity in entrapping mycobacteria in the extracellular compartment limiting their entry in macrophages. Indeed, when administered together with linezolid, Graphene Oxide significantly enhanced bacterial killing due to the increased production of Reactive Oxygen Species. In this work, we evaluated Graphene Oxide toxicity and its anti-mycobacterial activity on human peripheral blood mononuclear cells. Our data show that Graphene Oxide, different to what is observed in macrophages, does not support the clearance of Mycobacterium tuberculosis in human immune primary cells, probably due to the toxic effects of the nano-material on monocytes and CD4+ lymphocytes, which we measured by cytometry. These findings highlight the need to test GO and other carbon-based nanomaterials in relevant in vitro models to assess the cytotoxic activity while measuring antimicrobial potential.
Collapse
Affiliation(s)
- Alessandro Salustri
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Flavio De Maio
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Valentina Palmieri
- Istituto dei Sistemi Complessi, CNR, 00168 Rome, Italy
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
| | - Giulia Santarelli
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ivana Palucci
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Delia Mercedes Bianco
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Federica Marchionni
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Silvia Bellesi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Gabriele Ciasca
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Giordano Perini
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maurizio Sanguinetti
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Michela Sali
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Dipartimento di Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
| | - Massimiliano Papi
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (M.P.); (M.D.S.)
| | - Marco De Spirito
- Fondazione Policlinico Universitario “A. Gemelli”, IRCSS, 00168 Rome, Italy
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Correspondence: (M.P.); (M.D.S.)
| | - Giovanni Delogu
- Dipartimento di Scienze Biotecnologiche di Base, Cliniche Intensivologiche e Perioperatorie—Sezione di Microbiologia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Mater Olbia Hospital, 07026 Olbia, Italy
| |
Collapse
|
62
|
Basu J, Madhulika S, Murmu KC, Mohanty S, Samal P, Das A, Mahapatra S, Saha S, Sinha I, Prasad P. Molecular and epigenetic alterations in normal and malignant myelopoiesis in human leukemia 60 (HL60) promyelocytic cell line model. Front Cell Dev Biol 2023; 11:1060537. [PMID: 36819104 PMCID: PMC9932920 DOI: 10.3389/fcell.2023.1060537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/19/2023] [Indexed: 02/05/2023] Open
Abstract
In vitro cell line model systems are essential in supporting the research community due to their low cost, uniform culturing conditions, homogeneous biological resources, and easy experimental design to study the cause and effect of a gene or a molecule. Human leukemia 60 (HL60) is an in-vitro hematopoietic model system that has been used for decades to study normal myeloid differentiation and leukemia biology. Here, we show that IMDM supplemented with 20% FBS is an optimal culturing condition and induces effective myeloid differentiation compared with RPMI supplemented with 10% FBS when HL60 is induced with 1α,25-dihydroxyvitamin D3 (Vit D3) and all-trans retinoic acid (ATRA). The chromatin organization is compacted, and the repressive epigenetic mark H3K27me3 is enhanced upon HL60-mediated terminal differentiation. Differential gene expression analysis obtained from RNA sequencing in HL60 cells during myeloid differentiation showed the induction of pathways involved in epigenetic regulation, myeloid differentiation, and immune regulation. Using high-throughput transcriptomic data (GSE74246), we show the similarities (genes that did not satisfy |log2FC|>1 and FDR<0.05) and differences (FDR <0.05 and |log2FC|>1) between granulocyte-monocyte progenitor vs HL60 cells, Vit D3 induced monocytes (vMono) in HL60 cells vs primary monocytes (pMono), and HL60 cells vs leukemic blasts at the transcriptomic level. We found striking similarities in biological pathways between these comparisons, suggesting that the HL60 model system can be effectively used for studying myeloid differentiation and leukemic aberrations. The differences obtained could be attributed to the fact that the cellular programs of the leukemic cell line and primary cells are different. We validated several gene expression patterns for different comparisons with CD34+ cells derived from cord blood for myeloid differentiation and AML patients. In addition to the current knowledge, our study further reveals the significance of using HL60 cells as in vitro model system under optimal conditions to understand its potential as normal myeloid differentiation model as well as leukemic model at the molecular level.
Collapse
Affiliation(s)
- Jhinuk Basu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Swati Madhulika
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Krushna Chandra Murmu
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Smrutishree Mohanty
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,RCB, Regional Centre for Biotechnology, Faridabad, India
| | - Priyanka Samal
- IMS and SUM Hospital, Siksha ‘O' Anusandhan University, Bhubaneswar, India
| | - Asima Das
- Department of Obstetrics and Gynecology, KIMS, Bhubaneswar, India
| | - Soumendu Mahapatra
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,Kalinga Institute of Industrial Technology (KIIT), School of Biotechnology, Bhubaneswar, India
| | - Subha Saha
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India
| | - Indranil Sinha
- Childhood Cancer Research Unit, Department of Women’s and Children’s Health, Karolinska Institutet, Solna, Sweden
| | - Punit Prasad
- Chromatin and Epigenetics Unit, Institute of Life Sciences, Bhubaneswar, India,*Correspondence: Punit Prasad,
| |
Collapse
|
63
|
Ambrin G, Cai S, Singh BR. Critical analysis in the advancement of cell-based assays for botulinum neurotoxin. Crit Rev Microbiol 2023; 49:1-17. [PMID: 35212259 DOI: 10.1080/1040841x.2022.2035315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The study on botulinum neurotoxins (BoNTs) has rapidly evolved for their structure and functions as opposed to them being poisons or cures. Since their discoveries, the scientific community has come a long way in understanding BoNTs' structure and biological activity. Given its current application as a tool for understanding neurocellular activity and as a drug against over 800 neurological disorders, relevant and sensitive assays have become critical for biochemical, physiological, and pharmacological studies. The natural entry of the toxin being ingestion, it has also become important to examine its mechanism while crossing the epithelial cell barrier. Several techniques and methodologies have been developed, for its entry, pharmacokinetics, and biological activity for identification, and drug efficacy both in vivo and in vitro conditions. However, each of them presents its own challenges. The cell-based assay is a platform that exceeds the sensitivity of mouse bioassay while encompassing all the steps of intoxication including cell binding, transcytosis, endocytosis, translocation and proteolytic activity. In this article we review in detail both the neuronal and nonneuronal based cellular interaction of BoNT involving its transportation, and interaction with the targeted cells, and intracellular activities.
Collapse
Affiliation(s)
- Ghuncha Ambrin
- Department of Biomedical Engineering and Biotechnology, University of Massachusetts, Dartmouth, MA, USA.,Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Shuowei Cai
- Department of Chemistry and Biochemistry, University of Massachusetts, Dartmouth, MA, USA
| | - Bal Ram Singh
- Institute of Advanced Sciences, Botulinum Research Center, Dartmouth, MA, USA
| |
Collapse
|
64
|
Gavanji S, Bakhtari A, Famurewa AC, Othman EM. Cytotoxic Activity of Herbal Medicines as Assessed in Vitro: A Review. Chem Biodivers 2023; 20:e202201098. [PMID: 36595710 DOI: 10.1002/cbdv.202201098] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/05/2023]
Abstract
Since time immemorial, human beings have sought natural medications for treatment of various diseases. Weighty evidence demonstrates the use of chemical methodologies for sensitive evaluation of cytotoxic potentials of herbal agents. However, due to the ubiquitous use of cytotoxicity methods, there is a need for providing updated guidance for the design and development of in vitro assessment. The aim of this review is to provide practical guidance on common cell-based assays for suitable assessment of cytotoxicity potential of herbal medicines and discussing their advantages and disadvantages Relevant articles in authentic databases, including PubMed, Web of Science, Science Direct, Scopus, Google Scholar and SID, from 1950 to 2022 were collected according to selection criteria of in vitro cytotoxicity assays and protocols. In addition, the link between cytotoxicity assay selection and different factors such as the drug solvent, concentration and exposure duration were discussed.
Collapse
Affiliation(s)
- Shahin Gavanji
- Department of Biotechnology, Faculty of Advanced Sciences and Technologies, University of Isfahan, 8415683111, Isfahan, Iran
| | - Azizollah Bakhtari
- Department of Reproductive Biology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, 7133654361, Shiraz, Iran
| | - Ademola C Famurewa
- Department of Medical Biochemistry, Faculty of Basic Medical Sciences, College of Medical Sciences, Alex Ekwueme Federal University, Ndufu-Alike, PMB 1010, Ikwo, Ebonyi State, Nigeria.,Department of Pharmacology, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, 576104, Manipal, Karnataka State, India
| | - Eman M Othman
- Department of Biochemistry, Faculty of Pharmacy, Minia University, Minia, 61519, Egypt.,Department of Bioinformatics, Biocenter, University of Würzburg, Am Hubland, 97074, Wuerzburg, Germany
| |
Collapse
|
65
|
Kumah E, Bibee K. Modelling cutaneous squamous cell carcinoma for laboratory research. Exp Dermatol 2023; 32:117-125. [PMID: 36373888 DOI: 10.1111/exd.14706] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/26/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Cutaneous squamous cell carcinoma (cSCC) leads to significant morbidity for patients with progression and metastases. However, the molecular underpinnings of these tumors are still poorly understood. Dissecting human cSCC pathogenesis amplifies the exigence for preclinical models that mimic invasion and nodal spread. This review discusses the currently available models, including two- and three-dimensional tissue cultures, syngeneic and transgenic mice, and cell line-derived and patient-derived xenografts. We further highlight studies that have utilized the different models, considering how they recapitulate specific hallmarks of cSCC. Finally, we discuss the advantages, limitations and future research directions.
Collapse
Affiliation(s)
- Edwin Kumah
- Department of Biochemistry and Molecular Biology, Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Kristin Bibee
- Transplant Dermatology, Micrographic Surgery and Dermatology Oncology, Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
66
|
Dunphy K, Bazou D, Dowling P. Analysis of Cancer Cell Line Secretomes: A Complementary Source of Disease-Specific Protein Biomarkers. Methods Mol Biol 2023; 2645:277-287. [PMID: 37202627 DOI: 10.1007/978-1-0716-3056-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Various types of cancer cells enrich or condition the medium that they are cultured in by secreting or shedding proteins and small molecules. These secreted or shed factors are involved in key biological processes, including cellular communication, proliferation, and migration, and are represented by protein families, including cytokines, growth factors, and enzymes. The rapid development of high-resolution mass spectrometry and shotgun strategies for proteome analysis facilitates the identification of these factors in biological models and elucidation of their potential roles in pathophysiology. Hence, the following protocol provides details on how to prepare proteins present in conditioned media for mass spectrometry analysis.
Collapse
Affiliation(s)
- Katie Dunphy
- Department of Biology, Maynooth University, National University of Ireland, Kildare, Ireland
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Paul Dowling
- Department of Biology, Maynooth University, National University of Ireland, Kildare, Ireland.
| |
Collapse
|
67
|
Jin B, Liu Y, Du S, Sang X, Yang H, Mao Y. Current trends and research topics regarding liver 3D bioprinting: A bibliometric analysis research. Front Cell Dev Biol 2022; 10:1047524. [PMID: 36518541 PMCID: PMC9742412 DOI: 10.3389/fcell.2022.1047524] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/16/2022] [Indexed: 09/28/2023] Open
Abstract
Introduction: Over recent years, 3D bioprinting has changed dramatically. The articles related to liver 3D bioprinting have not been quantitatively analyzed. In this article, we screen all articles related to liver 3D bioprinting until January 2022 and analyzed them using bibliometric citation analysis to characterize the current trends in liver 3D bioprinting. Methods: The articles were identified and analyzed from the Clarivate Analytics Web of Science Core Collection database. Results: Until 1 January 2022, 71 articles focusing on liver 3D bioprinting were identified. There was an increase in the number of articles in 2015. Most articles came from the USA (n = 27), followed by South Korea (n = 22), China (n = 16), and Japan (n = 5). The printing technology of liver 3D printing was the most studied topic (n = 29). Biofabrication published the highest number of papers (n = 16) with 1,524 total citations. Conclusion: Based on bibliometric analysis of the articles until January 2022, a comprehensive analysis of the liver 3D bioprinting articles highlighted the current trends and research topics of this field. The data should provide clinicians and researchers insight into future directions relative to the liver 3D bioprinting.
Collapse
Affiliation(s)
- Bao Jin
- Department of Liver Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Yitong Liu
- Department of Liver Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
- Peking Union Medical College (PUMC), PUMC & Chinese Academy of Medical Sciences, Beijing, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Xinting Sang
- Department of Liver Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Huayu Yang
- Department of Liver Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| | - Yilei Mao
- Department of Liver Surgery, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences (CAMS) & Peking Union Medical College (PUMC), Beijing, China
| |
Collapse
|
68
|
Sertznig H, Roesmann F, Wilhelm A, Heininger D, Bleekmann B, Elsner C, Santiago M, Schuhenn J, Karakoese Z, Benatzy Y, Snodgrass R, Esser S, Sutter K, Dittmer U, Widera M. SRSF1 acts as an IFN-I-regulated cellular dependency factor decisively affecting HIV-1 post-integration steps. Front Immunol 2022; 13:935800. [PMID: 36458014 PMCID: PMC9706209 DOI: 10.3389/fimmu.2022.935800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 10/19/2022] [Indexed: 08/24/2023] Open
Abstract
Efficient HIV-1 replication depends on balanced levels of host cell components including cellular splicing factors as the family of serine/arginine-rich splicing factors (SRSF, 1-10). Type I interferons (IFN-I) play a crucial role in the innate immunity against HIV-1 by inducing the expression of IFN-stimulated genes (ISGs) including potent host restriction factors. The less well known IFN-repressed genes (IRepGs) might additionally affect viral replication by downregulating host dependency factors that are essential for the viral life cycle; however, so far, the knowledge about IRepGs involved in HIV-1 infection is very limited. In this work, we could demonstrate that HIV-1 infection and the associated ISG induction correlated with low SRSF1 levels in intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs) during acute and chronic HIV-1 infection. In HIV-1-susceptible cell lines as well as primary monocyte-derived macrophages (MDMs), expression levels of SRSF1 were transiently repressed upon treatment with specific IFNα subtypes in vitro. Mechanically, 4sU labeling of newly transcribed mRNAs revealed that IFN-mediated SRSF1 repression is regulated on early RNA level. SRSF1 knockdown led to an increase in total viral RNA levels, but the relative proportion of the HIV-1 viral infectivity factor (Vif) coding transcripts, which is essential to counteract APOBEC3G-mediated host restriction, was significantly reduced. In the presence of high APOBEC3G levels, however, increased LTR activity upon SRSF1 knockdown facilitated the overall replication, despite decreased vif mRNA levels. In contrast, SRSF1 overexpression significantly impaired HIV-1 post-integration steps including LTR transcription, alternative splice site usage, and virus particle production. Since balanced SRSF1 levels are crucial for efficient viral replication, our data highlight the so far undescribed role of SRSF1 acting as an IFN-modulated cellular dependency factor decisively regulating HIV-1 post-integration steps.
Collapse
Affiliation(s)
- Helene Sertznig
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Alexander Wilhelm
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Delia Heininger
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| | - Barbara Bleekmann
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Carina Elsner
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Mario Santiago
- Department of Medicine, University of Colorado Denver, Aurora, CO, United States
| | - Jonas Schuhenn
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Zehra Karakoese
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Yvonne Benatzy
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Ryan Snodgrass
- Institute of Biochemistry I, Faculty of Medicine, Goethe-University Frankfurt am Main, Frankfurt, Germany
| | - Stefan Esser
- Clinic of Dermatology, University Hospital, University of Duisburg-Essen, Essen, Germany
| | - Kathrin Sutter
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Marek Widera
- Institute for Virology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Frankfurt am Main, Germany
| |
Collapse
|
69
|
Pires De Souza GA, Le Bideau M, Boschi C, Wurtz N, Colson P, Aherfi S, Devaux C, La Scola B. Choosing a cellular model to study SARS-CoV-2. Front Cell Infect Microbiol 2022; 12:1003608. [PMID: 36339347 PMCID: PMC9634005 DOI: 10.3389/fcimb.2022.1003608] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 10/03/2022] [Indexed: 08/04/2023] Open
Abstract
As new pathogens emerge, new challenges must be faced. This is no different in infectious disease research, where identifying the best tools available in laboratories to conduct an investigation can, at least initially, be particularly complicated. However, in the context of an emerging virus, such as SARS-CoV-2, which was recently detected in China and has become a global threat to healthcare systems, developing models of infection and pathogenesis is urgently required. Cell-based approaches are crucial to understanding coronavirus infection biology, growth kinetics, and tropism. Usually, laboratory cell lines are the first line in experimental models to study viral pathogenicity and perform assays aimed at screening antiviral compounds which are efficient at blocking the replication of emerging viruses, saving time and resources, reducing the use of experimental animals. However, determining the ideal cell type can be challenging, especially when several researchers have to adapt their studies to specific requirements. This review strives to guide scientists who are venturing into studying SARS-CoV-2 and help them choose the right cellular models. It revisits basic concepts of virology and presents the currently available in vitro models, their advantages and disadvantages, and the known consequences of each choice.
Collapse
Affiliation(s)
- Gabriel Augusto Pires De Souza
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Marion Le Bideau
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Céline Boschi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Nathalie Wurtz
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Philippe Colson
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Sarah Aherfi
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| | - Christian Devaux
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
- Department of Biological Sciences (INSB), Centre National de la Recherche Scientifique, Marseille, France
| | - Bernard La Scola
- Microbes, Evolution, Phylogeny and Infection (MEPHI), UM63, Institut de Recherche pour le Développement (IRD), Assistance Publique - Hôpitaux de Marseille (AP-HM), Aix-Marseille Université, Marseille, France
- Institut Hospitalo-Universitaire Méditerranée Infection, Marseille, France
| |
Collapse
|
70
|
Hamester F, Stürken C, Legler K, Eylmann K, Möller K, Roßberg M, Gorzelanny C, Bauer AT, Windhorst S, Schmalfeldt B, Laakmann E, Müller V, Witzel I, Oliveira-Ferrer L. Key Role of Hyaluronan Metabolism for the Development of Brain Metastases in Triple-Negative Breast Cancer. Cells 2022; 11:3275. [PMID: 36291142 PMCID: PMC9600690 DOI: 10.3390/cells11203275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 10/08/2022] [Accepted: 10/12/2022] [Indexed: 09/21/2023] Open
Abstract
Breast cancer (BC) is the second-most common cause of brain metastases (BM) and BCBM patients have a reduced quality of life and a poor prognosis. Hyaluronan (HA), and in particular the hyaluronidase Hyal-1, has been already linked to the development of BCBM, and therefore presents an interesting opportunity to develop new effective therapeutic options. HA metabolism was further discovered by the CRISPR/Cas9-mediated knockout of HYAL1 and the shRNA-mediated down-regulation of HA-receptor CD44 in the brain-seeking triple-negative breast cancer (TNBC) cell line MDA-MB-231-BR. Therefore, the impact of Hyal-1 on adhesion, disruption, and invasion through the brain endothelium, both in vitro and in vivo, was studied. Our analysis points out a key role of Hyal-1 and low-molecular-weight HA (LMW-HA) in the formation of a pericellular HA-coat in BC cells, which in turn promotes tumor cell adhesion, disruption, and migration through the brain endothelium in vitro as well as the extent of BM in vivo. CD44 knockdown in MDA-MB-231-BR significantly reduced the pericellular HA-coat on these cells, and, consequently, tumor cell adhesion and invasion through the brain endothelium. Thus, the interaction between Hyal-1-generated LMW-HA fragments and the HA-receptor CD44 might represent a potential target for future therapeutic options in BC patients with a high risk of cerebral metastases formation.
Collapse
Affiliation(s)
- Fabienne Hamester
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christine Stürken
- Department of Anatomy and Experimental Morphology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
- MSH Medical School Hamburg, Faculty of Medicine, Medical University, 20251 Hamburg, Germany
| | - Karen Legler
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Kathrin Eylmann
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Katrin Möller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Maila Roßberg
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Alexander T. Bauer
- Department of Dermatology and Venerology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Sabine Windhorst
- Department of Biochemistry and Signal Transduction, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Barbara Schmalfeldt
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Elena Laakmann
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Volkmar Müller
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Isabell Witzel
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| | - Leticia Oliveira-Ferrer
- Department of Gynecology, University Medical Center Hamburg-Eppendorf, Martinistrasse 52, 20246 Hamburg, Germany
| |
Collapse
|
71
|
The CFTR Amplifier Nesolicaftor Rescues TGF-β1 Inhibition of Modulator-Corrected F508del CFTR Function. Int J Mol Sci 2022; 23:ijms231810956. [PMID: 36142862 PMCID: PMC9504033 DOI: 10.3390/ijms231810956] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Highly effective cystic fibrosis transmembrane conductance regulator (CFTR) modulators have led to dramatic improvements in lung function in many people with cystic fibrosis (PwCF). However, the efficacy of CFTR modulators may be hindered by persistent airway inflammation. The cytokine transforming growth factor-beta1 (TGF-β1) is associated with worse pulmonary disease in PwCF and can diminish modulator efficacy. Thus, strategies to augment the CFTR response to modulators in an inflammatory environment are needed. Here, we tested whether the CFTR amplifier nesolicaftor (or PTI-428) could rescue the effects of TGF-β1 on CFTR function and ciliary beating in primary human CF bronchial epithelial (CFBE) cells. CFBE cells homozygous for F508del were treated with the combination of elexacaftor/tezacaftor/ivacaftor (ETI) and TGF-β1 in the presence and absence of nesolicaftor. Nesolicaftor augmented the F508del CFTR response to ETI and reversed TGF-β1-induced reductions in CFTR conductance by increasing the expression of CFTR mRNA. Nesolicaftor further rescued the reduced ciliary beating and increased expression of the cytokines IL-6 and IL-8 caused by TGF-β1. Finally, nesolicaftor augmented the F508del CFTR response to ETI in CFBE cells overexpressing miR-145, a negative regulator of CFTR expression. Thus, CFTR amplifiers, but only when used with highly effective modulators, may provide benefit in an inflamed environment.
Collapse
|
72
|
Marques Dos Santos M, Tan Pei Fei M, Li C, Jia S, Snyder SA. Cell-line and culture model specific responses to organic contaminants in house dust: Cell bioenergetics, oxidative stress, and inflammation endpoints. ENVIRONMENT INTERNATIONAL 2022; 167:107403. [PMID: 35863240 DOI: 10.1016/j.envint.2022.107403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/05/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
Exposure to organic contaminants in house dust is linked to the development or exacerbation of many allergic and immune disorders. In this work, we evaluate the effects of organic contaminants on different cell bioenergetics endpoints using five different cell lines (16HBE14o-, NuLi-1, A549, THP-1 and HepG2), and examine its effects on lung epithelial cells using conventional 2D and 3D (air-liquid interface/ALI) models. Proposed rapid bioenergetic assays relies on a quick, 40 min, exposure protocol that provides equivalent dose-response curves for ATP production, spare respiratory capacity, and cell respiration. Although cell-line differences play an important role in assay performance, established EC50 concentrations for immortalized lung epithelial cells ranged from 0.11 to 0.15 mg/mL (∼2 µg of dust in a 96-well microplate format). Bioenergetic response of distinct cell types (i.e., monocytes and hepatocytes) was significantly different from epithelial cells; with HepG2 showing metabolic activity that might adversely affect results in 24 h exposure experiments. Like in cell bioenergetics, cell barrier function assay in ALI showed a dose dependent response. Although this is a physiologically relevant model, measurements are not as sensitivity as cytokine profiling and reactive oxygen species (ROS) assays. Observed effects are not solely explained by exposure to individual contaminants, this suggests that many causal agents responsible for adverse effects are still unknown. While 16HBE14o- cells show batter barrier formation characteristics, NuLi-1 cells are more sensitivity to oxidative stress induction even at low house dust extract concentrations, (NuLi-1 2.11-fold-change vs. 16HBE14o- 1.36-fold change) at 0.06 µg/mL. Results show that immortalized cell lines can be a suitable alternative to primary cells or other testing models, especially in the development of high-throughput assays. Observed cell line specific responses with different biomarker also highlights the importance of careful in-vitro model selection and potential drawbacks in risk assessment studies.
Collapse
Affiliation(s)
- Mauricius Marques Dos Santos
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore; Department of Chemical & Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Harshbarger 108, Tucson, AZ 85721-0011, USA
| | - Megan Tan Pei Fei
- School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Caixia Li
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Shenglan Jia
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore
| | - Shane Allen Snyder
- Nanyang Environment & Water Research Institute (NEWRI), Nanyang Technological University, 1 Cleantech Loop, CleanTech One, #06-08, 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore.
| |
Collapse
|
73
|
Impact of Fluid Flow Shear Stress on Osteoblast Differentiation and Cross-Talk with Articular Chondrocytes. Int J Mol Sci 2022; 23:ijms23169505. [PMID: 36012760 PMCID: PMC9408926 DOI: 10.3390/ijms23169505] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/11/2022] [Accepted: 08/15/2022] [Indexed: 11/17/2022] Open
Abstract
Bone cells, in particular osteoblasts, are capable of communication with each other during bone growth and homeostasis. More recently it has become clear that they also communicate with other cell-types; including chondrocytes in articular cartilage. One way that this process is facilitated is by interstitial fluid movement within the pericellular and extracellular matrices. This stimulus is also an important mechanical signal in skeletal tissues, and is known to generate shear stresses at the micron-scale (known as fluid flow shear stresses (FFSS)). The primary aim of this study was to develop and characterize an in vitro bone–cartilage crosstalk system, to examine the effect of FFSS on these cell types. Specifically, we evaluated the response of osteoblasts and chondrocytes to FFSS and the effect of FFSS-induced soluble factors from the former, on the latter. This system will ultimately be used to help us understand the role of subchondral bone damage in articular cartilage degeneration. We also carried out a comparison of responses between cell lines and primary murine cells in this work. Our findings demonstrate that primary cells produce a more reliable and reproducible response to FFSS. Furthermore we found that at lower magnitudes , direct FFSS produces anabolic responses in both chondrocytes and osteoblasts, whereas higher levels produce more catabolic responses. Finally we show that exposure to osteoblast-derived factors in conditioned media experiments produced similarly catabolic changes in primary chondrocytes.
Collapse
|
74
|
Cisneros WJ, Cornish D, Hultquist JF. Application of CRISPR-Cas9 Gene Editing for HIV Host Factor Discovery and Validation. Pathogens 2022; 11:891. [PMID: 36015010 PMCID: PMC9415735 DOI: 10.3390/pathogens11080891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/30/2022] [Accepted: 08/03/2022] [Indexed: 12/04/2022] Open
Abstract
Human Immunodeficiency Virus (HIV) interacts with a wide array of host factors at each stage of its lifecycle to facilitate replication and circumvent the immune response. Identification and characterization of these host factors is critical for elucidating the mechanism of viral replication and for developing next-generation HIV-1 therapeutic and curative strategies. Recent advances in CRISPR-Cas9-based genome engineering approaches have provided researchers with an assortment of new, valuable tools for host factor discovery and interrogation. Genome-wide screening in a variety of in vitro cell models has helped define the critical host factors that play a role in various cellular and biological contexts. Targeted manipulation of specific host factors by CRISPR-Cas9-mediated gene knock-out, overexpression, and/or directed repair have furthermore allowed for target validation in primary cell models and mechanistic inquiry through hypothesis-based testing. In this review, we summarize several CRISPR-based screening strategies for the identification of HIV-1 host factors and highlight how CRISPR-Cas9 approaches have been used to elucidate the molecular mechanisms of viral replication and host response. Finally, we examine promising new technologies in the CRISPR field and how these may be applied to address critical questions in HIV-1 biology going forward.
Collapse
Affiliation(s)
- William J. Cisneros
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Daphne Cornish
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| | - Judd F. Hultquist
- Division of Infectious Diseases, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Center for Pathogen Genomics and Microbial Evolution, Northwestern University Havey Institute for Global Health, Chicago, IL 60611, USA
| |
Collapse
|
75
|
Praena B, Wan XF. Influenza Virus Infections in Polarized Cells. Viruses 2022; 14:1307. [PMID: 35746778 PMCID: PMC9231244 DOI: 10.3390/v14061307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/09/2022] [Accepted: 06/11/2022] [Indexed: 02/05/2023] Open
Abstract
In humans and other mammals, the respiratory tract is represented by a complex network of polarized epithelial cells, forming an apical surface facing the external environment and a basal surface attached to the basement layer. These cells are characterized by differential expression of proteins and glycans, which serve as receptors during influenza virus infection. Attachment between these host receptors and the viral surface glycoprotein hemagglutinin (HA) initiates the influenza virus life cycle. However, the virus receptor binding specificities may not be static. Sialylated N-glycans are the most well-characterized receptors but are not essential for the entry of influenza viruses, and other molecules, such as O-glycans and non-sialylated glycans, may be involved in virus-cell attachment. Furthermore, correct cell polarity and directional trafficking of molecules are essential for the orderly development of the system and affect successful influenza infection; on the other hand, influenza infection can also change cell polarity. Here we review recent advances in our understanding of influenza virus infection in the respiratory tract of humans and other mammals, particularly the attachment between the virus and the surface of the polar cells and the polarity variation of these cells due to virus infection.
Collapse
Affiliation(s)
- Beatriz Praena
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| | - Xiu-Feng Wan
- MU Center for Influenza and Emerging Infectious Diseases, University of Missouri, Columbia, MO 65211, USA;
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Bond Life Sciences Center, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
- Department of Electrical Engineering & Computer Science, College of Engineering, University of Missouri, 1201 Rollins St., Columbia, MO 65211, USA
| |
Collapse
|
76
|
Teng J, Wang D, Wang W, Ning C, Zhang Q, Tang H. Transcriptional Regulation of the Chicken ASMT Gene- A Preliminary Analysis. Br Poult Sci 2022; 63:833-839. [PMID: 35702898 DOI: 10.1080/00071668.2022.2090230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
1. Melatonin is an indole hormone that, among its myriad biological functions, regulates circadian and seasonal rhythms in animals. The ASMT gene plays an essential role in melatonin synthesis. However, in chickens, little is known about the regulatory elements governing its transcription.2. The following study identified the transcription start site of the chicken ASMT gene by 5'-RACE. Then, the proximal minimal promoter was identified using a series of 5' truncations of the ASMT promoter (e.g., -3502/+17, -2698/+17, -2003/+17, -1378/+17, and -254/+17). Site-directed mutagenesis, overexpression, and electrophoretic mobility shift assay (EMSA) were applied to show that the transcription factor Oct-1 binds to the promoter region of ASMT.3. The translation start site was located 19 bp upstream from the translational start site. The luciferase reporter assay confirmed that the core promoter of chicken ASMT gene was in the -254/+17 region. Using site-directed mutagenesis, overexpression, and EMSA, Oct-1 bound the promoter of ASMT.4. Overall, Oct1 plays an important role in the transcriptional regulation of chicken ASMT gene.
Collapse
Affiliation(s)
- Jun Teng
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - Dan Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - Wenwen Wang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - Chao Ning
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | - Qin Zhang
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Technology, Shandong Agricultural University, Tai'an, 271018, China
| | | |
Collapse
|
77
|
Combined Application of Patient-Derived Cells and Biomaterials as 3D In Vitro Tumor Models. Cancers (Basel) 2022; 14:cancers14102503. [PMID: 35626107 PMCID: PMC9139582 DOI: 10.3390/cancers14102503] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/09/2022] [Accepted: 05/16/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary For years, cancer has remained the second leading cause of death in U.S. and Europe even though cancer mortality has decreased, as new advances in medical treatment have made this decrease possible. Chemotherapy has remained the gold standard and “one-size-fits-all” treatment for cancer, yet this approach has lacked precision and, at times, failed. Recent studies attempt to mimic the spatial microenvironment of cancer tissue to better study chemotherapy agents by combining patient-derived cells and three-dimensional (3D) scaffold, bioprinting, spheroid, and hydrogel culturing. This commentary aims to collect and discuss recent findings concerning the combined application of biomaterials with patient-derived cancer cells to better study and test therapies in vitro, that will further personalize and facilitate the treatment of various cancers, and also address the limitation and challenges in developing these 3D models. Abstract Although advances have been made in cancer therapy, cancer remains the second leading cause of death in the U.S. and Europe, and thus efforts to continue to study and discover better treatment methods are ongoing. Three-dimensional (3D) tumor models have shown advantages over bi-dimensional (2D) cultures in evaluating the efficacy of chemotherapy. This commentary aims to highlight the potential of combined application of biomaterials with patient-derived cancer cells as a 3D in vitro model for the study and treatment of cancer patients. Five studies were discussed which demonstrate and provided early evidence to create 3D models with accurate microenvironments that are comparable to in vivo tumors. To date, the use of patient-derived cells for a more personalized approach to healthcare in combination with biomaterials to create a 3D tumor is still relatively new and uncommon for application in clinics. Although highly promising, it is important to acknowledge the current limitations and challenges of developing these innovative in vitro models, including the need for biologists and laboratory technicians to become familiar with biomaterial scaffolds, and the effort for bioengineers to create easy-to-handle scaffolds for routine assessment.
Collapse
|
78
|
Niu L, Geyer PE, Gupta R, Santos A, Meier F, Doll S, Wewer Albrechtsen NJ, Klein S, Ortiz C, Uschner FE, Schierwagen R, Trebicka J, Mann M. Dynamic human liver proteome atlas reveals functional insights into disease pathways. Mol Syst Biol 2022; 18:e10947. [PMID: 35579278 PMCID: PMC9112488 DOI: 10.15252/msb.202210947] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/12/2022] Open
Abstract
Deeper understanding of liver pathophysiology would benefit from a comprehensive quantitative proteome resource at cell type resolution to predict outcome and design therapy. Here, we quantify more than 150,000 sequence-unique peptides aggregated into 10,000 proteins across total liver, the major liver cell types, time course of primary cell cultures, and liver disease states. Bioinformatic analysis reveals that half of hepatocyte protein mass is comprised of enzymes and 23% of mitochondrial proteins, twice the proportion of other liver cell types. Using primary cell cultures, we capture dynamic proteome remodeling from tissue states to cell line states, providing useful information for biological or pharmaceutical research. Our extensive data serve as spectral library to characterize a human cohort of non-alcoholic steatohepatitis and cirrhosis. Dramatic proteome changes in liver tissue include signatures of hepatic stellate cell activation resembling liver cirrhosis and providing functional insights. We built a web-based dashboard application for the interactive exploration of our resource (www.liverproteome.org).
Collapse
Affiliation(s)
- Lili Niu
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| | - Philipp E Geyer
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Rajat Gupta
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Present address:
Pfizer Worldwide Research and DevelopmentSan DiegoCAUSA
| | - Alberto Santos
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Center for Health Data ScienceFaculty of Health SciencesUniversity of CopenhagenCopenhagenDenmark
- Big Data InstituteNuffield Department of MedicineUniversity of OxfordOxfordUK
| | - Florian Meier
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
Functional ProteomicsJena University HospitalJenaGermany
| | - Sophia Doll
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
- Present address:
OmicEra Diagnostics GmbHPlaneggGermany
| | - Nicolai J Wewer Albrechtsen
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Clinical BiochemistryRigshospitaletUniversity of CopenhagenCopenhagenDenmark
| | - Sabine Klein
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Cristina Ortiz
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
| | - Frank E Uschner
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Robert Schierwagen
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
| | - Jonel Trebicka
- Department of Internal Medicine IGoethe University Clinic FrankfurtFrankfurtGermany
- Department of Internal Medicine BWW University MünsterMünsterGermany
- European Foundation for the Study of Chronic Failure, EFCLIFBarcelonaSpain
| | - Matthias Mann
- Novo Nordisk Foundation Center for Protein ResearchFaculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
- Department of Proteomics and Signal TransductionMax Planck Institute of BiochemistryMartinsriedGermany
| |
Collapse
|
79
|
Direct Reprograming of Mouse Fibroblasts into Dermal Papilla Cells via Small Molecules. Int J Mol Sci 2022; 23:ijms23084213. [PMID: 35457029 PMCID: PMC9030401 DOI: 10.3390/ijms23084213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/29/2022] [Accepted: 04/07/2022] [Indexed: 01/27/2023] Open
Abstract
The reprogramming of somatic fibroblasts into alternative cell linages could provide a promising source of cells for regenerative medicine and cell therapy. However, the direct conversion of fibroblasts into other functional cell types is still challenging. In this study, we show that dermal-papilla-cell-like cells (DPC-LCs) can be generated by treating fibroblasts, including L929 mouse fibroblast cell lines and somatic mouse fibroblasts, with small molecules. Based on alkaline phosphatase activity and other molecular markers, different compounds or their combinations are needed for converting the two different fibroblasts into DPC-LCs. Notably, we found that TTNPB alone can efficiently convert primary adult mouse fibroblasts into DPC-LCs. DPC-LCs generated from mouse fibroblasts showed a stronger hair-inducing capacity. Transcriptome analysis reveals that expression of genes associated with a hair-inducing capacity are increased in DPC-LCs. This pharmacological approach to generating functional dermal papilla cells may have many important implications for hair follicle regeneration and hair loss therapy.
Collapse
|
80
|
Saenz-de-Juano MD, Silvestrelli G, Weber A, Röhrig C, Schmelcher M, Ulbrich SE. Inflammatory Response of Primary Cultured Bovine Mammary Epithelial Cells to Staphylococcus aureus Extracellular Vesicles. BIOLOGY 2022; 11:biology11030415. [PMID: 35336789 PMCID: PMC8944978 DOI: 10.3390/biology11030415] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/04/2022] [Indexed: 11/22/2022]
Abstract
Simple Summary Mastitis, the inflammation of the mammary gland, is one of the most common and costly diseases worldwide, and Staphylococcus aureus (S. aureus) is among the most prevalent microorganisms that cause it. To obtain new insights into S. aureus mammary gland infections, we have isolated S. aureus extracellular vesicles to challenge in vitro primary bovine mammary epithelial cells. Despite the toxic content of the vesicles, we observed only a minor pro-inflammatory response. The latter can contribute to the explanation of how S. aureus evades mammary epithelial defence mechanisms and successfully colonizes the mammary gland. Abstract In dairy cows, Staphylococcus aureus (S. aureus) is among the most prevalent microorganisms worldwide, causing mastitis, an inflammation of the mammary gland. Production of extracellular vesicles (EVs) is a common feature of S. aureus strains, which contributes to its pathogenesis by delivering bacterial effector molecules to host cells. In the current study, we evaluated the differences between five S. aureus mastitis isolates regarding their EV production. We found that different mastitis-related S. aureus strains differ in their behaviour of shedding EVs, with M5512VL producing the largest amount of EVs containing alpha-haemolysin, a strong cytotoxic agent. We stimulated primary cultured bovine mammary epithelial cells (pbMECs) with EVs from the S. aureus strain M5512VL. After 24 h of incubation, we observed a moderate increase in gene expression of tumour necrosis factor-alpha (TNF-α) but, surprisingly, a lack of an associated pronounced pro-inflammatory response. Our results contribute to understanding the damaging nature of S. aureus in its capacity to effectively affect mammary epithelial cells.
Collapse
Affiliation(s)
- Mara D. Saenz-de-Juano
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
| | - Giulia Silvestrelli
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
| | - Andres Weber
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
| | - Christian Röhrig
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; (C.R.); (M.S.)
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland; (C.R.); (M.S.)
| | - Susanne E. Ulbrich
- Animal Physiology, Institute of Agricultural Sciences, ETH Zurich, 8092 Zurich, Switzerland; (M.D.S.-d.-J.); (G.S.); (A.W.)
- Correspondence:
| |
Collapse
|
81
|
Nof E, Zidan H, Artzy-Schnirman A, Mouhadeb O, Beckerman M, Bhardwaj S, Elias-Kirma S, Gur D, Beth-Din A, Levenberg S, Korin N, Ordentlich A, Sznitman J. Human Multi-Compartment Airways-on-Chip Platform for Emulating Respiratory Airborne Transmission: From Nose to Pulmonary Acini. Front Physiol 2022; 13:853317. [PMID: 35350687 PMCID: PMC8957966 DOI: 10.3389/fphys.2022.853317] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/15/2022] [Indexed: 12/15/2022] Open
Abstract
The past decade has witnessed tremendous endeavors to deliver novel preclinical in vitro lung models for pulmonary research endpoints, including foremost with the advent of organ- and lung-on-chips. With growing interest in aerosol transmission and infection of respiratory viruses within a host, most notably the SARS-CoV-2 virus amidst the global COVID-19 pandemic, the importance of crosstalk between the different lung regions (i.e., extra-thoracic, conductive and respiratory), with distinct cellular makeups and physiology, are acknowledged to play an important role in the progression of the disease from the initial onset of infection. In the present Methods article, we designed and fabricated to the best of our knowledge the first multi-compartment human airway-on-chip platform to serve as a preclinical in vitro benchmark underlining regional lung crosstalk for viral infection pathways. Combining microfabrication and 3D printing techniques, our platform mimics key elements of the respiratory system spanning (i) nasal passages that serve as the alleged origin of infections, (ii) the mid-bronchial airway region and (iii) the deep acinar region, distinct with alveolated airways. Crosstalk between the three components was exemplified in various assays. First, viral-load (including SARS-CoV-2) injected into the apical partition of the nasal compartment was detected in distal bronchial and acinar components upon applying physiological airflow across the connected compartment models. Secondly, nebulized viral-like dsRNA, poly I:C aerosols were administered to the nasal apical compartment, transmitted to downstream compartments via respiratory airflows and leading to an elevation in inflammatory cytokine levels secreted by distinct epithelial cells in each respective compartment. Overall, our assays establish an in vitro methodology that supports the hypothesis for viral-laden airflow mediated transmission through the respiratory system cellular landscape. With a keen eye for broader end user applications, we share detailed methodologies for fabricating, assembling, calibrating, and using our multi-compartment platform, including open-source fabrication files. Our platform serves as an early proof-of-concept that can be readily designed and adapted to specific preclinical pulmonary research endpoints.
Collapse
Affiliation(s)
- Eliram Nof
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Hikaia Zidan
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arbel Artzy-Schnirman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Odelia Mouhadeb
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Margarita Beckerman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Saurabh Bhardwaj
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Shani Elias-Kirma
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Didi Gur
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Adi Beth-Din
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Shulamit Levenberg
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Netanel Korin
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| | - Arie Ordentlich
- Israel Institute for Biological Research, Ness Ziona, Israel
| | - Josué Sznitman
- Department of Biomedical Engineering, Technion—Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
82
|
He Y, Rofaani E, Huang X, Huang B, Liang F, Wang L, Shi J, Peng J, Chen Y. Generation of Alveolar Epithelium Using Reconstituted Basement Membrane and hiPSC-Derived Organoids. Adv Healthc Mater 2022; 11:e2101972. [PMID: 34935309 DOI: 10.1002/adhm.202101972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 12/01/2021] [Indexed: 12/11/2022]
Abstract
In vitro modeling of alveolar epithelium needs to recapitulate features of both cellular and noncellular components of the lung tissues. Herein, a method is presented to generate alveolar epithelium by using human induced pluripotent stem cells (hiPSCs) and reconstituted or artificial basement membrane (ABM). The ABM is obtained by self-assembling type IV collagen and laminin with a monolayer of crosslinked gelatin nanofibers as backbone and a patterned honeycomb microframe for handling. Alveolar organoids are obtained from hiPSCs and then dissociated into single cells. After replating the alveolar cells on the ABM and a short-period incubation under submerged and air-liquid interface culture conditions, an alveolar epithelium is achieved, showing high-level expressions of both alveolar cell-specific proteins and characteristic tight junctions. Besides, endothelial cells derived from the same hiPSCs are cocultured on the backside of the epithelium, forming an air-blood barrier. The method is generic and can potentially be applied to other types of artificial epithelium and endothelium.
Collapse
Affiliation(s)
- Yong He
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Elrade Rofaani
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Xiaochen Huang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Boxin Huang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Feng Liang
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Li Wang
- MesoBioTech 231 Rue Saint‐Honoré Paris 75001 France
| | - Jian Shi
- MesoBioTech 231 Rue Saint‐Honoré Paris 75001 France
| | - Juan Peng
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| | - Yong Chen
- École Normale Supérieure‐PSL Research University Sorbonne Universités – UPMC Univ Paris 06, CNRS UMR 8640 PASTEUR, 24, rue Lhomond Paris 75005 France
| |
Collapse
|
83
|
Supp DM, Hahn JM, Combs KA, McFarland KL, Powell HM. Isolation and feeder-free primary culture of four cell types from a single human skin sample. STAR Protoc 2022; 3:101172. [PMID: 35199036 PMCID: PMC8844903 DOI: 10.1016/j.xpro.2022.101172] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
84
|
Heydarian M, Rühl E, Rawal R, Kozjak-Pavlovic V. Tissue Models for Neisseria gonorrhoeae Research—From 2D to 3D. Front Cell Infect Microbiol 2022; 12:840122. [PMID: 35223556 PMCID: PMC8873371 DOI: 10.3389/fcimb.2022.840122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 01/24/2022] [Indexed: 12/02/2022] Open
Abstract
Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea, the second most common sexually transmitted infection worldwide. Disease progression, drug discovery, and basic host-pathogen interactions are studied using different approaches, which rely on models ranging from 2D cell culture to complex 3D tissues and animals. In this review, we discuss the models used in N. gonorrhoeae research. We address both in vivo (animal) and in vitro cell culture models, discussing the pros and cons of each and outlining the recent advancements in the field of three-dimensional tissue models. From simple 2D monoculture to complex advanced 3D tissue models, we provide an overview of the relevant methodology and its application. Finally, we discuss future directions in the exciting field of 3D tissue models and how they can be applied for studying the interaction of N. gonorrhoeae with host cells under conditions closely resembling those found at the native sites of infection.
Collapse
|
85
|
Insights into the Steps of Breast Cancer-Brain Metastases Development: Tumor Cell Interactions with the Blood-Brain Barrier. Int J Mol Sci 2022; 23:ijms23031900. [PMID: 35163822 PMCID: PMC8836543 DOI: 10.3390/ijms23031900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/01/2022] [Accepted: 02/05/2022] [Indexed: 02/07/2023] Open
Abstract
Brain metastases (BM) represent a growing problem for breast cancer (BC) patients. Recent studies have demonstrated a strong impact of the BC molecular subtype on the incidence of BM development. This study explores the interaction between BC cells of different molecular subtypes and the blood–brain barrier (BBB). We compared the ability of BC cells of different molecular subtypes to overcome several steps (adhesion to the brain endothelium, disruption of the BBB, and invasion through the endothelial layer) during cerebral metastases formation, in vitro as well as in vivo. Further, the impact of these cells on the BBB was deciphered at the molecular level by transcriptome analysis of the triple-negative (TNBC) cells themselves as well as of hBMECs after cocultivation with BC cell secretomes. Compared to luminal BC cells, TNBC cells have a greater ability to influence the BBB in vitro and consequently develop BM in vivo. The brain-seeking subline and parental TNBC cells behaved similarly in terms of adhesion, whereas the first showed a stronger impact on the brain endothelium integrity and increased invasive ability. The comparative transcriptome revealed potential brain-metastatic-specific key regulators involved in the aforementioned processes, e.g., the angiogenesis-related factors TNXIP and CXCL1. In addition, the transcriptomes of the two TNBC cell lines strongly differed in certain angiogenesis-associated factors and in several genes related to cell migration and invasion. Based on the present study, we hypothesize that the tumor cell’s ability to disrupt the BBB via angiogenesis activation, together with increased cellular motility, is required for BC cells to overcome the BBB and develop brain metastases.
Collapse
|
86
|
Klykov O, Kopylov M, Carragher B, Heck AJR, Noble AJ, Scheltema RA. Label-free visual proteomics: Coupling MS- and EM-based approaches in structural biology. Mol Cell 2022; 82:285-303. [PMID: 35063097 PMCID: PMC8842845 DOI: 10.1016/j.molcel.2021.12.027] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 01/22/2023]
Abstract
Combining diverse experimental structural and interactomic methods allows for the construction of comprehensible molecular encyclopedias of biological systems. Typically, this involves merging several independent approaches that provide complementary structural and functional information from multiple perspectives and at different resolution ranges. A particularly potent combination lies in coupling structural information from cryoelectron microscopy or tomography (cryo-EM or cryo-ET) with interactomic and structural information from mass spectrometry (MS)-based structural proteomics. Cryo-EM/ET allows for sub-nanometer visualization of biological specimens in purified and near-native states, while MS provides bioanalytical information for proteins and protein complexes without introducing additional labels. Here we highlight recent achievements in protein structure and interactome determination using cryo-EM/ET that benefit from additional MS analysis. We also give our perspective on how combining cryo-EM/ET and MS will continue bridging gaps between molecular and cellular studies by capturing and describing 3D snapshots of proteomes and interactomes.
Collapse
Affiliation(s)
- Oleg Klykov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Mykhailo Kopylov
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Bridget Carragher
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Albert J R Heck
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands
| | - Alex J Noble
- National Center for In-situ Tomographic Ultramicroscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA.
| | - Richard A Scheltema
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences, University of Utrecht, 3584 CH Utrecht, the Netherlands; Netherlands Proteomics Center, 3584 CH Utrecht, the Netherlands.
| |
Collapse
|
87
|
Heckenberg E, Steppe JT, Coyne CB. Enteroviruses: The role of receptors in viral pathogenesis. Adv Virus Res 2022; 113:89-110. [DOI: 10.1016/bs.aivir.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
88
|
Kumar S, Curran JE, Williams-Blangero S, Blangero J. Efficient Generation of Functional Hepatocytes from Human Induced Pluripotent Stem Cells for Disease Modeling and Disease Gene Discovery. Methods Mol Biol 2022; 2549:85-101. [PMID: 33772461 PMCID: PMC11131577 DOI: 10.1007/7651_2021_375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
In vitro hepatocyte cell models are being used to study the pathogenesis of liver disease and in the discovery and preclinical stages of drug development. The culture of hepatic cell lines and primary hepatocytes as in vitro cell models has been carried out for several decades. However, hepatic cell lines (hepatic carcinoma generated or immortalized) have limited accuracy when recapitulating complex physiological functions of the liver. Additionally, primary hepatocytes sourced from human cadavers or medical biopsies are difficult to obtain due to sourcing limitations, particularly for large-scale population studies or in applications requiring large number of cells. Hepatocyte cultures differentiated from human embryonic stem cells (ESCs) and induced pluripotent stem cell (iPSCs) overcome in large part the limitations of traditional hepatocyte in vitro models. In this chapter, we described an efficient protocol routinely used in our laboratory to differentiate human iPSCs into functional hepatocyte cultures for in vitro modeling of liver function and disease. The protocol uses a three-stage differentiation strategy to generate functional hepatocytes from human iPSCs. The differentiated cells show characteristic hepatocyte morphology including flat and polygonal shape, distinct round nuclei, and presence of biliary canaliculi and they express hepatic markers alpha-fetoprotein (AFP), albumin (ALB), E-cadherin (CHD1), hepatocyte nuclear factor 4 alpha (HNF4α), and actin.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX, USA.
| | - Joanne E Curran
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - Sarah Williams-Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, McAllen, TX, USA
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| | - John Blangero
- Department of Human Genetics and South Texas Diabetes and Obesity Institute, University of Texas Rio Grande Valley School of Medicine, Brownsville, TX, USA
| |
Collapse
|
89
|
Graham C, Sethu P. Myocardial Fibrosis: Cell Signaling and In Vitro Modeling. CARDIOVASCULAR SIGNALING IN HEALTH AND DISEASE 2022:287-321. [DOI: 10.1007/978-3-031-08309-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
90
|
Silvestrelli G, Ulbrich SE, Saenz-de-Juano MD. Assessing extracellular vesicles from bovine mammary gland epithelial cells cultured in FBS-free medium. EXTRACELLULAR VESICLES AND CIRCULATING NUCLEIC ACIDS 2021; 2:252-267. [PMID: 39697662 PMCID: PMC11648452 DOI: 10.20517/evcna.2021.18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/13/2021] [Accepted: 12/27/2021] [Indexed: 12/20/2024]
Abstract
Aim Mammary gland extracellular vesicles (EVs) are found in both human and livestock milk. Our knowledge of the role of EVs in the mammary gland development, breast cancer and mastitis derives mainly from in vitro cell culture models. However, a commonly shared limitation is the use of fetal bovine serum (FBS) as a supplement, which naturally contains EVs. For this reason, the purpose of the study was to evaluate novel tools to investigate mammary gland EVs in vitro and in a FBS-free system. Methods Primary bovine mammary epithelial cells (pbMECs) and a mammary gland alveolar epithelial cell line (MAC-T) were cultured in a chemically defined EV-free medium. To find a reliable EV isolation protocol from a starting cell conditioned medium (10 mL), we compared eight different methodologies by combining ultracentrifugation (UC), chemical precipitation (CP), size exclusion chromatography (SEC), and ultrafiltration (UF). Results The medium formula sustained both pbMECs and MAC-T cell growth. Transmission electron microscopy revealed that we obtained EV-like particles in five out of eight protocols. The cleanest samples with the highest number of particles and detectable amounts of RNA were obtained by using UF-SEC-UC. Conclusion Our chemically defined, FBS-free medium sustains the growth of both pbMECs and MAC-T and allows the isolation of EVs that are free from any contamination by UF-SEC-UC. In conclusion, we propose a new culture system and EVs isolation protocols for further research on mammary epithelial EVs.
Collapse
Affiliation(s)
| | | | - Mara D. Saenz-de-Juano
- ETH Zurich, Animal Physiology, Animal Physiology, Department of Environmental System Science (D-USYS), Institute of Agricultural Sciences, Zurich 8092, Switzerland
| |
Collapse
|
91
|
Kim SW, Hong IK, Kim M, Song YS, Kim KT. hnRNP Q and hnRNP A1 Regulate the Translation of Cofilin in Response to Transient Oxygen-Glucose Deprivation in Hippocampal Neurons. Cells 2021; 10:cells10123567. [PMID: 34944075 PMCID: PMC8700186 DOI: 10.3390/cells10123567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 11/16/2022] Open
Abstract
Protein aggregates of cofilin and actin have been found in neurons under oxygen-glucose deprivation. However, the regulatory mechanism behind the expression of Cfl1 during oxygen-glucose deprivation remains unclear. Here, we found that heterogeneous nuclear ribonucleoproteins (hnRNP) Q and hnRNP A1 regulate the translation of Cfl1 mRNA, and formation of cofilin-actin aggregates. The interaction between hnRNP A1 and Cfl1 mRNA was interrupted by hnRNP Q under normal conditions, while the changes in the expression and localization of hnRNP Q and hnRNP A1 increased such interaction, as did the translation of Cfl1 mRNA under oxygen-glucose deprived conditions. These findings reveal a new translational regulatory mechanism of Cfl1 mRNA in hippocampal neurons under oxygen-glucose deprivation.
Collapse
Affiliation(s)
- Sung Wook Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
| | - In Kyung Hong
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea; (I.K.H.); (M.K.)
| | - Mingee Kim
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea; (I.K.H.); (M.K.)
| | - Yun Seon Song
- College of Pharmacy, Sookmyung Women’s University, Seoul 04310, Korea; (I.K.H.); (M.K.)
- Correspondence: (Y.S.S.); (K.-T.K.)
| | - Kyong-Tai Kim
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea;
- Correspondence: (Y.S.S.); (K.-T.K.)
| |
Collapse
|
92
|
Song Y, Chen W, Gai K, Lin F, Sun W. Culture models produced via biomanufacturing for neural tissue-like constructs based on primary neural and neural stem cells. BRAIN SCIENCE ADVANCES 2021. [DOI: 10.26599/bsa.2021.9050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|
93
|
Noguera P, Klinger M, Örün H, Grunow B, Del-Pozo J. Ultrastructural insights into the replication cycle of salmon pancreas disease virus (SPDV) using salmon cardiac primary cultures (SCPCs). JOURNAL OF FISH DISEASES 2021; 44:2031-2041. [PMID: 34424537 DOI: 10.1111/jfd.13518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Salmon pancreas disease virus (SPDV) has been affecting the salmon farming industry for over 30 years, but despite the substantial amount of studies, there are still a number of recognized knowledge gaps, for example in the transmission of the virus. In this work, an ultrastructural morphological approach was used to describe observations after infection by SPDV of an ex vivo cardiac model generated from Atlantic salmon embryos. The observations in this study and those available on previous ultrastructural work on SPDV are compared and contrasted with the current knowledge on terrestrial mammalian and insect alphaviral replication cycles, which is deeper than that of SPDV both morphologically and mechanistically. Despite their limitations, morphological descriptions remain an excellent way to generate novel hypotheses, and this has been the aim of this work. This study has used a target host, ex vivo model and resulted in some previously undescribed features, including filopodial membrane projections, cytoplasmic stress granules or putative intracytoplasmic budding. The latter suggests a new hypothesis that warrants further mechanistic research: SPDV in salmon may have retained the capacity for non-cytolytic (persistent) infections by intracellular budding, similar to that noted in arthropod vectors of other alphaviruses. In the notable absence of a known intermediate host for SPDV, the presence of this pattern suggests that both cytopathic and persistent infections may coexist in the same host. It is our hope that the ultrastructural comparison presented here stimulates new research that brings the knowledge on SPDV replication cycle up to a similar level to that of terrestrial alphaviruses.
Collapse
Affiliation(s)
| | | | - Histro Örün
- Institute of Anatomy, University of Lübeck, Lübeck, Germany
| | - Bianka Grunow
- Leibniz-Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - Jorge Del-Pozo
- Royal Dick School of Veterinary Sciences, University of Edinburgh, Roslin, UK
| |
Collapse
|
94
|
Zhang X, Lai K, Li S, Wang J, Li J, Wang W, Ni S, Lu B, Grzybowski A, Ji J, Han H, Yao K. Drug-eluting intraocular lens with sustained bromfenac release for conquering posterior capsular opacification. Bioact Mater 2021; 9:343-357. [PMID: 34820575 PMCID: PMC8586266 DOI: 10.1016/j.bioactmat.2021.07.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/16/2021] [Accepted: 07/17/2021] [Indexed: 02/06/2023] Open
Abstract
Cataract is the leading cause of visual impairment, and posterior capsular opacification (PCO) is the most common long-term complication of modern cataract surgery, which can cause severe visual impairment after surgery. The proliferation, migration, and epithelial-mesenchymal transition (EMT) of residual lens epithelial cells (LECs) stimulated by growth factors and cytokines, are the key pathological mechanisms involved in the development of PCO. This study demonstrated that non-steroidal anti-inflammatory drug (NSAID), bromfenac, was capable of effectively inhibiting cell migration, overexpression of EMT markers, such as fibronectin (FN), matrix metalloproteinase 2 (MMP2), α-smooth muscle actin (α-SMA), and transcription factor Snail, and extracellular signal-regulated kinase (ERK)/glycogen synthase kinase-3β (GSK-3β) signaling induced by transforming growth factor-β2 (TGF-β2) in vitro. The inhibitory effect of bromfenac on TGF-β2-induced EMT was also verified on a primary lens epithelial cell model using human anterior capsules. Furthermore, based on ultrasonic spray technology, we developed a drug-eluting intraocular lens (IOL) using poly (lactic-co-glycolic acid) (PLGA) with sustained bromfenac release ability for the prevention of PCO development. In the rabbit models of cataract surgery, bromfenac-eluting IOL exhibited remarkable PCO prevention and inflammation suppression effects with excellent biocompatibility. In conclusion, bromfenac can inhibit TGF-β2-induced cell migration and the EMT of LECs via ERK/GSK-3β/Snail signaling. The present study offers a novel approach for preventing PCO through PLGA-based drug sustained-release IOLs. Bromfenac inhibited TGF-β2-induced migration and EMT of LECs through ERK/GSK-3β/Snail signaling. Drug-eluting IOLs with sustained bromfenac release were developed based on ultrasonic spray technology. Bromfenac-eluting IOLs exhibited remarkable PCO prevention and inflammation suppression effects in vivo. Bromfenac-eluting IOLs hold great potential for clinical application of PCO prevention.
Collapse
Affiliation(s)
- Xiaobo Zhang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Kairan Lai
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Su Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Jing Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Jiayong Li
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Wei Wang
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Shuang Ni
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China
| | - Bing Lu
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Andrzej Grzybowski
- Department of Ophthalmology, University of Warmia and Mazury, 60-554 Olsztyn, Poland.,Institute for Research in Ophthalmology, Gorczyczewskiego 2/3, 61-553 Poznan, Poland
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, PR China
| | - Haijie Han
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| | - Ke Yao
- Eye Center, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, PR China.,Zhejiang Provincial Key Laboratory of Ophthalmology, Hangzhou, PR China
| |
Collapse
|
95
|
Zulfiqar B, Avery VM. Assay development in leishmaniasis drug discovery: a comprehensive review. Expert Opin Drug Discov 2021; 17:151-166. [PMID: 34818139 DOI: 10.1080/17460441.2022.2002843] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
INTRODUCTION Cutaneous, muco-cutaneous and visceral leishmaniasis occur due to an infection with the protozoan parasite Leishmania. The current therapeutic options are limited mainly due to extensive toxicity, emerging resistance and variation in efficacy based on species and strain of the Leishmania parasite. There exists a high unmet medical need to identify new chemical starting points for drug discovery to tackle the disease. AREAS COVERED The authors have highlighted the recent progress, limitations and successes achieved in assay development for leishmaniasis drug discovery. EXPERT OPINION It is true that sophisticated and robust phenotypic in vitro assays have been developed during the last decade, however limitations and challenges remain with respect to variation in activity reported between different research groups and success in translating in vitro outcomes in vivo. The variability is not only due to strain and species differences but also a lack of well-defined criteria and assay conditions, e.g. culture media, host cell type, assay formats, parasite form used, multiplicity of infection and incubation periods. Thus, there is an urgent need for more physiologically relevant assays that encompass multi-species phenotypic approaches to identify new chemical starting points for leishmaniasis drug discovery.
Collapse
Affiliation(s)
- Bilal Zulfiqar
- Discovery Biology, Griffith University, Brisbane, Australia
| | - Vicky M Avery
- Discovery Biology, Griffith University, Brisbane, Australia.,Discovery Biology, Griffith University Drug Discovery Programme for Cancer Therapeutics, Brisbane, Australia.,School of Environment and Sciences, Griffith University, Brisbane, Australia
| |
Collapse
|
96
|
Vater C, Bosch L, Mitter A, Göls T, Seiser S, Heiss E, Elbe-Bürger A, Wirth M, Valenta C, Klang V. Lecithin-based nanoemulsions of traditional herbal wound healing agents and their effect on human skin cells. Eur J Pharm Biopharm 2021; 170:1-9. [PMID: 34798283 DOI: 10.1016/j.ejpb.2021.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 11/04/2021] [Accepted: 11/11/2021] [Indexed: 01/11/2023]
Abstract
In previous studies, lecithin-based nanoemulsions (NEs) have been shown to be skin friendly drug carrier systems. Due to their nontoxic properties, NEs might also be suitable as wound healing agents. Hence, different O/W NEs based on lecithin Lipoid® S 75 and plant oils or medium chain triglycerides were produced and characterised. Two lipophilic natural wound healing agents, a betulin-enriched extract from birch bark (BET) and a purified spruce balm (PSB), were successfully incorporated and their effects on primary human skin cells were studied in vitro. MTT, BrdU and scratch assays uncovered the positive influence of the drug-loaded NEs on cell viability, proliferation and potential wound closure. Compared to control formulations, the NEs loaded with either BET or PSB led to higher cell viability rates of fibroblasts and keratinocytes. Higher proliferative activity of keratinocytes and fibroblasts was observed after the treatment, which is a prerequisite for wound closure. Indeed, in scratch assays NEs with PSB and notably BET showed significantly ameliorated wound closure rates than the negative control (unloaded NEs) and the positive control (NEs with dexpanthenol). Our findings suggest that BET and PSB are outstanding wound healing drugs and their incorporation into lecithin-based NEs may represent a valid strategy for wound care.
Collapse
Affiliation(s)
- Claudia Vater
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Leonie Bosch
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Alexandra Mitter
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Thomas Göls
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Saskia Seiser
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Elke Heiss
- University of Vienna, Department of Pharmacognosy, Althanstrasse 14, 1090 Vienna, Austria
| | - Adelheid Elbe-Bürger
- Medical University of Vienna, Department of Dermatology, Währinger Gürtel 18-20, 1090 Vienna, Austria
| | - Michael Wirth
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria
| | - Claudia Valenta
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria; University of Vienna, Research Platform 'Characterisation of Drug Delivery Systems on Skin and Investigation of Involved Mechanisms', Althanstraße 14, 1090 Vienna, Austria
| | - Victoria Klang
- University of Vienna, Department of Pharmaceutical Technology and Biopharmaceutics, Althanstraße 14, 1090 Vienna, Austria.
| |
Collapse
|
97
|
Bokelmann M, Vogel U, Debeljak F, Düx A, Riesle-Sbarbaro S, Lander A, Wahlbrink A, Kromarek N, Neil S, Couacy-Hymann E, Prescott J, Kurth A. Tolerance and Persistence of Ebola Virus in Primary Cells from Mops condylurus, a Potential Ebola Virus Reservoir. Viruses 2021; 13:v13112186. [PMID: 34834992 PMCID: PMC8622823 DOI: 10.3390/v13112186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/14/2021] [Accepted: 10/26/2021] [Indexed: 11/16/2022] Open
Abstract
Although there have been documented Ebola virus disease outbreaks for more than 40 years, the natural reservoir host has not been identified. Recent studies provide evidence that the Angolan free-tailed bat (Mops condylurus), an insectivorous microbat, is a possible ebolavirus reservoir. To investigate the potential role of this bat species in the ecology of ebolaviruses, replication, tolerance, and persistence of Ebola virus (EBOV) were investigated in 10 different primary bat cell isolates from M. condylurus. Varying EBOV replication kinetics corresponded to the expression levels of the integral membrane protein NPC1. All primary cells were highly tolerant to EBOV infection without cytopathic effects. The observed persistent EBOV infection for 150 days in lung primary cells, without resultant selective pressure leading to virus mutation, indicate the intrinsic ability of EBOV to persist in this bat species. These results provide further evidence for this bat species to be a likely reservoir of ebolaviruses.
Collapse
Affiliation(s)
- Marcel Bokelmann
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Uwe Vogel
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Franka Debeljak
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Ariane Düx
- Epidemiology of Highly Pathogenic Microorganisms, Robert Koch Institute, 13353 Berlin, Germany;
| | - Silke Riesle-Sbarbaro
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Angelika Lander
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Annette Wahlbrink
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Nicole Kromarek
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Stuart Neil
- Department of Infectious Diseases, King’s College London, London WC2R 2LS, UK; (F.D.); (S.N.)
| | - Emmanuel Couacy-Hymann
- Laboratoire National d’Appui au Développement Agricole, Bingerville BP 206, Côte d’Ivoire;
| | - Joseph Prescott
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
| | - Andreas Kurth
- Centre for Biological Threats and Special Pathogens, Robert Koch Institute, 13353 Berlin, Germany; (M.B.); (U.V.); (S.R.-S.); (A.L.); (A.W.); (N.K.); (J.P.)
- Correspondence:
| |
Collapse
|
98
|
Kapate N, Clegg JR, Mitragotri S. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Adv Drug Deliv Rev 2021; 177:113807. [PMID: 34023331 DOI: 10.1016/j.addr.2021.05.017] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Shape of particulate drug carries has been identified as a key parameter in determining their biological outcome. In this review, we analyze the field of particle shape as it shifts from fundamental investigations to contemporary applications for disease treatment, while highlighting outstanding remaining questions. We summarize fabrication and characterization methods and discuss in depth how particle shape influences biological interactions with cells, transport in the vasculature, targeting in the body, and modulation of the immune response. As the field moves from discoveries to applications, further attention needs to be paid to factors such as characterization and quality control, selection of model organisms, and disease models. Taken together, these aspects will provide a conceptual foundation for designing future non-spherical drug carriers to overcome biological barriers and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Kapate
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
99
|
Grubb ML, Caliari SR. Fabrication approaches for high-throughput and biomimetic disease modeling. Acta Biomater 2021; 132:52-82. [PMID: 33716174 PMCID: PMC8433272 DOI: 10.1016/j.actbio.2021.03.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/15/2021] [Accepted: 03/02/2021] [Indexed: 12/24/2022]
Abstract
There is often a tradeoff between in vitro disease modeling platforms that capture pathophysiologic complexity and those that are amenable to high-throughput fabrication and analysis. However, this divide is closing through the application of a handful of fabrication approaches-parallel fabrication, automation, and flow-driven assembly-to design sophisticated cellular and biomaterial systems. The purpose of this review is to highlight methods for the fabrication of high-throughput biomaterial-based platforms and showcase examples that demonstrate their utility over a range of throughput and complexity. We conclude with a discussion of future considerations for the continued development of higher-throughput in vitro platforms that capture the appropriate level of biological complexity for the desired application. STATEMENT OF SIGNIFICANCE: There is a pressing need for new biomedical tools to study and understand disease. These platforms should mimic the complex properties of the body while also permitting investigation of many combinations of cells, extracellular cues, and/or therapeutics in high-throughput. This review summarizes emerging strategies to fabricate biomimetic disease models that bridge the gap between complex tissue-mimicking microenvironments and high-throughput screens for personalized medicine.
Collapse
Affiliation(s)
- Mackenzie L Grubb
- Department of Biomedical Engineering, University of Virginia, Unites States
| | - Steven R Caliari
- Department of Biomedical Engineering, University of Virginia, Unites States; Department of Chemical Engineering, University of Virginia, Unites States.
| |
Collapse
|
100
|
Löffler MC, Betz MJ, Blondin DP, Augustin R, Sharma AK, Tseng YH, Scheele C, Zimdahl H, Mark M, Hennige AM, Wolfrum C, Langhans W, Hamilton BS, Neubauer H. Challenges in tackling energy expenditure as obesity therapy: From preclinical models to clinical application. Mol Metab 2021; 51:101237. [PMID: 33878401 PMCID: PMC8122111 DOI: 10.1016/j.molmet.2021.101237] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/31/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND A chronic imbalance of energy intake and energy expenditure results in excess fat storage. The obesity often caused by this overweight is detrimental to the health of millions of people. Understanding both sides of the energy balance equation and their counter-regulatory mechanisms is critical to the development of effective therapies to treat this epidemic. SCOPE OF REVIEW Behaviors surrounding ingestion have been reviewed extensively. This review focuses more specifically on energy expenditure regarding bodyweight control, with a particular emphasis on the organs and attractive metabolic processes known to reduce bodyweight. Moreover, previous and current attempts at anti-obesity strategies focusing on energy expenditure are highlighted. Precise measurements of energy expenditure, which consist of cellular, animal, and human models, as well as measurements of their translatability, are required to provide the most effective therapies. MAJOR CONCLUSIONS A precise understanding of the components surrounding energy expenditure, including tailored approaches based on genetic, biomarker, or physical characteristics, must be integrated into future anti-obesity treatments. Further comprehensive investigations are required to define suitable treatments, especially because the complex nature of the human perspective remains poorly understood.
Collapse
Affiliation(s)
- Mona C Löffler
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Matthias J Betz
- Department of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Denis P Blondin
- Department of Medicine, Division of Neurology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, QC, Canada
| | - Robert Augustin
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Anand K Sharma
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Yu-Hua Tseng
- Joslin Diabetes Center, Section on Integrative Physiology and Metabolism, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA
| | - Camilla Scheele
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Denmark
| | - Heike Zimdahl
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Michael Mark
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Anita M Hennige
- Therapeutic Area CardioMetabolism & Respiratory, Boehringer Ingelheim International GmbH, Biberach, Germany
| | - Christian Wolfrum
- Institute of Food, Nutrition and Health, ETH Zürich, Schwerzenbach, Switzerland
| | - Wolfgang Langhans
- Physiology and Behavior Laboratory, Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | - Bradford S Hamilton
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Heike Neubauer
- Cardio Metabolic Diseases Research, Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany.
| |
Collapse
|